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Stability of a stratified viscous shear flow in a tilted tube
Andrea Defina, Stefano Lanzoni, and Francesca M. Susin
Dipartimento di Ingegneria Idraulica, Marittima e Geotecnica, Universita` di Padova, Via Loredan 20,
35131 Padova, Italy

~Received 5 November 1997; accepted 15 October 1998!

The present investigation is concerned with the effects of viscosity on the stability of a bounded
stratified shear flow with Prandtl number Pr@1. Theoretical results obtained from the solution of the
Orr–Sommerfeld equation extended to stratified fluids are compared with experiments performed in
a tilting tube filled with water and brine. Theoretical analysis shows that a complete stabilization of
the flow field with respect to infinitesimal disturbances is attained, irrespective of the Richardson
numberJ, as the Reynolds number Re decreases below 75. This damping action of viscosity is
shown to appreciably reduce the critical Richardson numberJc with respect to the inviscid limit
Jc50.25, even at moderately high Re. On the other hand, the destabilizing action enhanced by
viscosity through the diffusion of momentum leads to a viscous mode of instability that may develop
if J decreases below a threshold value. An extensive series of experiments has been carried out in
a long tilting tube in order to verify theoretical results. The agreement between observations and
theory is quite satisfactory. Kelvin–Helmholtz waves grow whenever theoretical unstable
conditions are attained. The values of measured wavelengths well correspond to maximum growth
rate wave numbers. The comparison between theoretical and experimental results also shows that
acceleration plays a stabilizing action. ©1999 American Institute of Physics.
@S1070-6631~99!00502-4#
se
.
d,
fo
u

ity
on
-

t
le
ho
ar
e
a
–
-
w

t
a
c

ith
nd
sit

s
ye

e-

gate
ns,

of
tia

o-
any
ow
is

t is
ity
n
in

nd
s
en
it

re-
cu-
ce
be

, ir-
ex-
ded

uit-
I. INTRODUCTION

Considerable effort has been devoted during the last
eral decades to study the stability of stratified shear flows
particular, the linear stability of inviscid, stably stratifie
Boussinesq shear flow is now fairly well understood both
stepwise density profiles and for continuously stratified fl
ids.

The inviscid linear stability analysis of a generic veloc
profile leads to the well-known Taylor–Goldstein equati
~Miles1 and Drazin and Howard2!, which provides some gen
eral stability criteria~see Drazin and Reid3!. The best known
is probably the Miles–Howard theorem, which states tha
sufficient condition for an inviscid stratified flow to be stab
is that the local Richardson number exceeds 0.25 throug
the flow. Several mathematical and numerical studies of v
ous density and velocity profiles have shown the existenc
two basic physical mechanisms by which instability of
stratified fluid may be driven. The first one is the Kelvin
Helmholtz ~K –H! instability, which may arise at the inter
face of two superposed layers of statically stable fluids flo
ing with different velocities. This kind of instability~for an
extensive review see Thorpe4!, which occurs provided tha
the local Richardson number of the flow falls below a critic
value, is characterized by the growth of an initial disturban
to form a remarkably regular array of stationary billows w
local mixing, and little or no propagation. The seco
mechanism of instability may arise provided that the den
varies over a much smaller vertical scale than the velocity
that the density interface is embedded within the shear la
This type of instability, usually called Holmboe~H! instabil-
ity, is characterized by the formation of two trains of finit
3441070-6631/99/11(2)/344/12/$15.00

Downloaded 07 Nov 2006 to 147.162.75.83. Redistribution subject to AIP
v-
In

r
-

a

ut
i-
of

-

l
e

y
o
r.

amplitude waves that generate at the interface and propa
horizontally at the same speed but in opposite directio
inducing quite a small mixing~Holmboe,5 Browand and
Wang,6 Browand and Winant,7 Smyth et al.,8 Smyth and
Peltier,9 Lawrenceet al.,10 and Baines and Mitsudera11!.

Up to now much less is known about the stability
flows in which both viscosity and buoyancy, besides iner
forces, are important. It is known since Tollmien12 that vis-
cosity may play a non-negligible role in the stability of h
mogeneous parallel flows, since it dissipates energy of
disturbance and, therefore, is expected to stabilize the fl
when a low enough value of the Reynolds number
achieved. On the other hand, a more complicated effec
related to the diffusion of momentum induced by viscos
that can lead to a conditionally destabilizing actio
~Benjamin13!. Such a behavior is likely to be expected also
stratified shear flows.

The linear stability analysis developed by Hooper a
Boyd14 for the unbounded plane Couette flow of two fluid
of different density and viscosity suggests that for a giv
value of the density ratio and in the short-wavelength lim
an infinitesimal disturbance may amplify, decrease, or
main unchanged depending on the viscosity ratio. In parti
lar, if the two fluids have the same viscosity and the surfa
tension at the interface is negligible, the flow results to
neutrally stable with respect to small short disturbances
respective of the density ratio. The analysis has been
tended to all wave numbers and to the case of a boun
plane Couette flow by Renardy,15 who showed that even a
statically unstable stratification can be stabilized by a s
able arrangement of the viscous layers.
© 1999 American Institute of Physics
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Yantsios and Higgins16 studied numerically the linea
stability of a plane Poiseuille flow of two superposed flui
of different viscosity and density. They found that depend
on the density ratio, the viscosity ratio, and the ratio betw
the thickness of the layers, two different modes of instabi
may arise. At small Reynolds numbers the flow may be
stable to an ‘‘interfacial mode’’~namely an instability mode
that is enhanced by the presence of an interface!, whereas, if
the Reynolds number is sufficiently large, the flow can a
be unstable to a shear mode of the Tollmien–Schlicht
type. Although the latter result has been obtained by ass
ing equal densities in the two layers and neglecting the
fects of both gravity and interfacial tension, a shear mo
instability is likely to be expected also in a stratified flo
driven by gravity.

Similar results are suggested by the linear stabi
analysis of thermally stratified shear flows with Prandtl nu
ber Pr close or equal to 1. Maslowe and Thompson17 inves-
tigated numerically the stability of the laminar mixing regio
between two uniform unbounded streams. In particular, t
solved the linear sixth-order equation, which can be deri
for the disturbance amplitude function when the effect
both viscosity and heat conduction are accounted for.
resulting neutral stability curves suggest that the effects
viscosity and heat conduction do not greatly influence
stability of such a kind of flows. Nevertheless, these effe
are found to be of primary importance within the critic
layer for neutral and nearly neutral disturbances, and m
lead to a significant distortion of the streamline pattern as
wave numbera decreases.

On the other hand, a significant modification of the m
ginal stability curve is likely to be expected, due to viscos
effects, if the flow field is bounded by fixed surfaces. Ga
and Reid18 showed that the stability of thermally stratifie
plane Poiseuille flow is governed by three nondimensio
parameters, namely, the Rayleigh number Ra, the Reyn
number Re, and the Richardson number Ri. They found
for Pr51 and Ra.1 ~i.e., when the density difference i
destabilizing! two kinds of instability are possible. The firs
one is purely thermal in origin, arises at a value of the R
leigh number that is independent of the shear and lead
steady convection in the form of longitudinal rolls who
axes are in the direction of the mean flow. The second on
of the Tollmien–Schlichting type. A sharp transition b
tween the two modes is expected to occur at a small nega
value of the Richardson number (Ri'21026); the small-
ness of this value emphasizes the dominant role of ther
instability for negative values of Ri. When the Richards
number is zero, the neutral stability curve shows that a c
cal value of the Reynolds number exists below which
flow is always stable. This critical value of Re increases
the Richardson number increases. However, the theory
dicts that above Ri50.0544 the flow will be stable to sma
disturbances no matter how large is Re. Also, with any
chardson within the interval 0–0.0544 at large values of
the instability is confined to a quite narrow range of wa
numbers.

Gage19 has extended the analysis to a velocity profi
with an inflection point~i.e., Grohne’s profile! showing that
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the above picture does not qualitatively change, although
numerical values are different.

In this paper we focus our attention on flows in whic
the diffusion can be assumed to be negligible with respec
viscosity, so that Pr@1. In particular, we investigate bot
theoretically and experimentally the role of viscosity on t
stability of a stratified bounded parallel shear flow that ori
nates by tilting through a small angle a long rectangular tu
closed at the ends and filled with two layers of miscib
fluids ~namely clear and salt water! that are allowed to dif-
fuse before tilting the tube. The paper is organized as
lows. Section II is devoted to the mathematical formulati
of the problem: basic flow relationships are derived and
main features of the linear stability analysis are discuss
Neutral marginal stability curves and growth rate curves,
tained by solving numerically the Orr–Sommerfeld equat
extended to a stratified fluid, are shown. In Sec. III the e
perimental apparatus is described and the experimenta
sults are discussed and compared with theoretical findin
Finally, Sec. IV is devoted to some conclusions.

II. FORMULATION OF THE PROBLEM

A. Formulation of the problem and basic flow

Let us consider the two-dimensional~2-D! stratified
shear flow that arises when a long horizontal prismatic tu
closed at the ends, is suddenly tilted at an angleu starting
from rest~see Fig. 1!. The change in density across the she
layer is assumed to be small enough for the usual Boussin
approximation to hold. Moreover, it is assumed that diff
sion is negligibly small when compared with viscosity~i.e.,
Pr@1!. Therefore, the dimensionless governing equatio
can be written as

u,t1uu,x1wu,z52p,x1
1

Re
~u,xx1u,zz!2

r sin u

Fr2
,

w,t1uw,x1ww,z52p,z1
1

Re
~w,xx1w,zz!2

r cosu

Fr2
,

~1!
u,x1w,z50,

r ,t1ur ,x1wr ,z50,

wherex,z are the longitudinal and the normal coordinatest
denotes time,u and w are the velocity components in th
axial and normal direction,p is the pressure,r is the density,
u is the angle between the longitudinal axis and the horiz
tal direction, and Re and Fr are the Reynolds and Fro
numbers, respectively. The variables have been made dim
sionless in the form

FIG. 1. Notations.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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~x,z!5
~x* ,z* !

H*
; ~u,v,w!5

~u* ,v* ,w* !

U0*
; t5

t* •U0*

H*
;

~2!

p5
p*

r0* U0*
2; r5

r*

r0*
; Re5

U0* H*

n
; Fr5

U0*

AgH*
,

where, denoting with a ‘‘* ’’ superscript dimensional quanti
ties, n is the kinematic viscosity of the fluid, assumed co
stant,g is the gravitational acceleration,r0* is the mean den-
sity, andH* andU0* are, respectively, half the depth of th
tube and a reference velocity, which will be specified in t
following. The choice ofH* as the characteristic lengt
scale is strictly related to the form of velocity and dens
profiles herein considered, which, as it will emerge later
both vary on half the depth of the tube.

In the following the parallel flow approximation is as
sumed to be valid and the dimensionless density profile
written asr̄(z)512xb(z), with x defined so thatb ,zuz50

51. The basic flow equations then read as

U ,t52P,x1
1

Re
U ,zz2

sin u

Fr2
1

x sin u

Fr2
b~z!;

~3!
P,z52

cosu

Fr2
1

x cosu

Fr2
b~z!.

Equation~3b! states thatP,z does not depend onx; as a
consequence,P,x does not depend onz and the quantity
j05(2P,x2sinu/Fr2) on the right side of Eq.~3a! is, at
most, a function of time.

Boundary conditions to be associated with Eqs.~3! ex-
press the physical requirement of no slip at the walls a
since the ends of the tube are closed, the requirement o
net flux across any plane normal to the flume,

U~z,t !uz561,t50; E
21

1

U~z,t !dz50. ~4!

If b(z) is an antisymmetric function@namely b(z)
52b(2z)#, then condition~4b! implies

U~z,t !52U~2z,t !; U~0,t !50; j052P,x2
sin u

Fr2
50,

~5!

and the basic flow equations~3! reduce to

U ,t5
1

Re
U ,zz1

x sin u

Fr2
b~z!;

P,z52
cosu

Fr2
1

x cosu

Fr2
b~z!. ~6!

The present investigations are concerned with the
lowing density profile@Fig. 2~a!#:
Downloaded 07 Nov 2006 to 147.162.75.83. Redistribution subject to AIP
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r̄~z!512D (
n52`

1`

~21!n
•erf@s~z12n!#, ~7!

where D and s are given constants and erf( ) is the err
function. As discussed at the end of the present section
more widely, in Sec. III, the choice of this particular dens
profile is related to the experimental conditions realized
order to check present theoretical results.

The equations~6! are thereby written in the form

U ,t5
1

Re
U ,zz1

D sin u

Fr2 (
n52`

n51`

~21!n
•erf@s~z12n!#,

~8!

P,z52
cosu

Fr2
1

D cosu

Fr2 (
n52`

n51`

~21!n
•erf@s~z12n!#.

Even though the solution of the system~8! coupled with
~4! could, in principle, be obtained in terms of the Lapla
transform of the velocity~Thorpe20,21!, a finite difference nu-
merical approach has been adopted in order to evaluate
unsteady flow field characteristics. On the other hand, w
considering steady flow conditions~i.e., U ,t50!, the follow-
ing velocity profile is readily obtained@Fig. 2~b!#:

FIG. 2. Examples of the investigated density~a! and velocity~b! profiles.
U~z!5

(n52`
1` ~21!nH 1/4@2~z12n!211/s2#erf@s~z12n!#1

z12n

2sAp
e2@s~z12n!#2

1j1zJ
(n52`

1` ~21!nS 2n•erf~2ns!1
e2~2ns!2

sAp
1j1D , ~9!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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where the reference velocity, defined so thatU ,zuz5051
~Hazel22!, is

U0* 5
gH* 2

n
D sin u (

n52`

1`

~21!n

3S 2n•erf~2sn!1
e2~2sn!2

sAp
1j1D ~10!

and

j15 (
n52`

1`

~21!nS 1/4@2~112n!211/s2#

3erf@s~112n!#1
112n

2sAp
e2@s~112n!#2D .

The uniform flow conditions characterized by the de
sity distribution~7! and the velocity profile~9! will be set as
the basis for the linear stability analysis developed in
next section.

Before we proceed any further, it is worth noticing th
the density profile given by Eq.~7! comes from the solution
of the Fick’s diffusion equation, obtained by the method
superposition of image sources~Fischeret al.23! for the fol-
lowing case. We consider two superposed miscible flu
whose initially sharp interface is allowed to diffuse for
prescribed timet0* . The two liquid layers have the sam
thicknessH* , are bounded by two rigid walls and are cha
acterized by an initially stepwise density profile with upp
and lower densitiesr1512D, r2511D, respectively.

The diffusion parameters, which appears in the solu
tion, is related to the diffusion timet0* by the relationship

s5
H*

2Akt0*
,

wherek is the molecular diffusivity~'1.431029 m2/s for
the diffusion of salt in water!.

In present theoretical and experimental investigations
choice oft0* ~'7200 s! and, as a consequence, ofs ~'1.5!,
was related to the necessity of maintaining the maxim
density difference close to its initial value 2D, and of satis-
fying the inequalityt0* @tR* , tR* ~'15–80 s! being the du-
ration of a given experiment. The latter requirement, imp
ing that r̄(z,t0* 1tR* )'r̄(z,t0* ), ensures that the diffusion
process weakly affects the density distribution~and conse-
quently the basic flow field! during each experiment. Finally
though the complete solution involves an infinite summati
nevertheless, it usually suffices to retain only a few ter
~n5610 in our case! to obtain a quite good approximatio
of the actual density profile.

B. Linear theory

For a homogeneous fluid, Smyth and Peltier9 applied
Squire’s24 transformation to the linear stability of a stead
nearly parallel viscous shear flow and demonstrated that
fastest growing mode of instability is always two dime
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increases with decreasing Reynolds number, but does so
ficiently fast.

The extension of Squire’s theorem to the case of a str
fied fluid has been first discussed by Yih.25 A detailed analy-
sis for special velocity and temperature profiles has b
carried out by Koppel26 and Gage and Reid18 and, more re-
cently, by Smythet al.8 and Smyth and Peltier.9 In particular,
Smyth and Peltier9 demonstrated that the dominant mode
a stratified parallel shear flow is three dimensional if, a
only if, the growth rate of the fastest growing two
dimensional disturbance increases sufficiently rapidly w
decreasing Reynolds number and/or with increasing Rich
son number. For the density and velocity profiles herein c
sidered, no one of these two conditions is satisfied, since
results of the linear stability analysis developed in the f
lowing indicate that the growth rate of the fastest growi
two-dimensional mode decreases with decreasing Reyn
number and with increasing Richardson number.

Therefore let us analyze the behavior of tw
dimensional, infinitesimal disturbances, such that

@u,w,r,p#5@U~z!,0,r̄~z!,P~z!#

1e@ û~x,z,t !,ŵ~x,z,t !,r̂~x,z,t !,r̂~x,z,t !#,

~11!

with e small ~strictly infinitesimal! and (û,ŵ,r̂,p̂)5O(1).
Substituting~11! into the differential system~1! and per-

forming linearization leads to a linear differential syste
subjected to homogeneous boundary conditions. A nor
mode analysis can thus be pursued by assuming, due to
steady and nearly parallel character of the basic flow, th

~ û,ŵ,p̂,r̂ !5@ û0~z!,f~z!,p̂0~z!,r̂0~z!#eia~x2ct!, ~12!

where a is the wave number,c5cr1 ic i is the complex
phase speed, andaci and acr are the growth rate and th
angular frequency of disturbances, respectively. On sub
tuting ~12! into the linearized system and assuming a sm
inclination angle ~i.e., cosu>1!, after some algebra, th
Orr–Sommerfeld equation for a stratified fluid is obtained

f ,zz1fS 2
U ,zz

U2c
2a21

JN2

~U2c!2D
5

1

ia Re~U2c!
~f ,zzzz22a2f ,zz1a4f!, ~13!

where

JN252
1

Fr2
r̄ ,z

r̄
, ~14!

J1/2N denoting the dimensionless Brunt–Va¨isälä frequency
~Drazin and Reid3! and J being defined as the Richardso
number evaluated inz50,

J52
gH*

U0*
2

1

r̄uz50

r̄ ,zuz50

~U ,zuz50!2 5
xgH*

U0*
2 . ~15!

The Taylor–Goldstein equation, governing the stabil
of an inviscid fluid, is easily recovered from~13! in the limit
of Re tending to infinity.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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The Orr–Sommerfeld equation, associated to the bou
ary conditions

fuz5615f ,zuz56150, ~16!

gives a dispersion relationship that can be formally written

T~a,c,J,Re!50. ~17!

The problem of evaluating the eigenvalues associated
this relationship has been solved numerically using
method of complete orthonormalization proposed
Davey.27 This is a simple and reliable method that may
used for solving two-point boundary-value problems witho
any restriction on the size of parameters such as the R
nolds number.

Neutral stability boundaries have been computed in
plane (a,J) at different Reynolds numbers fors51.5 and
are plotted in Fig. 3~a!. Only stationary neutral stability
curves exist sinceacr has been found to be always zero. T
solution of the Taylor–Goldstein equation is recovered as
approaches infinity, predicting an inviscid critical Richar
son numberJc equal to 0.25 at the onset ofK –H instability.
Because of viscosity, high wave numbers are stabilized
critical conditions ~corresponding to the maxima of th
curves at different Re! are shifted toward both smaller wav
numbers and smallerJ, as previously suggested by Thorpe22

FIG. 3. ~a! Theoretical neutral stability curves for different Reynolds nu
bers in the plane (a,J); ~b! the theoretical critical Richardson number at t
onset of K–H instabilityJc plotted versus the Reynolds number.
Downloaded 07 Nov 2006 to 147.162.75.83. Redistribution subject to AIP
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The variation of the critical Richardson numberJc with Re is
displayed in Fig. 3~b!. An appreciable damping with respe
to the inviscid limit 0.25 is evident, even at a moderate
high Reynolds number, and complete stabilization, irresp
tive of J, is attained as Re decreases below 75.

A further effect of viscosity can be recognized in th
range of low wave numbers. The region of instability for
viscous fluid turns out to be significatively enlarged, and
Re.'3000 the neutral stability curves are characterized b
relative maximum atJ>0.128~hereafter referred to asJc1!,
irrespective of Re.

This latter result is clearly displayed in Fig. 4, whe
neutral stability boundaries, plotted in the plane (a Re,J),
exhibit a ‘‘limiting viscous curve’’ with a maximum for
J5Jc1 , from which the inviscid branches of neutral curv
at different Re depart.

The existence of two different mechanisms of instabil
is better understood by analyzing the curves of neutral
bility in the plane (a,Re). Three distinct behaviors can b
recognized, depending on the value ofJ. For 0<J,Jc1 , two
neutral stability curves exist and a viscous mechanism
instability coexists with a K–H type of instability@Fig. 5~a!#.
Two kinds of limits, in fact, are achieved as viscosity va
ishes along the branches of the curves, depending on whe
the inner and outer viscous layers remain well separate
not ~see Drazin and Reid,3 p. 166!. The first class of limits,
which are commonly referred to as inviscid limits, occu
along the upper branches of both the curves of neutral
bility. The second class of limits, which can be referred to
viscous limits, occurs along the lower branches of the t
marginal curves and is expected to be associated t
Tollmien–Schlichting mechanism of instability~Gage19!.
For J equal toJc1 , the lower branches of the two neutr
curves join together when Re exceeds about 3000@Fig. 5~b!#.
Finally, for Jc1,J,Jc , a unique neutral curve exists, whos
upper and lower branches correspond to the upper bran
of the two neutral curves characterizing the previous rang
J. In this case the viscous instability is completely stabiliz
and only K –H instability is expected to arise@Fig. 5~b!#.

FIG. 4. Theoretical neutral stability curves for different Reynolds numb
in the plane (a Re,J).
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Although the different nature of density stratification a
velocity profile herein considered, these results are qua
tively consistent with Gage’s19 theoretical findings. How-
ever, unlike the thermally stratified flows examined
Gage19 it does not exist in the plane (a,Re) a limiting value
of J above which neutral curves close up, bounding a reg
of instability.

In short, numerical calculations of the growth rateaci

suggest thatK –H disturbances ultimately occur. As show
in Fig. 6, in fact, the curve of maximumaci lies in the
region of K –H instability, and for 0,J,Jc1 the growth
rates of low wave number disturbances~i.e., the viscous
mode! are somewhat weaker than those for theK –H modes.

III. EXPERIMENTS

A. Experimental apparatus

A suitably designed experimental apparatus has b
used in order to check the validity of theoretical predictio
discussed in the previous section, concerning the effect
viscosity on the onset of instability in a stratified nearly p
allel flow. As ingeniously conceived by Thorpe,21 the occur-
rence of instability in such a shear flow can be investiga
by tilting a horizontal rectangular tube filled with a stab
stratified fluid mixture ~Thorpe22,28,29!. In present experi-
ments, a perspex tube 377 cm long, 24 cm wide, and 2
60.02 cm deep has been adopted. The tube can be piv

FIG. 5. Theoretical neutral stability curves in the plane (a,Re). ~a! 0,J
,Jc1 ; ~b! J5Jc1 ; ~c! Jc1,J,Jc .
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about its median horizontal axis and, in order to avoid bu
ling, is supported on a C beam and stiffened with four ste
bars.

The choice of the tube height and length is strictly r
lated to the necessity of obtaining a flow field as close
possible to steady flow conditions before instability arises
the surges generating at the ends of the tube reach its m
section. Indeed the numerical solution of system~3! shows
that in the tube herein adopted nearly self-similar veloc
profiles are obtained after a time interval, ranging from ab
15 to 20 s~see Fig. 7!, which is usually lower than both the
onset time of instability and the arrival time of the surg
from the tube ends~the latter ranging from 30 to 80 s for th

FIG. 6. Constant growth rate curves in the plane (a,J) for Re5103 ~a! and
Re5104 ~b!.

FIG. 7. Computed dimensionless velocity profiles at different times.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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adopted values ofDr/r!. Evidently, in such a thin tube uppe
and lower walls significantly influence the growth of distu
bances to finite amplitudes and the transition to turbulen
However, we are concerned with the initiation of unsta
motion close to onset, when the amplitude of disturbance
significantly smaller than the tube thickness and, con
quently, upper and lower walls are likely to not affect t
properties of instability.

The adopted miscible fluids were fresh water and a c
ored brine solution~for which Pr'700!. Four different brine
densities, namelyr51005, 1015, 1025, and 1035 kg/m3,
were used. Following the procedure outlined by Thorpe21 the
tube was filled from the bottom when its longest side w
vertical in order to reduce mixing between the two fluid
When filled, the tube was carefully rotated from the vertic
position until it was horizontal. As the two-fluid system ha
completely settled in the tube, diffusion between brine a
water was allowed for a prescribed timet0* . Typically, t0*
was approximately 2 h, thus implyings'1.5. Such a large
value oft0* was chosen in order to limit as much as possi
the influence of the diffusion process during a given exp
ment and, also, to reduce uncertainties due to diffusion
ing place during the rotation of the tube~Thorpe22!.

At the time t0* the tube was rapidly tilted by a sma
angleu from its horizontal position; the tilting angle range
from 210° to 21.6° and complete tilting was achieved
about 2 s.

The flow pattern in the middle section of the tube~here-
after referred to as the test section! was filmed by a CCD
camera working at a speed of 25 frames per second. A m
inclined at about 45° and placed below the tube ensured
plane view of the flow field. A stopwatch attached to the tu
allowed, through the analysis of recorded images, to re
quite accurately the tube slope to time when tilting the tu
and to evaluate the onset time of instability. The ‘‘ze
time’’ was taken as the time when tilting began, while t
onset time of instability,texp* , was defined such as the insta
at which the unstable mode began to be visible. In orde
reduce the general uncertainties and subjectivity inheren
this texp* evaluation procedure, measurements were perform
by two different individuals and often repeated after a gap
some weeks, with minor differences in the results: maxim
error in texp* was found never to exceed 5%, being anyw
smaller than 1 s.

The question of evaluating both Richardson and R
nolds numbers at the onset of instability deserves some
cussion. Direct measurement of density and velocity profi
is quite a difficult task in the present experiments due to
small tube thickness. The requirement of avoiding, as fa
possible, any artificial disturbance in the flow field wou
suggest the use of nonintrusive measuring techniques. O
other hand, the time scale of the phenomena is not l
enough to allow laser Doppler anemometry measuremen
velocity, but at one fixed point. Therefore, an indirect eva
ation of density and velocity profiles~and consequently o
Richardson and Reynolds numbers! is herein pursued by as
suming that the density distribution in the tube is reasona
described by Eq.~5! and that instantaneous velocity profile
at the test section can be evaluated through numerical
Downloaded 07 Nov 2006 to 147.162.75.83. Redistribution subject to AIP
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gration of Eqs.~3!. The correspondence between compu
and actual profiles was checked in an extensive serie
preliminary runs by analyzing the displacement of a th
vertical line obtained by carefully injecting a small amou
of dye in correspondence with the test section. After tilti
the tube, the line deformed according to the total displa
ment of water, which strongly depends upon actual den
and velocity profiles and, hence, can be profitably used
evaluate the effectiveness of the present approach. Ind
the comparison between computed and measured maxim
displacement of the tracer at different times appears to
satisfactory, as shown in Fig. 8~a!. Many more difficulties
were met when comparing tracer profiles at different tim
because of the strong refraction effects acting at the diff
interface. Compression and widening of the image just be
and above the interface, respectively, produced a remark
distorted picture of the tracer profile. A correction of r
corded tracer profiles based on the deformation of a ru
located behind the diffuse interface was adopted~see
Mowbray30!. The agreement between observed and co
puted tracer profiles shown in Fig. 8~b! appears to be satis
factory.

The above findings suggest that both Reynolds and
chardson numbers can be confidently estimated on the b
of computed values of density and velocity. The influence
possible errors intexp* on J and Re values was estimate
assuming a 5% error intexp* , as previously reported~Fig. 9!.
According to numerical calculations, a 4.5% error in Re a
a 8.5% error inJ are expected at the most, i.e., when ins

FIG. 8. ~a! A comparison between measured and computed maximum tr
longitudinal displacement;~b! a comparison between measured and co
puted tracer profiles atu523°. HereDr/r50.025.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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bilities are being observed at abouttexp* 510 s; these errors
decrease quite rapidly astexp* increases.

Figure 10 shows the typical time evolution, during
given run, of Reynolds and Richardson numbers, and of
critical Richardson number for the onset of instabilityJc

predicted by the linear stability analysis developed in S
II B. The plot allows us to determine the timetc* at whichJ
equalsJc ; shortly aftertc* some disturbances are expected
grow, provided that flow unsteadiness effects can be
glected, as will be discussed in the next section.

B. Experimental results

As stated in Sec. III A, about 15–20 s after tilting th
tube velocity profiles become nearly self-similar. Furth
more, shortly aftert* 5tc* the rate of change of the accele
ating flowU ,t /U has been found to be much smaller than
growth rateaci of disturbances, thus suggesting that the q
sisteady approximation~Thorpe22! can be assumed. In othe
words, the growth rate of an unstable disturbance at a g
time is supposed to be the same as for a steady flow, c
acterized by the same distribution of density and velocity
the accelerating flow at that instant in time. On the basis
this assumption present experimental results are comp
with the theoretical findings discussed in Sec. II B conce
ing uniform flow conditions.

FIG. 9. Errors in Reynolds and Richardson numbers for a 5% error intexp* .

FIG. 10. The evolution of Re(t), J(t), Jc(t) in a given run. HereDr/r
50.015; u523.5°.
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The 37 experimental runs carried out are grouped in
following classes:
runs in which no instability were detected~hereafter referred
to as STBL!;
runs in which long waves were observed to grow sligh
before the onset of shorter Kelvin–Helmholtz waves~here-
after referred to as LW-KH!;
runs in which only a Kelvin–Helmholtz instability develope
~hereafter referred to as KH!.

Before discussing experimental results, a qualitative
scription of the evolution of the observed instabilities
given in Fig. 11. In LW-KH experiments, a few seconds af
tilting the tube, long, stationary, two-dimensional waves ge
erated ~frame B! with a characteristic wavelengthlL* of
about 14 cm (lL* /H* ; ‘ ‘12– 16’’). Soon after, a very regu
lar array of shorter two-dimensional and stationary wav
suddenly developed all along the tube~frame C!. These
waves grew almost simultaneously until they rolled
~frames D and E! and, finally, disrupted into turbulenc
~frame F!. Sometimes disruption occurred before comple
rolling, as the wave crests reached the upper wall of the tu
In KH runs only the instability evolution described in frame

FIG. 11. Instabilities developing in the tilted tube. HereDr/r50.015; u
524°. A few seconds after tilting the tube, over the initially unperturb
interface ~A! a small-amplitude long wave appears~B!. Soon after, two-
dimensional shorter waves develop at the interface~C–E! and, finally, dis-
rupt into turbulence~F!. Arrows mark the positions of long wave trough
~frame B! and of short wave troughs~frame C!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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C–F was observed. The wavelength of shorter wavesls*
ranged between 4.3–5.8 cm. Bothls* andlL* did not change
appreciably during the growth; for this reason they we
measured from the recorded images a few moments afte
early stage of the growth of the disturbances. The wave n
ber of short waves was observed to be approximately
same also in the absence of long waves, i.e., in KH runs

The two-dimensional nature of growing disturbanc
typical of the early stage of instability~frames A–D of Fig.
11! has been ascertained analyzing the plane view of the
field reflected by the mirror placed below the tube. Sidew
effects such as those pointed out by previous experime
investigations~Thorpe4! have been observed to occasiona
affect the flow structure only in the advanced stage of bill
growth when the wave amplitude was considerably large

It is also worth pointing out that during the time elaps
between the appearance of the long and the short waves
andJ changed, on average, only about 3% and 6%, resp
tively, thus suggesting that the two instabilities develop
quite similar basic flow fields.

A comprehensive view of the experimental results
shown in Fig. 12, where the observed wave numbera of
both long and short waves are plotted versus the Richard
number. All data lie in the region of instability below th
theoretical neutral stability curve corresponding to the R
nolds number evaluated at the appearance of disturban
Data corresponding to short waves arrange, with accept
scatter, around the line of the maximum growth rate p
dicted by the linear theory, the scatter possibly being rela
to the relatively small number of waves~6–8! used to com-
pute the average wavelength. Points referring to long wa
lie in the region of the (a,J) plane, where, according to th
linear theory, the destabilizing action enhanced by visco

FIG. 12. Experimental data (a,J) observed at the onset of instability com
pared with the theoretical neutral stability curves. Open and full symb
denote short and long wave data, respectively.hj, 500,Re,1000; sd,
1000,Re,20000; nm, Re.2000.
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through the diffusion of momentum is likely to develop,
a'aL'0.5.

It is important to notice that in all KH runs~i.e., in the
absence of long waves! J was greater than the theoretic
critical value predicted fora'aL . This circumstance sug
gests that in these runsJ was such as to inhibit viscous in
stability, as it can be inferred by the following argument. L
us consider Fig. 13, where, on the basis of LW-KH runs,
onset time of long wavestexpL* is plotted against the onse
time of short wavestexp* . A fairly good linear correlation was
empirically derived, yieldingtexpL* >0.89texp* (R250.991).
This correlation allows us to estimate the timet̂ L* at which
long waves would have had to appear in KH runs and,
cordingly, to calculate the related Re(t̂L* ) and J( t̂ L* ). The
points specified byJ( t̂ L* ), Re(t̂L* ), and âL'0.5 ~i.e., by as-
suming that the wave number would have fallen within t
range typically selected by the observed long waves! all lie
outside the instability region.

Although theoretical conditions for both amplificatio
and damping of viscous modes of instability appear to
satisfied, nevertheless, the occurrence of long waves prio
the formation ofK –H waves is an unexpected result th
cannot be fully understood in the light of the stability ana
sis herein performed. Linear theory, in fact, shows th
shorter waves witha'1.5 are characterized by the highe
growth rate, thus suggesting that this wave number is the
selected by the instability mechanism during experimen
Equally surprising is the sharply defined preferred wa
length exhibited by the long waves (aL'0.5), whereas the
growth rate curves shown in Fig. 6 indicate no such pref
ence. The tube was then disassembled and accura
checked, but no sources of noise able to bias instability
favor of longer wavelengths was found.

Figure 12 also shows the experimental values of Re
J achieved at the end of STBL runs, which were carried
in order to verify theoretical conditions for the decaying
disturbances. In these experiments small tilting angles w
adopted such thatJ never decreased below the theoretic
critical value Jc ; also, numerical calculation showed th
acceleration rapidly became negligibly small. As expect
stable conditions were always observed to persist until
end of each run~i.e., when the surges penetrating from t
ends of the tube reached the test section!. The fact that in all
STBL experiments, shortly after tilting the tube,J decreased

ls

FIG. 13. The onset time of the observed long wavestexpL* plotted against the
onset time of Kelvin–Helmholtz instabilitytexp* .
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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below the inviscid limit 0.25 confirms the stabilizing actio
of viscosity discussed in Sec. II B.

A comparison between experimental and theoret
critical conditions also pointed out that in many runsJexp

5J(texp* ) was significantly smaller thanJc . This is recovered
in Fig. 14, where, for different values ofDr/r, trajectories
corresponding to the time evolution of the basic flow duri
a given run are plotted in the plane (Re,J) along with the
neutral curveJc(Re) and the experimental critical poin
(Reexp, Jexp) @with Reexp5Re(texp* )#. The above discrepanc
can be ascribed to the flow unsteadiness. In Fig. 15 the r
of the experimental to the theoretical critical Richards
numberJexp/Jc is plotted versus the dimensionless accele
tion a5(H* /U0*

2)dU0* /dt* . It clearly appears thatJexp/Jc

decreases as acceleration increases and approaches un
acceleration tends to zero.

In order to elucidate the stabilizing effect of accele
tion, an additional set of experiments was performed.
these experiments, hereafter referred to as STD, the tube
tilted twice during each run such as to obtain nearly unifo
flow conditions. Namely, the tube was initially tilted at a
angleu and the flow was allowed to develop until an almo
self-similar velocity profile established with a selected va
Us* of the reference velocity~the related Reynolds and R
chardson numbers being denoted with Res and Js , respec-
tively!. At this time, the tube was rapidly tilted back at th
angleus,u, related toUs* through Eq.~10!. Since the tilting

FIG. 14. Trajectories corresponding to the time evolution of the experim
tal basic flow plotted in the (Re,J) plane for differentDr/r along with the
theoretical neutral curveJc(Re) and the experimental critical point
(Reexp, Jexp) denoted with open circles.

FIG. 15. Ratio of the experimental to the theoretical critical Richard
numbersJexp/Jc plotted against dimensionless accelerationa.
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ewas not instantaneous and as a consequence of fluid ine
the chosen uniform conditions were achieved after a time
in which acceleration rapidly decayed to zero. An example
the behavior of Reynolds and Richardson numbers durin
run and time evolution of velocity profiles are plotted in Fi
16.

The outlined procedure allowed to ‘‘freeze’’ the flow
when the Richardson numberJs lied betweenJc(Re) and the
critical valueJexp(Reexp) found in previous experiments af
fected by acceleration~see Fig. 14!. All values ofJs experi-
mentally reproduced and the related values ofus ~u andDr/r
always being equal to23.5° and 0.015, respectively! are
shown in Fig. 17, whereJ is plotted as a function of time fo
the different experimental conditions. Notice that in the
experiments it has been possible to achieve values ofJ very
close to the theoretical critical valueJc ~namelyJs50.978
•Jc for us522.50° andJs50.994•Jc for us522.48°!. As
theoretically predicted,K –H instability was found to arise in
all runs shortly after the tube was tilted back atus . Also,

-

n

FIG. 16. The time evolution of Reynolds~a! and Richardson~b! numbers
and dimensional velocity profiles at different times~c! in a STD run. Here
Dr/r50.015; u523.5°; us522.6°.
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wave numbers of the observed disturbances were in g
agreement with theoretical critical values located close to
maximum growth rate curves.

Some additional STD runs have also been perform
with u523.5°, Dr/r50.025 such that the Richardso
numberJs was low enough to allow, according to stea
stability analysis, the growth of bothK –H waves (a'1.5)
and disturbances witha'0.5'aL ~Fig. 18!: in all these
runs, long waves were never detected while short wa
were always observed to grow.

This result suggests that acceleration might have a n
negligible role in the selection of early growing wave num
bers ~i.e., in the formation of long waves before Kelvi
Helmholtz waves in LW-KH runs!. In particular, it might be
conjectured that acceleration acts more effectively in sta
lizing higher wave numbers and modifies the shape of n
tral stability curves so that long waves are likely to gro
before K –H waves. As acceleration progressively deca
during a given LW-KH run, the neutral curves tend to a
proach the ones calculated for steady flow conditions le
ing, ultimately, to the prevalence of theK –H mode of insta-
bility experimentally observed in unsteady runs.

IV. CONCLUSIONS

In this work the influence of viscosity on the stability o
a stratified shear flow has been examined both theoretic
and experimentally. The theoretical analysis was focused
the steady velocity profiles that develop in a closed til
tube filled with fresh water and brine. A diffused interfa

FIG. 17. The Richardson number plotted against time for the various b
tilting angles adopted in STD runs withDr/r50.015; u523.5°; us rang-
ing from 22.95° to22.48°.
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density profile has been investigated. The neutral marg
stability curves computed at different Reynolds numb
solving the Orr–Sommerfeld equation have been compa
with the one calculated for an inviscid fluid based on t
Taylor–Goldstein equation. According to theoretical ana
sis, the effects of viscosity for the studied shear flow can
summarized as follows.

~i! The critical Richardson numberJc at the onset of in-
stability decreases with Reynolds number until co
plete stabilization is achieved for Re,75, no matter
how smallJ is. Nevertheless, the reduction ofJc in-
duced by the damping action of viscosity is alrea
appreciable at moderately high Reynolds numb
~e.g., at Re52000 a reduction ofJc by approximately
20% is attained!.

~ii ! At low wave numbers the unstable region expan
toward higher Richardson numbers. A second relat
maximum appears due to viscosity effects when
Reynolds number exceeds approximately the value
3000. This maximum is characterized by a sing
threshold value of the Richardson numberJc1

50.128, above which the weak instability of viscou
origin is completely stabilized.

~iii ! A ‘‘limiting viscous curve’’ can be recognized from
which, eventually, the inviscid branches of neutr
stability curves depart.

~iv! The maximum growth rates of the disturbances
located near the absolute maximum of the invisc
branches, which suggests that aK –H instability will
ultimately occur.

FIG. 18. The Richardson number plotted against time for the various b
tilting angles adopted in STD runs withDr/r50.025; u523.5°; us rang-
ing from 22.75° to22.30°.
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Theoretical findings were confirmed in both weakly a
celerating flow and steady flow experiments. No instabilit
were, in fact, observed to grow whenJ remained above its
theoretical critical value while K–H waves always appea
whenever theoretical unstable conditions were attained. A
the stabilizing effect related to the local flow accelerati
was recognized and, though indirectly, confirmed.

The observed growth of stationary long wavesa
'0.5) some instants before the onset of K–H instabi
(a'1.5) in weakly accelerating flow experiments was
unexpected result, being not predicted nor suggested by
linear theory. On the contrary, in steady flow experime
long waves were never detected, thus suggesting that
unsteadiness might be responsible for the appearance of
waves.
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12W. Tollmien, ‘‘Über die enststehung der turbulenz,’’ Nacht. Ges. Wi
Göttingen, Math.-phys. Kl., 1929; translated as ‘‘The production of turb
lence,’’ Tech. Memor. Nat. Adv. Comm. Aero., Washington, DC, 1931,
609

13K. S. Benjamin, ‘‘The threefold classification of unstable disturbances
flexible surfaces bounding inviscid flows,’’ J. Fluid Mech.16, 436~1963!.

14A. P. Hooper and W. G. C. Boyd, ‘‘Shear-flow instability at the interfa
between two viscous fluids,’’ J. Fluid Mech.128, 507 ~1983!.

15Y. Renardy, ‘‘Instability at the interface between two shearing fluids in
channel,’’ Phys. Fluids28, 3441~1985!.

16S. G. Yiantsios and B. G. Higgins, ‘‘Linear stability of plane Poiseui
flow of two superposed fluids,’’ Phys. Fluids31, 3225~1988!.

17S. A. Maslowe and J. M. Thompson, ‘‘Stability of a stratified free she
layer,’’ Phys. Fluids14, 453 ~1971!.

18K. S. Gage and W. H. Reid, ‘‘The stability of thermally stratified plan
Poiseuille flow,’’ J. Fluid Mech.33, 21 ~1968!.

19K. S. Gage, ‘‘The effect of stable thermal stratification on the stability
viscous parallel flow,’’ J. Fluid Mech.47, 1 ~1971!.

20P. Hazel, ‘‘Numerical studies of the stability of inviscid stratified she
flows,’’ J. Fluid Mech.51, 39 ~1972!.

21S. A. Thorpe, ‘‘A method of producing a shear flow in a stratified fluid
J. Fluid Mech.32, 693 ~1968!.

22S. A. Thorpe, ‘‘Experiments on the instability of stratified shear flow
miscible fluids,’’ J. Fluid Mech.46, 299 ~1971!.

23H. B. Fischer, E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brook
Mixing in Inland and Coastal Waters~Academic, New York, 1979!.

24H. B. Squire, ‘‘On the stability of three-dimensional disturbances of v
cous flow between parallel walls,’’ Proc. R. Soc. London, Ser. A142, 621
~1933!.

25C. S. Yih, ‘‘Stability of two-dimensional parallel flows for three dimen
sional disturbances,’’ Q. Appl. Math.12, 434 ~1955!.

26D. Koppel, ‘‘On the stability of flow of thermally stratified fluid under th
action of gravity,’’ J. Math. Phys.5, 963 ~1964!.

27A. Davey, ‘‘A simple numerical method for solving Orr–Sommerfe
problems,’’ Q. J. Mech. Appl. Math.XXVI , 401 ~1973!.

28S. A. Thorpe, ‘‘Turbulence in stably stratified fluids: a review of labor
tory experiments,’’ Boundary-Layer Meteorol.5, 95 ~1973!.

29S. A. Thorpe, ‘‘Experiments on instability and turbulence in a stratifi
shear flow,’’ J. Fluid Mech.61, 731 ~1973!.

30D. E. Mowbray, ‘‘The use of schlieren and shadowgraph techniques in
study of flow patterns in density stratified liquids,’’ J. Fluid Mech.27, 595
~1967!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp


