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Abstract. The aim of this paper is twofold. We construct an extension to a
non-integrable case of Hopf’s formula, often used to produce viscosity solutions
of Hamilton-Jacobi equations for p-convex integrable Hamiltonians. Further-
more, for a general class of p-convex Hamiltonians, we present a proof of the

equivalence of the minimax solution with the viscosity solution.

1. Introduction. We review some aspects of the Cauchy Problem (CP ) for Hamil-
ton-Jacobi equations of evolutive type:

(CP )





∂S

∂t
(t, q) + H

(
t, q,

∂S

∂q
(t, q)

)
= 0,

S (0, q) = σ (q) ,

t ∈ [0, T ], q ∈ N , where N is a smooth connected manifold without boundary.
For T small enough, the unique classical solution to (CP ) is determined using the
characteristics method. However, even though H and σ are smooth, in general
there exists a critical time in which the classical solution breaks down: it becomes
multivalued, i.e. the q-components of some characteristics cross each other. Hence,
it arises the question of how to define, and then to determine, weak (e.g., continuous
and almost everywhere differentiable) global solutions of (CP ).

In the eighties, Crandall, Evans and Lions introduced the notion of viscosity
solution for Hamilton-Jacobi equations, see [23] and [3] for a detailed review on the
subject. Lions [23], Bardi and Evans [2], using Hopf’s formulas, directly constructed
viscosity solutions for convex Liouville-integrable Hamiltonians of the form H =
H (p).

Afterwards, in 1991 Chaperon and Sikorav proposed in a geometric framework
a new type of weak solutions for (CP ), called minimax solutions –sometimes also
variational or Lagrangian solution (see [13], [33], [26]). Their definition is based on
generating functions quadratic at infinity (G.F.Q.I.) of the Lagrangian submanifold
L obtained by gluing together the characteristics of the Hamiltonian vector field
XH where H (t, q, τ, p) = τ +H (t, q, p). This global object L resumes geometrically
the multi-valued features of the Hamilton-Jacobi problem, like a sort of Riemann
surface (see e.g. [34]) occuring in complex analysis. A discussion on the construction
of global generating functions of L related to viscosity solutions has been made in
[8] in the special case of existence of a complete solution (“complete integral”) of
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Hamilton-Jacobi equation. In this new topological framework, a lot of examples
can be found and produced, even outside the classical mechanics: e.g. in control
theory [6], or in multi-time theory of Hamilton-Jacobi equation [11].

Viscosity and minimax solutions have the same analytic properties, namely, the-
orems of existence and uniqueness hold, but in general they are different, see [26]. In
[21] Joukovskaia indicated that viscosity and minimax solutions of (CP ) coincide,
provided that the Hamiltonian H is convex in the p variables. A task of the present
paper is to give a detailed proof of this fact.

First, we construct an extension of (the above mentioned) Hopf’s formula, for
more general non-integrable Hamiltonians; this is performed on the torus N = Tn.
This result is caught by utilizing (i) a very fruitful, even though scarcely known,
theorem of Hamilton (e.g. quoted by Gantmacher [19] as “Perturbation Theory”),
(ii) a classical composition rule of generating functions in symplectic geometry [4],
and (iii) the existence theorem by Chaperon-Laudenbach-Sikorav-Viterbo of global
generating functions for Lagrangian submanifolds related to compactly supported
Hamiltonians.

Furthermore, we present a proof of the coincidence of minimax and viscosity solu-
tions, essentially based on an Amann-Conley-Zehnder reduction of the Action Func-
tional of the Hamilton-Helmholtz variational principle. In our construction it is cru-
cial the following representation of the candidate weak solution S : [0, T ]×Rn → R,
(t, q) 7→ S (t, q), where we require (q̃ (·) , p̃ (·)) ∈ H1 ([0, T ] , T ∗Rn)

S (t, q) := inf
q̃ (·) :

q̃ : [0, t] → Rn

q̃ (t) = q

sup
p̃ (·) :

p̃ : [0, t] → Rn,

p̃(0) = ∂σ
∂q (q̃(0))

{
σ (q̃ (0)) +

∫ t

0

(pq̇ − H)|(q̃,p̃)
ds

}
, (1)

H(q, p) = 1
2 |p|2 + V (q), V compactly supported. Indeed, under the convexity hy-

pothesis on H , from one side, we see that (1) is the Hamiltonian version of the
Lax-Oleinik formula hence defines the viscosity solution by Crandall-Evans-Lions,
see [17], [18] and bibliography quoted therein; from the other one, we show that the
minimax solution proposed by Chaperon-Sikorav-Viterbo, which is defined through
the variational Hamilton-Helmholtz functional involved in (1), is exactly given by
S. Incidentally, the paper [16] studies the same Hamiltonian from the perspective of
idempotent analysis and arrives essentially to the above explicit formula. Moreover,
in the interesting forthcoming paper [25] McCaffrey proposes technical conditions
guaranteeing minimax solutions to be viscous ones and he points out that they do
work also in some non convex cases.

The sequel is organized as follows.
In Sections 2-4 we recall some notions about symplectic topology, generating

functions and minimax solutions of (CP ). In Section 5, for N = Tn, we explicitly
write down a generating function with finite parameters for the Lagrangian sub-
manifold geometric solution of (CP ) for the Hamiltonian H (q, p) = 1

2 |p|2 + f (q, p),
q ∈ Tn, f compactly supported.

Section 6 is devoted to the proof of the equivalence of viscosity and minimax
solutions of (CP ), for Hamiltonians of mechanical type H (q, p) = 1

2 |p|2 + V (q).

Here, we assume (q, p) ∈ R2n and compactly supported energy potential V (q).
In the literature the term minimax solution is often used to indicate a third

approach to generalized solutions of (CP ); this alternative approach –which applies
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properly in differential game theory and control theory, hence lies outside the tasks
of the present paper– has been clarified to be equivalent to the concept of viscosity
solution, see for example [29], [30] and [27].

One of the authors (F.C.) is friendly indebted to Claude Viterbo, because the
need of investigating the relation between viscosity and minimax solutions arose
during the redaction of the paper [11].

2. Extension of exact Lagrangian isotopies. Conventions. The considered
functions are C∞ and the involved spaces are assumed to be endowed with the C∞

topology. Given a space of functions E, a path into E is a map t 7→ ft, denoted by
(ft), from I := [0, 1] into E, such that the application (t, x) 7→ ft (x) is of class C∞.
For a generic manifold P , we denote by E (P ) the space of functions f : P → R.

Let now (P, ω) be a smooth, connected, symplectic manifold of dimension 2n. An
embedding j : Λ → P is called Lagrangian if Λ is of dimension n and j∗ω = 0. In
this case, j (Λ) is called Lagrangian submanifold of (P, ω). The symplectic manifold
(P, ω) is exact when ω admits a global primitive λ; given a primitive λ, an embedding
j : Λ → P such that its pull-back j∗λ is exact is called exact Lagrangian embedding.

The following results in symplectic geometry will be used in Section 4.

Theorem 1. (Weinstein) For every Lagrangian embedding j : Λ → P , there exists
an open neighbourhood U of the zero section of T ∗Λ and an embedding J : U → P

such that J∗ω = dλΛ|U , where λΛ denotes the Liouville 1-form on T ∗Λ. Moreover,
if 0Λ : Λ → T ∗Λ is the zero 1-form on Λ, we have j = J ◦ 0Λ.

We call J a tubular neighbourhood of j for ω when the open set U ∩ T ∗
xΛ is

star-shaped with respect to the origin for every x ∈ Λ.
We denote Emb (Λ, ω) the space of Lagrangian embeddings of Λ into P . A

Lagrangian isotopy of a manifold Λ in (P, ω) is a path into Emb (Λ, ω).

Definition 1. (Exact Lagrangian isotopy) Let (jt), jt : Λ → P , be a Lagrangian
isotopy of a manifold Λ in (P, ω). Then (jt) is called exact when, for every t ∈ I

and every local primitive λ of ω in a neighbourhood of jt (Λ), the 1-form d
dtj

∗
t λ is

exact on Λ.

We note that a Lagrangian isotopy (jt) such that jt is exact for every t ∈ I,
results an exact Lagrangian isotopy, in fact, in such a case:

d

dt
j∗t λ = dx

[
∂f

∂t
(t, x)

]
.

We refer to [12] for a detailed proof of the following

Theorem 2. (Extension of exact Lagrangian isotopies) For every isotopy (jt) of a
compact manifold Λ in (P, ω), the following two properties are equivalent:
a) (jt) is an exact Lagrangian isotopy of Λ in (P, ω).
b) j0 is Lagrangian and there exists a Hamiltonian isotopy (φt), with compact sup-
port, such that jt = φt ◦ j0 for every t ∈ I.

3. Generating functions. Let N be a compact manifold and L ⊂ T ∗N a La-
grangian submanifold. A classical argument by Maslov and Hörmander shows that,
at least locally, every Lagrangian submanifold is described by some generating func-
tion of the form

S : N × Rk −→ R

(q, ξ) 7−→ S (q, ξ)
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in the following way:

L :=

{(
q,

∂S

∂q
(q, ξ)

)
:

∂S

∂ξ
(q, ξ) = 0

}
,

where 0 is a regular value of the map

(q, ξ) 7−→ ∂S

∂ξ
(q, ξ) .

In order to apply the Calculus of Variations to generating functions, one needs a
condition implying the existence of critical points. In particular, the following class
of generating functions has been decisive in many issues:

Definition 2. A generating function S : N × Rk → R is quadratic at infinity
(G.F.Q.I.) if for |ξ| > C

S (q, ξ) = ξT Qξ, (2)

where ξT Qξ is a nondegenerate quadratic form.

There were known in literature (see e.g. [34], [22]) three main operations on gen-
erating functions which leave invariant the corresponding Lagrangian submanifolds:
• Fibered diffeomorphism. Let S : N ×Rk → R be a G.F.Q.I. and N×Rk ∋ (q, ξ) 7→
(q, φ (q, ξ)) ∈ N × Rk a map such that, ∀q ∈ N ,

Rk ∋ ξ 7−→ φ (q, ξ) ∈ Rk

is a diffeomorphism. Then

S1 (q, ξ) := S (q, φ (q, ξ))

generates the same Lagrangian submanifold of S.
• Stabilization. Let S : N × Rk → R be a G.F.Q.I. Then

S1 (q, ξ, η) := S (q, ξ) + ηT Bη,

where η ∈ Rl and ηT Bη is a nondegenerate quadratic form, generates the same
Lagrangian submanifold of S.
• Addition of a constant. Finally, as a third –although trivial– invariant operation,
we observe that by adding to a generating function S any arbitrary constant c ∈ R

the described Lagrangian submanifold is invariant.
Crucial problems in the global theory of Lagrangian submanifolds and their pa-

rameterizations are (1) the existence of a G.F.Q.I. for a Lagrangian submanifold
L ⊂ T ∗N , (2) the uniqueness of it (up to the operations described above).
The following theorem –see [28]– answers partially to the first question.

Theorem 3. (Chaperon-Chekanov-Laudenbach-Sikorav) Let OT∗N be the zero sec-
tion of T ∗N and (φt) a Hamiltonian flow. Then the Lagrangian submanifold
φ1 (OT∗N ) admits a G.F.Q.I.

The answer to the second problem is due to Viterbo:

Theorem 4. (Viterbo) Let OT∗N be the zero section of T ∗N and (φt) a Hamiltonian
flow. Then the Lagrangian submanifold φ1 (OT∗N ) admits a unique G.F.Q.I. up to
the above operations.

The theorems above –see also [31] and [32]– still hold in T ∗Rn, provided that
(φt) is a flow of a compactly supported Hamiltonian vector field.

A generalization of Definition 2 –introduced by Viterbo and studied in detail by
Theret [31], [32]– is the following:
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Definition 3. A generating function S : N × Rk → R, (q, ξ) 7→ S(q, ξ), is asymp-
totically quadratic if for every fixed q ∈ N

||S (q, ·) − P(2)(q, ·)||C1 < +∞, (3)

where P(2)(q, ξ) = Q (q, ξ)+A(q)ξ+B(q) and Q (q, ξ) = ξT Q(q)ξ is a nondegenerate
quadratic form.

In particular, a Lagrangian manifold is generated by a generating function qua-
dratic at infinity (in the sense of Definition 2) if and only if it is generated by an
asymptotically quadratic function (in the sense of Definition 3).

4. Geometric and minimax solutions. Let N be a smooth, connected and
closed (i.e. compact and without boundary) manifold. Let us consider the Cauchy
problem (CP ). We suppose that the Hamiltonian H : R × T ∗N → R is of class C2

and the initial condition σ : N → R is of class C1.
Let R × N be the “space-time”, T ∗ (R × N) = {(t, q, τ, p)} its cotangent bundle

(endowed with the standard symplectic form dp ∧ dq + dτ ∧ dt) and H (t, q, τ, p) =
τ + H (t, q, p).

In order to overcome the difficulties arising from the obstruction to existence of
global solutions, we search for Lagrangian submanifolds L ⊂ T ∗ (R × N) satisfying
the following geometric version of Hamilton-Jacobi equation:

L ⊂ H−1 (0) .

But how to obtain such an L? We explain now the procedure.
Let Φt : R×T ∗ (R × N) → T ∗ (R × N) be the flow generated by the Hamiltonian

H : T ∗ (R × N) → R, H (t, q, τ, p) = τ + H (t, q, p):





ṫ = 1

q̇ =
∂H

∂p

τ̇ = −dH

dt

ṗ = −∂H

∂q

and Γσ be the initial data submanifold:

Γσ := {(0, q,−H (0, q, dσ (q)) , dσ (q)) : q ∈ N} ⊂ H−1 (0) ⊂ T ∗ (R × N) .

We note that Γσ is the intersection of the Lagrangian submanifold

Λσ = {(0, q, t, dσ (q)) : (t, q) ∈ R × N}
with the hypersurface H−1 (0):

Γσ = Λσ ∩H−1 (0) .

Definition 4. The geometric solution to (CP ) is the submanifold

L :=
⋃

0≤t≤T

Φt (Γσ) ⊂ T ∗ (R × N) .

Proposition 1. The geometric solution L is an exact Lagrangian submanifold,
contained into the hypersurface H−1 (0) and Hamiltonian isotopic to the zero section
OT∗([0,T ]×N) = {(t, q, 0, 0) : 0 ≤ t ≤ T, q ∈ N} of T ∗ ([0, T ]× N).
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Proof. A direct computation shows that every geometric solution is an exact La-
grangian submanifold. In order to prove that L is Hamiltonian isotopic to the zero
section OT∗([0,T ]×N) = {(t, q, 0, 0) : 0 ≤ t ≤ T, q ∈ N} of T ∗ ([0, T ]× N), we deter-
mine a continuous path of exact Lagrangian submanifolds in T ∗ (R × N) connecting
the zero section to L. Hence we conclude using Theorem 2.

Let us consider the following 1-parameter family of Cauchy problems related to
Hamilton-Jacobi equations:

(CP )λ

{
∂S
∂t (t, q) + λH

(
t, q, ∂S

∂q (t, q)
)

= 0

S (0, q) = λσ (q)

The initial data submanifold related to (CP )λ is:

Γλσ = {(0, q,−λH (0, q, λdσ (q)) , λdσ (q))}
and the geometric solution to (CP )λ is

Lλ =
⋃

0≤t≤T

Φt
λ (Γλσ) = {(t, q̃λ (t) , τ̃λ (t) , p̃λ (t))}

with
1) Φt

λ the flow of Hλ = τ + λH ,
2) (q̃λ (t) , p̃λ (t)) the characteristics of XλH such that q̃λ (0) = q0 and p̃λ (0) =
λdσ (q0),
3) τ̃λ (t) = −λH (t, q̃λ (t) , p̃λ (t)).
We point out that every Lλ, geometric solution to (CP )λ, results an exact La-
grangian submanifold of T ∗ (R × N) and that L1 = L. On the other hand L0 =
OT∗([0,T ]×N). Hence we have defined a continuous path λ 7→ Lλ connecting the
zero section OT∗([0,T ]×N) to the Lagrangian submanifold L. As a consequence of
Theorem 2, this fact results equivalent to the existence of a Hamiltonian isotopy
connecting the zero section OT∗([0,T ]×N) to L. �

As a consequence of preceding Proposition 1 and of the compactness of N ,
Theorem 4 of Viterbo guarantees that the Lagrangian submanifold L admits es-
sentially (that is, up to the three operations described above) a unique G.F.Q.I.
S : [0, T ]× N × Rk → R, (t, q; ξ) 7→ S (t, q; ξ).

We can assume that the graph of S (t, q; ξ) at t = 0 coincides with Γσ:

Γσ =

{(
0, q,

∂S

∂t
(0, q; ξ) ,

∂S

∂q
(0, q; ξ)

)
:

∂S

∂ξ
(0, q; ξ) = 0

}
.

The quadraticity at infinity property of S (t, q; ξ) is crucial: minimax solutions
arise from the application of the Lusternik-Schnirelman method to the G.F.Q.I.
S (t, q; ξ). In some more detail, let us consider the sublevel sets

Sc
(t,q) :=

{
ξ ∈ Rk : S (t, q; ξ) ≤ c

}
, (t, q) ∈ [0, T ]× N fixed,

Qc :=
{
ξ ∈ Rk : Q (ξ) ≤ c

}
.

We observe that for c > 0 large enough, Sc
(t,q) and Qc are invariant from a homo-

topical point of view:

S±c
(t,q) = Q±c,

and S±c̄
(t,q) retracts on S±c

(t,q) for every c̄ > c. Let A := Q(c−ǫ), ǫ > 0 small. Then

the isomorphisms below (the first one by excision and the second one by retraction)
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hold:

H∗
(
Qc, Q−c

) ∼= H∗
(
Qc\

◦

A, Q−c\
◦

A

)
∼= H∗

(
Di, ∂Di

)
,

where i is the index of the quadratic form Q (that is, the number of negative eigen-

values of Q) and Di denotes the disk (of radius
√

c) in Ri. Hence H∗
(
Sc

(t,q), S
−c
(t,q)

)

is 1-dimensional:

Hh
(
Sc

(t,q), S
−c
(t,q)

)
∼= Hh

(
Di, ∂Di

)
=

{
0 if h 6= i

α · R if h = i
(4)

We remark that (4) holds also for generalized G.F.Q.I. of Definition 3, because the

relative cohomology Hh
(
Sc

(t,q), S
−c
(t,q)

)
is invariant.

Definition 5. (Minimax solution) Let S (t, q; ξ) be any G.F.Q.I. for L, S (t, q; ξ) =
Q (ξ) out of a compact set in the parameters ξ ∈ Rk. For c > 0 large enough and

for every (t, q) ∈ [0, T ]× N , let 0 6= α ∈ Hi
(
Sc

(t,q), S
−c
(t,q)

)
be the unique generator

(up to a constant factor) as in (4) and

iλ : Sλ
(t,q) →֒ Sc

(t,q).

The function
(t, q) 7→ u (t, q) := inf {λ ∈ [−c, +c] : i∗λα 6= 0} (5)

is the minimax solution of (CP ).

The following fundamental Theorem has been proved by Chaperon, see [13].

Theorem 5. The minimax solution u (t, q) is a weak solution to (CP ), Lipschitz
on finite times, which does not depend on the choice of the G.F.Q.I.

The above independence is a remarkable consequence of Viterbo’s Theorem, since
u is invariant by stabilization and fibered diffeomorphisms.

We observe that the definition of minimax solutions arises naturally in the com-
pact case, when the Uniqueness Theorem of Viterbo is satisfied. Moreover, for a
fixed point on the manifold [0, T ] × N , the minimax critical value is unique and
is determined by the Morse index of the quadratic form Q. We conclude with the
following Proposition (see also Theorem 7.1 in [21]), which will be useful in the
sequel.

Proposition 2. Let S (t, q; ξ) and u (t, q) as in Definition 5. Let us suppose that
the Morse index of the quadratic form Q is 0. Then

u (t, q) = min
ξ∈Rk

S (t, q; ξ) .

Proof. Let us fix a point (t, q) ∈ [0, T ]× N . Since Q is positive definite, S−c
(t,q) = ∅,

and for c > 0 large enough, it results (see (4))

Hh
(
Sc

(t,q), S
−c
(t,q)

)
= Hh

(
Sc

(t,q)

)
=

{
0 if h 6= 0

1 · R if h = 0

where 1 is the generator of H0
(
Sc

(t,q)

)
. Consequently, the minimax solution (5)

u (t, q) = inf {λ ∈ [−c, +c] : i∗λ1 6= 0}
coincides with the minimum of the function ξ 7→ S (t, q; ξ), that is

u (t, q) = min
ξ∈Rk

S (t, q; ξ) .

�
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5. A global generating function for the geometric solution for H (q, p) =
1
2 |p|2 + f (q, p) on T ∗Tn. Let us consider the Hamiltonian H (q, p) ∈ C2 (T ∗Tn; R):

H (q, p) =
1

2
|p|2 + f (q, p) , (6)

f compactly supported in the p variables, and the Cauchy Problem (CP )H :

(CP )H





∂S

∂t
(t, q) + H

(
q,

∂S

∂q
(t, q)

)
= 0,

S (0, q) = σ (q) ,

where t ∈ [0, T ], q ∈ Tn and σ ∈ C1 (Tn; R).
In this section we investigate around the structure of the generating function for

the geometric solution of (CP )H , showing that its structure is naturally interpreted
as an improvement of the Hopf’s formula utilized by Bardi and Evans in order to
build the viscosity solution for Liouville-integrable Hamiltonians.

It turns out useful to introduce the compactly supported Hamiltonian K (t, q, p):

K (t, q, p) =
((

φt
0

)∗
f
)

(q, p) = H (q + tp, p) − 1

2
|p|2, (7)

where φt
0 is the flow of H0 (p) := 1

2 |p|2.
We recall now the following Proposition, which is, essentially, a result of Hamilton

(see [20] and also [19], [5]).

Proposition 3. Let φt
H , φ

t,0
K and φt

0 be the flows of H, K and H0 respectively. We
have:

φt
H (q, p) = φt

0 ◦ φ
t,0
K (q, p) , (8)

∀ (q, p) ∈ T ∗Tn and ∀t ∈ R.

Now let us consider the Cauchy Problem (CP )K related to K:

(CP )K





∂S

∂t
(t, q) + K

(
t, q,

∂S

∂q
(t, q)

)
= 0

S (0, q) = σ (q)

and define K (t, q, τ, p) := τ + K (t, q, p), Φt
K its flow, and (ΓK)σ the initial data

submanifold

(ΓK)σ := {(0, q,−K (0, q, dσ (q)) , dσ (q)) : q ∈ Tn} ⊂ K−1 (0) .

Since the manifold Tn is compact, a consequence of Proposition 1 and Theorem 4
is the existence of a unique G.F.Q.I. SK (t, q; u) for the geometric solution LK of
(CP )K :

LK :=
⋃

0≤t≤T

Φt
K ((ΓK)σ) .

Proposition 4. Let H (q, τ, p) := τ + H (q, p), Φt
H its flow and (ΓH)σ the initial

data submanifold

(ΓH)σ := {(0, q,−H (q, dσ (q)) , dσ (q)) : q ∈ Tn} ⊂ H−1 (0) .

Then the Lagrangian submanifold LH

LH :=
⋃

0≤t≤T

Φt
H ((ΓH)σ) ,
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geometric solution of (CP )H , is generated by the function

S̃ (t, q; ξ, u, v) := −1

2
v2t + (q − ξ) · v + SK (t, ξ; u) . (9)

Proof. The generating function SK (t, ξ; u) generates the Lagrangian submanifold
LK , which can be written, more explicitly

LK :=
⋃

0≤t≤T

Φt
K ((ΓK)σ) = {(t, q̃ (t) , τ̃ (t) , p̃ (t)) : 0 ≤ t ≤ T } ,

where q̃ and p̃ are the characteristics of XK such that q̃ (0) = q0 and p̃ (0) = dσ (q0),
and τ̃ (t) = −K (t, q̃ (t) , p̃ (t)).

Now, by a direct computation, we prove that the Lagrangian submanifold gen-

erated by S̃ (t, q; ξ, u, v) coincides with LH .

LeS =

{(
t, q,

∂S̃

∂t
,
∂S̃

∂q

)
:

∂S̃

∂ξ
= 0,

∂S̃

∂u
= 0,

∂S̃

∂v
= 0

}
.

More precisely,

∂S̃

∂t
(t, q; ξ, u, v) = −1

2
v2 +

∂SK

∂t
(t, ξ; u) ,

∂S̃

∂q
(t, q; ξ, u, v) = v,

∂S̃

∂ξ
(t, q; ξ, u, v) = 0 is and only if − v +

∂SK

∂ξ
(t, ξ; u) = 0

if and only if v =
∂SK

∂ξ
(t, ξ; u) ,

∂S̃

∂u
(t, q; ξ, u, v) = 0 if and only if

∂SK

∂u
(t, ξ; u) = 0,

∂S̃

∂v
(t, q; ξ, u, v) = 0 if and only if − vt + q − ξ = 0 if and only if q = ξ + vt.

Hence LeS is equivalent to

LeS =
{
(t, q,− 1

2v2 +
∂SK

∂t
(t, ξ; u), v) :

v =
∂SK

∂ξ
(t, ξ; u),

∂SK

∂u
(t, ξ; u) = 0, q = ξ + vt

}
.

Now we remind that SK (t, ξ; u) generates the Lagrangian submanifold LK , hence

LeS =

{(
t, q,−1

2
v2 − K (t, ξ, v) , v

)
: (ξ, v) ∈ φ

t,0
K (Im (dσ)) , q = ξ + vt

}
.

But K (t, ξ, v) = H (ξ + tv, v)− 1
2v2, then − 1

2v2−K (t, ξ, v) = −H (ξ + tv, v). Hence

LeS =
{
(t, ξ + tv,−H (ξ + tv, v) , v) : (ξ, v) ∈ φ

t,0
K (Im (dσ))

}
.

Now we also note that (ξ + vt, v) = φt
0 (ξ, v), therefore, since φt

H = φt
0 ◦ φ

t,0
K ,

LeS = {(t, q̄ (t) ,−H (q̄ (t) , p̄ (t)) , p̄ (t)) : 0 ≤ t ≤ T } ,

where q̄ and p̄ are the characteristics of XH such that q̄ (0) = q0 and p̄ (0) = dσ (q0).
Equivalently

LeS = LH .
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We remark the following interesting fact: the structure of the generating function
(9) recalls the Hopf’s formula used in 1984 by Bardi and Evans in order to construct
viscosity solutions for Liouville-integrable and convex Hamiltonians H (p).

In fact, their formula is

uvisc (t, q) = inf
ξ

sup
v

{−H (v) t + (q − ξ) · v + σ (ξ)} . (10)

The above formula (10), in the case H (p) = 1
2 |p|2, becomes

uvisc (t, q) = inf
ξ

sup
v

{
−1

2
v2t + (q − ξ) · v + σ (ξ)

}
. (11)

Therefore, the generating function (9) can be considered the improvement of − 1
2v2t+

(q − ξ) · v + σ (ξ) in (11) when we take into account the perturbed non-integrable
Hamiltonian H (q, p) = 1

2 |p|2 + f (q, p), f compactly supported. This correction is
just provided by the term SK (t, ξ; u).

The relationship between the explicit generating function for the geometric so-
lution and the Hopf’s formula was already noticed e.g. in [8] and [15].

We finally note that the plan of construct viscosity solutions starting from gener-
ating functions has been rather fruitless; nevertheless, under suitable assumptions,
we can find similar representation formulas for state-dependent Hamiltonians, see
[7] and [24].

6. A relationship between minimax and viscosity solutions. Here we prove
in detail the coincidence of minimax and viscosity solutions for p-convex Hamil-
tonians of mechanical type. The equivalence is essentially established through
an Amann-Conley-Zehnder reduction of an infinite parameters generating function
arising from Hamilton-Helmholtz variational principle.

6.1. A global generating function for the geometric solution for H (q, p) =
1
2 |p|2 + V (q) on T ∗Rn. We consider the Hamiltonian H (q, p) = 1

2 |p|2 + V (q) ∈
C2 (T ∗Rn; R), V compactly supported, and its related Cauchy problem (CP )H :

(CP )H






∂S

∂t
(t, q) +

1

2
|∂S

∂q
(t, q) |2 + V (q) = 0,

S (0, q) = σ (q) ,

where t ∈ [0, T ], q ∈ Rn, σ compactly supported. The starting point consists
to take into account the below global generating function W for the geometric
solution for H –see Theorem 6– arising from Hamilton-Helmholtz functional. The
following deductions, here proposed in the mechanical case, still hold for more
general Hamiltonians, see [26]; however, this special structure will be crucial in the
next Sections.

Let us consider the set of curves:

Γ :=
{
γ (·) = (q (·) , p (·)) ∈ H1

(
[0, T ] , R2n

)
: p (0) = dσ (q (0))

}
.

By Sobolev imbedding theorem,

H1
(
(0, T ) , R2n

)
→֒ C0

(
[0, T ] , R2n

)

compactly, so in the above definition the elements of Γ are the natural continuous
extensions of the curves of H1

(
(0, T ) , R2n

)
(i.e. the continuous curves t 7→ γ (t),
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starting from the graph of dσ, such that γ̇ = dγ
dt ∈ L2 := L2

(
(0, T ) , R2n

)
). More-

over, the set Γ has a natural structure of linear space, and then TγΓ = Γ, for all
γ ∈ Γ.

An equivalent way to describe the curves of Γ is to assign the q-projection at
time t, q = q (t) ∈ Rn, and the velocity γ̇ of the curve γ by means of a function
Φ ∈ L2. This is summarized by the following bijection g:

g : [0, T ]× Rn × L2
(
(0, T ) , R2n

)
−→ [0, T ]× Γ

(t, q, Φ) 7−→ g (t, q, Φ) = (t, γ (·)) ,

γ (s) = (prΓ ◦ g)(t, q, Φ)(s) = (q (s) , p (s))

=

(
q −

∫ t

s

Φq (r) dr, dσ (q (0)) +

∫ s

0

Φp (r) dr

)

=

(
q −

∫ t

s

Φq (r) dr, dσ

(
q −

∫ t

0

Φq (r) dr

)
+

∫ s

0

Φp (r) dr

)
. (12)

To be more clear, we remark that the second value of the map g (t, q, Φ) is the curve
γ (·) = (q (·) , p (·)) which is
1) starting from (q (0) , dσ (q (0))), such that
2) γ̇ (·) = Φ (·), and
3) q (t) = q.

By composing the Hamilton-Helmholtz functional:

A : [0, T ]× Γ −→ R

(t, γ (·)) 7→ A [t, γ (·)] := σ (q (0)) +

∫ t

0

[p (r) · q̇ (r) − H (r, q (r) , p (r))] dr.

with the bijection g, we obtain the following global generating function W = A ◦ g:

Theorem 6. The infinite-parameters function:

W := A ◦ g : [0, T ]× Rn × L2 −→ R, (13)

(t, q, Φ) 7−→ W (t, q, Φ) := A ◦ g (t, q, Φ) ,

generates LH =
⋃

0≤t≤T Φt
H ((ΓH)σ), the geometric solution for the Hamiltonian

H (q, p) = 1
2 |p|2 + V (q).

Proof. We first explicitly write down W :

W (t, q, Φ) = σ (q (0)) +

∫ t

0

[(
dσ (q (0)) +

∫ s

0

Φp (r) dr

)
· Φq (s)

− H

(
s, q −

∫ t

s

Φq (r) dr, dσ (q (0)) +

∫ s

0

Φp (r) dr

)]
ds,

= σ

(
q −

∫ t

0

Φq (r) dr

)
+

∫ t

0

[(
dσ

(
q −

∫ t

0

Φq (r) dr

)

+

∫ s

0

Φp (r) dr

)
· Φq (s)

]
ds

−
∫ t

0

[
H

(
s, q−

∫ t

s

Φq (r) dr, dσ

(
q−
∫ t

0

Φq (r) dr

)
+

∫ s

0

Φp (r) dr

)]
ds.
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Then, for DW
DΦ = 0, we compute ∂W

∂q and ∂W
∂t .

∂W

∂q
= dσ (q (0))+

∫ t

0

d2σ (q (0)) · Φq (s) ds−
∫ t

0

∂H

∂q
ds−

∫ t

0

∂H

∂p
· d2σ (q (0)) ds

= dσ (q (0))+d2σ (q (0)) ·
∫ t

0

Φq (s) ds+

∫ t

0

ṗ (s) ds−d2σ (q (0)) ·
∫ t

0

q̇ (s) ds

= dσ (q (0))+d2σ (q (0)) ·
∫ t

0

q̇ (s) ds+

∫ t

0

ṗ (s) ds−d2σ (q (0)) ·
∫ t

0

q̇ (s) ds

= dσ (q (0)) +

∫ t

0

Φp (s) ds = p (t) .

Finally, we compute ∂W
∂t .

∂W

∂t
= dσ (q (0)) · ∂q (0)

∂t
+

(
dσ (q (0)) +

∫ t

0

Φp (r) dr

)
· Φq (t)

−H

(
t, q, dσ (q (0)) +

∫ t

0

Φp (r) dr

)
+

∫ t

0

d2σ · (−Φq (t)) · Φq (s) ds

+

∫ t

0

∂H

∂q

(
s, q −

∫ t

0

Φq (r) dr, dσ (q (0)) +

∫ s

0

Φp (r) dr

)
· Φq (t) ds

−
∫ t

0

∂H

∂p

(
s, q−

∫ t

0

Φq(r)dr, dσ(q(0))+

∫ s

0

Φp (r)dr

)
· ∂

2σ

∂q2
(q (0))·(−Φq (t)) ds

= dσ (q (0)) · (−Φq (t)) + p (t) · q̇ (t) − H (t, q (t) , p (t))

−d2σ (q (0)) · Φq (t) ·
∫ t

0

Φq (s) ds +

∫ t

0

∂H

∂p
(s, q (s) , p (s)) ds · Φq (t)

+d2σ (q (0)) · Φq (t) ·
∫ t

0

∂H

∂p
(s, q (s) , p (s)) ds

= −p (0) · q̇ (t)+p (t) · q̇ (t)−H (t, q (t) , p (t))−d2σ (q (0)) · q̇ (t) ·
∫ t

0

Φq (s) ds

+

∫ t

0

∂H

∂q
(s, q (s) , p (s)) ds · q̇ (t) + d2σ (q (0)) · q̇ (t) ·

∫ t

0

q̇ (s) ds

= −p (0) · q̇ (t)+
∂W

∂q
· q̇ (t)−H

(
t, q (t) ,

∂W

∂q

)
−d2σ (q (0)) · q̇ (t) ·

∫ t

0

q̇ (s) ds

− ∂

∂q

(∫ t

0

[pq̇ − H ] dτ

)
· q̇ (t) + d2σ (q (0)) · q̇ (t) ·

∫ t

0

q̇ (s) ds

=
∂W

∂q
· q̇ (t) − H

(
t, q (t) ,

∂W

∂q

)
− ∂

∂q

[
σ (q (0)) +

∫ t

0

(pq̇ − H) dτ

]
· q̇ (t) ,

=
∂W

∂q
· q̇ (t) − H

(
t, q (t) ,

∂W

∂q

)
− ∂W

∂q
· q̇ (t) ,

= −H

(
t, q (t) ,

∂W

∂q

)
.

�

6.2. Fourier expansion and fixed point. Results in this Section are classical,
see also [14], [12] and [1].
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Hamilton equations related to XH are
{

q̇ = p

ṗ = −V
′

(q)
(14)

Using the p-components of the bijection g, (14) can be rewritten, almost everywhere,
as 




Φq (s) = dσ

(
q −

∫ t

0

Φq (r) dr

)
+

∫ s

0

Φp (r) dr

Φp (s) = −V
′

(
q −

∫ t

s

Φq (r) dr

) (15)

Hence

Φq (s) = dσ

(
q −

∫ t

0

Φq (r) dr

)
−
∫ s

0

V
′

(
q −

∫ t

r

Φq (τ) dτ

)
dr (16)

Note that the reduction of (15) into (16) is equivalent to the displacement from the
Hamiltonian formalism to the Lagrangian formalism through the Legendre trans-
formation.

For every Φq ∈ L2 ((0, T ) , Rn), let us consider the Fourier expansion

Φq (s) =
∑

k∈Z

(Φq)k ei(2πk/T )s.

For each fixed N ∈ N, let us consider the projection maps on the basis
{
ei(2πk/T )s

}
k∈Z

of L2 ((0, T ) , Rn),

PNΦq (s) :=
∑

|k|≤N

(Φq)k ei(2πk/T )s, QNΦq (s) :=
∑

|k|>N

(Φq)k ei(2πk/T )s.

Clearly,

PNL2 ((0, T ) , Rn) ⊕ QNL2 ((0, T ) , Rn) = L2 ((0, T ) , Rn) ,

and for Φq ∈ L2 ((0, T ) , Rn) we will write u := PNΦq and v := QNΦq.
We will try to solve (16) by a fixed point procedure.

Proposition 5. (Lipschitz) Let supq∈Rn |V ′′

(q) | = C (< +∞).

For fixed (t, q) ∈ [0, T ]× Rn and u ∈ PNL2 ((0, T ) , Rn), the map

F : QNL2 ((0, T ) , Rn) −→ QNL2 ((0, T ) , Rn)

v 7−→ QN

{
−
∫ s

0

V
′

(
q −

∫ t

r

(u + v) (τ) dτ

)
dr

}

is Lipschitz with constant

Lip (F ) ≤ T 2C

2πN

(
1 +

√
2N
)

.

Before the proof of the Proposition 5, we premise some technical results.

Lemma 1. Let f ∈ L1 ((0, T ) , Rn)∩L2 ((0, T ) , Rn). Then the function
∫ t

0 f (s) ds ∈
L2 ((0, T ) , Rn) and

||
∫ t

0

f (s) ds||L2((0,T ),Rn) ≤ T · ||f ||L2((0,T ),Rn) (17)
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Proof. Left to the reader.
Proof of Proposition 5 For each v1, v2 ∈ QNL2 ((0, T ) , Rn), let us consider the
Fourier expansion

v := v2 − v1 =
∑

|k|>N

vkei(2πk/T )τ .

We compute F (v2) − F (v1):

F (v2) − F (v1) = QN

{
−
∫ s

0

[
V

′

(
q −

∫ t

r

(u + v2) (τ) dτ

)
dr

]

+

∫ s

0

[
V

′

(
q −

∫ t

r

(u + v1) (τ) dτ

)
dr

]}
,

= QN

{
−
∫ s

0

[
V

′

(
q −

∫ t

r

(u + v2) (τ) dτ

)
− V

′

(
q −

∫ t

r

(u + v1) (τ) dτ

)
dr

]}
.

Therefore

||F (v2) − F (v1) ||L2((0,T ),Rn)

≤ T · ||QN

{
V

′

(
q−
∫ t

r

(u+v2)(τ) dτ

)
−V

′

(
q−
∫ t

r

(u+v1) (τ) dτ

)}
||L2((0,T ),Rn)

≤ TC · || −
∫ t

r

∑

|k|>N

vkei(2πk/T )τdτ ||L2((0,T ),Rn)

≤ TC ·


||

∑

|k|>N

vkei(2πk/T )r · T

i2πk
||L2((0,T ),Rn)

+ ||
∑

|k|>N

vkei(2πk/T )t · T

i2πk
||L2((0,T ),Rn)




≤ T 2C

2πN
· ||v||L2((0,T ),Rn) + T 2C · ||

∑

|k|>N

|vk|
2πk

||L2((0,T ),Rn).

We now use Cauchy-Schwartz inequality in l2 := L2(Z, C) as follows

∑

|k|>N

|vk|
k

=
〈
(|vk|)k∈Z,

(1

k

)

|k|>N

〉

l2
≤ ||(|vk|)k∈Z||l2 · ||

(1

k

)

|k|>N
||l2 .

Hence

∑

|k|>N

|vk|
2πk

≤ 1

2π
||v||L2((0,T ),Rn)

√√√√2
∑

|k|>N

1

k2
≤ 1

2π
||v||L2((0,T ),Rn)

√
2

N
,

obtaining

T 2C

2πN
· ||v||L2((0,T ),Rn) + T 2C · ||

∑

|k|>N

|vk|
2πk

||L2((0,T ),Rn)

≤ T 2C

2πN
· ||v||L2((0,T ),Rn) + T 2C · 1

2π

√
2

N
||v||L2((0,T ),Rn)

=
T 2C

2πN

(
1 +

√
2N
)
· ||v||L2((0,T ),Rn),
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that is

Lip (F ) ≤ T 2C

2πN

(
1 +

√
2N
)

.

�

Corollary 1. (Contraction map) Let supq∈Rn |V ′′

(q) | = C (< +∞). For fixed

(t, q) ∈ [0, T ]× Rn, u ∈ PNL2 ((0, T ) , Rn) and N large enough:

T 2C

2πN

(
1 +

√
2N
)

< 1,

the map s 7→ F (t, q, u) (s)

F : QNL2 ((0, T ) , Rn) −→ QNL2 ((0, T ) , Rn)

v 7−→ QN

{
−
∫ s

0

V
′

(
q −

∫ t

r

(u + v) (τ) dτ

)
dr

}

is a contraction.

By Banach-Cacciopoli Theorem, for fixed (t, q) ∈ [0, T ]×Rn and u ∈ PNL2 ((0, T ) ,
Rn), there exists one and only one fixed point F (t, q, u) (s), shortly F (u), for the
above contraction:

F (u) = QN

{
−
∫ s

0

V
′

(
q −

∫ t

r

(u + F (u)) (τ) dτ

)
dr

}
. (18)

Beside (18), let us consider the finite-dimensional equation of unknown
u ∈ PNL2 ((0, T ) , Rn):

u = PN

{
dσ

(
q−
∫ t

0

(u+F (u)) (r) dr

)
−
∫ s

0

V
′

(
q−
∫ t

r

(u+F (u)) (τ) dτ

)
dr

}
. (19)

By adding (18) and (19), in correspondence to any solution u of (19), we gain

u+F (u) = dσ

(
q−
∫ t

0

(u+F (u)) (r) dr

)
−
∫ s

0

V
′

(
q−
∫ t

r

(u+F (u)) (τ) dτ

)
dr (20)

in other words, the curve (see (12))

γ (s) := prΓ ◦ g

(
t, q,

(
[u + F (u)] (s) ,−V

′

(
q −

∫ t

r

(u + F (u)) (τ) dτ

)))

solves the Hamilton canonical equations starting from the graph of dσ (so that
γ ∈ Γ).

Furthermore, we point out that dim(PNL2 ((0, T ) , Rn)) = n (2N + 1). As a
consequence, substantially following the line of thought in [1], [9] and [10], we
get that the geometric solution of Hamilton-Jacobi problem for H admits a finite-
parameters generating function, denoted by W (t, q, u):

Theorem 7. The finite-parameters function:

W := A ◦ g : [0, T ]× Rn × Rn(2N+1) −→ R,

(t, q, u) 7−→ W (t, q, u)=

{
σ (q (0))+

∫ t

0

[p (s) · q̇ (s)−H (s, q (s) , p (s))] ds

}
|(q(s),p(s)),

(q (s) , p (s)) = prΓ ◦ g

(
t, q,

(
[u + F (u)] (s) ,−V

′

(
q −

∫ t

r

(u + F (u)) (τ) dτ

)))
,

generates LH =
⋃

0≤t≤T Φt
H ((ΓH)σ), the geometric solution for the Hamiltonian

H (q, p) = 1
2 |p|2 + V (q).
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6.3. The quadraticity at infinity property. We check the quadraticity at infin-
ity property of W (t, q, u) with respect to u: this is a crucial step in order to catch
the minimax critical point in the Lusternik-Schnirelman format. We premise the
following technical Lemma (see also [12]).

Lemma 2. For fixed (t, q) ∈ [0, T ]×Rn, the function u 7→ F (u) and its derivatives
u 7→ ∂F

∂u (u) are uniformly bounded.

Proof. We immediately get from (18) that |F (u) | ≤ TC, where C = supq∈Rn |V ′′

(q) |
< +∞. Moreover, by a direct computation, it can be proved that the derivatives
∂F
∂u are uniformly bounded. In fact, the fixed point function F solves the equation
of unknown v:

G (t, q, u, v) := QN

{
−
∫ s

0

V
′

(
q −

∫ t

r

(u + v) (τ) dτ

)
dr

}
− v = 0.

The implicit function theorem does work, since

∂G
∂v

(t, q, u, v) =
∂

∂v
QN

{
−
∫ s

0

V
′

(
q −

∫ t

r

(u + v) (τ) dτ

)
dr

}
− I,

and, by a classical argument, it can be proved that
[
∂G
∂v

(t, q, u, v)

]−1

= −
+∞∑

k=0

[
∂

∂v
QN

{
−
∫ s

0

V
′

(
q −

∫ t

r

(u + v) (τ) dτ

)
dr

}]k

.

Since a bound for the derivatives ∂
∂v QN

{
−
∫ s

0 V
′

(
q −

∫ t

r (u + v) (τ) dτ
)

dr
}

is given

by the Lipschitz constant α := T 2C
2πN (1 +

√
2N),

∣∣∣∣
∂

∂v
QN

{
−
∫ s

0

V
′

(
q −

∫ t

r

(u + v) (τ) dτ

)
dr

}∣∣∣∣ ≤ α < 1,

we obtain that∣∣∣∣∣

[
∂G (t, q, u, v)

∂v

]−1
∣∣∣∣∣ ≤

+∞∑

k=0

∣∣∣∣
∂

∂v
QN

{
−
∫ s

0

V
′

(
q−
∫ t

r

(u+v) (τ) dτ

)
dr

}∣∣∣∣
k

=
1

1−α
<+∞.

G (t, q, u,F (u)) = 0 implies ∂G
∂u + ∂G

∂v
∂F
∂u = 0, therefore the derivatives ∂F

∂u =

−
(

∂G
∂v

)−1 ∂G
∂u result uniformly bounded by the constant α

1−α :

|∂F
∂u

| ≤ |
(

∂G
∂v

)−1

| · |∂G
∂u

| ≤ α

1 − α
< +∞.

�

Theorem 8. The finite-parameters function

W := A ◦ g : [0, T ]× Rn × Rn(2N+1) −→ R,

(t, q, u) 7−→ W̄ (t, q, u)

=

{
σ (q (0)) +

∫ t

0

[p (s) · q̇ (s) − H (s, q (s) , p (s))] ds

}
|(q(s),p(s)),

(q (s) , p (s)) = prΓ ◦ g
(
t, q,

(
[u + F (u)] (s) ,−V

′

(
q −

∫ t

r
(u + F (u)) (τ) dτ

)))
, is

asymptotically quadratic: there exists an u-polynomial P(2)(t, q, u) such that for any
fixed (t, q) ∈ [0, T ]× Rn

||W (t, q, ·) − P(2) (t, q, ·) ||C1 < +∞
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and its leading term is positive defined (Morse index 0).

Proof.

W (t, q, u) =

{
σ (q (0)) +

∫ t

0

[p (s) · q̇ (s) − H (s, q (s) , p (s))] ds

}
|(q(s),p(s)),

(q (s) , p (s)) = prΓ ◦ g
(
t, q,

(
[u + F (u)] (s) ,−V

′

(
q −

∫ t

r (u + F (u)) (τ) dτ
)))

,

that is (through the Legendre transformation)

W (t, q, u) =

{
σ (q (0)) +

∫ t

0

[
1

2
|q̇ (s) |2 − V (q (s))

]
ds

}
|q(s)=q−

R
t

s
[u(r)+(F(u))(r)]dr

= σ

(
q −

∫ t

0

[u (r) + (F (u)) (r)] dr

)

+

∫ t

0

{
1

2
|u (s) + (F (u)) (s) |2 − V

(
q −

∫ t

s

[u (r) + (F (u)) (r)] dr

)}
ds.

As a consequence of the technical Lemma 2 above and the compactness of σ and
V , for fixed (t, q) ∈ [0, T ]× Rn we obtain that

||W (t, q, ·) − P(2) (t, q, ·) ||C1 < +∞,

where P(2) (t, q, u) is a function with positive defined leading term 1
2

∫ t

0 |u(s)|2ds

(hence with Morse index 0) and linear term with uniformly bounded coefficient, that
is (see Definition 3) W (t, q, u) is an asymptotically quadratic generating function.
�

6.4. Minimax and viscosity solutions for H (q, p) = 1
2 |p|2 + V (q). We finally

prove the main result: the equivalence of minimax and viscosity solutions for a large
class of p-convex mechanical Hamiltonians.

Preliminarily, we point out the following quite natural technical fact:

Lemma 3. Let H(t, q, p) be a C2-uniformely p-convex Hamiltonian function:

∃C ≥ c > 0 : c |λ|2 ≤ ∂2H

∂pi∂pj
(t, q, p)λiλj ≤ C |λ|2, (21)

∀λ ∈ Rn, ∀t ∈ [0, T ], ∀(q, p) ∈ R2n. Then, for every fixed q(·) ∈ H1([0, T ], Rn),

sup
p(·) ∈ H1([0, T ], Rn) :

p(0) = ∂σ
∂q (q(0))

∫ T

0

[p(t) · q̇(t)−H (t, q(t), p(t))] dt =

∫ T

0

L (t, q(t), q̇(t)) dt,

(22)
where

L(t, q, v) = sup
p∈Rn

{p · v − H (t, q, p)} (23)

Proof. Convexity (21) guarantees us that global Legendre transformation holds and
that, for any fixed q(·), the (unique, see below) critical curve of the functional:

Â :

{
H1([0, T ], Rn) : p(0) =

∂σ

∂q
(q(0))

}
−→ R

p(·) 7−→
∫ T

0

[p(t) · q̇(t) − H (t, q(t), p(t))] dt
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realizes the strong maximum (in the uniform convergence topology). In fact, p(·) is
a critical curve iff, ∀△p ∈ H1([0, T ], Rn) such that △p(0) = 0,

dÂ(p)△p = d
{∫ T

0

[p(t) · q̇(t) − H (t, q(t), p(t))] dt
}
△p = 0.

d

dε

{∫ T

0

[(p(t) + ε△p(t)) · q̇(t) − H (t, q(t), p(t) + ε△p(t))] dt
}∣∣∣

ε=0
= 0,

∫ T

0

[
q̇(t) − ∂H

∂p
(t, q(t), p(t))

]
△p(t)dt = 0,

that is,

q̇(t) =
∂H

∂p
(t, q(t), p(t)) , (24)

and, by a standard argument laying on Legendre transformation, the unique solution
p(t) of (24), for any time t, is given by

p(t) =
∂L

∂v
(t, q(t), q̇(t)).

Finally, d2Â(p)
(
△p,△p

)
is given by

d2
{∫ T

0

[p(t) · q̇(t) − H (t, q(t), p(t))] dt
}(

△p,△p
)
≤ −cT sup

t∈[0,T ]

|△p(t)|2.

From the identity

Â(p + △p)

= Â(p) +

n∑

i=1

∂Â

∂pi
(p)△pi +

∫ 1

0

s

n∑

i,j=1

∂2Â

∂pi∂pJ

(
(1 − s)(p + △p) + sp

)(
△pi,△pi

)
ds,

we gain, at the critical p,

Â(p + △p) − Â(p) ≤ −cT ||△p||2C0 ≤ 0

that is, p realizes the maximum of Â in C0, and then in H1(→֒ C0). �

Theorem 9. Let us consider H (q, p) = 1
2 |p|2 + V (q), V compactly supported and

the related Cauchy Problem (CP )H :

(CP )H





∂S

∂t
(t, q) +

1

2
|∂S

∂q
(t, q) |2 + V (q) = 0,

S (0, q) = σ (q) ,

where t ∈ [0, T ] , q ∈ Rn and σ compactly supported.
The minimax and the viscosity solution of (CP )H coincide with the function

S (t, q) := inf
q̃ (·) :

q̃ : [0, t] → Rn

q̃ (t) = q

sup
p̃ (·) :

p̃ : [0, t] → Rn,

p̃(0) = ∂σ
∂q (q̃(0))

{
σ (q̃ (0)) +

∫ t

0

(pq̇ − H)|(q̃,p̃)
ds

}
.

(25)
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Proof. In Subsection 6.1 we have proved that the Hamilton-Helmholtz functional
involved in (25) can be interpreted as a global generating function W (with infinite
parameters) for the geometric solution for the Hamiltonian H (Theorem 6). By
Lemma 3, the sup-procedure on the curves p̃ in (25) represents exactly the Legendre
transformation. Moreover, the fixed point technique described in Subsection 6.2
reduces the function W to a finite parameters G.F.Q.I., W , with Morse index 0
(Theorems 7 and 8). As a consequence of Proposition 2, for such a function W ,
the minimax critical value coincides with the minimum (which explains the inf-
procedure on the curves q̃ in (25)). Hence the function S (t, q) furnishes the minimax
solution of (CP )H .

On the other hand (see [17], [18] and bibliography quoted therein), the function
S (t, q) is the Hamiltonian version of the Lax-Oleinik formula producing the viscosity
solution of (CP )H .

Therefore (25) establishes the equivalence of the two solutions. �
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Séries 1, 345–348, (1991).
[14] C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V.I.

Arnol’d, Invent. Math., 73 (1983), 33–49.
[15] M.V. Day, On Lagrange manifolds and viscosity solutions, J. Math. Systems Estim. Control,

(3) 8 (1998).



812 OLGA BERNARDI AND FRANCO CARDIN

[16] S.Yu. Dobrokhotov, V.N. Kolokoltsov and V.P. Maslov, Quantization of the Bellman equation,

exponential asymptotics and tunneling, Adv. Soviet Math., 13, Amer. Math. Soc., Providence,
RI, Idempotent analysis, 1–46, (1992).
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Acad. Sci. Paris, 324, Sèrie 1 (1997), 1043–1046.
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