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Abstract

We show that discrete-time, partially observed, risk-sensitive control problems over an infinite time horizon

converge, in the small noise limit, to deterministic dynamic games, in the sense of uniform convergence of the

value function on compact subsets of its domain. We make use of new results concerning Large Deviations and

existence of value functions.
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1 Introduction

Risk-sensitive control is a branch of stochastic control dealing with performance indexes having the form of the
expectation of the exponential of a cost function. More explicitly, in risk-sensitive control one aims at minimizing
an index of the form

Jµ(u) =
1

µ
log E exp[µK(xu(·), u(·))] (1.1)

where K is a given real valued function acting on the paths of a controlled stochastic process xu and on the applied
control u. In the limit as µ → 0 one recovers the standard performance index in stochastic control

J0(u) = E[K(xu(·), u(·))]. (1.2)

By increasing µ in (1.1), one penalizes large values of K(xu, u), modeling controller’s aversion to risk; for this reason
µ is commonly called the risk parameter.

When xu = (xu
n)n∈IN is a (discrete-time) controlled Markov process, and K(xu, u) is of the form

K(xu, u) =

N∑

n=0

gn(xu
n, un) (finite time horizon cost) (1.3)

an optimal control for (1.1) can in principle be obtained by Dynamic Programming. To our knowledge, Dynamic
Programming for risk-sensitive control has been first introduced in [15], and then subsequently developed by several
authors [4, 18, 12, 13, 16, 10, 11, 5, 3]. The partially observed case, i.e. when admissible controls are nonanticipative
functions of a noisy output signal rather than of the state of the system, has been first treated in [4], where the
notion of information state is introduced. Extension to more general models can be found in [16] (see also [5] for
results in continuous time).

A case of special interest is when the process xu is driven by a ”small” noise of magnitude, say, ε, and the risk
parameter scales as ε−1. In this situation, the big weight that (1.1) gives to paths that make K(xu, u) large may be
balanced by their small probability. The behavior of the system in the limit as ε → 0 is usually referred to as the
small noise limit. As shown in [12, 13, 16, 6, 10, 11, 1], finite time horizon, risk-sensitive control problems collapse
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to zero-sum deterministic differential games in the small noise limit, in the sense of convergence of the corresponding
value functions.

In this paper we deal with risk-sensitive control in an infinite time horizon. Here, the performance index is taken
to be of the form

Jµ(u) = lim sup
N→∞

1

Nµ
log E exp

[

µ

N−1∑

n=0

g(xn, un)

]

. (1.4)

Infinite time horizon risk-sensitive control is much less understood, both in terms of Dynamic Programming and
of small noise limit. The existence of the value function has been proved under rather severe conditions. To our
knowledge, the small noise limit has been treated rigorously only in the special case of finite state systems ([11]),
and even in that case the convergence of the value function for partially observed problems has not been proved.

Here we consider partially observed models that are considerably more general than the ones in [11], and we
prove convergence of the value function in the small noise limit. In comparison to [11], we introduce the following
three ingredients, that play a fundamental role in the proof.

1. We use the Large Deviations framework developed in [1].

2. We take advantage of recent results ([8, 9]) on existence and concavity of the value function for partially
observed systems.

3. We choose to define a value function that acts on a space of sequences (information vectors) rather than on
a space of measures (information states). Although both spaces are infinite-dimensional, the first has a nicer
topology and it is conceptually simpler.

The structure of this paper is as follows. In Section 2 we introduce the problem and state our main results. In
Section 3 we recall recent results on ergodic control and Large Deviations, that are used in Section 4 to prove the
results stated in Section 2. In Section 5 we discuss separately the case of complete observation.

The results that are proved in this paper have been announced in [2]

2 Model and Main Results

Let (Ω,F , P ) be a given probability space. Moreover let X , W be metric spaces, and U be a compact metric space.
We will construct a family of controlled, partially observed stochastic systems evolving in discrete time (n ∈ IN),
with state space X , control space U , and observation space IRd. For each ε > 0, assume we are given two sequences
of i.i.d. random variables (W ε

n)n≥0, (V ε
n)n≥0with values on W and IRd respectively. We denote by µε the distribution

of W ε
n and by νε the distribution of V ε

n . Let f : X × U ×W → X and h : X × IRd → IRd be two given measurable
functions. We consider, for each ε > 0, the controlled stochastic process defined recursively by:

{
Xn+1 = f(Xn, un, Wn),
Yn = h(Xn, Vn),

(2.1)

together with the initial condition X0 = ξ ∈ X deterministic and independent on ε. For simplicity of notation, we
also assume the first observation to be deterministic and independent on ε, i.e. Y0 = η ∈ IRd. The assumption that
the outputs are in IRd is for notational convenience; IRd could be replaced by any Riemannian manifold.

Definition 2.1 An infinite sequence u = (u
n
)n≥0 of U -valued random variables is said to be an admissible control

if un = φn(Y1, . . . , Yn) = φn(Y n) for some measurable function φn : IRdn → U . We will denote by Ad(U) the set of
admissible controls.

Let c : X × U → IR be a given measurable map called cost function. For each u ∈ Ad(U) we define the index:

Jε(u) = lim sup
N→+∞

ε

N
log E exp

[

ε−1
N−1∑

k=0

c(Xk, uk)

]

. (2.2)

The stochastic control problem we deal with consists in minimizing over Ad(U) the index J ε(u), i.e. finding
Jε
∗ = inf{Jε(u); u ∈ Ad(U)}, and computing uε

∗ ∈ Ad(U) such that J ε(uε
∗) = Jε

∗.
We now introduce the classical notions of Large Deviation Principle (LDP) and exponential tightness.
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Definition 2.2 Let X be a metric space and {P ε : ε > 0} be a family of probability measures defined on its
Borel σ-field. The family {P ε : ε > 0} is said to satisfy a Large Deviation Principle (LDP) with rate function
HP : X → [0, +∞] if
i) HP is lower semicontinuous and {x : HP (x) ≤ l} is compact for every l ≥ 0.
ii) For every A ⊂ X measurable

− inf
x∈

◦

A

HP (x) ≤ lim inf
ε→0

ε log P ε(A) ≤ lim sup
ε→0

ε log P ε(A) ≤ − inf
x∈Ā

HP (x)

where
◦

A, Ā denote respectively the interior and the closure of A.

Definition 2.3 Let X be a metric space, and {P ε : ε > 0} be a family of probability measures defined on its Borel
σ-field. The family {P ε : ε > 0} is called exponentially tight if, for every L > 0, there exists C ⊂ X compact such
that

P ε(Cc) ≤ e−ε−1L (2.3)

for all ε sufficiently small, where Cc is the complement of C.

Now we state the main assumptions on the model (equations (2.1) and (2.2)) which are needed in the rest of the
paper.

H1) The function f : X × U ×W → X is continuous.

H2) The family of distributions (µε)ε>0 is exponentially tight and satisfies a LDP with rate function H(·).

H3) For each A ⊂ X measurable, x ∈ X , and (x̄, ū) ∈ X × U fixed, define:

φε,A
x (u) = ε log

µε
(
f−1(A; x, u)

)

µε (f−1(A; x̄, ū))
,

where f−1(A; x, u) = {w ∈ W | f(x, u, w) ∈ A} (we use the convention 0/0 = 1).

The set of functions
{
φε,A

x | ε > 0, A ⊂ X , x ∈ X
}

is uniformly bounded and equicontinuous.

H4) The function h : X × IRd → IRd is continuous, and for each fixed x ∈ X the function v → h(x, v) is a
diffeomorphism of IRd. The inverse map h−1(x, y) and its Jacobian Dyh−1(x, y) are continuous on X × IRd;

moreover the continuity in the y variable of the inverse map h−1(x, y) is uniform in x. For each K ⊂ IRd

compact, the map log
[

det
(
Dyh−1(x, y)

)]
is bounded on X ×K.

H5) The family of distributions (νε)ε>0 is exponentially tight and satisfy a LDP with rate function K(·). Moreover
we assume that the map K(·) is finite valued and continuous.

H6) The measure νε admits a strictly positive density ρε w.r.t. the Lebesgue measure. The family of functions
{ε log ρε} is equicontinuous, uniformly bounded from below when restricted to any compact subset of IRd and
uniformly bounded from above on all IRd.

H7) the cost function c : X ×U → IR which appears in J ε(u) (equation (2.2)) is uniformly continuous and bounded
(we will denote by ||c||∞ its sup-norm).

Remark 2.4 1. Assumptions H1, H2, H4-H7 are similar but slightly stronger than Assumptions B in [1] (see
Section 4.3). A possible example in which these assumptions hold, may be constructed as follows. Assume W
is a Riemannian manifold, with dw denoting the Lebesgue measure on it. Let f : X × U ×W → X be any
continuous function and c : X × U → IR be any uniformly continuous and bounded function. Suppose we are
given two continuous functions H̃ : W → IR, K̃ : IRd → IR such that

i) H̃ and K̃ have compact level sets;

ii) e−H̃ , e−K̃ are integrable w.r.t. the Lebesgue measures on W and IRd respectively;

Then define

µε(dw) =
e−ε−1H̃(w)dw
∫

e−ε−1H̃(w)dw
, νε(dw) =

e−ε−1K̃(v)dv
∫

e−ε−1K̃(v)dv
.
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Then µε, νε satisfy assumptions H2, H5 and H6, with corresponding rate functions H(w) = H̃(w) − inf H̃ ,
K(v) = K̃(v)− inf K̃. To complete the description of the model we have to assign an output function h which
satisfies assumption H4. Such examples are provided by functions of type

h(x, v) = β(x) + γ(x)v

where β : X → IRd and γ : X → L(IRd, IRd) are continuous functions and, for all v ∈ IRd, the inequality
‖γ(x)v‖2 ≥ δ‖v‖2 holds for a constant δ > 0 independent of x ∈ X . Note that no boundedness or growth
assumptions on β are required.

2. Assumption H3 is the most restrictive one . If X and U are both finite (as in [11]), then H3 is a trivial
requirement. It can be verified that the example given in 1. satisfies H3 if we also require that X = W is
compact and that the map w → f(x, u, w) is a diffeomorphism for any pair (x, u).

3. All these assumptions can be easily adapted to the case treated in [11], where X and U are finite and IRd is
replaced by a finite set.

Now we introduce the notion of information space which is very useful when studying the small parameter limit.
Let ∅ be a special symbol. Define the set:

Z = ∪+∞
n=0

[(

IRd × U
)n

× {∅}IN
]

.

Let z = (z(1), z(2), . . .) be an element of Z . Then either z = (∅, ∅, ∅, . . .) or

z = ((yn, un−1)
︸ ︷︷ ︸

z(1)

, (yn−1, un−2)
︸ ︷︷ ︸

z(2)

. . . , (y1, u0)
︸ ︷︷ ︸

z(n)

, ∅, ∅, . . .),

and in this case z represents a finite sequence of outputs and controls.

Remark 2.5 The partially observed dynamics (2.1) induce the following completely observed dynamics on Z :

{
Zn+1 = (Yn+1, un, Zn) ,
Z0 = (∅, ∅, . . .).

(2.4)

Notice that an admissible control un at time n can be thought as a function of Zn. In the first equation of (2.4), we
may interpret Z as the state variable, u as the control variable, and Y as the disturbance.

Definition 2.6 For each z ∈ Z let:

n(z) = min{n | z(k) = ∅ ∀ k > n }.

According to this definition we have:

n(z) = 0 ⇒ z = (∅, ∅, . . .),
n(z) > 0 ⇒ z = ((y, u), ∆z), with ∆z ∈ Z , and n(∆z) = n(z)− 1.

Now we will define a metric on Z . Denote by dIRd , dU metrics on IRd and U respectively. It is not restrictive to

assume that these metrics are bounded above by 1. Let zi = (z
(1)
i , z

(2)
i , . . .), i = 1, 2, be two elements of Z . Then

we let:
d(z1, z2) =

∑

k≥1

d̂(z
(k)
1 , z

(k)
2 ), (2.5)

where

d̂(z
(k)
1 , z

(k)
2 ) =







0 if z
(k)
1 = z

(k)
2 = ∅,

1 if z
(k)
1 = ∅, z

(k)
2 ∈ IRd × U,

1 if z
(k)
2 = ∅, z

(k)
1 ∈ IRd × U,

1
2

[

dIRd(y
(k)
1 , y

(k)
2 ) + dU (u

(k)
1 , u

(k)
2 )
]

if z
(k)
1 , z

(k)
2 ∈ IRd × U.

Notice that the sum in (2.5) is always finite. It is easily checked that d(·, ·) is a metric on Z .
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Remark 2.7 Although the explicit form of the metric d(·, ·) will not be used, the following properties of d(·, ·) will
play a key role in the proofs.

(a) Let (zi)i≥0 be a sequence of elements of Z and assume that this sequence converges to z ∈ Z with respect to
the metric d(·, ·) defined above. Then there exists k ∈ IN such that n(zi) = n(z) for all i ≥ k.

(b) Let C ⊂ Z be a compact set; then there exists n̄ ≥ 0 such that n(z) ≤ n̄ for all z ∈ C.

For each x ∈ X and ε > 0, we define the following probability measure on IRd

Qε(A; x) = νε{v : h(x, v) ∈ A}. (2.6)

Assumption H4 and H6 imply, in particular, that this measure Qε(·; x) has a density qε(y; x) w.r.t. the Lebesgue
measure given by qε(y; x) = ρε(h−1(x, y))| Det

(
Dyh−1(x, y)

)
|. Now, for (x, u) ∈ X ×U , we consider the probability

measure Πε(dξ; x, u) on X defined by

Πε(A; x, u) = µε(f−1(A; x, u)) = µε{w | f(x, u, w) ∈ A}.

Moreover, for (y, u) ∈ IRd × U , let T ε(y, u) be the operator, acting on probability measures of X , defined by:

(T ε(y, u)(µ)) (A) =

∫

X
eε−1c(x′,u)

[∫

A
qε(y; x)Πε(dx; x′, u)

]
µ(dx′)

∫

X
eε−1c(x′,u)

[∫

X
qε(y; x)Πε(dx; x′, u)

]
µ(dx′)

(2.7)

For z = ((yn, un−1), . . . , (y1, u0), ∅, ∅, . . .) ∈ Z , we let P ε(dx; z) be the probability measure on X defined by:

P ε(dx; z) = T ε(yn, un−1) · · ·T
ε(y1, u0)δξ, (2.8)

and
P ε(dx; (∅, ∅, . . .)) = δξ . (2.9)

Finally, we define the following measure on IRd

Rε(A; z, u) =

∫

A

[∫

X

∫

X

eε−1c(x′,u)qε(y; x)Πε(dx; x′, u)P ε(dx′; z)

]

dy. (2.10)

Next proposition proves the existence of a value function W ε, and of an optimal control map uε
∗ in terms of the

information state, for the problem described by equations (2.1), (2.2). This result is a consequence of Theorem 2 in
[9], as we will show in Section 4. If z = (z(1), z(2), . . .) ∈ Z and (y, u) ∈ IRd × U , we denote by (y, u, z) the element
of Z given by ((y, u), z(1), z(2), . . .).

Proposition 2.8 Assume that for each ε > 0, we are given a model as in (2.1) and (2.2) which satisfies assumptions
H1-H7. Then there is a bounded and continuous function W ε : Z → IR, and a real number λε that solve the following
equation:

W ε(z) + λε = inf
u∈U

[

ε log

∫

IRd

eε−1W ε(y,u,z)Rε(dy; z, u)

]

(2.11)

and W ε(∅, ∅, . . .) = 0. We also have:
λε = inf

u∈Ad(U)
Jε(u). (2.12)

Moreover there is a feedback uε
∗ = uε

∗(z) at which the infimum in (2.11) is attained. This feedback is an optimal
control in the following sense:

for z = (yn, un−1, . . . , y1, u0, ∅, ∅, . . .), the control uε
∗ = {(uε

∗)n}n≥0 given by (uε
∗)n(yn, un−1, . . . , y1, u0) = uε

∗(z)
is optimal, i.e. J ε(uε

∗) = λε.

Before stating our main results we need some other definitions. Recall that H(·) and K(·) are the rate functions of
the families (µε)ε>0 and (νε)ε>0 respectively, and c(x, u) is the cost function. Let HS : X ×X ×U → [0, +∞] given
by:

HS(x; x′, u) = inf{H(w) : f(x′, u, w) = x}, (2.13)

and HO : Y ×X → [0, +∞] given by:

HO(y; x) = inf{K(v) : h(x, v) = y}. (2.14)
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These two functions HS and HO represent the rate functions for the two parameterized families of measure
Πε(dξ; x, u) and Qε(dy; x) defined above (see Section 3 for the definition of rate function for a family of param-
eterized measures). Now let H̃ : X ×Z → [0, +∞] be the function defined by induction on n = n(z) as follows:

H̃(x; (∅, . . .)) =

{
0 if x = ξ
+∞ otherwise

(2.15)

H̃(x; (y, u, z)) = HO(y; x) + infx′∈X

[

H̃(x′; z)− c(x′, u) + HS(x; x′, u)
]

−

− infx,x′∈X

{

HO(y; x) + H̃(x′; z)− c(x′, u) + HS(x; x′, u)
}

.
(2.16)

Finally, let:
{

H̄ : Y × Z × U → [0, +∞],

H̄(y; z, u) = infx,x′∈X

{

HO(y; x)− c(x′, u) + HS(x; x′, u) + H̃(x′; z)
}

.
(2.17)

We are now ready to state our main result.

Theorem 1 Assume that for each ε > 0, we are given a model as in (2.1) and (2.2) which satisfies assumptions H1-
H7. For each ε > 0, let W ε and λε be the solutions of equation (2.11). Then the sets {λε : ε > 0} and {W ε : ε > 0}
have at least a limit point λ and W respectively in IR and C(Z), the last space being provided with the topology of
uniform convergence on compact sets. Each limit point is a solution of the equation:

W (z) + λ = inf
u∈U

sup
y∈IRd

{

W (y, u, z)− H̄(y; z, u)
}

. (2.18)

Now we introduce a deterministic, partially observed dynamic game to give a proper interpretation to equation (2.18).
Formally, the equations of dynamics are the same as in (2.1), where now wn ∈ W and vn ∈ IRd are interpreted
as deterministic disturbances. Thus we consider the deterministic, partially-observed, discrete-time system defined
by: {

xn+1 = f(xn, un, wn),
yn = h(xn, vn),

(2.19)

together with initial conditions x0 = ξ ∈ X and y0 = η ∈ IRd. Admissible controls are those such that un is a function
of the observations up to time n. Again, we denote by Ad(U) the set of admissible controls, even if measurability
issues are unimportant in this contest. The aim is to minimize over Ad(U) the index:

J(u) = lim sup
n→+∞

1

n
sup

w0, . . . , wn−1

v1, . . . , vn

[
n−1∑

k=0

(c(xk , uk)−H(wk)−K(vk+1))

]

. (2.20)

Theorem 2 Assume that we are given the model in equation (2.19). Moreover, assume that there exists a constant
λ ∈ IR and a bounded function W ∈ C(Z) which are a solution of equation (2.18). Then

λ = inf
u∈Ad(U)

J(u),

where J(u) is the cost functional given by (2.20). Moreover there exists a feedback u∗ = u∗(z) which realizes the
infimum in (2.18). This feedback provides and optimal control for the dynamic game given by equation (2.19), in
the same sense as in Proposition 2.8.

3 Preliminaries

The results in Subsection 3.1 and 3.2 are taken from [1] and [9] respectively.

3.1 Large Deviations

In this section X and Θ are metric spaces. All measures on X are intended to be defined on its Borel σ-field. We
first generalize Definitions 2.2 and 2.3 to the case of parameterized families of measures.
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Definition 3.1 A family {Pε(dx; θ) : ε > 0, θ ∈ Θ} of positive finite measures on X is called a Weakly Uniform
Large Deviation Family (WULDF) with rate function HP : X ×Θ → (−∞, +∞] if
i) For every fixed θ ∈ Θ, HP(·, θ) is lower semicontinuous and {x : HP(x, θ) ≤ l} is compact for every l ∈ IR.
ii) The map θ → infx∈X HP(x, θ) is real valued, and is bounded on the compact subsets of Θ.
iii) For every F : X → IR bounded and continuous

lim
ε→0

ε log

∫

eε−1F (x)Pε(dx; θ) = sup
x∈X

[

F (x) −HP(x, θ)
]

(3.1)

uniformly for θ in the compact subsets of Θ.

Definition 3.2 A family {Pε(dx; θ) : ε > 0, θ ∈ Θ} of positive finite measures on X is called exponentially tight if,
for every L > 0 and every K ⊂ Θ compact, there exists C ⊂ X compact such that

Pε(Cc; θ) ≤ e−ε−1L (3.2)

for all θ ∈ K and ε sufficiently small, where Cc is the complement of C.

Remarks 3.3 1. Note that we allow Pε in Definitions 3.1 and 3.2 to be a positive finite measure, not necessarily
a probability measure.

2. When all the measures {Pε}ε>0 in Definition 3.2 are probability measures and Θ is a singleton, Definition 3.2
reduces to Definition 2.3.

3. Condition ii) in Definition 3.1 roughly says that P ε(X ; θ) does not either go to zero or grow too fast as ε → 0.
Indeed, by using ii) and letting F ≡ 0 in iii) the following statement is easy to prove: for each K ⊂ Θ compact,
there exists M(K) > 0 such that, for ε sufficiently small,

e−ε−1M(K) ≤ Pε(X ; θ) ≤ eε−1M(K) (3.3)

for all θ ∈ K. If all Pε(dx; θ) are probability measures, then condition ii) is automatically satisfied, since
infx∈X HP(x, θ) ≡ 0 (see [7]).

4. Suppose that {Pε(dx; θ) : ε > 0, θ ∈ Θ} is a WULDF of probability measures on X . Then, under the further
assumption of exponential tightness, for every fixed θ ∈ Θ the family {P ε(dx; θ) : ε > 0} satisfies a LDP with
rate function HP(x; θ) (Bryc Theorem, see [7]). This pointwise LDP does not imply uniform convergence in
(3.1), but only pointwise convergence. On the other hand, (3.1) for all F continuous and bounded, does not
imply any uniformity in θ of the Large Deviations bounds for {P ε(dx; θ) : ε > 0} (see [1] for a counterexample).

Next proposition establishes the fact that a family of probability measures that satisfies a LDP transforms into
a WULDF under a continuous, parameter dependent mapping.

Proposition 3.4 Let W be a metric space, f : Θ × W → X a continuous map, and {µε : ε > 0} a family of
probability measures on W that satisfy a LDP with rate function h(w). Define P ε(dx; θ), a probability measure on
X , by

Pε(A; θ) = µε{w : f(θ, w) ∈ A}. (3.4)

Then {Pε(dx; θ) : ε > 0, θ ∈ Θ} is a WULDF with rate function

HP(x; θ) = inf{h(w) : f(θ, w) = x}. (3.5)

Moreover, if {µε : ε > 0} is exponentially tight, then so is {P ε(dx; θ) : ε > 0, θ ∈ Θ}.

The notion of WULDF is normally used in the form given in next lemma, that is a slight modification of (3.1).

Lemma 3.5 Suppose that {Pε(dx; θ) : ε > 0, θ ∈ Θ} is a WULDF with rate function HP , and it is exponentially
tight. Let F ε : X → IR, ε ≥ 0 be such that supε≥0 ‖F

ε‖∞ < ∞, F ε → F 0 as ε → 0 uniformly on the compact subsets
of X and F 0 is continuous. Then

lim
ε→0

ε log

∫

eε−1F ε(x)Pε(dx; θ) = sup
x∈X

[

F 0(x)−HP(x, θ)] (3.6)

uniformly on the compact subsets of Θ.
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Next three propositions form the core of the theory of WULDF’s. They state that, under suitable assumptions, the
notion of WULDF is preserved by three operations on families of finite positive measures: composition, contraction,
and conditioning. The reason for studying these operations is that they appear in the recursive equation giving the
information state for a partially observed, risk-sensitive control problem.

In the rest of this section, X , Y and Θ are metric spaces.

Proposition 3.6 (Composition). Let {Pε(dx; y, θ) : ε > 0, (y, θ) ∈ Y × Θ} and {Qε(dy; θ) : ε > 0, θ ∈ Θ} be two
exponentially tight WULDF’s in X and Y respectively with rate functions HP(x; y, θ) and HQ(y; θ). Assume that the
measures Pε are all probability measures. Moreover, assume that the rate function HP(x; y, θ) satisfies the following
regularity conditions

(i) Let A = {(x, y, θ) : HP(x; y, θ) < +∞}. Then for every (x, y, θ) ∈ A and every sequence (yn, θn) → (y, θ)
there exists a sequence xn → x such that HP(xn; yn, θn) → HP(x; y, θ),

(ii) HP is lower semicontinuous as a function of (x, y, θ).

Then {Rε(dx, dy; θ) : ε > 0, θ ∈ Θ} defined by:
∫

f(x, y)Rε(dx, dy; θ) =

∫ [∫

f(x, y)Pε(dx; y, θ)

]

Qε(dy; θ),

is an exponentially tight WULDF with rate function:

HR(x, y; θ) = HP(x; y, θ) + HQ(y; θ).

Proposition 3.7 (Contraction) Let Rε(dx, dy; θ) be an exponentially tight WULDF on X × Y with rate function
HR(x, y; θ). Then the family Pε(dx; θ), defined by:

Pε(A; θ) = Rε(A× Y ; θ),

is, an exponentially tight WULDF on X with rate function:

HP(x; θ) = inf
y∈Y

HR(x, y; θ).

Proposition 3.8 (Conditioning). Let {Pε(dx; θ) : ε > 0, θ ∈ Θ} and {Qε(dy; x) : ε > 0, x ∈ X} be two exponentially
tight WULDF’s on X and Y respectively, with rate functions HP(x; θ) and HQ(y; x). Assume that the measures
Qε(dy; x) are all probability measures, and that both families of kernels are exponentially tight. Moreover assume
that the rate function HQ(y; x) is always finite and continuous, and that the following properties hold:

1. the measure Qε(dy; x) is of the form:

Qε(dy; x) = qε(y; x)α(dy).

where qε(y; x) > 0 and the measure α(dy) satisfies

inf
y∈K

α (B(y, γ)) > 0;

for every K ⊂ Y compact and γ > 0, where B(y, γ) is the ball centered at y with radius γ.

2. for any compact sets K ⊆ Y, C ⊆ X , and any δ > 0 there exists δ1 > 0 and ε(δ) such that:

|ε log qε(y1; x) − ε log qε(y2; x)| < δ,

for all y1, y2 ∈ K such that d(y1, y2) < δ1, for all ε ≤ ε(δ), and for all x ∈ C;

3. for any compact sets K ⊆ Y, C ⊆ X there exists nK,C > 0 such that:

ε log qε(y; x) ≥ −nK,C ;

for all y ∈ K, x ∈ C, and ε > 0

4. for any compact set K ⊆ Y, there exists NK > 0 such that:

ε log qε(y; x) ≤ NK ;

for all y ∈ K, for all x ∈ X , and for all ε > 0.

Then the measures on X
Sε(dx; y, θ) = qε(y; x)Pε(dx; θ)

form an exponentially tight WULDF with rate function

HS(x; y, θ) = HQ(y; x) + HP(x; θ).
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3.2 Ergodic, risk-sensitive control under partial state observation

In this subsection we consider the risk-sensitive control problem given by the dynamics (2.1) and the cost function
(2.2). The parameter ε > 0 is assumed to be fixed; for later use, we keep it in all notations.

In Section 2 we introduced the probability kernels Πε(dξ; x, u) and Qε(dy, x) = qε(y; x)dy corresponding to the
dynamics and the observation respectively. Denote by M1(X ) the space of probability measures on X , provided
with the weak topology. For µ ∈ M1(X ) we introduce the probability measure ρε

µ(dy; u) on IRd given by

ρε
µ(A; u) =

∫

A

[∫

X

∫

X

eε−1c(x′,u)qε(y; x)Πε(dx; x′, u)µ(dx′)

]

dy. (3.7)

We also recall the notation
P ε(dx; z) = T ε(yn, un−1) · · ·T

ε(y1, u0)δξ

where z = (yn, un−1, . . . , y1, u0, ∅, ∅, . . .) ∈ Z .

Theorem 3 Under assumptions H1, H3, H4, H6, H7, there exists a solution (V ε, λε) ∈ C(M1(X )) × IR of the
equation

V ε(µ) + λε = inf
u∈U

[

ε log

∫

IRd

eε−1V ε(T ε(y,u)µ)ρε
µ(dy; u)

]

(3.8)

such that V ε is bounded, continuous and eε−1V ε

is concave. We also have:

λε = inf
u∈Ad(U)

Jε(u). (3.9)

Moreover, there exists a feedback u∗ = u∗(µ) at which the infimum in (3.8) is attained. Finally, the control u =
(un)n≥0 given by

un = un(y1, . . . , yn, u0, . . . , un−1) = u∗(P ε(dx; z))

with z = (yn, un−1, . . . , y1, u0, ∅, ∅, . . .) is an optimal control for the risk-sensitive control problem (2.1)-(2.2).

Theorem 3 is just a reformulation, in slightly different terms, of Theorem 2 in [9]. It is not hard to check that
our assumptions imply those in [9]. Perhaps not totally obvious, it is to check that the following condition, required
in [9], is actually implied by H1, H3, H4, H6, H7: if µn → µ weakly in M1(X ), then

∫

Πε(·; x, u)µn(dx) →

∫

Πε(·; x, u)µ(dx)

in total variation, uniformly in u ∈ U . This is equivalent to

lim
n→∞

sup
A⊂X

u∈U

∣
∣
∣
∣

∫

Πε(A; x, u)µn(dx) −

∫

Πε(A; x, u)µ(dx)

∣
∣
∣
∣
= 0. (3.10)

If (3.10) fails to hold, then there exist δ > 0, a subsequence {µnk
} of {µn} and corresponding sequences Ak ⊂ X ,

uk ∈ U such that ∣
∣
∣
∣

∫

Πε(Ak ; x, uk)µnk
(dx) −

∫

Πε(Ak; x, uk)µ(dx)

∣
∣
∣
∣
≥ δ (3.11)

for all k ≥ 0. Using assumption H3, it is easy to see that the functions {gk} from X to [0, 1] given by

gk(x) = Πε(Ak; x, uk)

form an equicontinuous family. By the Theorem of Ascoli-Arzela, there exists a limit point g of {gk} in the topology
of uniform convergence on compact subsets of X . Therefore, we can assume that the subsequence {µnk

} previously
chosen, is such that the corresponding sequence {gk} converges to g. By using exponential tightness of {µnk

}, it
follows that ∫

Πε(Ak; x, uk)µnk
(dx) →

∫

g(x)µ(dx)

∫

Πε(Ak; x, uk)µ(dx) →

∫

g(x)µ(dx)

which contradicts (3.11).
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4 Proofs

In this section we prove the results stated in Section 2. Throughout this section we assume that for each ε > 0, a
model as in (2.1) and (2.2), which satisfies assumptions H1-H7, is given.

Proof of Proposition 2.8
Let, for each z ∈ Z :

W ε(z) = V ε (P ε(·; z)) , (4.1)

where V ε is the function given by Theorem 3 and P ε(·; z) is the probability measure defined by equation (2.8). Since
V ε is defined up to an additive constant, we may assume V ε(δξ) = 0 for all ε > 0, i.e. W ε(∅, ∅, . . .) = 0 for all ε > 0.
Moreover let λε be the constant given, again, by Theorem 3.

From the boundedness of the maps V ε, we have that also the maps W ε are bounded. Continuity of the maps W ε

follows from continuity of V ε and weak continuity of the map z → P ε(·; z). This last fact can be proved as follows.
Suppose zk → z. If n(z) = 0, then n(zk) = 0 for k large enough, so obviously P ε(·; zk) ≡ P ε(·; z). Otherwise we
proceed by induction. Suppose z is of the form z = (y, u, ∆z) and assume zk → z. Then, for k sufficiently large,
zk = (yk, uk, ∆zk), with yk → y, uk → u and ∆zk → ∆z. From (2.7) and (2.8), it follows that all we have to show
is that for all f : X → IR bounded and continuous

lim
k→∞

∫

X

eε−1c(x′,uk)[

∫

X

f(x)qε(yk; x)Πε(dx; x′, uk)]P ε(dx′; ∆zk) =

=

∫

X

eε−1c(x′,u)[

∫

X

f(x)qε(y; x)Πε(dx; x′, u)]P ε(dx′; ∆z). (4.2)

By inductive assumption and the fact that c(x′, uk) → c(x′, u) uniformly, it is enough to show that

∫

X

f(x)qε(yk; x)Πε(dx; x′, uk) →

∫

X

f(x)qε(y; x)Πε(dx; x′, u) (4.3)

uniformly on x′ in any compact subset of X , and that maps in the l.h.s. of (4.3) are uniformly bounded in x′ ∈ X .
These last two facts follow readily from weak continuity of Πε(dx; x′, u) and Assumption H4.

Now, notice that:
W ε(y, u, z) = V ε (P ε(·; y, u, z)) = V ε (T ε(y, u)P ε(·; z)) ,

Rε(A, z, u) = ρε
P ε(·;z)(A, u)

(see (3.7) for the definition of ρε
µ). From the previous equalities it is clear that equations (2.11), (2.12) and the

existence on an optimal feedback law follow directly from equations (3.8), (3.9) and the existence of an optimal
strategy given in Theorem 3.

Now we will prove that the set of functions {W ε(·)}ε>0 has limit points. To see this we will show that for any
sequence εn, with εn → 0 as n → +∞, the maps {W εn(·)} are equibounded and equicontinuous. The conclusion
then will follow by Ascoli-Arzela’s Theorem.

For each (y, u) ∈ Y × U and each ε > 0, let T̃ ε(y, u) be the operator acting on finite measures of X defined by:

T̃ ε(y, u)(µ)(A) =

∫

X

eε−1c(x′,u)

[∫

A

qε(y; x)Πε(dx; x′, u)

]

µ(dx′). (4.4)

Notice that T̃ ε(y, u) is an unnormalized version of T ε(y, u); in fact, if µ is a probability measure on X then:

T ε(y, u)(µ)(A) =
T̃ ε(y, u)(µ)(A)

T̃ ε(y, u)(µ)(X )
.

Denote by bB(M1(X )) (resp. bB(M(X ))) the set of measurable, bounded and positive-real valued functions acting
on probability (resp. finite) measure of X . Define:

{
S : bB(M1(X )) → bB(M(X ))

(Sf) (µ) = µ(X)f
(

µ
µ(X )

)
. (4.5)

Lemma 2 of [9] establishes the following fact:
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Fact 1 If f ∈ bB(M1(X )) is concave then also (Sf) ∈ bB(M(X )) is concave.

Next proposition shows that the set of functions {W ε(·)}ε>0 is equibounded.

Proposition 4.1 Assume that for each ε > 0, we are given a model as in (2.1) and (2.2) which satisfies assumptions
H1-H7. Let {W ε(·)}ε>0 be the set of functions that solve equation (2.11). Then there exists Λ > 0 such that:

|W ε(z)| < Λ ∀ε > 0, ∀z ∈ Z . (4.6)

Proof. Since the functions {W ε(·)}ε>0 have a common zero (W ε(∅, ∅, . . .) = 0, ∀ε > 0) to get equation (4.6) it
suffices to prove that

|W ε(z)−W ε(z′)| ≤ Λ ∀ε > 0, ∀z, z′ ∈ Z . (4.7)

Let M > 0 be the uniform bound for the functions φε,A
x (u) given by Assumption H3. In particular it holds that:

Πε(A; x, u) ≥ e−ε−1MΠε(A; x′, u′), (4.8)

for all x, x′ ∈ X , A ⊂ X measurable, and u, u′ ∈ U .
Given x ∈ X and u ∈ U , the following simple fact is easily established:

eε−1c(x,u) ≥ inf
ξ∈X

eε−1c(ξ,u) ≥ e−2ε−1||c||∞ sup
ξ∈X

eε−1c(ξ,u). (4.9)

Moreover by (4.8), we have, for every A ⊂ X measurable and (y, u) ∈ Y × U ,

∫

A

qε(y; x′)Πε(dx′; x, u) ≥ inf
ξ∈X

∫

A

qε(y; x′)Πε(dx′; ξ, u) ≥ e−ε−1M sup
ξ∈X

∫

A

qε(y; x′)Πε(dx′; ξ, u). (4.10)

From (4.9) and (4.10), for z, z′ ∈ Z , A ⊂ X measurable, and (y, u) ∈ Y × U , we have:

T̃ ε(y, u)P ε(A; z) =

∫

X

eε−1c(x′,u)

[∫

A

qε(y; x)Πε(dx; x′, u)

]

P ε(dx′; z) ≥

(

inf
ξ∈X

eε−1c(ξ,u)

)(

inf
ξ∈X

∫

A

qε(y; x)Πε(dx; ξ, u)

)

≥

e−ε−1(2||c||∞+M)

(

sup
ξ∈X

eε−1c(ξ,u)

)(

sup
ξ∈X

∫

A

qε(y; x)Πε(dx; ξ, u)

)

≥

e−ε−1(2||c||∞+M)

∫

X

eε−1c(x′,u)

[∫

A

qε(y; x)Πε(dx; x′, u)

]

P ε(dx′; z′) = e−ε−1(2||c||∞+M)T̃ ε(y, u)P ε(A; z′).

Let Λ = 2||c||∞ + M , and consider the measure mε on X defined by:

mε(A; z, z′, y, u) = T̃ ε(y, u)P ε(A; z)− e−ε−1ΛT̃ ε(y, u)P ε(A; z′).

From the previous inequalities, we have that mε is positive for all z, z′ ∈ Z and all (y, u) ∈ Y × U . Therefore
T̃ ε(y, u)P ε(·; z) may be written as convex combination of positive measures as follows:

T̃ ε(y, u)P ε(·; z) = e−ε−1ΛT̃ ε(y, u)P ε(·; z′) +
(

1− e−ε−1Λ
) mε(·; z, z′, y, u)

1− eε−1Λ
.

If S denote the operator defined by (4.5), then since eε−1V ε

is concave (see Theorem 3), Fact 1 implies that also the

maps S
(

eε−1V ε
)

are concave. Thus:

S
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z)
)

≥

e−ε−1ΛS
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z′)
)

+
(

1− e−ε−1Λ
)

S
(

eε−1V ε
)(

mε(·;z,z′,y,u)

1−eε−1Λ

)

≥

e−ε−1ΛS
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z′)
)

.

(4.11)
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Now we are ready to prove (4.7). Using equation (2.11), we may write:

|W ε(z)−W ε(z′)| = |W ε(z) + λε − (W ε(z′) + λε)| ≤

∣
∣
∣
∣
∣
sup
u∈U

ε log

( ∫

IRd eε−1W ε(y,u,z)Rε(dy; z, u)
∫

IRd eε−1W ε(y,u,z′)Rε(dy; z′, u)

)∣
∣
∣
∣
∣
.

Noticing that:

eε−1W ε(y,u,z)Rε(dy; z, u) = e
ε−1V ε

(
T̃ ε(y,u)P ε(·;z)

T̃ε(y,u)P ε(X;z)

) [

T̃ ε(y, u)P ε(X ; z)
]

dy = S
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z)
)

dy,

we may write:

|W ε(z)−W ε(z′)| ≤ sup
u∈U

∣
∣
∣
∣
∣
∣

ε log

∫

IRd S
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z)
)

dy

∫

IRd S
(
eε−1V ε

) (

T̃ ε(y, u)P ε(·; z′)
)

dy

∣
∣
∣
∣
∣
∣

.

Now, using equation (4.11), we have:

|W ε(z)−W ε(z′)| ≤ sup
u∈U

∣
∣
∣
∣
∣
∣

ε log

∫

IRd S
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z)
)

dy

e−ε−1Λ
∫

IRd S
(
eε−1V ε

)(

T̃ ε(y, u)P ε(·; z)
)

dy

∣
∣
∣
∣
∣
∣

= Λ.

So inequality (4.7) holds, as desired.

Next lemma proves a continuity property of the probability measures P ε(·; z) which will be crucial for getting
equicontinuity of the functions {W ε(·)}ε>0.

Lemma 4.2 Assume that for each ε > 0, we are given a model as in (2.1) and (2.2) which satisfies assumptions
H1-H7. Then there exists a map K : Z ×Z → [0, +∞]such that

(a) for each C ⊂ Z compact, there is a map Oε
C : C × C → IR such that Oε

C → 0 uniformly as ε → 0, and

P ε(·; z1)− e−ε−1[K(z1,z2)+Oε
C (z1,z2)]P ε(·; z2) ≥ 0 (4.12)

for every z1, z2 ∈ C;

(b) limz→z̄ K(z, z̄) = 0, and K(z, z̄) < +∞ if n(z) = n(z̄).

Proof. Before proving (a) and (b) we state some useful inequalities which are implied by our Assumptions H1-H7.
Assumption H7 implies, in particular, that there exists a map Kc : U × U → IR such that limu→u′ Kc(u, u′) = 0,
and

c(x, u)− c(x, u′) ≥ −Kc(u, u′), (4.13)

for all x ∈ X and all u, u′ ∈ U .
Since the function φε,A

x (u) are equicontinuous (by Assumption H3) we have that there exists a function KΠ :
U × U → IR such that limu→u′ KΠ(u, u′) = 0 and

Πε(·; x, u) ≥ e−ε−1KΠ(u,u′)Πε(·; x, u′), (4.14)

for all x ∈ X and all u, u′ ∈ U .
From the equicontinuity of the maps ε log ρε (Assumption H6) and from the continuity in y uniformly in x of the

map h−1(x, y) (Assumption H4), we get that there exists a function Kq : IRd × IRd → IR, such that:

ρε
(
h−1(x, y)

)
≥ e−ε−1Kq(y,y′)ρε

(
h−1(x, y′)

)
,

with limy→y′ Kq(y, y′) = 0.

Assumption H4 says, in particular, that for each I ⊂ IRd compact, the map log | Det Dyh−1(x, y)| is bounded

on X × I . From this fact and the previous inequality we also have that for each compact set I ⊂ IRd there exists
MI > 0 such that:

qε(y; x) ≥ e−ε−1(Kq(y,y′)+εMI)qε(y′; x), (4.15)

for all x ∈ X and y, y′ ∈ I .
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We are now ready to construct the maps K and Oε
C . Note that we are allowed to define K(z1, z2) = +∞

and Oε
C(z1, z2) = 0 for n(z1) 6= n(z2), and any compact C containing z1, z2. For n = n(z1) = n(z2) = 0, let

K(z1, z2) = 0. Inductively, we define, for n = n(z1) = n(z2) > 0,

K(z1, z2) = 2 [K(∆z1, ∆z2) + KΠ(u1, u2) + Kc(u1, u2) + Kq(y1, y2)] . (4.16)

It is easily shown by induction that statement (b) holds for this K(·, ·). Now let C ⊂ Z compact. By the properties
of the metric on Z , it easily follows that there exists a compact set IC ⊂ IR such that for every z = (z(1), z(2), · · ·) ∈ C
and any n ≥ 1, either z(n) = ∅ or z(n) = (y, u) with y ∈ IC . Let MIC

be the corresponding constant in equation
(4.15). We inductively define Oε

C(z1, z2) for z1, z2 ∈ C, n = n(z1) = n(z2) by:

Oε
C(z1, z2) = 0,

for n = 0, and, for n > 0:
Oε

C(z1, z2) = 2Oε
C(∆z1, ∆z2) + 2εMIC

. (4.17)

Since there exists n̄ ≥ 0 such that if z ∈ C then n(z) ≤ n̄ (see Remark 2.7 (b)), it is easy to prove that Oε
C → 0

uniformly as ε → 0.
We now show that (4.12) holds. For n(z1) 6= n(z2), (4.12) is obvious. So we may prove (4.12) by induction on

n = n(z1) = n(z2). For n = 0 there is nothing to prove. For n > 0 we have:

P ε(A; z1) = T ε(y1, u1)P
ε(A; ∆z1) =

∫

X eε−1c(x′,u1)
[∫

A
qε(y1; x)Πε(dx; x′, u1)

]
P ε(dx′; ∆z1)

∫

X
eε−1c(x′,u1)

[∫

X
qε(y1; x)Πε(dx; x′, u1)

]
P ε(dx′; ∆z1)

. (4.18)

By inductive assumption the above expression is greater or equal than:

e−2e−1[K(∆z1,∆z2)+Oε
C(∆z1,∆z2)]

∫

X eε−1c(x′,u1)
[∫

A
qε(y1; x)Πε(dx; x′, u1)

]
P ε(dx′; ∆z2)

∫

X
eε−1c(x′,u1)

[∫

X
qε(y1; x)Πε(dx; x′, u1)

]
P ε(dx′; ∆z2)

. (4.19)

Then by (4.13), (4.14), and (4.15),

P ε(A; z1) ≥ e−2ε−1[K(∆z1,∆z2)+KΠ(u1,u2)+KC(u1,u2)+Kq(y1,y2)+Oε
C(∆z1,∆z2)+εMIC ]P ε(A; z2),

that, by (4.16) and (4.17), completes the proof.

Proposition 4.3 Assume that for each ε > 0, we are given a model as in (2.1) and (2.2) which satisfies assumptions
H1-H7. Let {W ε(·)}ε>0 be the set of functions that solve equation (2.11). Then, for any sequence εn → 0, as
n → +∞, the set of function {W εn(·)}n>0 is equicontinuous.

Proof. The idea of the proof is very similar to the one used to get equiboundedness of same set of functions (see
Proposition 4.1). Fix any C ⊂ Z compact and any z, z ′ ∈ Z . Then, by using Lemma 4.2, we have:

T̃ ε(y, u)P ε(A; z) =

∫

X

eε−1c(x′,u)

[∫

A

qε(y; x)Πε(dx; x′, u)

]

P ε(dx′; z) ≥

e−ε−1(K(z,z′)+Oε
C (z,z′))

∫

X

eε−1c(x′,u)

[∫

A

qε(y; x)Πε(dx; x′, u)

]

P ε(dx′; z′) =

= e−ε−1(K(z,z′)+Oε
C (z,z′))T̃ ε(y, u)P ε(A; z′)

From this, and using the same arguments used in Proposition 4.1, we have, for z, z ′ ∈ C:

|W ε(z)−W ε(z′)| ≤ sup
u∈U

∣
∣
∣
∣
∣
∣

ε log

∫

IRd S
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z)
)

dy

∫

IRd S
(
eε−1V ε

) (

T̃ ε(y, u)P ε(·; z′)
)

dy

∣
∣
∣
∣
∣
∣

≤ sup
u∈U

∣
∣
∣
∣
∣
∣

ε log

∫

IRd S
(

eε−1V ε
)(

T̃ ε(y, u)P ε(·; z)
)

dy

e−ε−1(K(z,z′)+Oε
C (z,z′)) ∫

IRd S
(
eε−1V ε

) (

T̃ ε(y, u)P ε(·; z)
)

dy

∣
∣
∣
∣
∣
∣

= K(z, z′) + Oε
C(z, z′).

13



Thus we have
|W ε(z)−W ε(z′)| ≤ K(z, z′) + Oε

C(z, z′), ∀ z, z′ ∈ C. (4.20)

Next we show that continuity of the maps {W ε(·)}ε>0 together with equation (4.20) implies equicontinuity of any
sequence of functions {W εn(·)}n>0. Fix a sequence εn → 0. Let z̄ ∈ Z , and δ > 0 be arbitrary. It is possible to
choose a compact neighborhood Vz̄ ⊂ Z of z̄ such that:

if z ∈ Vz̄ ⇒ K(z, z̄) <
δ

2
.

Moreover, since Oε
Vz̄

(z̄, z) goes to zero uniformly on Vz̄ , there exists n̄ > 0 such that for all z ∈ Vz̄, and for all εn

with n ≥ n̄ we have:
|W εn(z)−W εn(z̄)| ≤ δ. (4.21)

Equicontinuity of the set {W εn(·)}n>0 follows from (4.21) by elementary arguments.

Proposition 4.4 Assume that for each ε > 0, we are given a model as in (2.1) and (2.2) which satisfies assumptions
H1-H7. Then the family {P ε(·; z)} of probability measures on X , given by equation (2.8), is an exponentially tight
WULDF with rate function H̃(x; z) (see equation (2.16)).

Proof. Since the maps f : X × U ×W → X and h : X × IRd → IRd are continuous (assumptions H1 and H4), by
Proposition 3.4, we get that the families of probability measures Πε(dx; x′, u) and Qε(dy; x) are exponentially tight
WULDF with rate functions HS(x; x′, u) (see (2.13)) and HO(y; x) (see (2.14)) respectively.

Remark 2.7 (b) implies, in particular, that to get our thesis, it suffices to prove that P ε(·; z) is an exponentially
tight WULDF with rate function H̃(x; z) when restricted to any Zn = {z ∈ Z |n(z) ≤ n}. We will prove this by
induction on n. For n = 0 the statement is true by definition (see (2.9) and (2.15)). Assume that it holds for n ≥ 0,
and let z ∈ Zn+1. Then z = ((y, u), ∆z) with n(∆z) = n, and

P ε(dx; z) = T (y, u)P ε(dx; ∆z).

Since, by inductive assumption, the family P ε(·; ∆z), with ∆z ∈ Zn, is an exponentially tight WULDF with rate
function H̃(x; ∆z), it is easy to see that the family of positive measures:

αε(dx; ∆z, u) = eε−1c(x,u)P ε(dx; ∆z), (∆z, u) ∈ Zn × U,

is again an exponentially tight WULDF with rate function Hα(x; ∆z, u) = H̃(x; ∆z)− c(x, u).
Now we apply Proposition 3.6 (Composition) to the two families of measures Πε(dx; x′, u) and αε(dx; ∆z, u).

Notice that the Πε are families of probability measures. For the proof that their rate function HS(x; x′, u) satisfy
both requirements (i) and (ii) of Proposition 3.6, we refer to Proposition 4.3 of [1]. Thus we have that the family
βε(dx′, dx; ∆z, u) defined by:

∫

f(x′, x)βε(dx′, dx; ∆z, u) =

∫ [∫

f(x′, x)Πε(dx; x′, u)

]

αε(dx; ∆z, u), (4.22)

is an exponentially tight WULDF with rate function:

Hβ(x′, x; ∆z, u) = Hα(x; ∆z, u) + HS(x; x′, u) = H̃(x; ∆z)− c(x, u) + HS(x; x′, u).

Now we apply Proposition 3.7 (Contraction) to the family βε, to get that also the family:

δε(A; ∆z, u) =

∫

X×A

βε(dx′, dx; ∆z, u) =

∫

X

eε−1c(x′,u)

[∫

A

Πε(dx; x′, u)

]

P ε(·; ∆z), (∆z, u) ∈ Zn × U,

is an exponentially tight WULDF with rate function:

Hδ(x; ∆z, u) = inf
x′∈X

Hβ(x′, x; ∆z, u) = inf
x′∈X

(

H̃(x; ∆z)− c(x, u) + HS(x; x′, u)
)

.

Next step is to apply Proposition 3.8 (Conditioning) to the two families δε(dx; ∆z, u) (defined above) and
Qε(dy; x) (defined by (2.6)). Notice that Qε(dy; x) are all probability measures. Moreover it is easy to show
that their rate function HO(y; x) is always finite and continuous by assumption H5. For the proof that assumptions
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H4, H5, and H6 imply that also requirement 1,2,3 and 4 of Proposition 3.8 hold, we refer to Proposition 4.3 of [1].
Thus, we conclude that the family of measures:

T̃ (y, u)P ε(A; ∆z) = qε(y; x)δε(A; ∆z, u) =

∫

X

eε−1c(x′,u)

[∫

A

qε(y; x)Πε(dx; x′, u)

]

P ε(dx′; ∆z, u), (4.23)

is an exponentially tight WULDF (for (y, u, ∆z) ∈ IRd × U ×Zn) with rate function:

HO(y; x) + inf
x′∈X

(

H̃(x; ∆z)− c(x, u) + HS(x; x′, u)
)

.

Now, since, for z = ((y, u), ∆z) ∈ Zn+1, we have:

P ε(dx; z) = T ε(y, u)P ε(dx; ∆z) =
T̃ ε(y, u)P ε(dx; ∆z)

T̃ ε(y, u)P ε(X ; ∆z)
,

it is easy to see that also the family P ε(dx; z) for z ∈ Zn+1 is an exponentially tight WULDF with rate function:

HO(y; x) + inf
x′∈X

(

H̃(x; ∆z)− c(x, u) + HS(x; x′, u)
)

− inf
x,x′∈X

(

HO(y; x) + H̃(x; ∆z)− c(x, u) + HS(x; x′, u)
)

,

which coincides with the one in (2.16), as desired.

Proposition 4.5 Assume that for each ε > 0, we are given a model as in (2.1) and (2.2) which satisfies assumptions
H1-H7. Then the family of measures on IRd, Rε(·; z, u) given by equation (2.10), is an exponentially tight WULDF
with rate function H̄(y; z, u) defined in (2.17).

Proof. Let βε(dx′, dx; z, u) be the parameterized family of measures given by (4.22). We have seen in the proof of
Proposition 4.4 that βε(dx′, dx; z, u) is an exponentially tight WULDF with rate function:

Hβ(x′, x; z, u) = H̃(x; z)− c(x, u) + HS(x; x′, u).

Now we apply Proposition 3.6 (Composition) to the two families of measures βε(dx′, dx; z, u) and Qε(dy; x)
(defined in (2.6)). Notice that Qε(dy; x) is a probability measure for all ε, x. Moreover, by assumption H5, the rate
function HO(y; x) is always finite and continuous. Thus both requirements (i) and (ii) of Proposition 3.6 hold, and
we obtain that the family of measures δε(dx′, dx, dy; z, u) defined by:

∫

f(x′, x, y)δε(dx′, dx, dy; z, u) =

∫ [∫

f(x′, x, y)Qε(dy, x)

]

βε(dx′, dx; z, u),

is an exponentially tight WULDF with rate function:

Hδ(x
′, x, y; z, u) = HO(y; x) + H̃(x; z)− c(x, u) + HS(x; x′, u).

To conclude our proof, it remains to apply Proposition 3.7 (Contraction) to this family. In fact:

Rε(A; z, u) =

∫

A

[∫

X

∫

X

δε(dx′, dx, dy; z, u)

]

.

So, the family Rε(dy; z, u) is an exponentially tight WULDF with rate function:

inf
x′,x∈X

Hδ(x
′, x, y; z, u) = inf

x′,x∈X

[

HO(y; x) + H̃(x; z)− c(x, u) + HS(x; x′, u)
]

.

Since this last function is exactly H̄(y; z, u), we are done.

Proof of Theorem 1
Let, for each ε > 0, W ε, λε be, respectively, the map and the constant that satisfy equation (2.11), i.e.:

W ε(z) + λε = inf
u∈U

[

ε log

∫

IRd

eε−1W ε(y,u,z)Rε(dy; z, u)

]

.
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First notice that λε = infu∈Ad(U) Jε(u) ≤ ||c||∞. Thus {λε : ε > 0} admits limit points. Now, applying Propositions
4.1 and 4.3, we have that for each sequence εn → 0 as n → +∞, the set W εn is equibounded and equicontinuous,
and therefore by Ascoli-Arzela’s Theorem it admits limit points.

Denote by (W (·), λ) any limit point of (W ε, λε). Since the family of measures Rε(·; z, u) is an exponentially tight
WULDF with rate function H̄(y; z, u), using Lemma 3.5, we have:

inf
u∈U

lim
ε→0

[

ε log

∫

IRd

eε−1W ε(y,u,z)Rε(dy; z, u)

]

= inf
u∈U

sup
y∈IRd

[W (y, u, z)− H̄(y; z, u)].

To conclude the proof, we need to interchange, in the left hand side of the previous equation, the two operations of
inf and lim. To see that this is possible we refer to Lemma 4.6 of [1]. So, we have:

W (z) + λ = lim
ε→0

inf
u∈U

[

ε log

∫

IRd

eε−1W ε(y,u,z)Rε(dy; z, u)

]

= inf
u∈U

sup
y∈IRd

[W (y, u, z)− H̄(y; z, u)],

as desired.

Before proving Theorem 2, we need some preliminary lemmas, and a general result on totally observed dynamic
games.

Lemma 4.6 Let H̃(x; z) be the function defined in (2.16). For all n ≥ 1, if

zn = ((yn, un−1), zn−1) = ((yn, un−1), (yn−1, un−2), . . . , (y1, u0), ∅, ∅, . . .),

then we have:

H̃(xn; yn, un−1, zn−1) = infx1,...,xn−1

∑n−1
k=0

[
HO(yk+1; xk+1)− c(xk , uk) + HS(xk+1; xk , uk)

]

− infx1,...,xn

∑n−1
k=0

[
HO(yk+1; xk+1)− c(xk , uk) + HS(xk+1; xk, uk)

]
,

(4.24)

with x0 = ξ.

Proof. We will prove equation (4.24) by induction on n. For n = 1, we have:

H̃(x1; y1, u0, ∅, ∅, . . .) = HO(y1; x1) + infx0

[

HS(x1; x0, u0)− c(x0, u0) + H̃(x0; ∅, ∅, . . .)
]

− infx0,x1

[

HO(y1; x1) + HS(x1; x0, u0)− c(x0, u0) + H̃(x0; ∅, ∅, . . .)
]

From this equality (4.24) easily follows, since, by definition of H̃(x; ∅, ∅, . . .) the infimum is obtained when x0 = ξ
and H̃(ξ; ∅, ∅, . . .) = 0. Assume that equation (4.24) holds for n. We have:

H̃(xn+1; yn+1, un, zn) = infxn

[

HO(yn+1; xn+1)− c(xn, un) + HS(xn+1; xn, un) + H̃(xn; zn)
]

− infxn,xn+1

[

HO(yn+1; xn+1)− c(xn, un) + HS(xn+1; xn, un) + H̃(xn; zn)
]

.

To simplify notation we let:

l(k) =
[
HO(yk+1; xk+1)− c(xk , uk) + HS(xk+1; xk , uk)

]

Using the inductive assumption, we get:

H̃(xn+1; yn+1, un, zn) = inf
xn

{

l(n) + inf
x1,...,xn−1

n−1∑

k=0

l(k)− inf
x1,...,xn

n−1∑

k=0

l(k)

}

− inf
xn,xn+1

{

l(n) + inf
x1,...,xn−1

n−1∑

k=0

l(k)− inf
x1,...,xn

n−1∑

k=0

l(k)

}

=

= inf
xn

{

l(n) + inf
x1,...,xn−1

n−1∑

k=0

l(k)

}

− inf
xn,xn+1

{

l(n) + inf
x1,...,xn−1

n−1∑

k=0

l(k)

}

.

Thus (4.24) holds also for n + 1, as desired.
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Lemma 4.7 Let H̄(y; z, u) be the function defined in (2.17). If, for all n ≥ 1,

zn = ((yn, un−1), zn−1) = ((yn, un−1), (yn−1, un−2), . . . , (y1, u0), ∅, ∅, . . .),

then we have:

n−1∑

k=0

H̄(yk+1; zk, uk) = inf
x1,...,xn

n−1∑

k=0

[
HO(yk+1; xk+1)− c(xk, uk) + HS(xk+1; xk, uk)

]
, (4.25)

with x0 = ξ.

Proof. We will prove (4.25) by induction on n. The case n = 1 is trivial. For n > 1, we have:

n∑

k=0

H̄(yk+1; zk, uk) = H̄(yn+1; zn, un) +

n−1∑

k=0

H̄(yk+1; zk, uk) =

(using the inductive assumption and the definition of H̄)

= inf
xn+1,xn

[

HO(yn+1; xn+1)− c(xn, un) + HS(xn+1; xn, un) + H̃(xn; zn)
]

+

inf
x1,...,xn

n−1∑

k=0

[
HO(yk+1; xk+1)− c(xk, uk) + HS(xk+1; xk, uk)

]
.

Now by (4.24),

∑n
k=0 H̄(yk+1; zk, uk) = infxn+1,xn

{

HO(yn+1; xn+1)− c(xn, un) + HS(xn+1; xn, un)

+ infx1,...,xn−1

∑n−1
k=0

[
HO(yk+1; xk+1)− c(xk , uk) + HS(xk+1; xk, uk)

]

− infx1,...,xn

∑n−1
k=0

[
HO(yk+1; xk+1)− c(xk , uk) + HS(xk+1; xk, uk)

]

}

+ infx1,...,xn

∑n−1
k=0

[
HO(yk+1; xk+1)− c(xk , uk) + HS(xk+1; xk, uk)

]
=

= inf
x1,...,xn+1

n∑

k=0

[
HO(yk+1; xk+1)− c(xk, uk) + HS(xk+1; xk, uk)

]

Now we present a general result on totally observed deterministic dynamic games. Assume we are given X , W
metric spaces, U a compact metric space, and a discrete-time model, whose dynamics are described by:

{
xn+1 = l(xn, un, wn),
x0 = ξ ∈ X ,

(4.26)

where xn ∈ X , un ∈ U , and wn ∈ W and l is a fixed continuous function. In this case, admissible controls are those
such that un is a function of the states up to time n. Again, we denote by Ad(U) the set of admissible controls; our
aim is to minimize over Ad(U) the following performance index:

J(u) = lim sup
n→+∞

1

n
sup

w0,...,wn−1

n−1∑

k=0

h(xk, uk, wk), (4.27)

where h is a given continuous map.

Theorem 4 Assume we are given a model as in equation (4.26) with performance index as in (4.27). Moreover,
assume that there exists a constant λ ∈ IR, and a continuous bounded function W : X → IR which satisfy the
equation:

W (x) + λ = inf
u∈U

sup
w∈W

{W (l(x, u, w)) + h(x, u, w)} , (4.28)

for all x ∈ X . Then for all ū ∈ Ad(U), we have
λ ≤ J(ū).

Moreover there exists a feedback u∗ = u∗(x) which realizes the infimum in (4.28). This feedback provides and optimal
control for the given dynamic game, in the same sense as in Proposition 2.8.
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Proof. Fix a control ū = (u0, u1, . . .) ∈ Ad(U). We first prove, by induction on n, that

λ ≤
1

n
sup

w0,...,wn−1

{
n−1∑

k=0

h(xk, uk, wk) + W (xn)

}

. (4.29)

Using (4.28) and the fact that it is not restrictive to assume W (x0) = W (ξ) = 0, we have:

λ = inf
u

sup
w0

{W (l(x0, u, w0)) + h(x0, u, w0)} ≤ sup
w0

{W (x1) + h(x0, u0, w0).}

So (4.29) holds for n = 1. Now observe that, by (4.28), for n > 0, we have:

W (xn) ≤

[

sup
wn

{W (xn+1) + h(xn, un, wn)} − λ

]

,

that, together with the inductive assumptions, yields

λ ≤
1

n
sup

w0,...,wn−1

{
n−1∑

k=0

h(xk , uk, wk) + W (xn)

}

≤
1

n
sup

w0,...,wn−1

{
n−1∑

k=0

h(xk, uk, wk) +

[

sup
wn

{W (xn+1) + h(xn, un, wn)} − λ

]}

=
1

n

[

sup
w0,...,wn

{
n∑

k=0

h(xk, uk, wk) + W (xn+1)

}

− λ

]

.

Thus we have obtained (4.29) for n + 1.
Since W is bounded, there exists a constant M > 0 such that W (x) ≤ M for all x ∈ X . Thus, by (4.29), we get:

λ ≤
1

n
sup

w0,...,wn−1

{
n−1∑

k=0

h(xk, uk, wk)

}

+
M

n
, ∀n ≥ 1,

and therefore

λ ≤ lim sup
n→+∞

[

1

n
sup

w0,...,wn−1

{
n−1∑

k=0

h(xk , uk, wk)

}

+
M

n

]

= J(ū).

The second part of this theorem (i.e. the existence of an optimal feedback) is proved similarly. First one uses the
compactness assumption on U to find the value u∗ = u∗(x) which realizes the infimum in (4.28). Then, it is possible
to repeat all the previous steps changing all the inequalities into equalities, and thus obtaining optimality of the
feedback.

Proof of Theorem 2
The idea of this proof is to find a totally-observed dynamic game which is equivalent to the one given by equations
(2.19) and (2.20), and then to use Theorem 4. Assume given the dynamic game

{
xn+1 = f(xn, un, wn),
yn = h(xn, vn),

together with initial conditions x0 = ξ ∈ X and y0 = η ∈ IRd, and:

J(u) = lim sup
n→+∞

1

n
sup

w0, . . . , wn−1

v1, . . . , vn

[
n−1∑

k=0

(c(xk , uk)−H(wk)−K(vk+1))

]

.

To this partially observed dynamic game, we associate a totally observed one with state space Z , control space U ,
disturbance space IRd, with dynamics

{
zn+1 = (yn+1, un, zn),
z0 = (∅, ∅, . . .), y1 = η,

(4.30)
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and performance index:

J̄(u) = lim sup
n→+∞

1

n
sup

y1,...,yn

[
n−1∑

k=0

−H̄(yk+1; zk, uk)

]

, (4.31)

where H̄ is the function defined in (2.17). If we prove that:

J(u) = J̄(u), (4.32)

for all sequences of controls u ∈ Ad(U), then Theorem 2 follow. In fact, if λ ∈ IR and W ∈ C(Z) solve

W (z) + λ = inf
u∈U

sup
y∈IRd

{

W (y, u, z)− H̄(y; z, u)
}

,

then, by Theorem 4, we get λ = infu J̄(u) = infu J(u). Moreover there exists a feedback u∗ = u∗(z) which realizes
the infimum in the previous equation and that is admissible for both models. This feedback provides and optimal
control for both dynamic games defined above.

Thus, it remains to prove (4.32). By using (4.25) we have:

sup
y1,...,yn

[
n−1∑

k=0

−H̄(yk+1; zk, uk)

]

=

= sup
y1,...,yn

−

{

inf
x1,...,xn

n−1∑

k=0

[
HO(yk+1; xk+1)− c(xk, uk) + HS(xk+1; xk, uk)

]

}

=

= sup
y1,...,yn

sup
x1,...,xn

n−1∑

k=0

[
−HO(yk+1; xk+1) + c(xk, uk)−HS(xk+1; xk, uk)

]

Now, by using the definition of HO and HS we have:

sup
y1,...,yn

[
n−1∑

k=0

−H̄(yk+1; zk, uk)

]

= sup
y1,...,yn

sup
x1,...,xn

n−1∑

k=0

{

sup
vk+1,wk

[

(c(xk , uk)−H(wk)−K(vk+1))
∣
∣
∣f(xk, uk, wk) = xk+1, h(xk+1, vk+1) = yk+1

]
}

From the previous equality, it is easy to get:

sup
y1,...,yn

[
n−1∑

k=0

−H̄(yk+1; zk, uk)

]

= sup
w0, . . . , wn−1

v1, . . . , vn

[
n−1∑

k=0

(c(xk , uk)−H(wk)−K(vk+1))

]

,

from which (4.32) follows.

5 The completely observed case

Assumptions H4, H5 and H6, that we have assumed throughout this paper, clearly do not cover the completely
observed case h(x, v) = x. However by using the results in [8] on the existence of the value function for totally
observed models, and by making straightforward modifications to the proofs above (for details see [17]), the following
theorem can be established.

Theorem 5 Assume that for each ε > 0 we are given a model as in (2.1) and (2.2), with the output function
h(x, v) = x. Suppose also that assumptions H1, H2, H3, H7 are satisfied. Then for each ε > 0

i) there exist a bounded continuous function V ε : X → IR and a real number lε such that the equation

V ε(x) + lε = inf
u∈U

[

c(x, u) + ε log

∫

eε−1V ε(f(x,u,w))µε(dw)

]

. (5.1)

The infimum in (5.1) is attained and gives rise to a feedback optimal control, lε representing the corresponding
optimal cost.
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ii) The family {V ε, lε : ε > 0} admits limit points (V, l), each one being a solution of the equation

V (x) + l = inf
u∈U

sup
w∈W

[c(x, u) + V (f(x, u, w)) −H(w)]. (5.2)

The infimum in (5.2) is attained and gives rise to a feedback optimal control for the deterministic dynamic
game

xn+1 = f(xn, un, wn)

J(u) = lim sup
n→+∞

1

n
sup

w0,...,wn−1

[
n−1∑

k=0

(c(xk , uk)−H(wk))

]

,

for which l is the optimal cost.
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