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Abstract

Extending on previous work by Faurre, Scherer and Pavon, a parametrization of the

symmetric solutions of the algebraic Riccati inequality is established. This is then ap-

plied to derive new results on tightest local frames, and on generalized feedback matrices

that arise in stochastic realization theory. Ó 1999 Published by Elsevier Science Inc. All

rights reserved.
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1. Introduction

Let Z�s� � H�sI ÿ F �ÿ1G� J be a minimal realization of the m� m positive
real matrix function Z. Assume that F 2 Rn�n is a stability matrix (r�F � � Cÿ)
so that the m� m, real-rational spectral density
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U�s� :� Z�s� � Z�ÿs�T �1:1�
has McMillan degree equal to 2n. Moreover, assume that U�s� is coercive, i.e.,
U�ix� > cI ; c > 0; 8x 2 R. It follows, in particular, that R :� U�1� � J � J T

is positive de®nite. The coercivity assumption is made to avoid obscuring re-
sults by technicalities. In Section 6, we show that the parametrization result of
Section 2 may be suitably extended to spectra satisfying the weaker assumption
that R be positive de®nite.

Consider the Algebraic Riccati Inequality (ARI)

K�P� :� FP � PF T � �Gÿ PHT�Rÿ1�GT ÿ HP�6 0: �1:2�
The set P of symmetric solutions of the ARI has been intensively studied since
the work of Anderson [1,2] and Faurre [6,7], see [18,25,15,13] and references
therein. In particular, the parametrization problem was ®rst addressed and
partially solved by Faurre in [6]. This result is recalled at the beginning of
Section 2. Other papers on the parametrization problem are [25] and [22].
Extending on the latter references, we provide in Section 2 what we believe to
be the ®rst complete and bijective description of the set P. The latter allows us
to derive in Section 3 new results on the tightest local frames [18] of di�erent
solutions. We then proceed in Section 4 to establish further results concerning
zero and generalized feedback matrices. Section 5 is devoted to the motivation,
in a stochastic realization framework, of the introduction of the above men-
tioned generalized feedback matrices. In Section 6, we deal with the nonco-
ercive case where U�s� may have zeros on the imaginary axis. Finally, in
Section 7, we brie¯y indicate a dual form of the results.

It is well known [2] that P is precisely the set of the symmetric solutions P of
the Linear Matrix Inequality (LMI)

FP � PF T PH T ÿ G
HP ÿ GT ÿR

� �
6 0 �1:3�

or, equivalently, the set of the symmetric matrices P for which there exist the
matrices B and D such that �P ;B;D� solves the Positive Real Lemma equations

FP � PF T � BBT � 0; �1:4a�

G � PH T � BDT; �1:4b�

DDT � R: �1:4c�
It is also well known [7] that the set P is a compact, convex subset of the cone
of n-dimensional positive de®nite matrices. It admits a minimum element Pÿ
and a maximum element P� with respect to the natural partial order. These
belong in fact to P0 :� fP � P T : K�P� � 0g, the subset of P consisting of the
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symmetric solutions of the corresponding ARE. For P 2 P, let B2 be a full
column rank matrix such that B2BT

2 � ÿK�P � and B1 :� �Gÿ PHT�Rÿ1=2, where
R1=2 denotes the square root of R. A central result of system and control theory
[2] is that

W �s� � H�sI ÿ F �ÿ1�B1 j B2� � �R1=2 j 0� �1:5�
is a minimal stable spectral factor of U�s�, i.e., a (matrix valued) function,
analytic on the right half plane and of least possible McMillan degree, such
that

W �s�W �ÿs�T � U�s�: �1:6�
Moreover, this is indeed a parametrization of minimal stable spectral factors of
U, provided we identify spectral factors di�ering by multiplication on the right
by a constant orthogonal matrix.

A large amount of literature has been produced on the parametrization of
the set P0 of the solutions of ARE and on the connection of this problem with
spectral factorization, system and control theory, optimal ®ltering and esti-
mation, see [27,16,18,12] and references therein. We recall that for any P 2 P0

the corresponding spectral factor

WP �s� � H�sI ÿ F �ÿ1BP � R1=2 �1:7�
with BP :� �Gÿ PH T�Rÿ1=2 is square (i.e., it is a square transfer matrix). Notice
that a minimal realization of the inverse W ÿ1

P �s� is given by

W ÿ1
P �s� � ÿRÿ1=2H�sI ÿ F � BP Rÿ1H�ÿ1BP Rÿ1=2 � Rÿ1=2; �1:8�

so that the zero dynamics of the spectral factor WP �s� (which plays a crucial
role in estimation theory [18]), is governed by the Jordan structure of
CP :� F ÿ BP Rÿ1H . For this reason, the matrix CP is often referred to as the
zero matrix corresponding to P. Observe also that CP is obtained by state
feedback from the pair �F ;BP �, so that it is also named feedback matrix cor-
responding to P.

Particularly important in many applications such as LQ optimal control,
Kalman ®ltering, network theory, and stochastic realization is the minimum
phase spectral factor

Wÿ�s� � H�sI ÿ F �ÿ1Bÿ � R1=2 �1:9�
with Bÿ :� �Gÿ PÿH T�Rÿ1=2, corresponding to the minimum element Pÿ of P.
Let Cÿ :� F ÿ BÿRÿ1H be the corresponding feedback matrix. Under the co-
ercivity assumption, Cÿ is a stability matrix [7]. Moreover, it follows essentially
from Jan Willems fundamental work [27] that the left-invariant subspaces of
Cÿ (i.e., the invariant subspaces of CT

ÿ) parametrize the set of minimal stable
square spectral factors. More precisely, to any CT

ÿ-invariant subspace M, there
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corresponds a minimal square stable spectral factor with zero matrix CM such
that

CT
ÿ
��
M
� CT

M

��
M
: �1:10�

Moreover, the map induced by CT
M on the quotient space Rn=M is similar to the

map induced by ÿCT
ÿ on the same quotient space, see [27,9].

At this point, it is important to observe that the parametrization of the
solutions of ARE, or equivalently of the set of stable square spectral factors,
may also be given in a coordinate-free setting by means of inner divisors of a
certain ``maximum'' inner function. 2 In this way the problem becomes a
particular case of the classical factorization problem which has attracted a
great interest both in the mathematics and in the electrical engineering litera-
ture see, e.g., [26,24,4,11,10] and references therein. The latter approach ex-
tends naturally beyond the ®nite dimensional (rational) case [17] and has been
recently employed by Fuhrmann and Gombani [13] to study the class of
possibly nonsquare spectral factors. In this case a rigid function 3 can be
naturally associated to any minimal spectral factor. A fundamental issue is
then the minimal inner extension of such function. In Section 4, we describe
some properties of this class of rigid functions, and we address the inner ex-
tension problem.

2. Parametrization of the set P

As mentioned in Section 1, we recall that in [6] Faurre gave a parametri-
zation of the subset

�P :� fP 2 P : P ÿ Pÿ > 0g � P �2:1�
containing the elements of P which have positive distance from Pÿ. The
nonparametrized subset, however, contains interesting solutions laying in the
boundary of P, such as all the solutions of the corresponding ARE K�P � � 0
except for the maximum one P�. The same result may also be found in [7, p.
91].

Next, we seek to obtain a parametrization of the whole set P, and conse-
quently of the set of all minimal stable spectral factors (even nonsquare).

For m � 0; 1; . . . ; n, let Im�CT
ÿ� denote the set of m-dimensional CT

ÿ-invariant
subspaces of Rn. For each subspace M � Rn, we denote by PM the matrix

2 A square matrix valued function is called inner if it is analytic on the right half plane and unitary

on the imaginary axis, see, e.g., [11].
3 A matrix valued function is called rigid if it is analytic on the right half plane and

Q�ix�Q��ix� � I for all x 2 R, see, e.g., [11].
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representation of the orthogonal projection onto M with respect to the ca-
nonical basis of Rn. Moreover, let VM be the n� m matrix whose columns are
obtained by Gram±Schmidt orthonormalization [19, pp. 54±55] of the columns
of PM and UM be the n� �nÿ m�matrix whose columns are obtained by Gram±
Schmidt orthonormalization of the columns of PM? . Hence,

TM � �UM j VM � �2:2�
is an orthogonal matrix uniquely associated to M. Let M be an invariant
subspace of CT

ÿ. A change of basis induced by TM carries the matrix Cÿ to the
block triangular form:

CM
ÿ :� T T

MCÿTM � CM
ÿ11 CM

ÿ12

0 CM
ÿ22

� �
: �2:3�

Now set H1M :� HUM , H2M :� HVM and

LM
ij :� H T

iM Rÿ1HjM ; i; j � 1; 2; �2:4�

and consider the �nÿ m�-dimensional homogeneous ARE

CM
ÿ11Q� Q�CM

ÿ11�T � Q�D� LM
11�Q � 0; �2:5�

where D � DT > 0. The observability of the pair �F ;H� implies that of �Cÿ;H�.
Consequently, the pair �CM

ÿ11;H1M� is also observable. This, in turn, implies that
�CM
ÿ11; �D� LM

11�1=2� is observable. Hence, Eq. (2.5) admits a unique positive
de®nite solution.

The following result parametrizes the set P in terms of the parameter set

C :�f�M ;D� : M 2 Im�CT
ÿ�; D 2 R�nÿm���nÿm�; D � DT > 0;

m � 0; 1; . . . ; ng: �2:6�

Theorem 2.1. There exists a one-to-one correspondence between the set P and
the set C. Indeed, the map u : C ! P assigning to each �M ;D� 2 C the matrix

u��M ;D�� :� Pÿ � TM
QD 0
0 0

� �
T T

M �2:7�

with TM de®ned by (2.2) and QD the unique positive de®nite solution of (2.5) is
bijective.

In order to prove this theorem, we ®rst need to set the notation and establish
some preliminary facts. For any P 2 P de®ne

Q��P� :� P ÿ Pÿ: �2:8�
Moreover, denote by Q the set
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Q :� fQ��P � : P 2 Pg �2:9�
obtained from P by translation (the minimum element of Q is clearly
Q��Pÿ� � 0). Finally, denote by Q0 the subset of Q de®ned by

Q0 :� fQ��P � : P 2 P0g: �2:10�
Let P 2 P. Then a standard calculation shows that Q��P � is a solution of the
matrix equation

CÿQ� QCT
ÿ � QH TRÿ1HQ � K�P �: �2:11�

Let D] denote the Moore±Penrose pseudo-inverse of D. Extending on [25], it
was observed in [22] that

K�P� �Q��P �Q��P�]K�P� � K�P �Q��P �]Q��P �
�Q��P �Q��P�]K�P�Q��P�]Q��P�: �2:12�

The latter follows from the obvious inclusion

ker Q��P� � ker K�P �: �2:13�
Hence, Q��P� may be viewed as a solution of the homogeneous ARE

CÿQ� QCT
ÿ � Q�H TRÿ1H ÿ Q]K�P �Q]�Q � 0: �2:14�

We also have the following lemma, that may be proved by straightforward
calculations.

Lemma 2.1. Let M � MT P 0 and Q � QT be a symmetric solution of the ho-
mogeneous ARE

CÿQ� QCT
ÿ � Q�H TRÿ1H �M�Q � 0: �2:15�

Then Q 2 Q, i.e., P :� Q� Pÿ 2 P. Moreover, if Q0 � QT
0 is a symmetric solu-

tion of the homogeneous ARE

CÿQ� QCT
ÿ � QH TRÿ1HQ � 0; �2:16�

then Q0 2 Q0, i.e., P0 :� Q0 � Pÿ 2 P0.

Proof of Theorem 2.1. Let �M ;D� 2 C, TM be de®ned by (2.2) and QD be the
unique positive de®nite solution of (2.5). It is clear that

Qe
D :� QD 0

0 0

� �
2 Rn�n

solves the equation
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CM
ÿQ� Q�CM

ÿ �T � Q
D 0
0 0

� ��
� LM

11 LM
12

LM
21 LM

22

� ��
Q � 0: �2:17�

Equivalently, TM Qe
DT T

M solves (2.15), where

M � TM
D 0
0 0

� �
T T

M :

Then, in view of Lemma 2.1, P � Pÿ � TM Qe
DT T

M belongs to P. We now prove
that u is injective. Let �Mi;Di� 2 C, i � 1; 2 and Pi, i � 1; 2, be the corre-
sponding elements of P. It is easy to check that ker �Pi ÿ Pÿ� � Mi. Therefore,
if P1 � P2, or equivalently P1 ÿ Pÿ � P2 ÿ Pÿ, then M1 � ker �P1 ÿ Pÿ� �
ker �P2 ÿ Pÿ� � M2 and hence TM1

� TM2
. Therefore, if P1 � P2, the two equa-

tions

CM1

ÿ11Q� Q�CM1

ÿ11�T � Q�D1 � LM1

11 �Q � 0; �2:18�
and

CM2

ÿ11Q� Q�CM2

ÿ11�T � Q�D2 � LM2

11 �Q � 0; �2:19�
obtained specializing (2.5) to M � M1 and M � M2, respectively, have the same
positive de®nite solution QD which is equal to the upper left block of the matrix
T T

M1
�P1 ÿ Pÿ�TM1

� T T
M2
�P2 ÿ Pÿ�TM2

. Moreover, from TM1
� TM2

it also follows

CM1

ÿ11 � CM2

ÿ11 and LM1

ÿ11 � LM2

ÿ11. Then, by subtraction, we easily obtain QD�D1 ÿ
D2�QD � 0 and hence D1 � D2.

We now prove that u is surjective. Let �P 2 P, �Q :� �P ÿ Pÿ, �M � ker �Q, T �M

be the corresponding matrix de®ned by (2.2) and �m � dim �M . Since ker �Q �
ker �Q] the matrix De :� T T

�M
�Q]K� �P � �QT �M has a block-diagonal structure

De � �D 0
0 0

� �
; �2:20�

where the matrix �D 2 R�nÿ�m���nÿ�m� is symmetric and positive semide®nite. Taking
into account identity (2.12), it is now easy to check that u�� �M ; �D�� � �P . �

3. Connections with the theory of tightest local frames

It is proved in [18] that given any solution �P 2 P of the ARI, the set fP0 2
P0 : P06 �Pg has a maximal element P0ÿ and the set fP0 2 P0 : P0 P �Pg has a
minimal element P0�. The tightest local frame of �P , denoted by �P0ÿ; P0��, is the
subset of P de®ned by

�P0ÿ; P0�� :� fP 2 P : P0ÿ6 P 6 P0�g: �3:1�
Corresponding to P0ÿ and P0�, we de®ne the feedback matrices
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C0ÿ :� F ÿ �Gÿ P0ÿHT�Rÿ1H ; �3:2a�
C0� :� F ÿ �Gÿ P0�HT�Rÿ1H : �3:2b�

For more details on such construction and for the applications of the tightest
local frame and of the corresponding feedback matrices to the stochastic re-
alization theory and in particular to the smoothing problem we refer to [18,
Section 9]. See also [15,13,8].

The next result shows that the solutions P 2 P having the same upper bound
in the tightest local frame are exactly those corresponding to the s ame CT

ÿ-
invariant subspace. In this way the set P is partitioned into classes each one
corresponding to a di�erent P0�.

Theorem 3.1. For i � 1; 2, let �Mi;Di� 2 C, Pi � u��Mi;Di�� and �Pi0ÿ; Pi0�� be the
corresponding tightest local frames. Then P10� � P20� if and only if M1 � M2.

Proof. Consider P 2 P with its tightest local frame �P0ÿ; P0��. It is clear that
Q��P0�� � minfQ0 2 Q0 : Q0 P Q��P �g. In view of Lemma 2.1 and identity
(2.12), the elements of Q0 are the symmetric solutions of Eq. (2.16). The map
assigning to each Q 2 Q0 its null space ker Q establishes a one to one corre-
spondence between the set Q0 and the set of invariant subspaces of CT

ÿ [27].
Moreover, given Q1;Q2 2 Q0, Q1 P Q2 if and only if ker Q1 � ker Q2 [28]. Since
Q��P � solves Eq. (2.14), ker Q��P � is a CT

ÿ-invariant subspace. Then there
exists a unique solution �Q of (2.16) such that

ker �Q � ker Q��P�: �3:3�
We now prove that Q��P0�� � �Q. Comparing Eqs. (2.14) and (2.16) and taking
into account (3.3) it easily follows that

�Q P Q��P �: �3:4�
On the other hand if ~Q 2 Q0 is such that ~Q6 �Q and ~Q 6� �Q, then ker ~Q
'ker �Q � ker Q��P �. The latter implies that 9= ~Q 2 Q0 such that ~Q6 �Q, ~Q 6� �Q
and ~Q P Q��P �. Taking into account that, in view of identity (2.12), Q��P0��
solves Eq. (2.11) with K�P� � 0, or equivalently Eq. (2.16), it immediately
follows that Q��P0�� � �Q. This proves that Q��P0�� (and hence P0� itself) can
be uniquely associated to ker Q��P �. But it is clear that if Pi � u��M ;Di��,
i � 1; 2, then ker Q��P1� � ker Q��P2� � M , and hence P10� � P20�. Converse-
ly, if P10� � P20� then M1 � ker Q��P10�� � ker Q��P20�� � M2. �

Remark 3.1. In [13, Proposition 20] a characterization of the local frames in
terms of inner factorizations of certain inner functions is presented. Such
characterization is strictly related to the above theorem. In fact, the connection
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relays on the well known correspondence between invariant subspaces and
inner divisors, see, e.g., [11].

4. Minimal inner extension of a rigid function

Let P 2 P, let B2 be such that B2BT
2 � ÿK�P � and let W �s� be given by (1.5).

It is clear that Qr�s� :� W ÿ1
ÿ �s�W �s� is a rigid function, i.e., it is an analytic

function such that Qr�ix�Q�r �ix� � I , where � denotes transposition plus con-
jugation. Moreover, it is easy to check that Qr�s� has the realization

Qr�s� � Rÿ1=2H�sI ÿ Cÿ�ÿ1�B1 ÿ Bÿ j B2� � �I j 0�: �4:1�
In a stochastic realization framework, the question arises whether it is possible
to augment Qr�s� and obtain an inner function with the same McMillan degree,
see [18, Section 5.3] and the next section. More precisely, the problem amounts
to ®nding a ~Q�s� such that

Qi�s� :�
Qr�s�
~Q�s�

" #

is a square stable transfer function with degQi�s� � degQr�s� and
Qi�ix�Q�i �ix� � I . This is a classical problem that may be viewed as a special
case of Darlington synthesis [5]. It has been addressed in [21] and studied more
extensively in [13, pp. 295 and �.].

Lemma 4.1. The transfer function

Qi�s� � Rÿ1=2H
ÿBT

2 �P ÿ Pÿ�]
� �

�sI ÿ Cÿ�ÿ1�B1 ÿ Bÿ j B2� � I �4:2�

is an inner extension of Qr�s�.

Proof. It is obvious that Qi�s� is a stable square transfer function which is
obtained by augmenting Qr�s�. Moreover, since the pair �H ; F � is observable,
such is also the pair �Rÿ1=2H ;Cÿ�, so that the McMillan degree of Qi�s� equals
that of Qr�s�. Finally, taking into account Eq. (2.11) and identity
B1 ÿ Bÿ � �P ÿ Pÿ�HTRÿ1=2, a cumbersome but straightforward calculation
shows that Qi�ix�Q�i �ix� � I . �

Remark 4.1. Observe that the realization (4.1) as well as (4.2) is minimal if and
only if P ÿ Pÿ is nonsingular. Conversely, if P ÿ Pÿ has a nontrivial kernel and
U is a matrix whose columns are an orthonormal basis for �ker �P ÿ Pÿ��?, it is
easy to check that
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Qr�s� � Rÿ1=2HU�sI ÿ UTCÿU�ÿ1�UT�B1 ÿ Bÿ� j U TB2� � �I j 0� �4:3�
and

Qi�s� � Rÿ1=2HU
ÿBT

2 �P ÿ Pÿ�]U
� �

�sI ÿ U TCÿU�ÿ1�U T�B1 ÿ Bÿ� j UTB2� � I

�4:4�
are minimal realizations of Qr�s� and Qi�s�, respectively.

We denote by C��P � the matrix of the inverse dynamics of the realization
(4.2) of Qi�s�:

C��P � :�Cÿ ÿ �B1 ÿ Bÿ j B2� Rÿ1=2H

ÿBT
2 �P ÿ Pÿ�]

" #
�Cÿ � Q��P �HTRÿ1H ÿ K�P �Q��P�]

�F ÿ �Gÿ PH T�Rÿ1H ÿ K�P ��P ÿ Pÿ�]: �4:5�
Notice that the generalized feedback matrix C��P � depends indeed only on the
solution P of the ARI and not on the choice of B2. Their signi®cance in a
stochastic realization framework is discussed in Section 5. The relevance of
feedback matrices in the parametrization problem for square spectral factors
(corresponding to elements of P0) has been thoroughly investigated in [9]. Our
results on generalized feedback matrices may then be viewed as an extension of
the corresponding results in [9]. The following theorem connects the matrix
C��P � with the theory of tightest local frames.

Theorem 4.1. Let P 2 P, C��P � be the corresponding matrix given by (4.5) and
C0� be the zero matrix corresponding to the upper bound P0� in the tightest local
frame of P. Then, C��P� and C0� are similar.

Proof. Let P 2 P, M � ker �Q��P �� and TM be de®ned by (2.2). As a ®rst step,
observe that from (3.2b) we readily get

C0� � Cÿ � Q��P0��HTRÿ1H : �4:6�
Moreover, as a straightforward consequence of Theorem 3.1, we have

ker �Q��P0��� � ker �Q��P ��: �4:7�
Hence, the matrices T T

M Q��P �TM and T T
M Q��P0��TM have both the block diag-

onal structure

T T
M Q��P �TM � Q11 0

0 0

� �
; T T

M Q��P0��TM � Q�11 0
0 0

� �
; �4:8�
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where Q11 and Q�11 are positive de®nite matrices of dimension equal to
�nÿ dim M�. It then clearly follows from (4.6) that

T T
MC0�TM �

CM
ÿ11 CM

ÿ12

0 CM
ÿ22

" #
�

Q�11LM
11 Q�11LM

12

0 0

" #

�
CM
ÿ11 � Q�11LM

11 CM
ÿ12 � Q�11LM

12

0 CM
ÿ22

" #
; �4:9�

where CM
ÿij and LM

ij , i; j � 1; 2 are de®ned in (2.3) and (2.4), respectively. Taking
into account Lemma 2.1, we have the identity

CÿQ��P0�� � Q��P0��CT
ÿ � Q��P0��HTRÿ1HQ��P0�� � 0: �4:10�

The latter, by pre- and post-multiplication by T T and T, respectively, yields

CM
ÿ11Q�11 � Q�11�CM

ÿ11�T � Q�11LM
11Q�11 � 0; �4:11�

so that (4.9) may be rewritten as

T T
MC0�TM � ÿQ�11�CM

ÿ11�TQÿ1
�11 CM

ÿ12 � Q�11LM
12

0 CM
ÿ22

� �
: �4:12�

Now recall (identity (2.13)) that ker �Q��P �� � ker �K�P �� so that

T T
MK�P �TM � K11 0

0 0

� �
: �4:13�

From the de®nition (4.5) of C��P �, it also easily follows that

T T
MC��P �TM �

CM
ÿ11 CM

ÿ12

0 CM
ÿ22

" #
� Q11LM

11 Q11LM
12

0 0

� �
� K11Qÿ1

11 0

0 0

� �

� CM
ÿ11 � Q11LM

11 � K11Qÿ1
11 CM

ÿ12 � Q11LM
12

0 CM
ÿ22

" #
: �4:14�

Pre- and post-multiplying by T T and T, respectively, the identity obtained by
plugging the solution Q��P� in (2.11) we get

CM
ÿ11Q11 � Q11�CM

ÿ11�T � Q�11LM
11Q�11 � K11 � 0; �4:15�

so that (4.14) may be rewritten as

T T
MC��P �TM � ÿQ11�CM

ÿ11�TQÿ1
11 CM

ÿ12 � Q11LM
12

0 CM
ÿ22

� �
: �4:16�

The conclusion now follows by comparing (4.12) and (4.16). �
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The following interesting result connecting di�erent generalized feedback
matrices is a straightforward consequence of the above theorem and of The-
orem3.1.

Corollary 4.1. For i � 1; 2, let �Mi;Di� 2 C and Pi � u��Mi;Di��. If M1 � M2,
then the matrices C��P1� and C��P2� are similar.

5. Stochastic realizations

Let fy�t�; t 2 Rg be a zero-mean, Rm-valued, purely nondeterministic sto-
chastic process de®ned on the probability space �X;F;P�. Suppose that y has
stationary Gaussian increments, and a rational, coercive incremental spectral
density U���, namely

y�t� ÿ y�s� �
Z �1

ÿ1

eixt ÿ eixs

ix
dŷ�x�; E�dŷ�x�dŷ�x��� � U�ix�

2p
dx;

�5:1�
where dŷ is an orthogonal stochastic measure. Let, as in Section 1,
U�s� � Z�s� � Z�ÿs�T, with Z positive real, let R :� U�1�, and let Z�s� �
H�sI ÿ F �ÿ1G� 1

2
R be a minimal realization of Z of dimension n. Consider the

following version of the strong stochastic realization problem: Characterize all
linear stochastic models

dx � Ax dt � B dw; �5:2a�
dy � Cx dt � D dw; �5:2b�

such that A is a stability matrix of minimal dimension and w is a standard p-
dimensional Wiener process de®ned on �X;F;P�. The quintuplet �A;B;C;D;w�
is called a minimal, stable stochastic realization of y. Notice that the transfer
function of (5.2) W �s� � C�sI ÿ A�ÿ1B� D is a stable, minimal spectral factor
of U. It is apparent that if �A;B;C;D;w� is a stochastic realization, so is
�A;BV ;C;DV ; V Tw�, where V is any p � p orthogonal matrix. Moreover, we
can change the (deterministic) realization of W. It is then easy to show [16] that
it su�ces to consider minimal stochastic realizations of the form

dx � Fx dt � B1 du� B2 dv; �5:3a�
dy � Hx dt � R1=2 du; �5:3b�

where B1 is n� m and B2 is n� �p ÿ m�. The state covariance P :� E�x�t�xT�t��
is a symmetric solution of the ARI. It solves, together with B � �B1jB2�, the
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positive real lemma equations. The model with state covariance Pÿ is a steady-
state Kalman±Bucy ®lter

dx � Fxÿ dt � Bÿ duÿ; �5:4a�
dy � Hxÿ dt � R1=2 F duÿ; �5:4b�

with driving noise the normalized innovations duÿ of y. Similarly, the realiza-
tion corresponding to P�

dx � Fx� dt � B� du�;

dy � Hx� dt � R1=2 du�;

corresponds to a backward, steady-state Kalman±Bucy ®lter.
Consider now a realization (5.3) with state covariance P. De®ne the esti-

mation error process as ~x�t� � x�t� ÿ xÿ�t�. It follows from (5.3)±(5.4) that ~x is
the (Markovian) state process of the system

d~x � Cÿ~x dt � �B1 ÿ Bÿ�du� B2 dv; �5:5a�
duÿ � Rÿ1=2H~x dt � du; �5:5b�

where, recall, Cÿ � F ÿ BÿRÿ1=2H . Under the present assumptions on U, Cÿ is
a stability matrix. The model (5.5) may be viewed as a (nonminimal) realization
of the innovations process uÿ. Since the latter is a standard Wiener process, the
transfer function Qr�s� � Rÿ1=2H�sI ÿ Cÿ�ÿ1�B1 ÿ BÿjB2� � �I j0� is a rigid
function. Next, we wish to derive from (5.5a) a reverse-time representation for
the process ~x. In order to do that, we need a slight generalization of the results
in [16, Section 3] and [3, Theorem 4.3], since the covariance of ex may be sin-
gular.

Lemma 5.1. Suppose that the n-dimensional process n satis®es on the whole real
line the stochastic di�erential equation

dn � Mn dt � N dm; �5:6�
where M is asymptotically stable and m is a standard Wiener process. Then n is
Gaussian and stationary. It also satis®es the reverse-time stochastic di�erential
equation

dn � �M � NN TP]�n dt � N d�m �5:7�
where

d�m :� dmÿ N TP]n dt �5:8�
is a Wiener process such that, if r < s6 t, the components of �m�s� ÿ �m�r� are
independent of n�r�, r P t.
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Proof. The ®rst assertion follows immediately from the representation

n�t� �
Z t

ÿ1
eM�tÿs�N dm�s�: �5:9�

To prove the second part, let F�
t �n� be the r-algebra induced by the compo-

nents of n�r�, r P t. The same argument as in [16, Lemma 3.1] gives that, for
s < t, E�n�s�jF�

t �n�� � PeMT�tÿs�P]n�t�. From the Lyapunov equation
MP�PMT � NN T � 0, we get

ÿPMTP] � MPP] � NN TP]: �5:10�
Moreover, by computing the covariance of �I ÿPP]�n�t�, it is easy to see that
n�t� � PP]n�t�. Hence, we have

�Dÿn��t� :� lim
h&0

E
n�t� ÿ n�t ÿ h�

h

����F�
t �n�

� �
� �M � NN TP]�n�t�; �5:11�

where the limit is taken in L2
n�X;F;P�. By [20, Theorem 11.3], the process

h�s; t� :� n�t� ÿ n�s� ÿ
Z t

s
�M � NN TP]�n�s� ds �5:12�

is a reverse-time di�erence martingale with respect to the decreasing family
fF�

t �n�g. By the forward representation of n, we also have

n�t� ÿ n�s� �
Z t

s
Mn�s� ds� N �m�t� ÿ m�s��: �5:13�

We conclude that

h�s; t� :� N �m�t� ÿ m�s�� ÿ
Z t

s
NN TP]n�s� ds � N ��m�t� ÿ �m�s��: �5:14�

Finally observe that, letting dÿ�m�t� :� �m�t� ÿ �m�t ÿ dt�, (dt > 0), we have, up to
o�dt�,

E�dÿ�m�t�dÿ�mT�t�jn�t�� � I dt: �5:15�
By a version of Levy's theorem [20, Theorem 11.8], �m is a standard Wiener
process. �

Applying this lemma to (5.5a), and using the positive real lemma equations,
we get the reverse time representation

d~x � �F ÿ B1Rÿ1=2H � B2BT
2 �P ÿ Pÿ�]�~x dt � �B1 ÿ Bÿ�duÿ � B2 df;

�5:16�
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where

df :� dvÿ BT
2 �P ÿ Pÿ�]~x dt: �5:17�

Notice that df is p ÿ m dimensional. Since

uÿ�t�
f�t�

� �

is a standard Wiener process, df is independent of the innovations duÿ or,
equivalently, independent of y. Thus, by a purely probabilistic argument, we
have identi®ed the``exogenous'' portion of the input in (5.3) and (5.5). Ad-
joining Eq. (5.17) to the model (5.5) solves the minimal extension problem for
the rigid function Qr�s� discussed in the previous section. Indeed, the transfer
function of

d~x � Cÿ~x dt � �B1 ÿ Bÿ�du� B2 dv; �5:18a�

duÿ � Rÿ1=2H~x dt � du; �5:18b�

df � ÿBT
2 �P ÿ Pÿ�]~x dt � dv �5:18c�

is precisely the inner function Qi�s�. Inverting this system, we get

d~x � �F ÿ B1Rÿ1=2H � B2BT
2 �P ÿ Pÿ�]�~x dt � �B1 ÿ Bÿ�duÿ � B2 df;

�5:19a�

du � ÿRÿ1=2H~x dt � duÿ; �5:19b�

dv � BT
2 �P ÿ Pÿ�]~x dt � df: �5:19c�

Hence, C��P � � F ÿ B1Rÿ1=2H � B2BT
2 �P ÿ Pÿ�] is the state matrix of the in-

verse system (5.19).

6. The noncoercive case

The results presented in Section 2 may be extended beyond the coercive case
provided that R � U�1� remains positive de®nite. This is equivalent to say that
U�s� may have zeros on the imaginary axis but not at in®nity. Notice that this
precisely the case of the spectral density of a purely nondeterministic Gaussian
process of full rank [23].
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In this case, the ARI still admits a minimum solution Pÿ [14, Theorem 2.10],
but the eigenvalues of the corresponding feedback matrix Cÿ lay in the closed
left half plane.

Lemma 2.1 continues to hold in the noncoercive case, however Eqs. (2.15)
and (2.16) do not, in general, admit a positive de®nite solution any more.

The next proposition allows to extend Theorem 2.1 to the noncoercive case
since it essentially states that, along the subspace corresponding to the
eigenvalues of Cÿ with zero real part, the solutions of (2.15) and (2.16) are
zero.

Proposition 6.1. Let Cÿ; L 2 Rn�n be such that

r�Cÿ� � C0ÿ; �6:1a�

L � LT P 0; �6:1b�

�L;Cÿ� is observable: �6:1c�

Then the homogeneous ARE

CÿQ� QCT
ÿ � QLQ � 0 �6:2�

admits a maximum solution QM P 0. Moreover, let

E< � �
K2r�Cÿ�\Cÿ

ker �Cÿ� ÿ kI�n� �6:3�

and

T � �T< j T0�; �6:4�
where the, say, m columns of T< are an orthonormal basis for E< and the nÿ m
columns of T0 are an orthonormal basis for E?<. Then:
1. E< is a CT

ÿ-invariant subspace.
2. A change of basis induced by T carries Cÿ to the form

�Cÿ � T TCÿT � Cs Cso

0 Co

� �
�6:5�

with Cs 2 Rm�m being a stability matrix.
3. The matrix �QM :� T TQM T has the structure

�QM � Q� 0
0 0

� �
�6:6�

where Q� is the unique positive de®nite solution of the reduced order homoge-
neous ARE
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CsQ� QCT
s � QLsQ � 0 �6:7�

with Ls being the upper left block of the matrix �L :� T TLT .

Proof. Employing again [14, Theorem 2.10], it is clear that (6.2) admits a
maximum solution QM and a minimum solution Qm. The latter is clearly Qm �
0 while QM is obviously positive semide®nite. The fact that E< is CT

ÿ-invariant,
or equivalently the structure (6.5) of �Cÿ) is a direct consequence of the de®-
nition of E<. Finally,

Q� 0
0 0

� �
is the maximum solution of the homogeneous ARE

�CÿQ� Q�CT
ÿ � Q�LQ � 0: �6:8�

In fact, it is immediate to check that it is a solution. To prove that it is the
maximum one assume, by contradiction, that there exists a solution ~Q of (6.8)
such that:

~Q P Q� 0
0 0

� �
;

~Q 6� Q� 0
0 0

� �
:

8>>><>>>: �6:9�

Since Q� is the unique positive de®nite solution of (6.7), this implies that ker ~Q
is strictly contained in

ker
Q� 0
0 0

� �
so that it has dimension nÿ ~m, with ~m > m. Therefore, employing a standard
argument, we may conclude that there exists a �CT

ÿ-invariant subspace ~M of
dimension ~m > m such that �CT

ÿ
��
M

is stable which is against the assumptions.
The conclusion now follows by observing that �QM is the maximum solution

of (6.8) if and only if �QM :� T TQM T with QM being the maximum solution of
(6.2). �

Corollary 6.1. Under the assumptions of Proposition 6.1, Q is solution of (6.2) if
and only if it has the form
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Q � T
Q1 0
0 0

� �
T T; �6:10�

with Q1 being a solution of (6.7).

At this point we are in the position of extending the parametrization of the
set Q (or equivalently of the set P). In fact, by performing the preliminary
change of basis induced by the matrix T de®ned as in (6.4), we may restrict the
ARI to the subspace E< where Cÿ is a stability matrix. We can then employ
Theorem 2.1.

We ®nally remark that the results of Sections 3 and 4 may also be extended
to the noncoercive case along the same lines.

7. Dual results

The results obtained in the previous sections have a dual counterpart. To
avoid overburdening the paper, we only give some indication in this direction.
By de®ning Qÿ�P � :� P ÿ P�, a dual parametrization of the set P may be es-
tablished in terms of the parameter set

�C :�f�M ;D� : M 2 Im�CT
��; D 2 R�nÿm���nÿm�; D � DT > 0;

m � 0; 1; . . . ; ng; �7:1�

where C� :� F ÿ �Gÿ P�HT�Rÿ1H and Im�CT
�� is the set of m-dimensional CT

�-
invariant subspaces of Rn. Thus, the set P may be partitioned into classes each
one corresponding to a CT

�-invariant subspace and it is possible to prove a
theorem (dual with respect to Theorem 3.1) stating that elements of the same
class have the same lower bound P0ÿ in the tightest local frame and that ele-
ments of di�erent classes have di�erent P0ÿ. Moreover, an alternative extension
of the rigid function Qr�s� may be obtained which leads to a model (of the type
of (5.18)) where the state matrix of the inverse dynamics has the form

Cÿ�P � :� F ÿ �Gÿ PHT�Rÿ1H ÿ K�P ��P ÿ P��]

� C� � Qÿ�P �H TRÿ1H ÿ K�P �Qÿ�P �]: �7:2�

It may also be shown that Cÿ�P� and C0ÿ are similar.
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