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Abstract. We have previously reported the identifica- 
tion of a distinct myosin heavy chain (MyHC) isoform 
in a major subpopulation of rat skeletal muscle fibers, 
referred to as 2X fibers (Schiaffino, S., L. Gorza, S. 
Sartore, L. Saggin, M. Vianello, K. Gundersen, and T. 
LCmo. 1989. J. Muscle Res. Cell Motil. 10:197-205). 
However, it was not known whether 2X-MyHC is the 
product of posttranslational modification of other 
MyHCs or is coded by a distinct mRNA. We report 
here the isolation and characterization of cDNAs cod- 
ing a MyHC isoform that is expressed in type 2X 
skeletal muscle fibers. 2X-MyHC transcripts differ 
from other MyHC transcripts in their restriction map 
and 3' end sequence and are thus derived from a dis- 
tinct gene. In situ hybridization analyses show that 
2X-MyHC transcripts are expressed at high levels in 

the diaphragm and fast hindlimb muscles and can be 
coexpressed either with 2B- or 2A-MyHC transcripts 
in a number of fibers. At the single fiber level the dis- 
tribution of each MyHC mRNA closely matches that 
of the corresponding protein, determined by specific 
antibodies on serial sections. In hindlimb muscles 2X-, 
2A-, and 2B-MyHC transcripts are first detected by 
postnatal day 2-5 and display from the earliest stages 
a distinct pattern of distribution in different muscles 
and different fibers. The emergence of type 2 MyHC 
isoforms thus defines a distinct neonatal phase of fiber 
type differentiation during muscle development. The 
functional significance of MyHC isoforms is discussed 
with particular reference to the velocity of shortening 
of skeletal muscle fibers. 

M 
YOSIN heavy chain (MyHC) 1 isoforms with dis- 
tinctive fiber type-specific and developmental- 
stage-specific distribution have been identified in 

skeletal muscle. Type 1 (slow-twitch) and type 2 (fast-twitch) 
fibers are known to contain different MyHCs, which are 
responsible for their different myosin ATPase activity and 
speed of shortening. Three subpopulations of type 2 skeletal 
muscle fibers, referred to as type 2A, 2B, and 2X, have been 
described in rat skeletal muscle using anti-MyHC mAbs 
(Schiaftino et al., 1986, 1989a; Gorza, 1990) and three type 
2 MyHC isoforms have been identified by electrophoretic 
and immunoblotting analysis (B~ and Pette, 1988; Schiaf- 
fino et al., 1989; Termin et al., 1989a; LaFramboise et al., 
1990). Type 2A- and 2B-MyHCs, as well as the S/slow 
MyHC present in type 1 fibers, are coded by distinct genes 
(see Mahdavi et al., 1987). However, it is not known whether 
2X-MyHC derives from posttranslational modification of 

1. Abbreviations used in this paper: EDL, extensor digitorum longus; 
MyHC, myosin heavy chain; MyLC, myosin light chain; UTR, untranslated 
region. 

other MyHCs or is coded by a distinct mRNA. Type 2X 
fibers have a relatively rich mitochondrial content (Schiaf- 
fino et al., 1986, 1989a; Gorza, 1990) and belong to motor 
units characterized by a resistance to fatigue intermediate 
between that of type 2A and 2B motor units and a contraction 
and relaxation time similar to that of the other type 2 units 
(Larsson et al., 1991b). The maximum velocity of shorten- 
ing of muscles containing predominantly 2X-MyHC is inter- 
mediate between that of muscles containing predominantly 
2B-MyHC and that of muscles that consist essentially of 
B/slow MyHC (Schiatfino et ai., 1988). Physiological 
studies on skinned single fibers show that the maximum 
shortening velocity of the three type 2 muscle fiber subpopu- 
lations is determined by their MyHC as well as myosin light 
chain (MyLC) composition (Bottinelli et al., 1991; Bottinelli 
et al., 1994). 

In this study we report that 2X-MyHC is coded by a dis- 
tinct gene that is expressed in type 2X muscle fibers and is 
coexpressed in a number of fibers either with 2A- or with 2B- 
MyHC. We also show that the 2X-MyHC gene is develop- 
mentally regulated and its expression can be modulated by 
thyroid hormone and electrical stimulation. 
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Materials and Methods 

Isolation of cDNA Clones 
A ~gtlI eDNA library from adult rat diaphragm was prepared essentially 
as described (Gubler and Holfman, 1983; Gubler, 1988). In brief, 
poly(A) + RNA was prepared from diaphragms of 2-mo-old Charles River 
CD rats. First strand synthesis was primed with an oligodT/NotI 
primer/adapter (Promega, Madison, WI) and carried out with Superscript 
reverse transcriptase (GIBCO BRL, Gaitbersburg, MD). After second 
strand synthesis, cDNAs were made blunt with T4 and Klenow polymerase, 
EcoRI methylated, and linkers were added. After digestion with NotI and 
EcoRI, cDNAs were size-selected with a Sephacryl $400 column (Pharma- 
cia LKB Biotechnology Inc., Piscataway, NJ). Fractions >0.5 kb were 
cloned into the EcoRI and Notl sites of Xgtll SfiI-NotI (Promega). From 
150 ng cDNA and 1 #g vector, 3.5 x 107 independent recombinants were 
obtained. Library amplified from 2.5 x 107 primary plaques was screened 
using two mAbs, RT-D9, which is specific for 2B- and 2X-MyHC, and SC- 
71, which is specific for 2A-MyHC (Schiaftino et al., 1989a). Both antibod- 
ies recognize epitopes present in the rod portion of the MyHC molecule 
(Schiaffino et al., 1989a). Duplicate filters of the same plates were screened 
with a 1.2-kb-long MyHC cDNA, previously isolated from a mouse skeletal 
muscle eDNA library screened with mAb RT-D9 and found to correspond 
to the 3' portion of 2B-MyHC mRNA (Weydert et ai., 1983). This clone 
includes regions of high homology between different MyHC mRNAs 
(Nadal-Ginard et al., 1982). Clones reactive both with the anti-MyHC anti- 
bodies and the eDNA probe, were selected for further study after screening 
with an oligo-d(T) probe. Positive clones were recovered from the agar 
plates and purifed to homogeneity by repeated plating and rescreening with 
the antibodies. 

Subcloning and Sequence Analysis 
The eDNA inserts from selected clones were purified from agarose gels and 
subcloned into Bluescript plus vector (Stratagene, Milano, Italy). Partial 
sequencing of double-stranded plasmid DNA was performed with the 
dideoxy chain termination method (Sanger et al., 1977) using T7 polymer- 
ase (Pharmacia, Milano, Italy). 

Probes 
Four MyHC probes, derived from the 3' untranslated region (UTR) of the 
mRNAs, were used in this study. (a) 2X-MyHC probe: 5'ATCGATCCA- 
AAGCAGGAAAGTGACCAAAGAGATGAGCAAAATGTGAAGAT- 
CTTTGTCACTCCATTTTGTACTTACGACTTTGGGAGATAAAAA- 
A T T T A T C T G C C ~ 3 ' . T h i s  DNA fragment 
was excised from the 3'-most portion of a 2X-MyHC eDNA clone using 
Clal, that cuts at the level of the termination codon, and was subcloned 
into pBK (Stratagene). These sequence data are available from EMBL/ 
GenBank/DDSB under accession number X72591. (b) 2B-MyHC probe: 
5 'GAGGTTCACACCAAAGTCATAAGCGAAGAATAGCTCAATTC- 
CTTCTGTTGAAAGGTGACAGAAGAAATCACACAAATGTGACG- 
TTCTTTGTCACTGTCCTGTATATCAAGGAAATAAAAGCTGCAG- 
A T A A ~  '.This sequence was obtained by PCR 
amplification of the 3'-UTR sequence of 2B-MyHC eDNA synthetized by 
reverse transcriptase from rat diaphragm RNA. Primers used for PCR were 
oligo-dT and an oligonucleotide, 5'GAGGTTCACACCAAAGTCATA- 
AG3', which corresponds to a sequence in the 3'-most coding region of 
the 2B-MyHC mRNA (see Fig. 2). The amplification product was sub- 
cloned into pBS (Stratagene). These sequence data are available from 
EMBL/GenBank/DDSB under accession number X72590. (c) 2A-MyHC 
probe: 5 'AGC TCTGATGCTGTAGAATGACCGAAGAAAGGCACAA- 
AATGTGAAGCCTTTGGTCATGCCCCCATGTGATTCTATTTAAT- 
CCTATTGTAAGGAAATAAAGAGCCCAAGTTCTTGCAAGCAAA- 
AAAAAAAAAAAAAAAA3'.This DNA fragment was excised from the 
3'-most portion of the 2A-MyHC eDNA clone using Fnu4H1 that cuts 3 bp 
after the termination eodon, and was subcloned into pBK. These sequence 
data are available from EMBL/GenBank/DDSB under accession number 
X72589. (d) ~/slow-MyHC probe: 5'CAAGGGCCTGAATGAAGAGT- 
AGATCTTGCTCTACCCAACCCTAAGGATGCCTGTGAAGCCCTG- 
AGACC3'.This is a StyI-BstnI fragment comprising 19 nt of the coding 
region plus 50 nt of the 3'-UTR sequences of the ~-MyHC gene subcloned 
into pBS (Schiaffino et al., 1989b). These sequence data are available from 
EMBL/GenBank/DDSB under accession number K01463. 

Northern Blotting 
Total RNA was prepared from different rat tissues as described (Chomczyn- 
ski and Sacchi, 1987). Samples were electrophoresed on 1% agarose, 3% 
formaldehyde gels, transferred to Hybond N+ nylon membranes (Amer- 
sham, Milano, Italy) and hybridized to 32P-labeled probes. The 2X- and 
2B-MyHC-specific probes used for hybridization were isolated from the 
vectors and labeled by the random priming method (Feinberg and Vogel- 
stein, 1983). Filters were washed in 0.1 × SSC at 60"C. 

In Situ Hybridization and Immunocytochemistry 
Vectors containing cDNAs specific to 2A-, 2X-, 2B-, and E-slow MyHC 
mRNAs were linearized with appropriate restriction enzymes. Sense or 
anti-sense RNA probes labeled with 35S-UTP were transcribed with T3 or 
T7 polymerase according to manufacturer's conditions. Probes were re- 
dueed to 50-70 nucleotides in length by alkali hydrolysis to allow better 
penetration into the section and used at a final concentration of 25,000- 
5OO0O cprn/#l. 

In situ hybridization with cRNA probes and immunocytochemistty with 
anti-MyHC antibodies were performed on serial cryosections of rat skeletal 
muscles. We found that sections could be stored at -20"C for up to 2 mo 
without significant variation in reactivity with cRNA probes and antibodies. 
Cryosections were fixed for 30 rain with 4% paraformaldehyde and subse- 
quently processed for in situ hybridization following the protocol described 
by Sassoon et al. (1988). Unfixed serial cryosections were processed for im- 
munocytochemistry as described (Sehiaffno et al., 1989a). The following 
antibodies were used in this study: BA-D5, reactive with ~/slow-MyHC, 
SC-75, reactive with all type 2 MyHCs, SC-71, reactive with 2A-MyHC, 
BF-F3 and BF-G6, reactive with 2B-MyHC, and BF-35, reactive with all 
MyHCs except 2X-MyHC (sehiaffino ct ai., 1989a; Bottinelli et al., 1991). 

In situ hybridization studies were also performed on soleus muscles from 
adult rats treated for one week with daily intraperitoneal injections of thy- 
roid hormone (T3, 5/~g per 100 g) (Izumo et al., 1986; Schiattino et al., 
1990) and on solens muscles denervated and stimulated with a high fre- 
quency impulse pattern (25 pulses at 150 Hz every 15 rain) as previously 
described (Ausoni et al., 1990). 

Results 

Isolation of 2X-, 2B-, and 2A-MyHC cDNA Clones 
Several positive clones were identified by double screening 
of a rat diaphragm expression library with monoclonal anti- 
body RT-D9, specific for 2B- and 2X-MyHC, and with a 
mouse 2B-MyHC cDNA clone. Seven clones, reactive both 
with the antibody and the eDNA probe, were selected for 
further study after screening with an oligo-d(T) probel An- 
other eDNA was identified by double screening of the same 
expression library with monoclonal antibody SC-71, specific 
for 2A-MyHC, and with the mouse 2B-MyHC probe. Partial 
sequencing revealed that all selected clones correspond to 
MyHC genes, based on the high degree of homology of their 
5' ends with the rat embryonic MyHC gene (Strehler et al., 
1986). Three groups of clones were identified on the basis 
of restriction endonuclease maps and 3' end sequences (Figs. 
1 and 2). These three groups will hereafter be referred to as 
2A-, 2X-, and 2B-MyHC cDNAs, based on the fiber-type 
distribution of the corresponding mRNAs (see below). The 
2A-MyHC eDNA, identified by its reactivity with SC-71, is 
'~1.8 kb long and has a 3' end sequence identical to one of 
the MyHC cDNAs expressed in adult fast muscle described 
by Nadal-Ginard et al. (1982, see Fig. 4 d of that article). 
Three of the seven clones identified by their reactivity with 
RT-D9 (all ,~1.7 kb long) have a 3' end sequence identical 
to another MyHC eDNA expressed in adult fast muscle (see 
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Figure 1. Restriction maps of 2X-, 2B-, and 2A-MyHC cDNA 
clones. The open area at the 3' end of each clone corresponds to 
the noncoding and poly(A) regions. Restriction enzyme abbrevia-. 
tions: B, BglII; P, PstI; S, SacI. 

Figure 3. Expression of 2X- 
MyHC mRNA in rat muscles 
analyzed by Northern blot- 
ting. Total cellular RNA was 
isolated from hindlimb mus- 
cles from 18-d-old rat fetuses 
(Fet), 1-d-old neonates (Neo), 
and three muscles from adult 
rats: diaphragm (Dia), tibialis 
anterior (/ib), and soleus 
(Sol). Samples containing 10 
/zg of RNA were electropho- 
resed on agarose-formalde- 

hyde gels, blotted onto nylon filters and hybridized with a 32p_ 
labeled 2X-MyHC probe. The probe corresponds to the 3'UTR of 
2X-MyHC eDNA. 

Fig. 4 c of Nadal-Ginard et al., 1982) and were found to cor- 
respond to 2B-MyHC mRNA. The other four clones reac- 
tive with RT-D9 (,o3.8, 2.5, 2.4, and 2.3 kb long) were found 
to represent the same 2X-MyHC transcript: the restriction 
map of these eDNAs differs from that of the 2A- and 2B- 
MyHC clones, therefore 2X-MyHC transcripts must derive 
from a different gene (Fig. 1). The 3'UTR of the 2X-MyHC 
transcript differs from that of the 2A- and 2B-MyHC cDNAs 
(Fig. 2), as well as from that of five other rat sareomeric 
MyHC genes whose 3'UTR sequence is known, i.e., embry- 
onic-MyHC, neonatal MyHC, ot-MyHC,/~/slow MyHC, and 
extraocular-MyHC (Nadal-Ginard et al., 1982; Wieczorek 
et al., 1985). Two regions of high homology are present in 
the middle of the 3'UTR of 2A-, 2B-, and 2X-MyHC 
mRNAs. Similar regions are found in the 3'UTR of MyHC 
genes from different species (Weydert et al., 1983; Kavinsky 
et al., 1983; Saez and Leinwand, 1986; Maeda et al., 1987). 
The 3'-coding region of 2A-, 2B-, and 2X- MyHC transcripts 
shows a very high degree of homology. At the aminoacid 
level the sequence of the end of the Y-coding segment of 2X- 
MyHC is identical to that of 2A- and 2B-MyHC, except for 

isoleucine instead of valine as the fifth residue from the 
carboxyl-terminal end (Fig. 2). This region is also very simi- 
lar to the corresponding sequence of rat neonatal MyHC, 
whereas a greater divergence is found with the other known 
rat sarcomeric MyHC isoforms (see Nadal-Ginard et al., 
1982 and Wieczorek et al., 1985). 

The 3'-UTR of the 2X-MyHC cDNAs shows significant 
homology with that of a MyHC gene, called MdMs gene, re- 
cently described in the mouse (Parker-Thornburg et al., 
1992) and with a MyHC eDNA clone (clone pSMHCA) pre- 
viously isolated from an adult human skeletal muscle library 
(Saez and Leinwand, 1986). Neither of these sequences had 
been attributed to a specific MyHC or fiber type. The 3'- 
UTR of the rat 2X-MyHC mRNA shows 86.7 % similarity 
with the 3'-UTR sequence of the human MyHC eDNA, and 
91.4% similarity with the first 104 nt of the 3'-UTR of the 
mouse gene. A common feature of both the rat and human 
sequences is also the presence of the atypical polyadenyla- 
tion signal G A T A A A  13 nucleotides upstream from the 
poly(A). The rat and human sequences also show an identi- 
cal aminoacid sequence at the carboxy-terminal end, includ- 
ing isoleucine as the fifth residue from the end. 

2X-MyHC 

2B-MyHC 

2A-MyHC 

2X-MyHC 

2B-MyHC 

2A-MyHC 

V K S R E V H T K I I S E E * 
GTG AAG AGC CGC GAG GTT CAC ACC AAA ATC ATA AGC GAA GAG TGA TCGATCCAAAGCAGGAAAGTGACCAAAGAGATG 

V K S R E V H T K V I $ E E * 
GTG AAG AGC CGA GAG GTT CAC ACC AAA GTC ATA AGC GAA GAA TAG CTCAATTCCTTCTGTTGAAAGGTGACAGAAGAA 

V K S R E V H T K V I S E E * 
GTA AAG AGC CGC GAG GTT CAC ACT AAA GTC ATA AGT GAA GAG TAA GGCAGCTCTGATGCTGTAGAATGACCGAAGAAA 

AGCAAAATGTGAAGATCTTTGTCACTCCATTTTGTACTTACGACTTTGGGAGATAAAAAATTTATCTGCC (A) n 

ATCACACAA.~TGTGACGTTCTTTGTCACTGTCCTGTATATCAAGGAAATAAAAGCTGCAGATAATTTTGC(A)n 

GGCACAAAATGTGAAGCCTTTGGTCATGCCCCCATGTGATTCTATTTAATCCTATTGTAAGGAAATAAAGAGCCCAAGTTCTTGCAAGC(A)n 

Figure 2. Nucleotide and 
amino acid sequences of the 3' 
ends of 2X-, 2B-, and 2A- 
MyHC clones. Note that the 
protein carboxyl termini are 
highly homologous. The 
YUTRs are more divergent 
but contain homologous 
stretches (overlined). Stop 
codons are marked by aster- 
isks and polyadenylation sig- 
nals are underlined. These se- 
quence data of 2X-, 2B-, and 
2A-MyHC clones are avail- 
able from EMBL/GenBank/ 
DDSB under accession num- 
bers X72591, X72590 and 
X72589, respectively. 
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Figure 4. Expression of 2X-MyHC 
mRNA, compared to that of 2B-, 2A-, 
and fl/slow-MyHC mRNAs, ana- 
lyzed in different rat muscles by in 
situ hybridization. Serial transverse 
cryosections of a composite block, 
containing soleus (SOL), EDL and 
diaphragm (DIA) muscles from adult 
rat, were hybridized with 35S- 
labeled probes complementary to the 
3qdTR of 2B- (a), 2X- (b), 2A-(c) 
and ~/slow- (d) MyHC mRNAs. 
Dark-field micrographs. 

2X-MyHC Transcripts Are Selectively 
Expressed in Type 2X Fibers and Can Be Coexpressed 
in a Number of Fibers Either with 2B- or with 
2A-MyHC Transcripts 

Northern blot analysis showed that 2X-MyHC clones hy- 
bridize with a 31S (,x,7 kb) MyHC mRNA that is expressed 
at high levels in the diaphragm and at lower levels in the tibi- 
atis anterior muscle, but not in the soleus muscle nor in fetal 
and neonatal hindlimb muscles (Fig. 3). Serial sections of 
rat extensor digitorum longus (EDL), soleus and diaphragm 

muscles were hybridized with cRNA probes specific for the 
YUTRs of 2X-, 2A-, 2B-, and/3/slow-MyHC transcripts. In 
situ hybridization analysis showed that 2X-MyHC mRNA is 
expressed at high levels in the diaphragm and in the fast EDL 
muscle, with no expression detected in the slow soleus mus- 
cle (Fig. 4 b). In contrast, 2B-MyHC transcripts are ex- 
pressed in many fibers in EDL, are weakly expressed in rare 
fibers in the diaphragm and are absent in the soleus (Fig. 4 
a). 2A-MyHC transcripts were detected in many fibers pres- 
ent in all three muscles (Fig. 4 c) and fl/slow-MyHC tran- 
scripts are expressed in most fibers in the soleus and numer- 
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Figure 5. Regional variation in the distribution of 2B- (a), 2X- (b), and 2A- (c) MyHC mRNAs in the rat tibialis anterior muscle. The 
anterior surface of the muscle is at the top. Note that 2B-MyHC transcripts are abundant throughout and represent the major fiber population 
near the surface of the muscle, whereas 2A-MyHC transcripts are only seen in fibers present in deeper regions (the white spot at the top 
is an artifact). Fibers containing 2X-MyHC transcripts are distributed throughout, although with a tendency to be less numerous in the 
very superficial areas. 

ous fibers in the diaphragm, whereas they are present only 
in rare fibers in EDL (Fig. 4 d). Variations in the distribution 
of the different MyHC transcripts were also seen within the 
same muscle. 2B-MyHC transcripts are more abundant in 
the superficial regions of tibialis anterior muscle (Fig. 5 a), 
whereas 2A-MyHC transcripts are more abundant in the 
deep regions (Fig. 5 c) and 2X-MyHC transcripts are present 
in both areas but are less numerous in the very superficial 
regions (Fig. 5 b). The corresponding sense probes gave no 
significant reaction in any muscle. 

Serial sections were processed for in situ hybridization 
with cRNA probes and for immunocytochemistry with anti- 
bodies specific for 2A-, 2B-, and/3/slow-MyHCs and with 
one antibody (BF-35) that reacts with all MyHCs except 2X- 
MyHC (Fig. 6). As previously described (Schiaftino et al., 
1989a), type 2X fibers correspond to fibers unreactive with 
BF-35 (Fig. 6 d) as well as with antibodies specific for 2A-, 
2B-, and/~/slow-MyHCs (Fig. 6, b, f, and h), but reactive 
with an antibody (SC-75) reactive with all type 2 MyHCs (not 
shown). Analysis of serial sections of EDL and tibialis an- 
terior muscles showed that the distribution of 2X-, 2B-, 2A-, 
and /~/slow-MyHC transcripts closely matches that of the 
corresponding proteins. Many fibers contained a single type 
of MyHC transcript, however a significant proportion of 
fibers was found to coexpress either 2X- and 2B-MyHC 
mRNA or 2X- and 2A-MyHC mRNA (Figs. 6 and 7). The 
fibers with mixed mRNA composition appear to contain a 
mixture of the corresponding proteins, as suggested by the 
finding that they display an intermediate intensity of staining 
with both BF-35 and with the 2B-specific antibody, or with 
BF-35 and with the 2A-MyHC-specific antibody (see also 

Schiaffino et al., 1989a, 1990). A number of fibers were also 
found to coexpress type 2A- and/~/slow-MyHC transcripts 
and proteins. The fibers with mixed MyHC transcript com- 
position, i.e., containing/3/2A- or 2A/2X- or 2X/2B-MyHC 
mRNAs, account for almost one third of the whole fiber 
population in the rat EDL muscle (Table I). ~55 % of the 
fibers present in this muscle contain 2X-MyHC transcripts, 
either alone or together with 2A- or 2B-MyHC transcripts 
(Table I). Fibers with mixed MyHC composition are also 
present in soleus and diaphragm muscles. The rare fibers 
containing 2B-MyHC transcripts in the diaphragm were all 
found to contain also 2X-MyHC, thus no pure 2B fiber is 
present in adult rat diaphragm, based on MyHC transcript 
composition. 

Expression of 2X-MyHC Transcripts Is 
Developmentally Regulated 
Type 2X-MyHC transcripts, as well as 2B- and 2A-MyHC 
transcripts, were not detectable by Northern blotting and in 
situ hybridization in hindlimb muscles of 20-d-old fetal and 
1-d-old neonatal rats (Fig. 3). The three type 2 MyHC tran- 
scripts were first detected by days 2-5 after birth in hindlimb 
muscles and display from their first appearance a differential 
pattern of expression (Figs. 8 and 9). 2A-MyHC transcripts 
were first detected by day 2 postnatal in a number of fibers 
in soleus, gastrocnemius and EDL, whereas 2X-MyHC tran- 
scripts were first detected by day 3 in EDL, and 2B-MyHC 
transcripts were first seen by day 4 in a number of fibers in 
the tibialis anterior (not shown). The distribution of MyHC 
transcripts in different leg muscles by day 5 is illustrated in 
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Table L Distribution of MyHC Transcripts in Muscle Fibers 
of Adult Rat EDL Muscle 

MyHC transcripts Percent of fibers 

fl 2.2 
~/2A 1.9 
2A 11.2 
2A/2X 9.9 
2X 26.2 
2X/2B 19.8 
2B 28.8 

Serial sections of rat EDL were processed for in situ hybridization with the 
four MyHC probes. The proportion of fibers that contained either one or two 
MyHC transcripts was determined on 313 fibers from three different fields. 

Figure 7. Expression of 2X-MyHC mRNA in the rat EDL muscle. 
Phase-contrast micrograph of the same field shown in Fig. 6 c. 
Fibers containing exclusively 2X-MyHC are outlined in green, 
those coexpressing 2X- and 2B-MyHC in black and those coex- 
pressing 2X- and 2A-MyHC in red. 

Fig. 8. In the soleus most fibers contain/3/slow-MyHC tran- 
scripts and a significant proportion of fibers contain 2A- 
MyHC transcripts, whereas 2X- and 2B-MyHC transcripts 
were not detectable (Fig. 8, a, c, e, and g). 2X- and 2A- 
MyHC transcripts are relatively abundant in EDL muscle, 
whereas 2B-MyHC transcripts are more abundant in the tibi- 
alis anterior muscle, where they are mostly expressed in pe- 
ripheral areas, except for a very superficial layer that con- 
tains fibers unreactive with the four probes (Fig. 8, b, d, f, 
and h). Since all fibers show embryonic and neonatal MyHC 
immunoreactivity at this stage of development (our unpub- 
lished observations) we conclude that these fibers have not 
yet begun to express the adult isoform. Comparative analysis 
of serial sections showed that many fibers at day 5 expressed 
exclusively one of the three type 2 MyHC transcripts, i.e., 
either 2X-MyHC transcripts (Fig. 9 b, arrows) or 2A-MyHC 
transcripts (e.g., in soleus), or 2B-MyHC transcripts (e.g., 
in tibialis anterior or peroneus digiti 4). In addition, a num- 
ber of fibers were found to coexpress 2X- and 2B-MyHC 
(e.g., in tibialis anterior) or 2X- and 2A-MyHC (e.g., in 
EDL) or 2A- or/3/slow-MyHC transcripts (e.g., in soleus). 
By day 7 the level of 2X-and 2A-MyHC transcripts, as deter- 
mined by the intensity of the hybridization signal, was found 
to increase in the tibialis anterior and the level of 2B-MyHC 
transcripts has increased markedly in the EDL. By postnatal 
day 14 to 21 the pattern of distribution of the various tran- 
scripts is similar to that of adult muscle (not shown). 

2X-MyHC Transcripts Are Induced in the 
Rat Soleus Muscle by Thyroid Hormone and High 
Frequency Electrical Stimulation 

The expression of MyHC genes in rat skeletal muscle is 
known to be regulated by thyroid hormone (Izumo et al., 
1986) and by different patterns of electrical stimulation 

(Gorza et al., 1988; Terrain et al., 1989b; Ausoni et al., 
1991). We have therefore examined the effect of hyperthy- 
roidism and high frequency stimulation on the expression of 
2X-MyHC transcripts in the rat soleus muscle. The soleus 
muscle in adult rats consists predominantly of type 1 fibers 
containing/3/slow-MyHC and a minor, variable proportion 
of type 2A fibers; 2X- and 2B-MyHC are not detectable by 
immunoblotting and immunocytochemistry in this muscle 
(Schiaffino et al., 1989a; Ausoni et al., 1990). We have pre- 
viously reported that thyroid hormone can induce the ap- 
pearance of 2X-MyHC in a population of soleus muscle 
fibers that also express 2A-MyHC (Schiaffino et al., 1990). 
We have analyzed the same muscles by in situ hybridization. 
2X-MyHC mRNA is not present in the normal soleus muscle 
(Fig. 10 a), but is readily detectable in a population of soleus 
muscle fibers after one week of treatment with thyroid hor- 
mone (Fig. 10 b). 

High levels of 2X-MyHC can be induced in soleus muscle 
fibers after long-term high frequency electrical stimulation 
(Ausoni et al., 1990). Under these conditions the relative 
amount of 2X-MyHC, as determined by electrophoretic and 
immunoblotting analysis, can increase up to 85% of the 
whole MyHC complement (Schiaffino et al., 1988; Ausoni 
et al., 1990). Accordingly, as shown in Fig. 10 c, high levels 
of 2X-MyHC transcripts are seen in most fibers of stimulated 
soleus muscles. 

Discuss ion  

This study shows that (a) 2X-MyHC is a distinct protein 
coded by a specific gene and not a posttranslational product 
of other MyHCs, thus giving definitive support to the notion 
of type 2X fibers as a major fiber type population in rat skele- 
tal muscle; (b) the expression of 2X-MyHC gene is coor- 
dinately regulated with that of 2A- and 2B-MyHC genes so 
that only certain combinations of MyHC transcripts can be 
coexpressed within the same fiber; (c) the appearance 
around birth of 2X-, 2A-, and 2B-MyHC transcripts in differ- 
ent fiber populations defines a distinct neonatal phase of fiber 
type differentiation during muscle development. 

Figure 6. Distribution of different MyHC rnRNAs and proteins in type 2B (B), 2X (X), 2A (A), and type 1(I) fibers in rat EDL muscle. 
Serial cryosections were processed for in situ hybridization (le]~ column) with 2B- (a), 2X- (c), 2A- (e), and/3/slow-specific (g) cRNA 
probes, and for immunocytochemistry (right column) with anti-MyHC monoclonal antibodies reactive with 2B-MyHC (b), all MyHCs 
but 2X-MyHC (d), 2A-MyHC (f), and/~/slow-MyHC (h). The circles in a-d mark a fiber coexpressing 2B- and 2X-MyHCs and the corre- 
sponding transcripts. The triangles in c-f mark a fiber cocxpressing 2A- and 2X-MyHCs and the corresponding transcripts. 
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Figure 9. Expression of MyHC transcripts in hindlimb muscles from a 5-d-old rat. Serial sections of tibialis anterior (TA) and extensor 
digitorum longus (EDL) muscles hybridized with probes specific for 2B- (a), 2X- (b), and 2A- (c) MyHC mRNAs. Note that in this region 
2B- and 2X- but not 2A-MyHC transcripts are expressed in the tibialis anterior and that 2A- and 2X- but not 2B-MyHC transcripts are 
expressed in the EDL. A bundle of tibialis anterior fibers reactive for 2X- and unreactive for 2B- and 2A-MyHC tmRNA is indicated 
by arrowheads. 

2X-MyHC Is Encoded by a Distinct Gene Present in 
Different Mammalian Species 

2X-MyHC was initially described in a specific subpopula- 
tion of type 2 muscle fibers showing a distinct pattern of re- 
activity with different anti-MyHC mAbs (Schiaflino et al., 
1986, 1989a). Type 2X fibers were subsequently identified 
also in mouse and guinea pig skeletal muscles (Gorza, 1990; 
Schiaffino et al., 1990). In the rat, 2X fibers are especially 
numerous in the diaphragm muscle but are present as a ma- 
jor fiber population in fast-twitch leg muscles, whereas they 
are absent in the slow-twitch soleus muscle (Schiaflino et al., 
1989a). By immunoblotting 2X-MyHC was found to mi- 
grate in the same electrophoretic band with 2A-MyHC 
(Schiaflino et al., 1989a), however using a modified elec- 
trophoretic procedure the 2X-MyHC isoform could be sepa- 
rated as a band of slightly higher mobility than 2A-MyHC 
but lower mobility than 2B-MyHC (LaFramboise et al., 
1990). In this respect 2X-MyHC appears to correspond to 
the IId-MyHC isoform described by Pette and coworkers in 
rat and rabbit muscle (Termin et al., 1989a; Aigner et al., 
1993). Until now it was not known whether 2X-MyHC is the 

product of a distinct gene or results from differential RNA 
splicing or from posttranslational modification of 2A- or 2B- 
MyHC. The results reported here demonstrate that a distinct 
MyHC mRNA is expressed in type 2X fibers and that the 
level of this mRNA in different rat skeletal muscles closely 
matches that of 2X-MyHC. The finding that 2X-MyHC 
cDNA differs from 2A- and 2B-MyHC cDNA with respect 
to its restriction map and 3' coding and noncoding sequence 
indicates that 2X-MyHC transcripts are encoded by a distinct 
gene. 

The end of the 3'-coding and the 3'UTR of the rat 2X- 
MyHC mRNA is very similar to that of MyHC genes ex- 
pressed in human (Saez and Leinwand, 1986; Yoon et al., 
1992) and in mouse skeletal muscle (Parker-Thornburg et 
al., 1992). Thus it appears that genes homologous to the rat 
2X-MyHC gene are present in different mammalian species. 
In human skeletal muscle two type 2 fiber populations, re- 
ferred to as type 2A and 2B fibers, can be distinguished by 
myosin ATPase histochemical staining (see Brooke and Kai- 
ser, 1970) and two type 2 MyHC bands, referred to as 2A- 
and 2B-MyHC, have been identified by electrophoretic and 
immunoblotting analysis (Biral et al., 1988; Klitgaard et al., 

Figure 8. Expression of MyHC transcripts in hindlimb muscles from 5-d-old rat. (Left column) Serial sections of soleus (SOL), lateral 
gastrocnemius (LG) and peroneus digiti 4 (P) muscles. (Right column) Serial sections of tibialis anterior (TA) and extensor digitorum 
longus (EDL) muscles. In situ hybridization with probes specific for B/slow- (a and b), 2A- (c and d), 2X- (e and f ) ,  and 2B- (g and h) 
MyHC transcripts. Arrows in g and h point to areas in the peroneus and tibialis anterior where numerous fibers express 2B- but not 2A- 
or 2X-MyHC mRNAs. Note that a number of fibers in the soleus express 2A-MyHC transcripts, whereas 2X- and 2B-MyHC transcripts 
are not detectable in this muscle. 
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Figure 10. Distribution of 2X-MyHC transcripts in soleus muscles from normal (a) and hyperthyroid rats (b), and from soleus muscles 
denervated and stimulated for two months with a high frequency pattern of impulses (c). 

1990). Studies aimed at defining the fiber type distribution 
of 2XoMyHC transcripts in human skeletal muscle are in 
progress (Schiaflino, S., and L. Leinwand, manuscript in 
preparation). 

2X-MyHC Transcripts Can Be Coexpressed Either 
with 2A-MyHC or with 2B-MyHC Transcripts 
We have observed that 2X-MyHC transcripts represent the 
only MyHC transcript present in those fibers typed as 2X 
fibers based on anti-MyHC immunohistochemistry. In addi- 
tion, they can be coexpressed in a number of fibers either 
with 2B- or with 2A-MyHC transcripts, whereas 2A- and 
2B-MyHC transcripts are never expressed together in the 
same fiber. These observations are in agreement with our 
previous immunohistochemical studies on fibers with mixed 
MyHC composition: only certain combinations of MyHCs, 
i.e.,/3/2A, 2A/2X or 2X/2B, were detected within any single 
fiber (Schiaflino et al., 1990; Gorza, 1990). The MyHC 
transitions observed in electrically stimulated muscles also 
appear to reflect an obligatory pathway of MyHC gene ex- 
pression, in the order 1 • , 2 A ,  , 2X ~ 2B (Ausoni et 
al., 1990). Similar findings were obtained by electrophoretic 
analyses on single muscle fibers in the rat (Termin et al., 
1989a,b) and the rabbit (Aigner et al., 1993). 

The factors responsible for fiber type-specific regulation 
of MyHC genes remain to be discovered. Sarcomeric MyHC 
genes are clustered on two chomosomes in mice and hu- 
mans. The oe and B/slow MyHC genes are closely associated 
on chomosome 14, whereas other skeletal MyHC genes are 
clustered on human chomosome 17 and mouse chomosome 
11 (Leinwand et al., 1983; Weydert et al., 1985). The human 
skeletal MyHC cluster contains six MyHC genes, including 
one corresponding to the rat 2X-MyHC gene, located within 
a 500-kb segment of DNA (Yoon et al., 1992). The mouse 
skeletal MyHC cluster contains at least three MyHC genes, 
corresponding to the embryonic, perinatal and 2B-MyHC 

genes, within a 370-kb segment (Cox et al., 1991). The lo- 
calization of mouse 2A and 2X-MyHC genes remains to be 
determined, however it has recently been shown that the 
mouse MyHC gene homologous to the rat 2X-MyHC gene 
is located immediately 3' to the 2A-MyHC gene (Parker- 
Thornburg et al., 1992). In other gene clusters, such as the 
/$ globin and the Hox gene clusters, the linear order of the 
genes along the chromosome correlates with their temporal 
and spatial pattern of expression and it is therefore of impor- 
tance to determine whether physical linkage and chro- 
mosomal order are also critical to the transcriptional regula- 
tion of MyHC genes influencing their pattern of expression. 
Recent results on the organization of the human skeletal 
MyHC genes show that their order is apparently not related 
to their developmental expression, since embryonic and 
perinatal MyHC genes are expressed sequentially during de- 
velopment but are not located adjacent to each other (Yoon 
et al., 1992). 

Developmental Expression of 2X-, 2A-, and 
2B-MyHC Transcripts and Differentiation of 
Type 2 Fiber Subpopulations 
Changes in MyHC isoform expression define three major 
phases of fiber type differentiation in rat hindlimb muscles 
(Fig. 11). The first phase is characterized by the diversifica- 
tion of primary generation fibers and takes place during fe- 
tal development in the period between days 16 and 18 of 
gestation (Lyons et al., 1983; Dhoot, 1986; Narusawa et al., 
1987; Harris et al., 1989; Condon et al., 1990; our unpub- 
lished observations). In the tibialis anterior muscle there is 
an early differentiation process within an apparently homo- 
geneous population of primary generation fibers that express 
embryonic MyHC and low levels of/3/slow- and neonatal- 
MyHCs: fibers in the outer region express embryonic and 
neonatal MyHC while fibers in deeper areas contain em- 
bryonic and/3/slow-MyHCs (Condon et al., 1990). Second- 
ary fibers that are formed in these muscles between days 18 
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Figure 11. Major steps in muscle fiber diversifica- 
tion during rat hindlimb muscle development, 
based on MyHC isoform transitions (modified 
from Gunning and Hardeman, 1991). The scheme 
highlights three phases of fiber type differentia- 
tion. The fetal phase is characterized by the 
diversification of primary generation fibers into 
one population of fibers expressing embryonic and 
B/slow MyHCs and another population of fibers 
expressing embryonic and neonatal MyHCs. The 
emergence of secondary generation fibers express- 
ing embryonic and neonatal MyHCs also takes 
place during fetal development. The neonatal 
phase is characterized by the diversification of pri- 
mary and secondary generation fibers expressing 
embryonic and neonatal MyHCs with the emer- 
gence of different type 2 fiber subpopnlations. The 
postnatal phase of muscle fiber differentiation is 
characterized by the disappearance of embryonic 

(emb) and neonatal (neo) MyHC and by further changes in MyHC expression. *---* indicates the existence of transitional fibers with mixed 
MyHC composition, i.e., coexpressing slow/2A or 2A/2X or 2X/2B MyHCs. The diagram is intended to depict phenotypic changes, not 
to define cell lineages: thus each ramification indicates the emergence of different fiber types from a precursor pool that appears homoge- 
neous in terms of MyHC isoform expression but could already contain distinct cell lineages. Furthermore, the range of available options 
for each precursor pool may be restricted in certain muscles: for example the secondary generation fibers of solens differentiate only into 
fibers expressing slow, slow/2A or 2A MyHCs. 

and 21 of gestation express embryonic and neonatal but not 
/3/slow-MyHC, independent of their regional distribution 
within the muscle. In the soleus all primary generation fibers 
express embryonic and/3/slow-MyHC, whereas newly formed 
secondary fibers express embryonic and neonatal-MyHC 
(Condon et al., 1990). 

The second developmental phase takes place during the 
neonatal period and is characterized by the diversification of 
both primary and secondary generation fibers expressing 
embryonic and neonatal-MyHC with the emergence of the 
various type 2 fiber subsets. Previous studies showed that in 
rat hind limb muscles 2A-MyHC transcripts can be detected 
by S1 nuclease at postnatal day 5 (Wieczorek et al., 1985; 
Mahdavi et al., 1991) and 2B-MyHC transcripts at 6-7 days 
(Russell et al., 1988). The timing of type 2 MyHC protein 
and mRNA accumulation differs between species and muscle 
types. In mouse limb muscles 2B-MyHC transcripts are al- 
ready detectable in fetal stages and accumulate rapidly dur- 
ing the first 5 days postnatally (Weydert et al., 1987). In the 
rat diaphragm 2A-MyHC transcripts were detected at 21-d 
gestation (Kelly et al., 1991) as was the 2X-MyHC protein 
(LaFramboise et al., 1991) and transcripts (our unpublished 
observations). The results of this study show that 2A-, 2X-, 
and 2B-MyHC transcripts appear shortly after birth in hind- 
limb skeletal muscles and display from the outset a specific 
regional distribution. Each transcript accumulates in a 
specific subpopulation of developing muscle fibers with a 
differential pattern of distribution in different muscles. The 
factors responsible for the positional specification of type 2 
fiber precursors and for the differential expression of differ- 
ent MyHC genes in limb muscles remain to be identified. 
The findings reported here point to an independent origin of 
type 2 fiber subsets and rule out schemes involving a com- 
mon initial stage with coexpression of all three type 2 MyHC 
transcripts, or sequential activation of type 2 MyHC genes 
(e.g., 2X-MyHC preceding obligatorily 2A- and 2B-MyHC 
gene expression). Combinations of transcripts similar to 

those seen in adult muscles, i.e., slow/2A-, or 2A/2X-, or 
2X/2B-MyHCs, are also present from the outset in single 
fibers of neonatal muscles. 

The third postnatal phase of muscle fiber differentiation is 
characterized by the dowuregulation of embryonic and neo- 
natal MyHCs, which varies according to fiber type and mus- 
cle type (Schialtino et ai., 1988). In addition, further shifts 
in MyHC isoform expression take place at various postnatal 
stages. A number of type 2A soleus fibers progressively shift 
to ~/slow-MyHC expression (see Butler-Browne et al., 
1984). The expression of the 2X- and 2B-MyHC genes also 
changes with age. In old rats type 2X motor units become 
the predominant motor unit type in the rat tibialis anterior 
muscle, apparently as a result of an age related transition 
from type 2B to type 2X units (Larsson et al., 1991a). Elec- 
trophoretic and immunoblotting analyses show that the rela- 
tive proportion of 2X-MyHC increases and that of 2B- 
MyHC correspondingly decreases with age (Larsson et al., 
1993). In addition, MyHC changes can be induced by hor- 
monal and neural influences: in particular, as shown here, 
the expression of 2X-MyHC transcripts is modulated by thy- 
roid hormone and by electrical stimulation, in agreement 
with previous studies at the protein level (Ausoni et al., 
1990). 

Functional Significance of  2X-, 2A-, and 
2B-MyHC lsoforms 

The maximum velocity of muscle shortening reflects the 
turnover rate of cross-bridges and turnover rate is a property 
of the myosin isoforms present in the muscle fibers. Experi- 
ments with single fibers from rat and rabbit skeletal muscle 
indicate that maximum shortening velocity is correlated with 
MyHC composition. Slow fibers, containing/3/slow-MyHC, 
have lower shortening velocity than fibers containing 2A- 
MyHC and these in turn have lower shortening velocity than 
fibers containing 2B-MyHC (Reiser et al., 1985; Eddinger 
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and Moss, 1987; Sweeney et al., 1988). The contractile 
properties of four different fiber types, including 2X fibers, 
were recently compared using rat single fibers in which the 
MyHC composition was determined by immunostaining 
with monoclonal antibodies (Bottinelli et al., 1991). The 
maximum shortening velocity of type 2X fibers was inter- 
mediate between that of 2A and 2B fibers, however large and 
overlapping ranges of variability were observed. It has been 
suggested that the velocity of muscle shortening is influenced 
by the alkali MyLC composition and varies as a function of 
the MyLC3f isoform content in type 2 fibers (Eddinger and 
Moss, 1987; Sweeney et al., 1988; Greaser et al., 1988). 
However, the relative contribution of MyHCs and MyLCs in 
determining the velocity of muscle shortening was not estab- 
lished in previous studies, since the fibers analyzed physio- 
logically were not characterized as regards both MyHC and 
MyLC composition. Such a combined analysis has now been 
performed (Bottinelli et al., 1994; Bottinelli, R., R. Betto, 
S. Schiaffino, and C. Reggiani, manuscript submitted for 
publication): the results show that (a) both MyHCs and 
alkali MyLCs are important determinants of maximum 
shortening velocity and (b) the sensitivity of shortening ve- 
locity to changes in alkali MyLC composition depends on 
the MyHC isoform present, fibers containing 2X- and 2A- 
MyHC showing a lower sensitivity to variations in MyLC3f 
content than fibers containing 2B-MyHC. 
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