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Stability of a stratified viscous shear flow in a tilted tube
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The present investigation is concerned with the effects of viscosity on the stability of a bounded
stratified shear flow with Prandtl numbersPt. Theoretical results obtained from the solution of the
Orr—Sommerfeld equation extended to stratified fluids are compared with experiments performed in
a tilting tube filled with water and brine. Theoretical analysis shows that a complete stabilization of
the flow field with respect to infinitesimal disturbances is attained, irrespective of the Richardson
numberJ, as the Reynolds number Re decreases below 75. This damping action of viscosity is
shown to appreciably reduce the critical Richardson nunibewith respect to the inviscid limit
J.=0.25, even at moderately high Re. On the other hand, the destabilizing action enhanced by
viscosity through the diffusion of momentum leads to a viscous mode of instability that may develop

if J decreases below a threshold value. An extensive series of experiments has been carried out in
a long tilting tube in order to verify theoretical results. The agreement between observations and
theory is quite satisfactory. Kelvin—Helmholtz waves grow whenever theoretical unstable
conditions are attained. The values of measured wavelengths well correspond to maximum growth
rate wave numbers. The comparison between theoretical and experimental results also shows that
acceleration plays a stabilizing action. 99 American Institute of Physics.
[S1070-663(199)00502-4

I. INTRODUCTION amplitude waves that generate at the interface and propagate

) . horizontally at the same speed but in opposite directions,
Considerable effort has been devoted during the last Se\fhducing quite a small mixingHolmboe® Browand and

eral.decades to .study the 's'.[ability'of.strgtified shear flqus. IrWang? Browand and Winant, Smyth et al,® Smyth and
partlcglar, the linear s'gablllty of inviscid, stably stratified, Peltier? Lawrenceet al,’ and Baines and Mitsuder.
Bouss_lnesq sh_ear flow is now fairly We.” understood_b_oth for Up to now much less is known about the stability of
stepwise density profiles and for continuously stratified qu-fI in which both vi . db besides i .
s ows in which bo wscgsﬁy and buoyancy, besides !nertla
o - . . .. forces, are important. It is known since Tollmtérthat vis-

The inviscid linear stability analysis of a generic velocity A - : -
profile leads to the well-known Taylor—Goldstein equationCOSIty may play a non-negligible role in the stability of ho-
(Miles! and Drazin and Howad, which provides some gen- MO9€neous parallel flows, since it dissipates energy of any
eral stability criteriasee Drazin and Rell The best known disturbance and, therefore, is expected to stabilize the flc_)w
is probably the Miles—Howard theorem, which states that /N€n @ low enough value of the Reynolds number is
sufficient condition for an inviscid stratified flow to be stable 2chieved. On the other hand, a more complicated effect is
is that the local Richardson number exceeds 0.25 throughotgated to the diffusion of momentum induced by viscosity
the flow. Several mathematical and numerical studies of varith@t can_ lead to a conditionally destabilizing action
ous density and velocity profiles have shown the existence cﬁBe”_J"?‘m"ﬁ- Such a behavior is likely to be expected also in
two basic physical mechanisms by which instability of aStratified shear flows. .
stratified fluid may be driven. The first one is the Kelvin—  The linear stability analysis developed by Hooper and
Helmholtz (K—H) instability, which may arise at the inter- Boyd™ for the unbounded plane Couette flow of two fluids
face of two superposed layers of statically stable fluids flow-Of different density and viscosity suggests that for a given
ing with different velocities. This kind of instabilitffor an ~ value of the density ratio and in the short-wavelength limit
extensive review see Thorhewhich occurs provided that an infinitesimal disturbance may amplify, decrease, or re-
the local Richardson number of the flow falls below a criticalmain unchanged depending on the viscosity ratio. In particu-
value, is characterized by the growth of an initial disturbancdar, if the two fluids have the same viscosity and the surface
to form a remarkably regular array of stationary billows with tension at the interface is negligible, the flow results to be
local mixing, and little or no propagation. The secondneutrally stable with respect to small short disturbances, ir-
mechanism of instability may arise provided that the densityespective of the density ratio. The analysis has been ex-
varies over a much smaller vertical scale than the velocity stended to all wave numbers and to the case of a bounded
that the density interface is embedded within the shear layeplane Couette flow by Renardy,who showed that even a
This type of instability, usually called Holmbdgl) instabil-  statically unstable stratification can be stabilized by a suit-
ity, is characterized by the formation of two trains of finite- able arrangement of the viscous layers.
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Yantsios and Higgin§ studied numerically the linear 2 T 8
stability of a plane Poiseuille flow of two superposed fluids Tr !
of different viscosity and density. They found that depending 2 H* a4y Xy é ue
on the density ratio, the viscosity ratio, and the ratio between ' :Tp@%\

the thickness of the layers, two different modes of instability
may arise. At small Reynolds numbers the flow may be un- FIG. 1. Notations.
stable to an “interfacial mode’{namely an instability mode
that is enhanced by the presence of an intejfagbereas, if
the Reynolds number is sufficiently large, the flow can also
be unstable to a shear mode of the Tollmien—Schlichtin ) .
type. Although the latter result has been obtained by assum-umenc"?lI values are different. . : .
ing equal densities in the two layers and neglecting the ef- In this paper we focus our attention on flows in which

fects of both gravity and interfacial tension, a shear modethe diffusion can be assumed to be negligible with respect to

instability is likely to be expected also in a stratified flow V'SCOS't.y’ so that ngl'. In particular, we '”V‘?St'gate both
driven by gravity. theorgucally and le.xperlmentally the role of viscosity on th
Similar results are suggested by the linear stabilityf]ftg!'tg OJ|?nStr?;:2edr?zusnmdzﬁ;ﬁrilg Izzearrei(t)a\:\(qthzli;rotn%é
analysis of thermally stratified shear flows with Prandtl num- y titing ug ) 9 9 gufar tube,
closed at the ends and filled with two layers of miscible

ber Pr close or equal to 1. Maslowe and Thomp$édimves- . )
! . . . o . fluids (namely clear and salt wajethat are allowed to dif-
tigated numerically the stability of the laminar mixing region fuse before tilting the tube. The paper is organized as fol-

between two uniform unbounded streams. In particular, the

solved the linear sixth-order equation, which can be denve()j(ows' Section I_I IS d_evoted to the ma_\thematlcal_formulatlon
. . : of the problem: basic flow relationships are derived and the
for the disturbance amplitude function when the effect of ~ " . - . .
main features of the linear stability analysis are discussed.

both viscosity and heat conduction are accounted for. Th ) .
y Feutral marginal stability curves and growth rate curves, ob-

resulting neutral stability curves suggest that the effects of . . 4 .
viscosity and heat conduction do not greatly influence thea'ned by solving nt_1r_nenca]|y the Orr—Sommerfeld equation
stability of such a kind of flows. Nevertheless, these effectsexu.anded to a stratlfleq fluid, are shown. In Sec. l.“ the ex-
are found to be of primary importance within the critical pelr |mentaclj.apparagus 'Z descrlbedd a”.dh‘h: expgnrpfgn;ql re-
layer for neutral and nearly neutral disturbances, and ma}sgl.J ts”are Iscusse q an c(j:ompare wit It goretlca INdings.
lead to a significant distortion of the streamline pattern as the inally, Sec. IV is devoted to some conclusions.
wave numbelw decreases.

On the other hand, a significant modification of the mar-
ginal stability curve is likely to be expected, due to viscosityll. FORMULATION OF THE PROBLEM
effects, if the flow field is bounded by fixed surfaces. Gag
and Reid® showed that the stability of thermally stratified
plane Poiseduille flow is governed by three nondimensional Let us consider the two-dimensiong2-D) stratified
parameters, namely, the Rayleigh number Ra, the Reynoldhear flow that arises when a long horizontal prismatic tube,
number Re, and the Richardson number Ri. They found thaglosed at the ends, is suddenly tilted at an argyktarting
for Pr=1 and Ra-1 (i.e., when the density difference is from rest(see Fig. 1 The change in density across the shear
destabilizing two kinds of instability are possible. The first layer is assumed to be small enough for the usual Boussinesq
one is purely thermal in origin, arises at a value of the Ray-approximation to hold. Moreover, it is assumed that diffu-
leigh number that is independent of the shear and leads 0N is negligibly small when compared with viscositye.,
steady convection in the form of longitudinal rolls whose Pr>1). Therefore, the dimensionless governing equations
axes are in the direction of the mean flow. The second one igan be written as
of the Tollmien—Schlichting type. A sharp transition be- 1 p sin 6
tween the two modes is expected to occur at a small negative u+uu,+wu,=—p + == (U, +U ;) — e
value of the Richardson number (Ri- 10 %); the small- Re
ness of this value emphasizes the dominant role of thermal 1 p cosd
instability for negative values of Ri. When the Richardson =~ W UW,+WW,==p,+ oo (Wt W20 = —Fp—,
number is zero, the neutral stability curve shows that a criti- 1)
cal value of the Reynolds number exists below which the u,+w =0,
flow is always stable. This critical value of Re increases as
the Richardson number increases. However, the theory pre-
dicts that above R+ 0.0544 the flow will be stable to small wherex,zare the longitudinal and the normal coordinates,
disturbances no matter how large is Re. Also, with any Ri-denotes timeu andw are the velocity components in the
chardson within the interval 0—0.0544 at large values of Reaxial and normal directiorp is the pressure is the density,
the instability is confined to a quite narrow range of wave@ is the angle between the longitudinal axis and the horizon-
numbers. tal direction, and Re and Fr are the Reynolds and Froude

Gagé® has extended the analysis to a velocity profilenumbers, respectively. The variables have been made dimen-
with an inflection point(i.e., Grohne’s profileshowing that  sionless in the form

he above picture does not qualitatively change, although the

€A. Formulation of the problem and basic flow

pitupxtwp,=0,
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(X*,Z*) (U*,v*,W*) t*'Ug 1
(X,Z):H—*, (U,U,W): Ua a t: H* 1 zZ (a)
p* p* USH* US (2)
P=—rw2 P=% Re=s ,  Fr= :
PoYo Po v VgH* o

where, denoting with a *” superscript dimensional quanti-
ties, v is the kinematic viscosity of the fluid, assumed con-
stant,g is the gravitational acceleratiopg is the mean den-
sity, andH* andUj are, respectively, half the depth of the
tube and a reference velocity, which will be specified in the .
following. The choice ofH* as the characteristic length 0.99 1.00 p 101
scale is strictly related to the form of velocity and density
profiles herein considered, which, as it will emerge later on, 1
both vary on half the depth of the tube. z
In the following the parallel flow approximation is as-
sumed to be valid and the dimensionless density profile is
written asp(z) =1— xB(z), with x defined so thap ,|,—o
=1. The basic flow equations then read as 01

U ——p 1 U sinfd xsiné _

=Pyt R_e 2z Fr2 + 2 B(2);

b= cos¢9+ X cosé 3)
TR TR PP 1 -

Equation(3b) states thaP , does not depend ox as a 03 00 vl
consequenceP does not depend om and the quantity FIG. 2. Examples of the investigated dengiy and velocity(b) profiles.
£o=(—P—sin 6IF) on the right side of Eq(3a is, at
most, a function of time.

Boundary conditions to be associated with E@.ex-

press the physical requirement of no slip at the walls and\’/vhereA and o are given constants and erf() is the error

since the ends of the tube are closed, the requirement of inction. As discussed at the end of the present section and,
net flux across any plane normal to the flume, . . : . . .
more widely, in Sec. lll, the choice of this particular density
U(z,t)],-»1,=0; J' U(z,t)dz=0. 4) profile is related to the experlmental conditions realized in
: -1 order to check present theoretical results.
The equationg6) are thereby written in the form

+ oo

p(2)=1-A Z (-1)"-erfa(z+2n)], )

If B(z) is an antisymmetric functiorinamely B(z)

= — B(—2)], then condition(4b) implies 1 A sing "=t
- Ui=oU o+ ——m— > (—1)"erfa(z+2n)],
sin ¢ T Re Fr .
U(z,t)=—-U(=-zt); U(O)=0; §0=—Px=Fz =0, ®
(5) cosf A cose":i“’( - erf (24 2]
=t — —1)" erfa(z+2n)].
and the basic flow equatior{8) reduce to 2 Fré Frf <. 7
1 X sin 6 Even though the solution of the systéB) coupled with

UimgeVat g2 B(2); (4) could, in principle, be obtained in terms of the Laplace

transform of the velocityThorp&®23, a finite difference nu-
cosf x cosé . .
P,=——+"—u— B(2). (6) merical approach has been adopted in order to evaluate the
' Fré Fre unsteady flow field characteristics. On the other hand, when
The present investigations are concerned with the folconsidering steady flow conditiorise., U ;= 0), the follow-
lowing density profilg[Fig. 2(a)]: ing velocity profile is readily obtainefFig. 2(b)]:

z+2n

o\

S (- 1)”[ 1/42(z+2n)%+ 1lo?]erfo(z+2n)]+ g lozranlPy glz]

U(z)= ; (€)

e—(Zn(r)z

O’\/; +§1

E,T_xw(—l)“( 2n-erf(2no) +
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where the reference velocity, defined so that|,_o=1 sional, except in the instance that its growth rate not only
(HazeP?), is increases with decreasing Reynolds number, but does so suf-
w2 oo ficiently fast.
U* _9 A sin @ E (—1)n The extension of Squire’s theorem to the case of a strati-
o NS fied fluid has been first discussed by YA detailed analy-
sis for special velocity and temperature profiles has been
(10 carried out by Koppéf and Gage and Reltiand, more re-
cently, by Smyttet al® and Smyth and Peltié€rln particular,
Smyth and Pelti€rdemonstrated that the dominant mode of
a stratified parallel shear flow is three dimensional if, and
only if, the growth rate of the fastest growing two-
&= (—1)”( 14 2(1+2n)%+ /0] dimensional disturbance increases sufficiently rapidly with
n=-= decreasing Reynolds number and/or with increasing Richard-
1421 son number. For the density and velocity profiles herein con-
xerfo(1+2n)]+ e—[o(1+2n)]2) ) sidered, no one of these two conditions is satisfied, since the
20\ results of the linear stability analysis developed in the fol-
lowing indicate that the growth rate of the fastest growing

The uniform flow conditions characterized by the den—t di onal de d ith d iq R Id
sity distribution(7) and the velocity profilé9) will be setas | vo-dimensional mode decreases with decreasing Reynolds
number and with increasing Richardson number.

Lheextb::clfi;r?_r the linear stability analysis developed in the- The_refore_ I_eF us an_alyze the behavior of two-
Before we proceed any further, it is worth noticing thatdlmen5|onal, infinitesimal disturbances, such that

the density profile given by Eq7) comes from the solution [u,w,p,p]=[U(2),0,0(2),P(z)]

of the Fick’s diffusion equation, obtained by the method of

superposition of image sourcéSischeret al?®) for the fol-

lowing case. We consider two superposed miscible fluids 1y

whose initially sharp interface is allowed to diffuse for a ... e small (strictly infinitesima) and @,W,p,p)=0(1).

: T -
phr_eicrlbed *tlme¢0 - The two liquid _'?yefs ”have the sarr]ne Substituting(11) into the differential systernil) and per-

thic r_lessH , are k_J(_)unded by_two ”g'd. watls gnd are char t5rming linearization leads to a linear differential system
acterized by an |_n|t|aIIy stepwise density proflle_ with uPpersubjected to homogeneous boundary conditions. A normal
and lower densitiep,=1—A, p,=1+A, respectively. mode analysis can thus be pursued by assuming, due to the

. T'he diffusion parametg&, V\_’hicf appears in .the splu- steady and nearly parallel character of the basic flow, that
tion, is related to the diffusion timej by the relationship T . A A _
(0,W,,9)=[00(2), $(2),Po(2) . Po(2)]€**"Y, (12

e—(20'r‘|)2

+&

X(Zn-erf(Zcrn)+
o\

and

+ oo

+ e[ 0(x,2,t),W(x,z,1),p(X,2,1),p(X,Z,1)],

*
o= A , where « is the wave numberc=c,+ic; is the complex
ZW phase speed, andc; and ac, are the growth rate and the
where « is the molecular diffusivity(~1.4x 10~° m¥s for angular frequency of disturbances, respectively. On substi-
the diffusion of salt in water tuting (12) into the linearized system and assuming a small

In present theoretical and experimental investigations thdclination angle (i.e., cosg=1), after some algebra, the
choice of ¥ (~7200 § and, as a consequence,®{~1.5), Orr—Sommerfeld equation for a stratified fluid is obtained,

was related to the necessity of maintaining the maximum U,, JN?

density difference close to its initial value\2and of satis- b2t~ o+ U=0?

fying the inequalityrg >, 7 (=15-80 $ being the du-

ration of a given experiment. The latter requirement, imply- _ 1 2 4

ing that p(z, 75 + 7R)~p(z,75), ensures that the diffusion “ila RgU—c) (b2227-20°¢ 2, "), (13
process weakly affects the density distributi@nd conse-

quently the basic flow fieldduring each experiment. Finally, where

though the complete solution involves an infinite summation, 1p,

nevertheless, it usually suffices to retain only a few terms INT=— Fr2 7 (14
(n==10 in our casgto obtain a quite good approximation 2 i ) i e

of the actual density profile. J¥“N denoting the dimensionless Brunt-i¥da frequency

(Drazin and Reid) and J being defined as the Richardson
number evaluated in=0,

B. Linear theory gH* 1 p 0 xgH*

J=- 27 %2 -
For a homogeneous fluid, Smyth and Peftiapplied Ug* plz=o (Udlz=0)®  Ug
Squire’$* transformation to the linear stability of a steady The Taylor—Goldstein equation, governing the stability
nearly parallel viscous shear flow and demonstrated that thef an inviscid fluid, is easily recovered frofh3) in the limit
fastest growing mode of instability is always two dimen- of Re tending to infinity.

(15
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0.0 T T T T - & e s S
0.0 0.5 1.0 15 20 o 25
0.0+ v T T MRARAL | T LR | T MRESAL | LI
2 103 104 1053 106 oRe
0‘25_ _____________________________________________ 10 0
Je (b) FIG. 4. Theoretical neutral stability curves for different Reynolds numbers
020- in the plane & Re,J).
0.157 The variation of the critical Richardson numkkrwith Re is
i displayed in Fig. &). An appreciable damping with respect
0.10 to the inviscid limit 0.25 is evident, even at a moderately
high Reynolds number, and complete stabilization, irrespec-
o054 B tive of J, is attained as Re decreases below 75.
A further effect of viscosity can be recognized in the
00 , : : ey range of low wave numbers. The region of instability for a
o' 10* 10* 10* 10° 10 6R 107 viscous fluid turns out to be significatively enlarged, and for
€

FIG. 3. (a) Theoretical neutral stability curves for different Reynolds num-
bers in the planed,J); (b) the theoretical critical Richardson number at the

Re>=~3000 the neutral stability curves are characterized by a
relative maximum af=0.128(hereafter referred to ak,),
irrespective of Re.

onset of K—H instabilityJ plotted versus the Reynolds number. This latter result is clearly displayed in Fig. 4, where

neutral stability boundaries, plotted in the plane Re,J),
exhibit a “limiting viscous curve” with a maximum for
The Orr—Sommerfeld equation, associated to the bound?=Jc1, from which the inviscid branches of neutral curves
ary conditions at different Re depart.
The existence of two different mechanisms of instability
Ple=21= ¢ ole=1=0, (16) is better understood by analyzing the curves of neutral sta-
gives a dispersion relationship that can be formally written adility in the plane @,Re). Three distinct behaviors can be
recognized, depending on the valuelofor 0<J<J;;, two
H(a,c,J,Re=0. 17 neut?al stabilityp curvegs exist and a viscous mechanism of
The problem of evaluating the eigenvalues associated witistability coexists with a K—H type of instabilifyFig. 5(a)].
this relationship has been solved numerically using thelwo kinds of limits, in fact, are achieved as viscosity van-
method of complete orthonormalization proposed byishes along the branches of the curves, depending on whether
Davey?’ This is a simple and reliable method that may bethe inner and outer viscous layers remain well separated or
used for solving two-point boundary-value problems withoutnot (see Drazin and Reitip. 166. The first class of limits,
any restriction on the size of parameters such as the Rewhich are commonly referred to as inviscid limits, occurs
nolds number. along the upper branches of both the curves of neutral sta-
Neutral stability boundaries have been computed in théility. The second class of limits, which can be referred to as
plane (,J) at different Reynolds numbers fer=1.5 and  viscous limits, occurs along the lower branches of the two
are plotted in Fig. ). Only stationary neutral stability marginal curves and is expected to be associated to a
curves exist sincec, has been found to be always zero. The Tollmien—Schlichting mechanism of instabilityGage?®).
solution of the Taylor—Goldstein equation is recovered as R&or J equal toJ;;, the lower branches of the two neutral
approaches infinity, predicting an inviscid critical Richard- curves join together when Re exceeds about 36@f 5b)].
son numbed,. equal to 0.25 at the onset Kf—H instability.  Finally, for J;;<J<J., a unique neutral curve exists, whose
Because of viscosity, high wave numbers are stabilized andpper and lower branches correspond to the upper branches
critical conditions (corresponding to the maxima of the of the two neutral curves characterizing the previous range of
curves at different Reare shifted toward both smaller wave J. In this case the viscous instability is completely stabilized
numbers and smallek as previously suggested by Thofe. and only K—H instability is expected to arisgFig. 5b)].
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1072 1=015 000 AL L ?
3 0.0 0.5 1.0 15 20 o 25
3
10 .
0 © FIG. 6. Constant growth rate curves in the plane)) for Re=1C® (a) and
107 : r - —> Re=10" (b).
102 10°? i0 4 105 Re 10

FIG. 5. Theoretical neutral stability curves in the plargRe). (a) 0<J

<dupt () d=dg: (©) ey =, . about its median horizontal axis and, in order to avoid buck-

ling, is supported o a C beam and stiffened with four steel
bars.

Although the different nature of density stratification and ~ The choice of the tube height and length is strictly re-
velocity profile herein considered, these results are qualitaated to the necessity of obtaining a flow field as close as
tively consistent with Gage'8 theoretical findings. How- Possible to steady flow conditions before instability arises or
ever, unlike the thermally stratified flows examined bythe surges generating at the ends of the tube reach its middle
Gagé? it does not exist in the planex(Re) a limiting value ~ Section. Indeed the numerical solution of systt8nshows
of J above which neutral curves close up, bounding a regiofhat in the tube herein adopted nearly self-similar velocity
of instability. profiles are obtained after a time interval, ranging from about
In Short, numerical calculations of the growth ratei 15to 20 S(See F|g 7, which is USUa”y lower than both the
suggest thakK—H disturbances ultimately occur. As shown onset time of instability and the arrival time of the surges
in Fig. 6, in fact, the curve of maximumac; lies in the  from the tube endéthe latter ranging from 30 to 80 s for the
region of K—H instability, and for 6<J<J.; the growth
rates of low wave number disturbancés., the viscous

0.0 02 0.4 U@z 06
mode are somewhat weaker than those for kheH modes. 1.0 . 1 : L .
z 1=2"
I1l. EXPERIMENTS t=4"
0.8 — 1=10"
A. Experimental apparatus i 20"
A suitably designed experimental apparatus has been 0.6 — t=50"
used in order to check the validity of theoretical predictions, i €q. (9)
discussed in the previous section, concerning the effects of
viscosity on the onset of instability in a stratified nearly par- 0.4
allel flow. As ingeniously conceived by Thorpkthe occur- -
rence of instability in such a shear flow can be investigated 02 ]
by tilting a horizontal rectangular tube filled with a stably |
stratified fluid mixture (Thorpé??%2y, In present experi- 0o

ments, a perspex tube 377 cm long, 24 cm wide, and 2.22
+0.02 cm deep has been adopted. The tube can be pivoted FIG. 7. Computed dimensionless velocity profiles at different times.
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tracer 8
profile g/ /

adopted values akp/p). Evidently, in such a thin tube upper 40
and lower walls significantly influence the growth of distur-
bances to finite amplitudes and the transition to turbulence.
However, we are concerned with the initiation of unstable
motion close to onset, when the amplitude of disturbances is
significantly smaller than the tube thickness and, conse- 20
quently, upper and lower walls are likely to not affect the
properties of instability.

The adopted miscible fluids were fresh water and a col-
ored brine solutiorffor which Pr=700). Four different brine 1

distance (cm)
)
<
1

computed
o e measured

densities, namely=1005, 1015, 1025, and 1035 kgim e ——,
were used. Following the procedure outlined by Thétpee o 2 4 6 8 10 12 14
tube was filled from the bottom when its longest side was time (s)

vertical in order to reduce mixing between the two fluids.
When filled, the tube was carefully rotated from the vertical
position until it was horizontal. As the two-fluid system had
completely settled in the tube, diffusion between brine and
water was allowed for a prescribed timg . Typically, 75

was approximately 2 h, thus implying~1.5. Such a large
value of 75 was chosen in order to limit as much as possible
the influence of the diffusion process during a given experi-
ment and, also, to reduce uncertainties due to diffusion tak-
ing place during the rotation of the tul§€horpée?).

At the time 75 the tube was rapidly tilted by a small
angle @ from its horizontal position; the tilting angle ranged
from —10° to —1.6° and complete tilting was achieved in FIG. 8. (a) A comparison between measured and computed maximum tracer
about 2 s. longitudinal displacement(b) a comparison between measured and com-

The flow pattern in the middle section of the tuthere- ~ PUted tracer profiles a1==37. HereAp/p=0.025.
after referred to as the test sectiomas filmed by a CCD
camera working at a speed of 25 frames per second. A mirror
inclined at about 45° and placed below the tube ensured thgration of Egs.(3). The correspondence between computed
plane view of the flow field. A stopwatch attached to the tubeand actual profiles was checked in an extensive series of
allowed, through the analysis of recorded images, to relatpreliminary runs by analyzing the displacement of a thin
quite accurately the tube slope to time when tilting the tubevertical line obtained by carefully injecting a small amount
and to evaluate the onset time of instability. The *“zeroof dye in correspondence with the test section. After tilting
time” was taken as the time when tilting began, while thethe tube, the line deformed according to the total displace-
onset time of instabilityt;fxp, was defined such as the instant ment of water, which strongly depends upon actual density
at which the unstable mode began to be visible. In order t@nd velocity profiles and, hence, can be profitably used to
reduce the general uncertainties and subjectivity inherent tevaluate the effectiveness of the present approach. Indeed,
this tg,, evaluation procedure, measurements were performethe comparison between computed and measured maximum
by two different individuals and often repeated after a gap ofdisplacement of the tracer at different times appears to be
some weeks, with minor differences in the results: maximunsatisfactory, as shown in Fig(&. Many more difficulties
error int;xp was found never to exceed 5%, being anywaywere met when comparing tracer profiles at different times
smaller than 1 s. because of the strong refraction effects acting at the diffuse

The question of evaluating both Richardson and Reyinterface. Compression and widening of the image just below
nolds numbers at the onset of instability deserves some disnd above the interface, respectively, produced a remarkably
cussion. Direct measurement of density and velocity profileglistorted picture of the tracer profile. A correction of re-
is quite a difficult task in the present experiments due to theorded tracer profiles based on the deformation of a ruler
small tube thickness. The requirement of avoiding, as far abocated behind the diffuse interface was adoptege
possible, any artificial disturbance in the flow field would Mowbray*®. The agreement between observed and com-
suggest the use of nonintrusive measuring techniques. On thpaited tracer profiles shown in Fig(l8 appears to be satis-
other hand, the time scale of the phenomena is not lonfactory.
enough to allow laser Doppler anemometry measurements of The above findings suggest that both Reynolds and Ri-
velocity, but at one fixed point. Therefore, an indirect evalu-chardson numbers can be confidently estimated on the basis
ation of density and velocity profile@nd consequently of of computed values of density and velocity. The influence of
Richardson and Reynolds numbkeis herein pursued by as- possible errors irt;‘xp on J and Re values was estimated,
suming that the density distribution in the tube is reasonablyassuming a 5% error ittxp, as previously reporte(Fig. 9.
described by Eq(5) and that instantaneous velocity profiles According to numerical calculations, a 4.5% error in Re and
at the test section can be evaluated through numerical intex 8.5% error inJ are expected at the most, i.e., when insta-

vertical distance (cm)

distance (cm)
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FIG. 9. Errors in Reynolds and Richardson numbers for a 5% errgjn

bilities are being observed at abaiff;=10's; these errors
decrease quite rapidly a§xp increases.
Figure 10 shows the typical time evolution, during a

critical Richardson number for the onset of instability
predicted by the linear stability analysis developed in Sec.
Il B. The plot allows us to determine the tintg at whichJ
equals].; shortly aftert; some disturbances are expected to
grow, provided that flow unsteadiness effects can be ne
glected, as will be discussed in the next section.

B. Experimental results

As stated in Sec. Ill A, about 15-20 s after tilting the T'C- 11. Instabilities developing in the tilted tube. Hexp/p=0.015; ¢
. . e =—4°. A few seconds after tilting the tube, over the initially unperturbed
tube velocity profiles become nearly self-similar. Further-jyierace (a) a small-amplitude long wave appea®). Soon after, two-
more, shortly aftet* =t} the rate of change of the acceler- dimensional shorter waves develop at the interfa@eE) and, finally, dis-
ating fIOWU't/U has been found to be much smaller than therupt into turbulenceF). Arrows mark the positions of long wave troughs
growth rateac; of disturbances, thus suggesting that the qua!f@me B and of short wave troughiérame 0.
sisteady approximatiofifhorp&€? can be assumed. In other
words, the growth rate of an unstable disturbance at a given
time is supposed to be the same as for a steady flow, char- The 37 experimental runs carried out are grouped in the
acterized by the same distribution of density and velocity offollowing classes:
the accelerating flow at that instant in time. On the basis ofuns in which no instability were detectédereafter referred
this assumption present experimental results are comparad as STBL);
with the theoretical findings discussed in Sec. Il B concernruns in which long waves were observed to grow slightly
ing uniform flow conditions. before the onset of shorter Kelvin—Helmholtz wavbsre-
after referred to as LW-KH
runs in which only a Kelvin—Helmholtz instability developed

0.25 1500 (hereafter referred to as KH
] Re— Re .Bfefore discussing gxperimental results, a qualit'a}t?ve Qe-
0.201 T scription of the evolution of the observed instabilities is
; 1000 given in Fig. 11. In LW-KH experiments, a few seconds after
0.151 tilting the tube, long, stationary, two-dimensional waves gen-
erated (frame B with a characteristic wavelengtk] of
0.101 — 500 about 14 cm §[/H*~*“12—-16""). Soon after, a very regu-
.- lar array of shorter two-dimensional and stationary waves
0.05 suddenly developed all along the tulttame Q. These
‘Tc waves grew almost simultaneously until they rolled up
0.00 T y ; T 0 (frames D and E and, finally, disrupted into turbulence

0 10 20 30 40 t*(sec) 60 (frame B. Sometimes disruption occurred before complete

FIG. 10. The evolution of Ré( J(t), J(t) in a given run. HereAp/p  folling, as the wave _Cres'fs_r_eaChed t_he Upper_Wa” Qf the tube.
=0.015; 9= —3.5°. In KH runs only the instability evolution described in frames
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FIG. 13. The onset time of the observed long waifgs; plotted against the

0.17 . . . .
onset time of Kelvin—Helmholtz instability, .

through the diffusion of momentum is likely to develop, at
a~a ~0.5.

It is important to notice that in all KH runé.e., in the
absence of long waves) was greater than the theoretical
critical value predicted fow~« . This circumstance sug-
FIG. 12. Experimental datan{J) observed at the onset of instability com- gests that in these rurbwas such as to inhibit viscous in-
pared with the theoretical neutral stability curves. Open and full symbolsstab”ity' as it can be inferred by the following argument. Let
denote short and long wave data, respectivelfl, 500<Re<1000; O@, us consider Fig. 13, where, on the basis of LW-KH runs, the
1000< Re<20000; A A, Re>2000. . . .

onset time of long waves;,, is plotted against the onset
time of short waves,,. A fairly good linear correlation was

*

empirically derived, yieldingtg,, =0.8%z,, (R?=0.991).

C—F was observed. The wavelength of shorter wangs This correlation allows us to estimate the tirtfe at which
ranged between 4.3-5.8 cm. Both and\} did not change 109 waves would have had to appear in KH runs and, ac-
appreciably during the growth; for this reason they werecordingly, to calculate the related REX and J(t7'). The
measured from the recorded images a few moments after thpoints specified by](f’,f), Re(f’,_‘), anda, ~0.5 (i.e., by as-
early stage of the growth of the disturbances. The wave nunmsuming that the wave number would have fallen within the
ber of short waves was observed to be approximately theange typically selected by the observed long wawaslie
same also in the absence of long waves, i.e., in KH runs. outside the instability region.

The two-dimensional nature of growing disturbances  Although theoretical conditions for both amplification
typical of the early stage of instabilitfframes A—D of Fig. and damping of viscous modes of instability appear to be
11) has been ascertained analyzing the plane view of the flowatisfied, nevertheless, the occurrence of long waves prior to
field reflected by the mirror placed below the tube. Sidewallthe formation ofK—H waves is an unexpected result that
effects such as those pointed out by previous experimentaiannot be fully understood in the light of the stability analy-
investigationgThorpé) have been observed to occasionally sis herein performed. Linear theory, in fact, shows that
affect the flow structure only in the advanced stage of billowshorter waves withe~1.5 are characterized by the highest
growth when the wave amplitude was considerably large. growth rate, thus suggesting that this wave number is the one

It is also worth pointing out that during the time elapsedselected by the instability mechanism during experiments.
between the appearance of the long and the short waves, Bgually surprising is the sharply defined preferred wave-
andJ changed, on average, only about 3% and 6%, respedength exhibited by the long wavesy(~0.5), whereas the
tively, thus suggesting that the two instabilities develop ingrowth rate curves shown in Fig. 6 indicate no such prefer-
quite similar basic flow fields. ence. The tube was then disassembled and accurately

A comprehensive view of the experimental results ischecked, but no sources of noise able to bias instability in
shown in Fig. 12, where the observed wave numbeof  favor of longer wavelengths was found.
both long and short waves are plotted versus the Richardson Figure 12 also shows the experimental values of Re and
number. All data lie in the region of instability below the J achieved at the end of STBL runs, which were carried out
theoretical neutral stability curve corresponding to the Reyin order to verify theoretical conditions for the decaying of
nolds number evaluated at the appearance of disturbancedisturbances. In these experiments small tilting angles were
Data corresponding to short waves arrange, with acceptabkdopted such thal never decreased below the theoretical
scatter, around the line of the maximum growth rate pre<critical value J.; also, numerical calculation showed that
dicted by the linear theory, the scatter possibly being relatedcceleration rapidly became negligibly small. As expected,
to the relatively small number of wavé6—8) used to com- stable conditions were always observed to persist until the
pute the average wavelength. Points referring to long wavesnd of each ruri.e., when the surges penetrating from the
lie in the region of the &,J) plane, where, according to the ends of the tube reached the test segtidine fact that in all
linear theory, the destabilizing action enhanced by viscositysTBL experiments, shortly after tilting the tubkdecreased

0.0
0.0 1.0 2.0 o
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FIG. 14. Trajectories corresponding to the time evolution of the experimen- 025
tal basic flow plotted in the (R&) plane for differentAp/p along with the ’ & |
theoretical neutral curvel(Re) and the experimental critical points J {‘},
(Réup Jexp) denoted with open circles. 53
0.20 - ;
e . . . k/— 8=-2.60°
below the inviscid limit 0.25 confirms the stabilizing action 0.15 | =
of viscosity discussed in Sec. Il B. 5 \\
A comparison between experimental and theoretical A \\\
critical conditions also pointed out that in many rubs, 0.10 1 ;;s‘f S~
fJ(t;X,J) was significantly_ smaller thad,. This is r(.acove_red ,;:): ®)
in Fig. 14, where, for different values &p/p, trajectories 0.05 -3 , . . . .
corresponding to the time evolution of the basic flow during 0 10 20 30 40 50 60 () 80
a given run are plotted in the plane (Rg,along with the
neutral curveJ.(Re) and the experimental critical points 0.0
(Résyp, Jexp) [With Re,=Re?,)]. The above discrepancy z ©
can be ascribed to the flow unsteadiness. In Fig. 15 the ratio o 5 10" 18.3" 25 0o
of the experimental to the theoretical critical Richardson 0541 \ \ \ \
numberJe,,/J is plotted versus the dimensionless accelera- endof/
tion a=(H*/U}%)dUg/dt*. It clearly appears thale,y/J back tilting
decreases as acceleration increases and approaches unity as _j gl |~ NN RN EEE N

acceleration tends to zero.
In order to elucidate the stabilizing effect of accelera-

0 L0 U* (cmys)

353

tion, an additional set of experiments was performed. Irf'G- 16. The time evolution of Reynoldg) and Richardsorib) numbers

these experiments, hereafter referred to as STD, the tube w
tilted twice during each run such as to obtain nearly uniform
flow conditions. Namely, the tube was initially tilted at an

angled and the flow was allowed to develop until an almost

and dimensional velocity profiles at different tim@3} in a STD run. Here
&3/p=0.015; 0= —3.5°; .= —2.6°.

self-similar velocity profile established with a selected valuey s not instantaneous and as a consequence of fluid inertia,
Us of the reference velocitythe related Reynolds and Ri- {he chosen uniform conditions were achieved after a time lag
chardson numbers being denoted with;ad Js, respec- i which acceleration rapidly decayed to zero. An example of
tively). At this time, the tube was rapidly tilted back at the the pehavior of Reynolds and Richardson numbers during a
angled;< 6, related taJg through Eq(10). Since the tilting  ryn and time evolution of velocity profiles are plotted in Fig.

16.
The outlined procedure allowed to “freeze” the flow

Jexpl/:l?:' when the Richardson numbéy lied betweenJ (Re) and the
08 _‘008 critical value Jo,{Re.,) found in previous experiments af-
{ 0° g0, o fected by acceleratiofsee Fig. 14 All values of J¢ experi-
0.6 8oo mentally reproduced and the related value®0f0 andAp/p
7 o oo always being equal to-3.5° and 0.015, respectivelare
041 ° ° shown in Fig. 17, wherd is plotted as a function of time for
02: ° o ° 4 the different experimental conditions. Notice that in these
o experiments it has been possible to achieve valuekvafy
0 . ] . close to the theoretical critical valuk (namelyJs=0.978
0 0.001 0.002 0.003 a

-J. for = —2.50° andJ;=0.994 J, for 6= —2.489). As

FIG. 15. Ratio of the experimental to the theoretical critical Richardsonth€oretically predicted —H instability was found to arise in
numbersl,,,/J. plotted against dimensionless acceleration

all runs shortly after the tube was tilted back &t Also,
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FIG. 18. The Richardson number plotted against time for the various back-
FIG. 17. The Richardson number plotted against time for the various backilting angles adopted in STD runs withp/p=0.025; 6= — 3.5°; 6 rang-

tilting angles adopted in STD runs withp/p=0.015; 6= —3.5°; 6 rang-
ing from —2.95° to —2.48°.

ing from —2.75° to —2.30°.

density profile has been investigated. The neutral marginal
stability curves computed at different Reynolds numbers

wave numbers of the observed disturbances were in googblving the Orr—Sommerfeld equation have been compared
agreement with theoretical critical values located close to thgyith the one calculated for an inviscid fluid based on the

maximum growth rate curves.

Taylor—Goldstein equation. According to theoretical analy-

Some additional STD runs have also been performedgis, the effects of viscosity for the studied shear flow can be
with §=—3.5°, Ap/p=0.025 such that the Richardson symmarized as follows.

numberJg was low enough to allow, according to steady
stability analysis, the growth of boti—H waves @~1.5) .
and disturbances witlh~0.5~qa (Fig. 18: in all these (i)
runs, long waves were never detected while short waves
were always observed to grow.

This result suggests that acceleration might have a non-
negligible role in the selection of early growing wave num-
bers (i.e., in the formation of long waves before Kelvin
Helmholtz waves in LW-KH runjs In particular, it might be
conjectured that acceleration acts more effectively in stabi-
lizing higher wave numbers and modifies the shape of neu(—")
tral stability curves so that long waves are likely to grow
before K—H waves. As acceleration progressively decays
during a given LW-KH run, the neutral curves tend to ap-
proach the ones calculated for steady flow conditions lead-
ing, ultimately, to the prevalence of tile—H mode of insta-
bility experimentally observed in unsteady runs.

(iii )
IV. CONCLUSIONS

In this work the influence of viscosity on the stability of
a stratified shear flow has been examined both theoreticallfiv)
and experimentally. The theoretical analysis was focused on
the steady velocity profiles that develop in a closed tilted
tube filled with fresh water and brine. A diffused interface

The critical Richardson numbdy, at the onset of in-
stability decreases with Reynolds number until com-
plete stabilization is achieved for R§5, no matter
how smallJ is. Nevertheless, the reduction &f in-
duced by the damping action of viscosity is already
appreciable at moderately high Reynolds numbers
(e.g., at Re2000 a reduction of . by approximately
20% is attained

At low wave numbers the unstable region expands
toward higher Richardson numbers. A second relative
maximum appears due to viscosity effects when the
Reynolds number exceeds approximately the value of
3000. This maximum is characterized by a single
threshold value of the Richardson numbdg,
=0.128, above which the weak instability of viscous
origin is completely stabilized.

A “limiting viscous curve” can be recognized from
which, eventually, the inviscid branches of neutral
stability curves depart.

The maximum growth rates of the disturbances are
located near the absolute maximum of the inviscid
branches, which suggests thaKaH instability will
ultimately occur.
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