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Abstract

We illustrate the Cooperation through Implicit Communication behavior-based approach used for developing the PaSo-
Team (The University of Padua Simulated Soccer Robot Team), a multi-robot software system for soccer robot competitions
promoted by the RoboCup Simulation League. The configuration of the environment, namely the robots’ relative positions
depending on both the global task and the game dynamics, provides a source of implicit information about the robots’ intention
to be involved in collective actions, making them able to cooperate implicitly. The soccer team performance can be tuned by
triggering the arbitration module of any single robot to generate, as many as possible, suitable situations which hint to the
team the action of scoring the goal. Some macroscopic parameters can be usefully introduced to evaluate the evolution of the
whole multi-robot software system. © 1999 Elsevier Science B.V. All right reserved.
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1. Introduction

Building a group of robots that shows a coop-
erative behavior while executing a complex task is
an interesting research challenge. As well-discussed
in [3,6,8], many efforts have been made to control
individual robots acting inside a dynamic environ-
ment, in order to make them act cooperatively with
other robots in performing collective tasks. Starting
from Brooks’ pioneering approach [7], several scien-
tists have devised innovative architectures, generally
known as behavior-based architectures, giving rise
to the new field of “Behavior-Based Robotics” [S].

* Corresponding author. E-mail: epv@dei.unipd.it,
pagello@ladseb.pd.cnr.it

Their strength is the ability to activate separate skills,
each of which well-triggered on some specific pro-
perties and on the dynamics of the environment. But,
their principal drawback is the difficulty to design
an appropriate arbitration, that is the base for a good
performance, in order to make the desired behavior
emerging from the system. When we consider the
same problem from the point of view of a colony of
autonomous robots, we have to integrate communi-
cation and cooperation. Since cooperation is usually
based on some form of communication, we may con-
sider as such any form of observed behavior of other
robots, and call it implicit communication, namely a
non-intentional kind of communication.

Looking at a group of robots playing a soccer game,
we learned that we should successfully deal with the
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reactive phase of the game, before attempting to ex-
plore the reasoning and planning phases. This ap-
proach stems from the observation that at each time of
the game, scoring a goal can be easily recognized by
each player to be an individual target, besides a global
one. This allows the single robot to try, whenever pos-
sible, to score the goal directly, in contrast with a sit-
uation in which, before starting any useful action, a
robot should acquaint with the world and build a map
to be used later to find out how to fulfil its task. Thus,
a planning phase is needed, because the robot has no
way to know immediately what action to perform to-
wards the achievement of the goal. In the simulated
soccer game, instead, at each time of the game, each
player knows what to do to realize its task, by us-
ing the environment information. This means that it is
possible to consider every player to be able to bring
to completion his own task.

Instead of considering deliberative planning capa-
bilities, it is possible to focus on the lowest level
of interaction among players and opponents. Then,
designing a multi-robot system able to play soccer
games, starting from a reactive approach, can be done
from the simplified assumption that a number of low
level reasoning capabilities can be endowed into the
system as a set of basic behaviors, like, for exam-
ple, the obstacle avoidance ability which detects the
presence of other players, team-mates or opponents,
the former cooperating and the latter interfering with
robot’s task of scoring a goal. Each robot’s governor
is implemented in a behavior-based fashion with an
arbitration mechanism driven by the sensor data in-
coming from the environment, while the problem of
coordination can be solved without using any form of
reasoning about robot’s intentions using the implicit
communication paradigm [14].

When the evolution of a group of robots can be
characterized by some kind of regularities, we can in-
troduce macroscopic parameters, that depend on both
the global goal of the multi-robot system and the
environment dynamics. Their tuning can be driven
by the environment knowledge shared by the robots.
Neither effective intention nor negotiation take place,
because they simply raise from the spatial robot dis-
placement. They can be used as the implicit commu-
nication protocol.

We have experimentally investigated these prob-
lems by participating to soccer competitions organized

by RoboCup [12], in the particular case when a
team of robots play in the Simulation League, where
each player is a software agent that can be dis-
played in 2D or in 3D modelling animation. The
experimental software field offered by the Simula-
tion League has motivated us to develop a reactive
software architecture, where the behaviors are trig-
gered by an arbitration module and their coordination
arises mainly exploiting the implicit communica-
tion. Each software agent is provided with a set of
states, partly referred to its individual acting (local
flag) and partly referred to the whole team acting
(global flags). A robot, modifying the environment,
communicates not explicitly, but implicitly, its in-
tention to be involved into the acting of another
robot, by simply making the software agent aware
through a pattern that can be easily recognized by
looking at the environment. Each software agent be-
comes a simulator of a robot able to play soccer
games, while the whole simulated robot team show
an emergent cooperative capability through implicit
communication.

The design of the whole software system is based
on the following criteria:

o All interactions of each player with its team-mates
and opponents are realized by low-level actions and
processes. No high level reasoning is necessary to
manage these interactions.

e The coordination among robots is realized through
cooperative or competitive interactions respectively
with team-mates and opponents.

e Arbitration is done separately over each robot, but
cooperative coordination is obtained by ball ex-
changes between a pair of robots, by pressing and
similar attitudes among several robots, and by dy-
namically changing some default positions over the
whole robot team.

The paper is structured in the following way. In
Section 2, we discuss how to use behavior-based
architectures for designing multi-robot systems. In
Section 3, we discuss how emergent intelligent be-
haviors can arise from implicit communication while
playing simulated soccer games, and how the macro-
scopic parameters can give useful information. Finally,
in Section 4, we give details about the PaSo-Team
(the University of Padua Simulated Soccer Robot
Team), our multi-robot system used in the RoboCup
Simulation League competitions.
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2. A behavior-based approach to multi-robot
systems

Since a sound arbitration mechanism is the base
for an appropriate performance of a behavior-based
autonomous system [1], a number of innovative ex-
tensions over the subsumption architecture [7] have
been proposed in the literature (see, for instance,
[4,9]). These approaches are dominated by the con-
cept of arbitration which results in an either spatial
or temporal ordering of behaviors. The former causes
the concurrent activation of a set of primitive reflex-
ive behaviors, also referred to as static arbitration,
the latter brings about a sequential activation of
different sets of primitive reflexive behaviors, also
referred to as dynamic arbitration. Several authors
assume task decomposition into a number of par-
allel behaviors which compete for the control of
the agent with a winner-take-all mechanism. Only
one behavior dominates the agent at any time, al-
though the dominant behavior can change frequently
in rapid response to environmental sensing. In the
subsumption approach each new behavior is hard-
wired on the top of a low level behavior featuring
an inherent built-in coupling between each of the
behaviors and providing their spatial and tempo-
ral ordering. An arbitration mechanism, based on a
chemical machine, has been proposed in [10] to sim-
ulate activation/inhibition of behaviors as molecular
reactions inside a solution. Different arrangements
of behavior coupling result into different molecular
combinations.

In the soccer robot case, a further difficulty arises,
due to the simultaneous presence of several playing
agents in the same environment. Coordination among
robots may arise when single individuals plan com-
plementary actions, and when some kind of prediction
is available [24]. Because in simulated soccer robot
application the inclusion of temporal ordering appears
too problematic, we have implemented a static arbi-
tration as a special purpose behavioral module where
pre-processed sensor data are always channeled to dis-
criminate a candidate skill to be enabled as a response
to typical perceived patterns, simulating a kind of low
level reasoning. Every time sensor data are directly
channelled between the perception block and the se-
lected behavior, this behavior is activated whereas the
remaining ones are inhibited.
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Let us explain with some details our approach. For
every robot, a set of basic behaviors is supplied. Fur-
thermore, an arbitration module is needed. This arbi-
tration module can be hand-coded by intensive use of
heuristic from soccer domain experience, as we did in
our simulated application. In the resulting architecture,
shown in Fig. 1, a collection of boolean values (flags),
updated using information supplied from sensor data
pre-processing, defines a coarse-grained global state
of the agent which controls behavior switches as a
rough inhibitor/activation mechanism. Moreover, the
arbitration module is implemented in a way to allow
the selected behavior to focalize agent attention and vi-
sual perception on some particular aspect of the world,
as discussed in [20]. In fact each action performed by
an agent acts as an indirect action on its own senso-
rial apparatus. This is quite similar to the case of a
mobile robot that, during the activation of a patrol be-
havior with a wide visual range, recognizes a moving
target and thereafter activates a track behavior with a
narrower visual range to follow its target more effi-
ciently. Then, to get coordination among the robots,
we can usefully consider the different aspects of coor-
dination, that is the cooperation and the competition.
In simulated competitive game both the aspects must
be considered.

2.1. Robot coordination

The problem of coordinating robot groups has been
considered by robotics scientists from different points
of view, encompassing the entire spectrum of Al ap-
proaches. Two kinds of cooperation among robots



68 E. Pagello et al./Robotics and Autonomous Systems 29 (1999) 65-77

have been considered, namely implicit and explicit
communication, where we mean passing information
respectively non-intentional and intentional. The first
1s realized by looking at the external behavior of the
other agents, without any robot transmitting whatever
information. The second is realized by sending vol-
untarily explicit coordination messages to the other
agents. A fully distributed architecture based on ex-
plicit broadcast communication and active perception,
that considers the cooperative side of coordination
among heterogeneous mobile robots, with attention
to fault tolerance, has been proposed in [18], where
the cooperation is obtained by observing other robot’s
activity, recognizing the action of a certain robot,
and making use of broadcast communication. An-
other architecture has been proposed in [21], buiit on
a multiple physical robot system, with emphasis on
cooperation, where the coordination via implicit com-
munication is exploited only to perform low-level co-
ordination, as following, collision avoidance, and the
so-called modest cooperation, letting the higher-level
cooperation to the explicit communication. Efficient
cooperation among two robots has been obtained in
[25] by a communication system based on an explicit
negotiation protocol performed when an action part-
ner is selected in order to reach a collective decision.

If the term collective behavior indicates any global
behavior in a multi-robot system, then a cooperative
behavior is a collective behavior that is characterized
by cooperation. Cao et al. defined the cooperative be-
havior design problem as the problem of investigat-
ing “how given a group of robots, an environment and
a task, cooperative behavior should arise” [8]. If we
consider a behavior as an emergent one, if it can only
be defined using descriptive categories which are not
necessary to describe the behavior of the constituent
components [22], then getting emergent cooperative
behaviors in multi-robot systems becomes an interest-
ing research goal. Thus, we have considered the case
of the implicit cooperation, where a set of actions, per-
formed by a single robot to achieve its own goal, af-
fects the world and helps other robots to achieve their
goal. As the form of communication, we considered
only the observing of the behavior of other robots, that
is, we rely on implicit communication only, which is
referred to as stigmergic the behavior in the biological
literature, in the meaning of “incitement to work by
observing other people’s work”. This kind of commu-

nication is based on affecting the environment rather
than on passing explicit messages. Then, an interest-
ing example of emergent cooperative behavior arises
from this form of communication [16].

To approach correctly the problem of controlling
a multi-robot system, we have also to consider the
interference among robots as a potential to inhibit, or
limit, the behavior of each single robot in the case of
resource competition. This potential increases as the
number of robots increases, causing the degeneration
of global performance, and forcing the use of social
rules. Then, the focus in our architecture is on the
separation between the individual and the social mind
in the brain of each single robot. This allows the single
robot to react differently to the environment depending
on the strength of what we may call social pressure,
that is the stimulation due to belonging to a group,
namely the robot team. This idea can be viewed as an
extension of Pfeifer’s principle of the Value System
[19], adding to it a social dimension, that allows a
single robot to act positively in cooperation with other
robots working in the same environment.

These two value systems, the individual one and the
social one, are not separated within the single robot,
but use the same sensorial apparatus. The difference
is given by the different relevance that each value
system gives to the same information. The individual
value system reflects what is relevant to the individ-
ual point of view. The social and the individual value
systems are continuously exchanging information be-
tween themselves, allowing the single robot to acti-
vate those behaviors with highest score points in both
value systems. Thus, the emerging cooperative behav-
ior, that may appear during a simulated robot game,
can be considered a kind of eusocial behavior, that is
a collective behavior due to the interaction of genet-
ically determined individual behaviors, as introduced
in [13].

2.2. Situatedness and embodiment

As it has been recently pointed out in the literature,
situatedness and embodiment are the unavoidable fea-
tures on which autonomous systems should be appro-
priately built. Implementing a real robot makes it hard
to separate situatedness from embodiment. Situated-
ness defines systems acting in their environment by
performing a transduction, receiving a stream of input
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sensor signals from the environment and generating a
stream of output actions. While, the term embodiment
is referred to systems which are realized with a physi-
cal, rather than a virtual, structure, meaning that their
components must be regarded as a part of the environ-
ment too. In this sense, a simulated autonomous robot
cannot cope correctly with the unpredictable dynam-
ics of the interaction with its environment because of
the simplified assumptions made in the simulation it-
self. On the other hand, only physically implemented
systems show their ultimate behavior. But, the under-
standing of how and why they work or don’t work is a
very difficult question from the designer point of view.
The soccer robot game introduced by the RoboCup
Simulation League overcomes this difficulty because
each autonomous system can be implemented as a sit-
uated robot, but its embodiment can be neglected. The
embodiment provided by the RoboCup soccer simu-
lator is very simple. Each robot is shaped by a little
circle of fixed radius with an orientation which estab-
lishes the front of the player and the direction of its
motion. No impulse-based dynamics is supplied while
a robot comes into contact with either the ball or other
robots. In these cases the simulator implements only
speed reduction and inversion (a simplified inelastic
impact). Nevertheless, this simple embodiment allows
testing robot communication and coordination capa-
bilities in a very interesting way.

2.3. Thermodynamic parameters

The problem of controlling a team could be for-
malized by designing a set of structural constraints
that drive the team to fulfil a desired behavior. In the
most general cases, these constraint functions should
involve a detailed description of the interaction dy-
namics of groups of players, of their intentions to co-
operation, and under which conditions, and so on. In
the case of a football game, however, we noticed the
presence of some regular pattern in the evolving con-
figurations of team-playing. Within these hypotheses
we may suppose that a team should be perceived in a
coarse-grained fashion zooming out the point of view
of both an external observer and each component. So,
we have postulated that when the evolution of a multi-
robot system exhibits some kind of regularities inside
its own environment, the state of the environment itself
could be characterized by some macroscopic para-

meters in a same fashion as thermodynamic parame-
ters can be introduced in physics.

The motivation for this approach is two-fold: from
a designing point of view these parameters provide
the programmer with a useful tool to tailor the imple-
mentation of the arbitration mechanism for each robot,
and from the robot point of view they characterize the
environment with properties that are easily detectable
and measurable. Any such system has its own param-
eters which depend on both the kind of global goal
the system has to pursue and the kind of dynamics
of the environment. The choice of these parameters,
however, should be driven from the type of informa-
tion the robots should share if they were intelligent
in the symbolic sense. So the environment is like a
blackboard where robots read and write information
about the global state of the distributed problem solver
which drives the behavior of the multi-robot system.
Macroscopic parameters should be chosen in such a
way they are both observable and controllable. Then,
they can be used as an implicit negotiation protocol,
namely, a robot which wants to participate to a com-
mon global goal, informs the current attending robots
of its intention by modifying one parameter or more.

3. Playing simulated soccer game by multi-robot
systems

To apply multi-robot systems to play soccer suc-
cessfully, the simulated robot team must have both ba-
sic and complex skills. Since the behavior of a single
player, located in the simulated field, cannot be pre-
dicted exactly, due to sensor and actuator limitations
and noise, primitive player’s capabilities as position
predictors, shooting routines, turning_with_ball abili-
ties, and so on, are necessary. One possibility is to al-
low the players to learn low-level individual skills, as
shooting to the goal, or intercept the moving ball, by
using neural networks, or other ways. Then, the high-
level skills can be learned by layering increasingly
complex learned behaviors [23]. Individual basic skills
can also be created by an analytical approach using
the motion laws, as we did in our system, described in
Section 4. Typical basic behaviors are shoot_the_ball,
chase_the_ball, avoid_the_opponent, and so on. These
behaviors can be designed mainly as reactive, since
each behavior looks for sensorial data given by the
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server in real time. Then, an implicit communication
mechanism, like the one described in Section 2, applies
usefully to show complex cooperative behaviors, like
defensive and offensive manoeuvres, to move players
to correct positions for attacking/defending phases.
A collective behavior to force the adversary team in
case of opponent’s possession of the ball can also be
introduced.

3.1. Voidance and pressing

As macroscopic parameters, two parameters are
able to characterize the properties of interest when
a robot team is playing a football game, voidance,
and pressing. Voidance gives the free open space
or the wideness, that can be used by the attacking
team-mates. Pressing defines how near the team is to
the opponent goal. They are both defined in terms of
the free space around each player, which is summed
over all team-mates and is weighted according to the
distance from either the ball or the opponent goal.
These parameters are defined in such a way that they
focus on what happens around the ball and near the
opponent goal, enhancing the fact that the ball is the
attraction point of the game. The amount of value
provided by the players whose position is more than
a given distance from these crucial points in the field
is neglectable.

Let us denote the position of a team-mate with
{x;, yi}, the position of an opponent team-mate with
{6k, ni) whereas the ball position and the goal posi-
tion are given, respectively, by (xg, yg) and (xG, yg).
Then, we can evaluate the distance of the team-mate
S; from the ball-keeper d; and the goal r; used to
weight the contribution of any team-mate taking part
to a team action.

d; = \/(xz' —x8)2 + (i — y8)%,

ri = \/(x,' ~x6)° + (i — y6)%,

Pk = \/(Ek — x8)* + (% — yB)>.

Please notice that d; = ¢, with ¢ the kickable radius,
when §; is the ball keeper. In the same way, it is
possible to consider the distance p; of an opponent
team-mate from the ball. The weight is defined so that
we can suppose that all team-mates always participate
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Fig. 2. Voidance plotting.

to team actions but their contribution is neglectable if
they are a long away from the ball
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For every team-mate S; we consider its action free
space A;,

A; = min {\/(xi — &)+ (i — nk)Z],

which represents the distance between the team-mate
S; and the nearest opponent Ejy.

Within these premises we can define the coarse-
grained parameters V (voidance), and P (pressing),
whose meanings have been previously discussed and
whose motivation is that of formalizing the com-
petion of two opponent teams for acquiring common
resources.

T Ajw;
voidance V = #,
2 i1 Wi
. =1 i &i
pressing P = ==————_
Z:’=1 8i

The value of V during an attack action is given in
Fig. 2, which has been automatically generated by a
simple evaluation program over a passing_ball action
played between few robots. We can see a peak in the
middle of the figure, that has been plotted in corre-
spondance with the action phase when the ball has
been gained by one of our unmarked team-mates. The
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action of gaining the control over the ball has gener-
ated an increase of V which was previously declining
because of the restriction of free areas around the ball
itself generated by a pressing from the opponents.

The most interesting aspect of V is that it is able
to take into account how much free space a team has
to its disposal during an attacking action. Usually this
value is very high when all the opponent team-mates
are far away from the player holding the ball and his
supporters. If the value decreases and approaches the
value of the opponent team, it means that it is time
to pass the ball to another team-mate. The choice of
which supporter should receive the ball could be driven
by an evaluation of which supporter can increase the
value of V by receiving the ball. Usually it happens
for the most unmarked player involved into the attack
action.

A more precise evaluation of V can be easily ob-
tained by using some formula that estimate the amount
of free space in the game field, by evaluating the
free playing space of each supporter, and their relative
weighted distribution around the ball [11]. Some pa-
rameters, like, for example, a supporting rate, i.e. the
current space percentage of field where the support-
ing team-mates are located, and so on, can be intro-
duced. Thus, it is possible to simply manipulate the
definition of V by supposing that the attacking team,
moving towards the opponent goal, is composed by a
player holding the ball and m supporters whose po-
sition is always kept inside a circle, centered on the
ball, with a given radius R,. The choice of this value
is made in such a way that the team-mates out of the
circle can be considered not actually involved on the
current action. Within this hypothesis, V can be put
into correspondence with the playing free space and
the kickable radius for the player holding the ball, the
playing free space and the distance from the ball, for
all supporters, and a residual component given by the
remaining team-mates.

Thus, generally the value of V for a team with
m + 1 attacking players is given by a formula which
strongly depends on the locations of the supporters
around the team-mate holding the ball and trying to
reach the opponent goal. The main parameters affect-
ing V are, besides the free playing space for each sup-
porter and their relative weighted distribution around
the ball, the supporting rate and the overbalance rate.
The former delimits the current space percentage of

field where are located all the supporting team-mates,
whereas the latter denotes the counterattack attitude
of a team.

3.2. An emergent ball_passing behavior

Let us consider the situation of an attacking team
with two players which are running with the ball to-
wards the opponent goal. In this case the voidance
parameter is meaningful only for these players. V can
be computed with relation to the free playing space
for the attacking player and its supporter, the kickable
space and the distance of the supporter from the ball.
The quality of the collective behavior of attacking the
opponent team and bringing the ball to score a goal is
increased when the value of V is locally maximized.
The unmarking behavior shows this attitude, where
unmarking is the behavior shown by a player without
ball, when it moves quickly to a free area. Thus, dur-
ing the attacking phase, it is important to produce the
unmarking as soon as possible, to provide a hint for
passing the ball.

We can see the emergence of a cooperative behavior,
from the illustration of how players can manage ball
triangulation actions through implicit communication.
Triangulation, or non-explicit ball pass, arises mainly
from the interaction between the single player and the
environment, namely, in this case between our players
and the opponents, exploiting the action dynamics as
illustrated in the following (see Fig. 3):

Fig. 3. Emergent pass behavior.
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o In (1) a defender (from opponent team) chases the
ball owned by a player (from our team). This is a
hypothetical reasonable behavior to be assumed by
the opponent player nearest to the ball.

e Since in this way the defender creates a free area in
its rear, in (2) a forward player (from our team) finds
anew free wide area and goes to take a new position.

e In (3) the coordinated action is accomplished: the
ball owner see the forward occupying a good posi-
tion and passes the ball. Without making any com-
munication.

The unmarking ability of the team increases the
value of the voidance parameter V. Thus, to activate
implicit communication, it is sufficient that a player
increases the value of V whereas the owner of the
ball is monitoring the environment to detect this value
diversion. The value of V can be continuously updated
taking into account the new achieved situations. Thus,
voidance can help in describing the previous situation,
giving a good representation of the wideness in game
field that can be used by the attacking team-mate.

4. The University of Padua Simulated Soccer
Robot Team

PaSo-Team (the University of Padua Simulated
Soccer Robot Team) is under development since two
years [15], to test our approach to multi-robot systems
by playing soccer games organized by the RoboCup
Simulator League [12]. Building a soccer robot team
to this aim requires to run concurrently eleven Clients
each one able to interact with the Soccer Server [2].
Each Client is structured as a reactive software system
built up on several behaviors specialized for soccer
games that generates actions according to environ-
mental changes. The following individual roles are
played by our simulated robots:

e goalkeeper: it stays in the neighbourhood of the
goal, chasing every approaching ball, and shooting
to a free team-mate;

e defender: it stays in its own half of the field, pro-
tecting with other defenders their goal,

o midfielder: it stays around the centre of the field,
receiving the ball from a defender and passing it to
the forward;

e wing: it stays along the field’s side lanes, receiving
the ball from a defender and supporting the forward;

e forward: it stays in the opponents’ half of the field,
keeping unmarked, waiting for the ball and cooper-
ating with other team-mates.

Developing Clients for RoboCup requires the re-
ception and transmission of commands from and to
the Soccer Server via a socket, that requires a continu-
ous control of the state of the socket itself, because of
the unpredictability of the exact instant of the percep-
tions sent by the Soccer Server. Each Client controls
the socket looking at a SIG-IO, given by a C++ li-
brary, that is activated when messages are present in
the receiving queue. A signal handler pops the mes-
sage from the queue and sends it to a parser which
extracts the suitable information. All communications
are realized using the UDP/IP protocol. Every behav-
ior, activated by a Client, generates the commands for
the Soccer Server, that are stored in another queue,
the command list, using the same protocol. This list
is read at fixed interval times by a timer synchronised
with the SIG-IO controlling the socket. In such a way,
commands are sent to the server without losing a sin-
gle command.

4.1. Sensor information

How can we perceive significant events from the
messy and redundant information sent from the Soccer
Server to each player? To extract significant informa-
tion, we can build for each player, immediately after
every received visual or auditive message, a data struc-
ture representing the world as the player saw it the last
time, containing the last absolute seen position, speed
and orientation information for each mobile object
in the field. The RoboCup Simulation League soccer
field is characterized by satisfactory local information
and scarce global information. Then, the players can
extract information only inside a limited zone. Sum-
ming up all significant information extracted from the
environment gives a global evaluation to generate lo-
cally optimal actions. Thus, suitable parameters, like
player’s distance from opponents and from the ball,
become crucial. Both absolute and relative informa-
tion are used for acting in, and reacting to, the environ-
ment. For chasing the ball, turning with ball, and so
on, we use relative information, because of the better
accuracy in the estimate of values. Then, we can eval-
uate the trajectory of the moving objects (usually the
ball) predicting the future positions of the ball itself
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and trying to intercept or control it. After the parser
has received and stored the sensorial information for
each player, it is convenient to extract the absolute
data from the relative ones. These data allow to reason
about the absolute position, orientation, and speed, of
the players and of all objects in the field. The estimate
of the positions and orientation, using the relative in-
formation sent by the server, can be done with a geo-
metrical approach, looking for every fixed object and
making triangulation to recover the absolute ones.

4.2. Player’s data structure

In soccer games the portion of field relevant to the
actions is usually centred around the ball, causing an
increase of relevance for the players near the ball and
their own perceptions. Both the collective unmarking
action, performed by team-mates without ball, and the
individual skills of the ball’s owner, are effectively rel-
evant. Thus, to improve individual skills of the player,
that is handling the ball, the player acquires the visual
information from the environment under a representa-
tion structured in Visual Fields and Visual Maps [17].

The Visual Field is a data structure built for con-
taining objects that represent relevant features of the
environment. It is instantiated once for each player of
our team. The typical objects that should be inserted
in this structure are the team-mates, the opponents, the
ball, and the goal area. Other geometrical shapes, like
the whole game field, the half sides of the field, the
penalty areas, the circle in the middle, and the offside
areas, must be dynamically inserted in the Visual Field
structure, following the evolution of the environmental
dynamics. Thus, during the game, the Visual Field is
constantly updated inserting, updating, and removing
objects representing the vision frame of the considered
player. For geometrical shapes, as the whole field or
the offside area, the instantiation is straightforward, in-
volving only the insertion of the object in the structure.
The same operation is different in case the objects are
players, team-mates or opponents. In fact, they don’t
have a predefined geometrical shape and so this opera-
tion must be done explicitly. We have assigned to each
player a circle-shaped area, but with a parameterized
diameter, depending on the team and the distance.

To deal with player’s actions such as obstacle avoid-
ance, pass to mate, dribbling, we have extended the
Visual Fields with another data structure, the Visual

A dribbling action Visual Map
Simplified model
A
B
.180 0 180
Fig. a Fig. b

Fig.a. A typical action of dribbling:
our player has the ball, A and B 04
are opponents

Fig. b. A simplified map for situation

5o
£, A
in fig. a without filters and ;_ 02 B
complex shape maps 3 01
I
Fig. ¢. The real map created by our 00

client; note the effects of filters in -180 ) 180
promoting the forward direction. Directions

Fig. ¢

Fig. 4. Visual Field and Visual Maps.

Map, built by looking at the Visual Field instantiated
for a given player at a given time (see Fig. 4). It is
composed of 360 directions (degrees) toward which
a player can decide to dash or to kick. A high value
in the map indicates that the considered direction is
a wrong way, while a zero or negative value suggests
that the considered direction is a right way.

Suppose that our player has to dribble some oppo-
nents. At the beginning, the Client has a void Visual
Map (all values are zero). Then, he asks for the ob-
jects in the Visual Field, that are dynamically updated
during the perception phase, to create their mark in
the Visual Map (i.e. an opponent adds some positive
values in the elements of the Visual Map correspond-
ing to wrong directions). After all objects in the field
have modified the map, the Client applies some filters
to promote a particular direction (the enemy goal port
for example) or to create other useful effects. Finally,
the player looks for the minimum in the Visual Map
and goes in the suggested direction. The parameters
used in the creation of the Visual Map depend on the
particular action. For example, in obstacle avoiding,
the opponents’ radius is kept small, to represent the
real radius of a player, while in dribbling it is kept
larger, to include all the kickable area.

4.3. Arbitrating the behaviors

Since scoring a goal is eventually performed by a
single player, the primary task for players is acquiring
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individual skills. Beside these, a simulated robot team
must also be able to show cooperative skills, as dis-
cussed in Section 3. An efficient behavior arbitration
is the base of a good multi-robot system performance.
The arbitration module activates individual and coop-
erative skills according to the roles assumed by the
individual simulated robots to play consistently in the
game. The behaviors that we use as robot skeletal
structure were developed to capture the abilities of a
real soccer player, adding abilities for communicating
the state of the game, such as attacking or defending
phases.

Using the data structures described above, a player
is able to extract the flags used by the arbitration mod-
ule, like ball kickable, ball stolen, ball_near, etc., that
represent individual states for a single robot. Another
flag, namely the artack/defence flag, is able to trigger
the arbitration module. This flag is used as a descrip-
tor of the global state of the system, and is used to
identify the attacking or defending states of the team,
namely the attack/defence playmode. It is set when a
team-mate become owner of the ball.

The basic coordination mechanisms activated by the
arbitration module usually involve two behaviors at a
time. The coordination arise through the simultaneous
activation of behavior pairs during the attack or the
defence playmode. To realize it, the arbitration looks
at the global flags representing the states of the whole
teams and at the local flags related to the state of the
single player. In the attack playmode, for example,
such a coordination characterizes two players belong-
ing to the same team, namely the ball-holder and a
potential receiver of the ball, in the case that the play-
ball behavior, for the player holding the ball, is simul-
taneously activated with the unmarking behavior, for
the next ball-holder candidate player. One more coor-
dination schema is possible on the whole team, dur-
ing the game. It is realized changing dynamically the
default_pos of every player in the team, accordingly
with the ball position. The default_pos are data struc-
ture to which players make appeal when they move.
Updating them drags all the players, according to their
roles, to follow the ball in case of attack playmode,
or to back gradually to the defence position in case of
defence playmode.

In order to keep the system architecture more agile,
the arbitration module has been strongly simplified by
pruning the decision tree. Several exception handlers,

like action schema and timeout-based decisions, have
been cut off. Other simplifications have arisen from
exploiting some features of the environmental niche
inside which the players live, i.e. of the soccer field,
like the “dynamic environment hypothesis”. Such as-
sumption is based on the fact that in the soccer field
the players keep moving in a non-negligible way, even
if they may be not always active during the game. In
such a way the complexity of the arbitration module is
lowered, by assuming that the environmental dynam-
ics is sufficient to keep informed the players on the
ball position. Then, the explicit action, of monitoring
the ball, is avoided.

4.4. Active behaviors

To exploit the above approach several simple and
complex behaviors have been actually implemented.
We list some of them in the following.

Playing is an individual behavior. It provides a
player with the commands able to realize the correct
actions when it owns the ball, that is bringing the ball
along a free from_enemies direction, and deciding
whether to pass it or not, by testing dangerous situa-
tions. If running with the ball (or passing it) becomes
too dangerous, then the player throws away the ball
in a free_from_enemies direction.

Chasing is an individual behavior. It forces the
player to chase the ball. This may happen in two ways,
named stamina-preserving and stamina-consuming.
The former is invoked, when the ball is far, and the
latter, when the ball is near.

Going_to_default_pos is a collective behavior. It
moves players to the default position according to
the invoked planning schema, depending on the ball
position. This means that for an attacking team the
player’s default positions change with the ball posi-
tion, so that the team itself is lined up in the right
manner to perform a coordinated attack action.

Recovering is a collective behavior. It is activated
in defence playmode. It provides the defenders, the
wings and the midfielder with the skills of control-
ling and breaking the enemy’s play. For wing and
midfielder roles, the player moves dynamically be-
tween the ball and the enemies, to interdict the play.
For defender roles, the outsiders dynamically keep a
position between the enemy forwards and the nearest
goalpost, to avoid a direct shoot to goal, while the
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insiders keep symmetrically a position that allows to
control an approaching central enemy, avoiding field
areas to be not defended.

Unmarking is a collective behavior. It is activated
in attack playmode. It moves dynamically the players
without ball toward the most free area, preparing them
to receive a pass. It is based on a random search algo-
rithm that looks for a minimum of the degree of free-
dom of the player in the field. It can be put in corre-
spondence with the estimation of voidance introduced
in the previous sections.

5. Conclusions

We assumed that high reactivity is the main char-
acteristic of soccer games. Recognizing configuration
patterns of the dynamically changing environment
makes possible an efficient arbitration over the behav-
tors set of simulated soccer players. Thus, the problem
of coordination among a group of robots playing such
a game is solved through implicit communication,
without using any form of reasoning about robot’s
intentions.

Since the evolution of multi-robot systems may ex-
hibit some kind of regularities, inside its own environ-
ment, we proposed to characterize the model of the
environment through coarse-grained dynamic proper-
ties which can be easily detected by single individuals
of a multi-robot system to coordinate their actions to
get a common target. Thus, the state of the environ-
ment itself can be characterized by some macroscopic
parameters in a same fashion as thermodynamic pa-
rameters can be introduced in physics. These parame-
ters can also be modified by a single robot to hint the
other robots for a possible coordination, so that they
can be usefully employed by a group of robots as a
mechanism of implicit communication.

This approach can be applied to develop coopera-
tive multi-robot systems, and it has been extensively
tested by using PaSo-Team (the University of Padua
Simulated Soccer Robot Team), our simulated multi-
robot software system that has participated in soccer
robot competitions promoted by the RoboCup Simula-
tion League. PaSo-Team software architecture allows
to exploit the interaction dynamics among the robots
and the environment, by generating, whenever possi-
ble, an emergent cooperative behavior. Experimental

results were encouraging, since the whole robot team
showed harmonic performance playing against other
teams.
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