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A comprehensive study of the post-Last Glacial Maximum (LGM) coastal succession of the northwestern
Adriatic Sea was carried out between Ravenna and Isonzo River, based upon the critical re-examination of pre-
existing literature and the analysis of the large stratigraphic database made available by the recent national
mapping project. With the aid of seven cross-sections transversal to the present shoreline, this study revealed
common stratigraphic features for the NW Adriatic coastal region across the investigated sectors, but also a
peculiar sedimentary evolution for the Romagna and the Venetian-Friulian coastal plains, south and north of

Above the LGM alluvial deposits, the Ravenna and Comacchio coastal plains, as well as the subsurface of
modern Po Delta, display a remarkably homogeneous stratigraphic framework: this includes a transgressive-
regressive depositional cycle of Holocene age, approximately 30 m thick, made up of retrogradational back-
barrier, transgressive shoreline and offshore-transition deposits, overlain by a shallowing-upward succession of
prodelta, delta front, delta plain and alluvial plain sediments. This stratigraphic architecture reflects the land-
ward migration of barrier-lagoon-estuary systems (transgressive systems tract), followed by extensive deltaic and
coastal-plain progradation (highstand systems tract). In contrast, the post-LGM succession of the Venetian-
Friulian Plain is thinner (generally less than 15 m) and consists almost entirely of lagoonal deposits, with only
subordinate nearshore sands. Early transgressive (late Pleistocene) deposits are preserved as lenticular alluvial
deposits, filling either large and deep incisions formed close to the turnaround from lowstand to transgressive
conditions (incised-valley fills - IVF - in the Venetian-Friulian Plain) or smaller-sized topographic depressions

The transgressive surface (TS), corresponding to a stratigraphic discontinuity that encompasses almost in-
variably the Pleistocene-Holocene boundary, is a laterally extensive surface that can be easily tracked across the
study area through core correlation, for a distance of about 250 km. On the interfluves, the TS coincides with a
diagnostic pedogenized and indurated horizon that records a non-depositional hiatus of 7 to 10 ka of duration.
This study documents that the onset of transgressive sedimentation was progressively younger from south to
north, due to the onlapping geometry of the transgressive deposits onto the east-and-south-dipping LGM un-
conformity. This paper also provides, for the first time, a depiction of maximum marine ingression during the
Holocene over the NW Adriatic coast, through detailed mapping of i) the maximum landward migration of the

A reliable understanding of the dynamics that controlled changes in stratigraphic architecture in the study
area should keep into account a number of factors, including allogenic versus autogenic processes. Specifically,
this study shows that a different influence of the isostatic component of sea-level change affected the study area
(Venice versus Friuli) during the Holocene. Similarly to what observed for the Last Interglacial deposits, tectonic
subsidence appears to have exerted a major control on sedimentation in the Po coastal plain during the Ho-
locene, generating additional accommodation space for coastal sedimentation. On the other hand, the peculiar
stratigraphic architecture of the Venetian-Friulian Plain East of the Venice Lagoon, showing an abundance of
lagoonal deposits with negligible sand accumulation, is related to the dramatic reduction in sediment supply that
took place since the onset of deglaciation, in response to the shifting of the Alpine rivers from a fluvio-glacial to a
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Abstract
Chioggia, respectively.
mostly inherited from pre-existing topography (Romagna Plain).
shoreline, and ii) the maximum landward migration of the brackish (lagoonal and marsh) environments.
fluvial regime.
coast.
Introduction

Coastal plains are very sensitive areas that are
greatly exposed to natural hazards. A significant
part of the population commonly lives in coastal
regions. The NW Adriatic coastal area is a parti-
cularly fragile natural environment, where super-

position of natural and anthropogenic processes
of different origin may cause this region to be at
risk from a range of coastal hazards, including
flooding (Bondesan et al., 1995a), salt-water in-
trusion (Antonellini et al., 2008) and subsidence
(Carbognin and Tosi, 2002). In order to mitigate
the effects of subsidence in historical towns and
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cities of the Adriatic coastal area, such as Venice
and Ravenna, several studies have tried to assess
its short-term anthropogenic component, through
identification of vertical movements induced by
natural processes, in the Po Plain (Brunetti et al.,
1998; Carminati et al., 2003; Barends et al., 2005;
Teatini et al., 2005) and in the Venetian Plain
(Fontes and Bortolami, 1973; Bortolami et al.
1977; Bondesan and Simeoni, 1983; Tosi et al.,
2002; Barbieri et al., 2007). A comprehensive re-
view of the Holocene sea-level change along the
coast of Italy has recently been estimated by
Lambeck et al. (2004) from tectonically stable
areas. This database has been significantly im-
plemented from sites located in both uplifting and
subsiding areas (Antonioli et al., 2009).

In order to delineate a realistic scenario of fu-
ture environmental evolution in coastal areas and
to develop adequate plans for coastal manage-
ment and protection, the above issues should
properly be evaluated. In this respect, an in-depth
knowledge of subsurface stratigraphy is of para-
mount importance. Several studies in the last
fourty years have provided a robust general stra-
tigraphic framework for the late Quaternary suc-
cession of the NW Adriatic coastal area. Offshore
research has led to the construction of a detailed
sequence-stratigraphic framework for the post-
Last Glacial Maximum (LGM) succession of the
northern Adriatic area (Trincardi et al., 1994;
Correggiari et al., 1996a; Cattaneo and Trincardi,
1999; Gordini et al., 2003; Correggiari et al.,
2005a, b; Cattaneo et al., 2007; Zecchin et al.,
2008). The most detailed stratigraphic studies
onshore (Rizzini, 1974; Marocco, 1989; 1991a;
Bondesan et al., 1995b, McClennen at al, 1997;
Galassi and Marocco, 1999; Amorosi et al., 1999a;
2003; 2005; 2008; Vincenzi and Stefani, 2005)
have generally been carried out on a local basis.

South of Po Delta, early studies have relied
predominantly upon geomorphological, rather
than sedimentological data (Ciabatti, 1967; 1990;
Veggiani, 1974; 1985; Bondesan, 1985; 1990), and
subsurface stratigraphy has been depicted based
upon scattered data only. In contrast, strati-
graphic research on the Venice lagoon has a fairly
long tradition (e.g. Bonatti, 1968; Gatto and Pre-
viatello, 1974; Bortolami et al., 1977; Alberotanza
et al., 1977). A general stratigraphic framework
for the whole lagoon, however, has been per-
formed only recently (Tosi et al., 2007a; b).

A synthetic, albeit schematic, stratigraphic fra-
mework for the entire north Adriatic coastal area

has been delineated by Bondesan et al. (2001),
who showed the presence of a transgressive-re-
gressive cycle of Holocene age above the LGM
alluvial plain deposits between the Romagna and
Venetian coastal plains, while East of Taglia-
mento River delta only a transgressive sequence
was highlighted. Few studies have also tried to
identify shoreline position at time of maximum
marine ingression for selected portions of the
Adriatic coastal plain (Bondesan et al., 1995a;
2001; Preti, 1999; Stefani and Vincenzi, 2005).

Over the last decade, subsurface investigations
in the NW Adriatic coastal plain have gained in-
creasing attention, owing to the impulse given by
the Geological Mapping Project of Italy to scale
1:50,000 (CARG). A new set of high-quality data
from continuously-cored boreholes and piezocone
penetration tests has provided a wealth of in-
formation on subsurface stratigraphy of this area
(Fig. 1). In the Romagna coastal plain, about one
hundred continuous cores (ten of which > 100 m
long) have been collected by the Geological Sur-
vey of Regione Emilia-Romagna, as part of Sheets
256 (Rimini), 240 (Forli), 241 (Cervia), 223 (Ra-
venna), 205 (Comacchio), 204 (Portomaggiore)
and 187 (Codigoro). In the coastal plain of Veneto
Region, about 20 boreholes, 30-50 deep, and 3
boreholes, 100 m deep, have been realized within
the context of CARG project, as part of Sheets
129 (Chioggia-Malamocco), 128 (Venezia) and
107 (Portogruaro); in addition, about 50 cores
with a length of 30-50 m have been collected in the
framework of the Map of the Geological Units of
the Province of Venice (Bondesan et al., 2009).
The reader is referred to the relevant Geological
Maps, for detailed information on local geology.
The authors of this paper have been deeply in-
volved in these mapping projects and more spe-
cifically in core description and correlation, for
the Emilia-Romagna (AA) and Venetian-Friulian
(AF, SP and AB) areas, respectively.

In this paper, we gathered this high amount of
new stratigraphic data, integrating them with
previous work. The aim of this paper is i) to pro-
vide a comprehensive review of post-LGM strati-
graphy along the Northwestern Adriatic coast,
from the Romagna to the Friulian coastal plain,
based upon detailed facies analysis from cores and
re-examination of pre-existing literature, ii) to
emphasize similarities and differences in strati-
graphic architecture between the various sectors,
and discuss the major controlling factors of post-
LGM stratigraphy. Specific objective of this paper
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Fig. 1 - Location map, showing section traces 1-7 (see Figs. 2-4) and distribution of the continuous cores used in this paper for stratigraphic
and palaeoenvironmental reconstructions (data from Regione Emilia-Romagna, Regione Veneto, Provincia di Venezia boreholes and pre-
vious work). Stratigraphic reconstructions in this paper rely also upon hundreds of piezocone penetration tests, not shown on map.

is the unitary reconstruction, for the first time  Geological Setting
from Romagna to Friuli, of maximum marine in-
gression during the Holocene and its depositional
record, in order to highlight palacoenvironmental
changes in response to changes in sea level, sub-
sidence and sediment supply.

From a geodynamic viewpoint, the Po and Ve-
netian—Friulian plains represent the surface ex-
pression of the Tertiary to Quaternary sedimen-
tary infilling of the subsiding foreland basin re-



‘ File: L:/3b2/RIVISTE /GeoActa,/8400_2008,/041-068_Amorosi2.3d — Pagina: 44

Alessandro Amorosi, Alessandro Fontana, Fabrizio Antonioli, Sandra Primon and Aldino Bondesan

lated to two opposing mountain belts: the South-
ern Alps to the North, and the Northern Apen-
nines to the South (Ricci Lucchi, 1986; Doglioni,
1993; Castellarin et al., 2006). The NW Adriatic
coastal area encompasses the coastal sectors of
the Po and Venetian-Friulian plains. These two
plains, which in many instances are reported un-
der the general term Po Plain (s.L.), experienced
however a significantly different Quaternary evo-
lution. The Po Plain (s.s.) is comprised between
the Apennines and the Adige River, whereas the
Venetian-Friulian Plain is comprised between
Adige River and the Karst Plateau (Fig. 1). Li-
venza River separates the Venetian Plain, to the
West, from the Friulian Plain, to the East (Fig. 1).

The Po Plain

Subsurface geology of the Po Basin has been
largely depicted on the basis of seismic data (Pieri
and Groppi, 1981) and magnetostratigraphic data
(Muttoni et al., 2003; Scardia et al., 2006), and
basin geometry depicted through integration of
seismic studies with well-log interpretations (Ori,
1993; Regione Emilia-Romagna and ENI-AGIP,
1998; Regione Lombardia and Eni-Divisione
Agip, 2000). This has led to subdivision of the
Pliocene-Quaternary succession into a series of
unconformity-bounded stratigraphic units, each
unconformity marking a phase of basin re-orga-
nization with development of denudation surfaces
in marginal areas and increased subsidence in the
depocentres (Regione Emilia-Romagna and ENI-
AGIP, 1998). Basin sediments are progressively
less deformed from bottom to top.

A cyclic alternation of coastal and alluvial de-
posits represents the basic motif of subsurface
stratigraphy in the Po coastal plain (Regione
Emilia-Romagna and ENI-AGIP, 1998; Amorosi
et al., 2004; Molinari et al., 2007). Close to the
basin margin, stratigraphic architecture is domi-
nated by amalgamated alluvial-fan gravel bodies,
passing at distal locations to mud-prone alluvial-
plain deposits. In contrast, the stratigraphic ar-
chitecture in the Romagna coastal plain and in the
subsurface of the modern Po River Delta includes
a distinctive cyclic alternation of coastal and al-
luvial deposits, falling in the Milankovitch (100
ka) band, and vertically stacked, transgressive-
regressive sequences have been recognized
throughout the basin (Amorosi, 2008). Pollen
data have documented a climatic signature of
cyclic sedimentation, showing that shoreline

transgression took place in coincidence of the
onset of interglacial periods, while return to allu-
vial plain conditions was related to climate change
toward glacial conditions (Amorosi et al., 1999b;
2004; Amorosi and Colalongo, 2005).

The Venetian-Friulian Plain

The activity of the northward expanding
Apenninic foredeep has been affecting the
southern sectors of the Venetian Plain since the
Late Miocene, leading to a regional southward
tilting recorded up to the Venice Lagoon and
testified by characteristic thickness variations of
Quaternary deposits. These reach about 2000 m in
the southern part of the Venice Lagoon, and
gradually pinch out eastward (Carminati et al.,
2003). In the Venetian Plain the Alpine front is
buried at the boundary with the Alps, whereas in
the Friulian sector some of the more external
thrusts partly crop out in the middle of the plain,
affecting also the middle Pleistocene and LGM
alluvial sediments (Fantoni et al., 2002).

In the Venetian-Friulian Plain, Pliocene-Qua-
ternary subsurface stratigraphy is still not well in-
vestigated, and only few detailed stratigraphic
studies have been carried out on the sequences
older than the late Pleistocene. Most of the avail-
able information derive from stratigraphic analysis
of well VEO1, which reached the depth of 1000 m,
leading to the reconstruction of the evolution of the
Venice Basin (Miillenders et al., 1996; Kent et al.
2002; Massari et al. 2004). New robust stratigraphic
and palaeoenvironmental information about mid-
dle and late Pleistocene deposits of the Friulian
Plain have been provided by Pini et al. (2009) from
pollen analyses on the 270-m long Azzano core.
Similarly to what reported from the Romagna
coastal plain, vertically stacked trangressive-re-
gressive Pleistocene sequences are recorded within
the long core. These sequences consist of char-
acteristic alternations of shallow-marine to con-
tinental deposits. During the Late Quaternary, the
evolution of the Venetian-Friulian Plain was
strongly influenced by glacial cycles and a general
regressive trend is recognizable (Massari et al.,
2004; Zanferrari et al., 2008; Pini et al., 2009).

Late Quaternary (pre-LGM) stratigraphy of the
NW Adriatic coastal plain

Recent work has shown that a major strati-
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graphic marker that can be recognized throughout
the Po and the Venetian-Friulian coastal plains is
represented by MIS 5.5 deposits: in the Romagna
coastal plain this marker horizon, which forms the
lower part of a transgressive-regressive sequence,
is a wedge-shaped coastal sand body, about 30 m
thick, which can be tracked by borehole correla-
tion at depths of about 100-130 m, up to 30 km
west of the present shoreline (Amorosi et al.,
2004; Bondesan et al., 2006). At this stratigraphic
level, pollen spectra diagnostic of warm-tempe-
rate climate conditions indicate that marine
transgression took place at the onset of an inter-
glacial period (Amorosi et al., 1999b) that can be
correlated with the Last Interglacial, based upon
correlation with reference pollen series (Tzedakis
et al., 1997). Pollen also enables attribution of the
alluvial plain deposits that underlie the MIS 5.5
horizon to glacial period MIS 6 (Amorosi et al.,
1999b). In the Venetian Plain, the sea-level
highstand related to the Last Interglacial (MIS
5.5) favoured the sedimentation of a deltaic-la-
goonal sedimentary wedge, up to 25 km from the
present coastline. These paralic deposits are en-
countered in the subsurface of the Venetian Plain
at depths of 60-110 m, whereas east of Venice they
occur at depths of 40-70 m.

The characteristic geometry of MIS 5.5 horizon,
dipping from NE to SW, suggests that during the
last 125 ka the Po Plain experienced maximum
subsidence (about 1 mm/y) in the study area, while
a decreasing trend is recorded to the NE, with
subsidence rates decreasing to 0.6 mm/y in the
Venetian Plain and to 0.4 mm/y in the Friulian
Plain (Antonioli et al., 2009). This characteristic
pattern may reflect the combined loading of the
Apenninic thrust belt to the South, and the north-
easterly retreat of the Adriatic slab to the East
(Ferranti et al., 2006). In this paper, the first ESR
dating carried out from Northern Italy, on fossil
shells from three different cores of the Po Plain,
provided a chronological attribution to the Last
Interglacial.

In terms of sequence stratigraphy, the deep
occurrence of the 5.5 marker throughout the study
area implies preservation of a thick interval of
forced-regressive deposits (Falling-Stage Systems
Tract or FST) between this stratigraphic marker
and the comparatively shallow LGM deposits.
FST is about 20 m thick in the Venetian Plain, but
up to 60 m thick in the Po Plain: this is a relatively
uncommon feature according to traditional se-
quence-stratigraphic models (see discussion in

Blum and Térnqyvist, 2000), and provides evidence
for the role of subsidence in shaping depositional
sequences within foreland basins (Amorosi and
Colalongo, 2005). FST displays a progressively
lower thickness towards the Venetian Plain and is
virtually absent in the Friulian Plain.

LGM Stratigraphy

At the Last Glacial Maximum (24.0-14.5 ka BP)
sea level dropped about 100 m below its present
position and the North Adriatic, acting as the
southern prolongation of the Po Plain, became
part of a huge alluvial plain extending 300 km far
from the present shoreline. During LGM, as in
MIS 6, the glaciers hosted in the main Alpine
valleys debouched into the plain (Marchetti, 2001;
2002; Castiglioni, 2004), feeding large fluvio-gla-
cial systems. The Isonzo, Tagliamento, Piave,
Brenta and Adige fluvio-glacial systems, fed by the
fronts of the Alpine glaciers, brought to the for-
mation of alluvial megafans, which still char-
acterize the present alluvial plain (Fontana et al.,
2008). Lowstand deposits (Lowstand Systems
Tract - LST) are represented by 15-35 m thick
megafan bodies (Mozzi, 2005; Fontana, 2006;
Fontana et al., 2008), made up of vertically
stacked, amalgamated gravels in the proximal
sectors and mud-prone deposits at distal loca-
tions. Beneath the present Venetian-Friulian
coastal plain, LGM stratigraphy consists of a
characteristic alternation of overbank and natur-
al-levee deposits, with common thin peat inter-
calations and fine-sand channel bodies with a
thickness of 0.5-1.5 m (Miola et al., 2006; Fontana
et al. 2008; Bondesan et al., 2009). A remarkably
different framework characterizes the central part
of the Venice Lagoon, where the sandy channel
bodies may reach a thickness of 10-15 m.

To the South, braided river environments de-
veloped in the Romagna coastal plain during
LGM. In this period, climate exerted an important
control on sediment supply, while subsidence
created accommodation space, triggering a gen-
eralized phase of aggradation. Amalgamated sand
bodies, up to 20 m thick, are the dominant feature
of lowstand sedimentation in the Po Delta area
(Stefani and Vincenzi, 2005). These laterally ex-
tensive sedimentary bodies, which locally reflect a
mixed sediment contribution from Po and Adige
rivers (Amorosi et al., 2008), can be correlated
updip, across the axial portion of the Po Plain, into
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the Po channel belt. Away from the influence of
Po River, lowstand deposits in Romagna are si-
milar to those observed across most of the Ve-
netian-Friulian Plain, with characteristic flood-
plain, crevasse and levee clay-sand alternations,
and smaller-size fluvial-channel sands, less than 5
m thick, forming ribbon-shaped fluvial bodies
(Amorosi et al., 1999a; 2003).

Post-LGM stratigraphic architecture in the NW
Adriatic coastal area

In order to delineate post-LGM stratigraphy of
the NW Adriatic coastal plain, we subdivided the
study area, from south to north, into distinct sec-
tors with peculiar sedimentary evolution. Seven
transects perpendicular to the coastline, each re-
presentative of a specific sector, are utilized here
to illustrate subsurface stratigraphy of the study
area (Figs. 2 and 3). Six out of seven sections were
taken from previous work, namely Section 1
(Amorosi et al., 1999a), Section 2 (Amorosi et al.,
2005), Section 3 (Stefani and Vincenzi, 2005),
Section 4 (Bondesan et al., 2009), Section 5 (Tosi
et al., 2007a), and Section 7 (Marocco, 1989). In
contrast, Sections 6 is based upon unpublished
data by the authors. The cross-sections were cri-
tically analyzed, locally re-interpreted, and facies
associations assembled into relatively few groups,
in order to obtain, for the first time, a homo-
geneous representation of post-LGM stratigraphy
throughout the study area. In order to make
stratigraphic data readily comparable, sections
from adjacent sectors were drawn to the same
scales (see Figs. 2 and 3), with the only exception
of Section 2.

The Ravenna coastal plain (Section 1)

The first reliable reconstruction of post-LGM
stratigraphy in southern Romagna dates back to
the early seventies, when Rizzini (1974) described
a transgressive-regressive depositional cycle of
Holocene age, South of Ravenna, overlying a
thick succession of alluvial plain deposits related
to the Last Glacial Maximum. Detailed facies
characterization of the post-LGM succession was
then performed by Amorosi et al. (1999a), on the
basis of facies analysis from 16 continuous cores.
According to this study (Section 1 in Fig. 2), a thin
veneer of transgressive back-barrier (paludal and
lagoonal) clay separates the LGM alluvial depos-

its from the overlying transgressive shoreline
sands, through a characteristic unconformity
(transgressive surface - TS - in Fig. 2). A strati-
graphic hiatus of about 10 ka is invariably re-
corded in coincidence of the transgressive surface
(Fig. 2): in core, this discontinuity shows diag-
nostic pedogenic features, along with peculiar
geotechnical characteristics (overconsolidated
horizon in Amorosi and Marchi, 1999).

In terms of sequence stratigraphy (Amorosi et
al., 1999a), the LGM deposits below the TS be-
long to the LST, while the overlying Holocene
succession is interpreted to represent transgres-
sive (Transgressive Systems Tract - TST) and
highstand (Highstand Systems Tract - HST) de-
posits. TST and HST exhibit a diagnostic fossil
signature (Scarponi and Kowalewski, 2004; 2007).

The transgressive shoreline sands, which are
marked at their base by a thin horizon of mollusc-
rich sands with a characteristic erosional lower
boundary (wave ravinement surface - blue line in
Fig. 2), have been interpreted to reflect the de-
velopment and landward migration of a barrier-
lagoon system (Colantoni et al., 1979) according
to the transgressive submergence model (Co-
lantoni et al., 1990). Trincardi et al. (1994) de-
picted the complex facies architecture and seismic
geometries of the paralic deposits below the ra-
vinement surface in the Adriatic Sea. Correggiari
et al. (1996a) showed an example of land-sea
correlation along a transect perpendicular to the
shoreline. In a relatively landward position, West
of the nearshore facies, the maximum marine in-
gression is recorded by a lagoonal deposit sand-
wiched between paludal, organic-rich clays and
peats (Amorosi et al., 1999a - Fig. 2). Develop-
ment of lagoonal areas at peak transgression took
place up to 35 km from the modern coastline, as
documented by the findings of clays rich in Ce-
rastoderma glaucum near Conselice (Preti, 1999).

With the ensuing phase of sea-level highstand,
sediment supply overwhelmed the rate of relative
sea-level rise and coastal progradation took place,
with rapid basinward shift of sedimentary facies
(Fig. 2) and outbuilding of a wave-influenced,
arcuate Po delta, with its adjacent system of
beach-ridge strandplains. Several papers have
dealt with recent evolution of the Romagna
coastal plain in the Ravenna area: the reader is
referred to selected geomorphological studies,
delineating the evolution of the drainage network
(Veggi and Roncuzzi, 1970; 1973; Veggiani, 1973;
1974; Castiglioni et al., 1990) and of the early Po
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Delta lobes (Ciabatti, 1967; Veggiani, 1976),
framed in a context of climate change (Veggiani,
1994).

Following the early studies about heavy-mineral
and sand distribution along the coasts of southern
Romagna (Rizzini and Veggiani, 1970; Gazzi et
al., 1973), a petrographic characterization of the
post-LGM succession was initially carried out by
Rizzini (1974) and subsequently by Marchesini et
al. (2000), who documented petrofacies distribu-
tion in the different systems tracts. Provenance
studies have been carried out also on a geo-
chemical basis, emphasizing the role of Cr and Ni
(supplied by the ophiolitic complexes of Western
Alps and West Emilia Apennines) as un-
ambiguous tracers of provenance from the Po
River Basin (Amorosi et al., 2002; Amorosi and
Sammartino, 2005; 2007).

The Comacchio coastal plain (Section 2)

A peculiar transgressive-regressive trend within
the post-LGM succession in northern Romagna
was first documented by Bondesan et al. (1995b)
from the Massafiscaglia area. Subsequent strati-
graphic work further refined this picture (Bon-
desan et al, 1999), providing detailed facies
characterization across the entire Comacchio
coastal plain (Amorosi et al., 2003; Curzi et al.,
2006). Through high-resolution stratigraphic and
facies characterization of the post-LGM succes-
sion in the Ferrara area, with the aid of micro-
palaeontological analysis (Fiorini, 2004), recent
work has shown the linkage between nearshore
and coeval alluvial plain deposits (Amorosi et al.,
2005), leading to the Section 2 of Figure 2.

As a whole, post-LGM stratigraphy in the Co-
macchio area (eastern part of Section 2) closely
resembles the stratigraphic architecture shown in
the Ravenna area (Section 1). A few major differ-
ences, however, can be observed. Unlike the Ra-
venna section, a comparatively thin (about 5 m)
incised-valley fill (IVF) is recorded in the Co-
macchio coastal plain. In this area, the onset of
transgressive sedimentation took place as from the
late Pleistocene; as a consequence, the TST is sig-
nificantly thicker. The IVF consists of early trans-
gressive alluvial sediments, which are overlain by
organic-rich deposits dated to about 10.5-9.4 ka
BP. These grade upwards into brackish-water
clays, which are overlain, through a ravinement
surface, by transgressive shoreline sands. This
deepening-upward succession has been inter-

preted to reflect rapid transit of a wave-dominated
estuary over the coastal plain, between 9.4 and 7.0
ka BP (Amorosi et al., 2003). The extensive land-
ward migration of the shoreline was favoured by
the low coastal gradient of the Po Plain.

Three different episodes of shoreline trans-
gression have been reconstructed by Amorosi et
al. (2005) on the basis of the stratigraphic position
of transgressive, fossil-rich sands in cores. Land-
ward of the shoreline, previously exposed areas
were rapidly covered by brackish waters, as a re-
sult of the dramatic backstepping of the estuarine
system. At the upstream portion of the estuary,
the obvious retrogradational stacking pattern of
three bay-head delta sand bodies is correlative
with the pattern of backstepping shorelines iden-
tified downdip (Section 2), allowing subdivision of
TST into distinct parasequences (Amorosi et al.,
2005).

The highstand deposits display a characteristic
progradational pattern of prodelta, delta front
and delta plain deposits. Wave-dominated (arcu-
ate) lobes of an early Po Delta have been re-
constructed on the basis of geomorphological in-
vestigations (Ciabatti, 1967; 1990; Bondesan and
Bucci, 1972; Bondesan, 1985; 1986; Veggiani,
1985; Ciabatti and Veggiani, 1990), and possible
tidal activity postulated based upon satellite ima-
gery (Sgavetti and Ferrari, 1988). A geochemical
characterization of the different facies associa-
tions related to Po activity has been recently per-
formed from subsurface (Amorosi et al., 2002;
2007; Bianchini et al., 2002) and surface (Amorosi
and Sammartino, 2005, 2007) sediments. The re-
cent modifications of the fluvial network in the
Ferrara-Comacchio area have been described in
detail by Veggiani (1974) and Bondesan (1990).

The Codigoro coastal plain and the Po Delta
(Section 3)

Despite the huge amount of work undertaken
over the last decade in the NW Adriatic coastal
plain, very few studies have carried out detailed
stratigraphic reconstructions in the Po Delta area,
geological research being mostly focused on re-
cent delta evolution (Nelson, 1970; Veggiani,
1985; Bondesan, 1990; Gabbianelli et al., 2000;
Correggiari et al., 2005b; Stefani and Vincenzi,
2005). The most comprehensive stratigraphic
study for this area is available from the Codigoro
coastal plain (Stefani and Vincenzi, 2005), South
of Po Delta, where accurate facies analysis of
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cores, combined with correlation from piezocone
penetration tests, has led to the construction of a
detailed stratigraphic framework (Section 3 in Fig.
2).

As a whole, stratigraphy in the Codigoro area
displays strong similarities with the stratigraphic
architecture described from the Romagna coastal
plain, especially from the Comacchio area (Sec-
tion 2 in Fig. 2). In this instance, the larger dataset
available allowed precise reconstruction of the
lower boundary of post-LGM deposits, showing
the presence, close to the Pleistocene-Holocene
boundary, of a number of relatively thin IVFs,
made up of transgressive alluvial deposits overlain
by organic-rich layers formed in freshwater en-
vironments. The transgressive-regressive cycle
that overlies the IVFs mimics the one described
for the Romagna coastal plain (Sections 1 and 2),
although with a greater level of detail. The pre-
sence of smaller-scale retrograding/prograding
trends in facies distribution has been interpreted
to reflect higher-frequency depositional cycles
(parasequences). Similarly to what observed in
Section 2, transgressive shoreline sands are sepa-
rated from the overlying prograding beach-ridge
complexes by a veneer of intervening open-marine
deposits that mark locally the maximum marine
ingression.

A comparable stratigraphic architecture has
been reported also from the subsurface of the
modern Po Delta. As mentioned above, very few
studies have investigated subsurface stratigraphy
of late Quaternary deposits beneath the present
Po delta plain. Following early work by Roveri et
al. (2001), who performed detailed facies analysis
on one core from the Scardovari bay, high-re-
solution stratigraphic studies from three con-
tinuously-cored boreholes were recently under-
taken by Amorosi et al. (2008). These have
documented the strong asymmetry of the Holo-
cene transgressive-regressive cycle, consisting of a
thin TST and a comparatively thicker (30 m) HST,
including 15 m of prodelta clays above the max-
imum flooding surface. Detailed micro-
palaeontologic characterization of the Holocene
succession has been performed by Bondesan et al.
(2006) and Rossi and Vaiani (2008).

Onshore studies in the delta plain have been
integrated with research offshore, mostly focused
on recent prodelta deposits (Correggiari et al.,
2005a). It is well established, as confirmed by
subsurface investigations onshore (Amorosi et al.,
1999a; 2003), that prograding depositional lobes

of the early Po Delta systems (between approxi-
mately 5 and 1 ka BP) were formed in a more
southern position, i.e. the Romagna coastal plain
(see Sections 1 and 2). The rapid shift of the Po
Delta toward its present position occurred in re-
sponse to a well-documented river avulsion in the
XIII century A.D. This avulsion, tens of km West
of the study area, led to the abandonment of the
formerly active delta lobe, and to the construction
of the present-day, mixed wave- and river-influ-
enced (cuspate) delta.

Finally, an additional contribution to the re-
construction of the history of the modern Po Delta
derives from geochemical studies, both onshore
(Amorosi et al., 2007; 2008) and offshore (Picone
et al., 2008), which confirmed the role of Cr and
Ni as markers of sediment provenance from the
Po River Basin.

The Chioggia coastal plain (Section 4)

Subsurface stratigraphy in the southern Ve-
netian coastal plain, North of Po River, displays
striking similarities with the stratigraphic archi-
tecture described South of the Po Delta (Section 4
in Fig. 2). A first characterization of the un-
conformity surface marking the Pleistocene-Ho-
locene boundary was proposed by Gatto and
Previatello (1974). Bondesan et al. (1995a; 2001)
then described the post-LGM stratigraphic suc-
cession in this area, showing that the same trans-
gressive-regressive cycle reconstructed in the
subsurface of the Romagna coastal plain can be
identified even in the Chioggia area. The Holo-
cene stratigraphic and geomorphological evolu-
tion of the southern Venetian coastal plain was
first proposed by Favero and Serandrei Barbero
(1978; 1980), who interpreted the sand ridges
between Cavarzere and Chioggia as a prograding
series of wave-dominated deltas. Through core
analysis, these authors recognized also the buried
beach ridges in the southern part of the Venice
Lagoon, tracing the coastline at its maximum
transgression. Additional stratigraphic informa-
tion derive from investigations of subsidence and
salt-water intrusion in the southern Venetian
coastal plain (Carbognin and Tosi, 2002; Rizzetto
et al., 2003).

The reference section for this sector (Section 4
in Fig. 2) was obtained through analysis and re-
interpretation of a number of stratigraphic logs
collected in the database of the Geological Survey
of the Provincia di Venezia (Bondesan et al., 2009).
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In this cross-section the top of Pleistocene de-
posits is marked by an indurated and pedogenized
horizon, locally known as caranto (Mozzi et al.,
2003), separating the LGM alluvial deposits from
the overlying back-barrier deposits. The latter
consist of silty clays and clayey silts with organic-
rich layers or peat, a few cm to dm thick. These
sediments are topped by a slightly east-dipping
erosional surface, corresponding to the ravine-
ment surface (blue dashed line in Section 4),
characterized by a 50 cm-thick horizon of mollusc-
rich sands, overlain by transgressive barrier sands.

Similarly to what observed in Section 1, the
transgressive barrier sands display vertical transi-
tion to beach-ridge sands, consisting of fossilifer-
ous, very fine to medium sands and silty sands. To
the East, transgressive-barrier and beach-ridge
sands are separated by an interval of open-marine
(prodelta) deposits that thickens in seaward di-
rection. Prodelta deposits consist of a rhythmical
alternation of clays and thin layers made up of
very fine sands, and show a gradational boundary
with the underlying and overlying units. A Sm-
thick interval of lagoonal clays and silty clays with
rare sand intercalations, overlies the beach-ridge
sands in the landward sector. This facies gradually
evolves to paludal deposits made up of clays, with
abundant wood fragments, peats and organic-rich
layers. The succession is capped by alluvial plain
sediments, characterized by silty clays, clayey silts,
with subordinate silty sands. Lenticular river-
channel deposits, made up of fine to medium
sand, are observed at places.

Detailed reconstruction of the Holocene geo-
morphological evolution of the alluvial plain
(Meneghel, 2004; Primon, 2004) evidenced the
strong influence of Po River until around 1000
BC, when the river reached for the last time the
southern sector of the Venice Lagoon and had its
mouth near Chioggia. During the last three mil-
lennia, Adige River played a major role and only
in the last centuries the Brenta River was artifi-
cially diverted from the area of Mestre to its
present mouth, in the aim of avoiding alluvial se-
dimentary input to the lagoon.

The Venice Lagoon and the Venetian coastal plain
(Section 5)

A notably different picture relative to the
southern sections is observed in the Venice area
(Section 5 in Fig. 3), where the coastal wedge is
significantly thinner and shorter, and lagoonal

sediments represent most of post-LGM deposits.

A first stratigraphic overview of the Holocene
deposits from the Lagoon of Venice and its hin-
terland was given by Bortolami et al. (1977) and
Alberotanza et al. (1977), through extensive
radiocarbon dating. The first comprehensive
stratigraphic study of the post-LGM succession
was performed by Favero and Serandrei Barbero
(1978; 1980; 1983), who widely analyzed sediment
samples from the northern and southern part of
the lagoon. These authors described the sedi-
mentary evolution in the lagoon through extensive
sedimentological and micropalaeontological ana-
lyses, recognizing the innermost buried coastal
ridge and two younger barrier-island bodies that
testify shoreline progradation (Favero and Ser-
andrei Barbero, 1978; Bonardi and Tosi, 1997;
Serandrei Barbero et al., 2001; 2002). Stratigraphy
beneath the present barrier-island ridges was re-
constructed by Favero and Serandrei Barbero
(1983) and Tosi (1994) on the basis of core cor-
relation. Radiocarbon dating above the LGM/
Holocene boundary showed that the base of the
paralic sediments at the margins of the lagoon is 1-
2 ka older than in Venice town area, where lower-
most lagoonal deposits are generally found at a
depth of 4-6 m, and display an age of about 4.5 ka
BP (McClennen et al., 1997; Serandrei Barbero et
al., 2001; 2002).

LGM deposits in the Lagoon of Venice were
mainly supplied by Brenta and Piave rivers, with a
minor contribution from Po and Adige rivers in
the southern sector; the related palaeochannels
were partially identified through seismic surveys
(McClennen et al., 1997; Madricardo et al., 2007).
New perspective on the stratigraphic framework
of the Venice coastal plain have been highlighted
by the application of sequence stratigraphy to
extensive high-resolution seismic surveys carried
out in the lagoon and in the adjacent offshore
areas (Correggiari et al., 1996a; Zecchin et al.,
2008a; b). These investigations provide evidence
for a limited seaward extent of the Holocene
coastal wedge, which is not observed below -15/-20
m North of Chioggia, allowing the LGM alluvial
plain deposits to crop out largely on the seafloor.

Unlike the southern sections (1-4 in Fig. 2), the
TST in the Venice area is represented uniquely by
a thin layer of organic clays identified in the sea-
ward side of the profile and corresponding to
paludal facies induced by water stagnation onto
the LGM surface (Section 5 in Fig. 3). Similar
deposits are present also within the lagoon, where
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Section 7 (Eastern Friulian coastal plain)
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Fig. 3 - Post-LGM stratigraphy from the Venice Lagoon to the Friulian coastal plain (see Fig. 1, for location of section traces). Sections 5 and 7
are modified after Tosi et al. (2007a) and Marocco (1989), respectively, while Section 6 is based upon unpublished data.
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an organic-rich silt to clay horizon (up to few dm
in thickness) with common roots and plant debris
is observed below the lowermost lagoonal deposits
(Serandrei Barbero et al., 2005; Tosi et al., 2007a).
In Section 5 part of these deposits have been in-
cluded in the LGM alluvial plain, due to their re-
interpretation as the upper horizon of the pa-
laeosoil known as caranto. This popular term,
original from the Venice Lagoon, in the Venetian
coastal plain indicates the presence of cm-thick
carbonate concretions and mottling features that
characterize the Bk and Ck horizons of an over-
consolidated soil. The characteristics and the sig-
nificance of the caranto in the area of Venice and
its mainland have been widely discussed by several
papers (Gatto and Previatello, 1974; Tosi, 1994;
Mozzi et al., 2003).

Alluvial deposits are lacking in Section 5, and
lagoonal sediments directly overlie the LGM al-
luvial surface, owing to lack of important fluvial
sedimentary inputs. Towards the mainland, the
inner margin of the lagoon has been dated around
1.0 ka BP (Mozzi et al., 2003) and thin deltaic
deposits related to the Dese-Sile river mouth are
locally present (Mozzi et al., 2003; Tosi et al.,
2007a).

The base of coastal deposits beneath the pre-
sent coastline has been dated to around 7.5 ka BP
on the basis of core description from the eastern
margin of the lagoon (Canali et al., 2007).
Shoreline progradation started around 3.0 ka BP,
being related to the activation of Piave Vecchia
and modern Piave mouths (Bonardi et al., 1997,
Bondesan et al, 2003a; b). Previous deltas from
Piave River are documented East of the lagoon,
and the oldest, in the Torre di Fine area, is dated
between 6.0 and 4.5 ka BP. East of Piave River,
the inner shoreline is found about 3 km inland
from the present one. From the southern margin
of the Venice Lagoon, the post-LGM coastal
wedge has a maximum thickness of 15-20 m, al-
though it can locally reach up to 30 m in corre-
spondence of the abandoned tidal inlets, which
have a depth in excess of 40 m (Malamocco inlet
in Tosi et al., 2007a; b). A fossil inlet, to a depth of
-30 m a.s.l. and filled with prodelta laminated
muds, has been found in the area of Cortellazzo,
near the present Piave River mouth (Bondesan et
al., 2009).

Abandoned fluvial channels and ancient
shoreline systems were described by Castiglioni
and Favero (1987), who gave a broad re-
construction of the Holocene palaeogeography of

the Piave coastal plain. A detailed description of
the geomorphological evolution of the Piave
megafan and its relationship with the formation of
the lagoon has been proposed by Bondesan et al.
(2002) and Bondesan and Furlanetto (2004),
showing the recurrent age of lowermost lagoonal
deposits around 6.5-5.5 ka BP.

The micropalaeontological content of the Ho-
locene succession in the Venice area has been
documented in many papers, mostly focusing on
the differentiation of lagoonal sub-environments
on the basis of subtle differences in palacosalinity
(e.g. Serandrei Barbero et al., 1997; 2004; Albani
and Serandrei Barbero, 1990; Albani et al., 2007).
Sediment provenance studies were carried out
through mineralogical and petrographical ana-
lyses (Gazzi et al., 1973; Bonardi and Tosi, 1987;
Stefani, 2002).

In contrast with the southern areas (Sections 1-
4), in the Venice Lagoon and in other portions of
the Venetian-Friulian coastal plain where the
LGM plain crops out, the present margin of the
lagoon corresponds to the most landward exten-
sion of the brackish environments; in large areas,
these were reduced by artificial reclamation dur-
ing the XIX and XX centuries.

The Western Friulian coastal plain (Section 6)

The post-LGM activity of Tagliamento River
was concentrated in the western sector of its
megafan, where several, deep “transgressive” in-
cised valleys developed (Fontana, 2004; 2006;
Fontana et al., 2008). One of these features is
shown in Section 6 (Fig. 3), which largely differs
from the southern profiles (Sections 1-5) also for
the lack of a well preserved beach-ridge body. A
striking overlap of the innermost Holocene
coastline with the present one characterizes the
Friulian coastal plain, with the exception of the
Tagliamento River delta area, where 5 km of
prograding sand ridges are observed.

Stratigraphic architecture of the coastal plain is
shown in detail within Sheet 107 “Portogruaro” of
the Geological Map, and summarized in Section 6
(Bondesan et al., in press). Prominent features of
this profile are the coastal wedge, onlapping the
LGM alluvial plain, and an incised-valley fill
(IVF). A first stratigraphic reconstruction of the
Western Friulian coastal plain was carried out
through sedimentological, micropalaeontological
and malacofaunal analyses of a few cores drilled in
the area of the Caorle Lagoon (Marocco et al.,
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1996; Lenardon et al., 2001), which were used for
stratigraphic correlations from Portogruaro to the
coast (Galassi and Marocco, 1999). In this work,
radiocarbon dates allow the assignment of lower-
most lagoonal deposits above the LGM surface to
about 6.0-6.5 ka BP.

In the Tagliamento delta area, on the basis of
core data Giovannelli et al. (1985) and Marocco
(1988; 1991a) recognized a 10m-thick sand coastal
ridge, dated to around 4.5 ka BP, at the boundary
with the underlying LGM deposits. A strati-
graphic profile linking these data with marine
cores was proposed by Gordini et al. (2002).
Through high-resolution seismic profiles and
shallow-core data, Cattaneo et al. (2007) identi-
fied the Tagliamento delta lobes, documenting the
termination of prodelta deposits at 12-14 m below
sea level.

In the area of Concordia Sagittaria, the pre-
sence of lagoonal deposits up to the depth of 5 m
below sea level, partly interfingering with the
Protohistoric and Roman archaeological deposits,
has been explained as the filling of two fluvial
incisions bounding the area of the ancient city
(Favero,1991; Valle and Vercesi, 1996; 2001). In
the Tagliamento megafan, these features have a
general width of 500-2000 m and a depth of 15-25
m from the LGM surface, this latter dating to
17.0-15.0 ka BP, and with a thickness of 20-30 m
(Fontana, 2004; 2006; Fontana et al., 2008). Se-
lected cores allowed to reconstruct the geometry
and the age of these and other IVFs of Taglia-
mento, demonstrating that incision took place
between the Lateglacial and the early Holocene
(15.0-8.0 ka BP) and that coarse gravels with a
diameter of 6 cm were transported at the valley
bottoms, up to the area of the present lagoon. The
coarse channel deposits are overlain by peaty se-
diments, 50 to 100 cm thick, dating to 8.5-6.0 ka,
which correspond to paludal facies interpreted as
back-barrier deposits. Similar layers have been
found in interfluvial areas marked by caranto-like
horizons, above the SSW-dipping LGM surface
(Fontana, 2006).

Similarly to the Venetian coastal plain (Section
5), also in the Friulian coastal plain the lagoonal
inner margin of the XIX century, pre-dating land
reclamation, was the inner one reached during the
Holocene. An exception is represented by the
incised valleys of Tagliamento River: due to
marine sea-level rise, since ca. 6.0 ka BP brackish
environments occupied the deep valleys aban-
doned by the Alpine river, leading to the forma-

tions of tidal inlets encased within the LGM al-
luvial deposits. Along the valleys of Concordia,
estuarine environments penetrated up to Porto-
gruaro (Fig. 4), about 15 km landward of the la-
goonal inner margin of that period (Fontana,
2006; Fontana et al., 2008). As depicted in Section
6, lagoonal deposits have a thickness of 4-6 m and
are overlain by freshwater marsh sediments re-
lated to the activity of the groundwater-fed rivers.
During ancient Middle Age, an avulsion of Ta-
gliamento brought the river into the valleys, which
were filled up with alluvial silty sands (Vercesi and
Valle, 2001; Fontana, 2006).

In the present Tagliamento delta, characterized
by a typical wave-dominated morphology, the
post-Roman prograding trend was first identified
by Marinelli (1922). Recently, detailed geomor-
phological mapping (Bondesan et al., 2004) al-
lowed to recognize an ancient barrier-island,
probably dating to the maximum transgression, 5
km inland from the present river mouth (Fontana,
2004; 2006). Only a few km West and East from
the river mouth, the present shoreline almost co-
incides with the most inner one.

The Eastern Friulian coastal plain (Section 7)

Section 7 is at the boundary between the Ma-
rano and Grado lagoons and displays many simi-
larities to Section 6: specifically, the presence of a
sandy coastal body over a very limited area, and
the dominance of lagoonal sediments. The width
of the coastal plain is very narrow, especially if
compared to Sections 1-4; due to the limited in-
fluence of Tagliamento and Isonzo rivers during
the Holocene, the LGM alluvial plain largely
crops out along the lagoon. As described in Sec-
tions 5 and 6, before the artificial reclamation of
the XX century, the lagoonal margin was the inner
reached during the Holocene.

The first stratigraphic framework of the Grado
Lagoon has been proposed by Marocco et al.
(1984), but a detailed sedimentological and
chronological reconstruction through core analy-
sis, on which Section 7 relies, was carried out a few
years later (Marocco 1989; 1991). Single bore-
holes have been described in different parts of the
Grado Lagoon (Marocco et al., 1988; 2005) and in
the adjacent offshore, where transgressive sandy
lithosomes have been identified (Gordini et al.,
2002); these data have been assembled to produce
a comprehensive stratigraphic picture of the la-
goon and of the marine deposits between Taglia-
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mento and Isonzo rivers (Gordini et al., 2002;
2003).

In general, lagoonal and coastal sediments
overlie directly the LGM alluvial plain deposits
through a sharp boundary, which testifies the
erosion that occurred before their emplacement.
In the Marano Lagoon and its mainland, the top
of LGM is characterized by the caranto indurated
palaeosoil (Marocco, 1988; 1989 Fontana, 2006).
Pedogenetic carbonate horizons in this area are
not so developed as in the Grado Lagoon, prob-
ably due to the peculiar mineralogy of Isonzo
River sediments (Marocco, 1989; Marocco and
Princivalle, 1997). In the alluvial plain near
Aquileia and in a few of the northern islands from
the Grado Lagoon, thick sand bodies are present;
these features, of still unknown origin, date back
to the LGM or pre-LGM (Marocco, 1991b; Le-
nardon and Marocco, 1994) and prevented the
landward migration of the Holocene lagoon
margin (see Fig. 4). Along the lagoon, freshwater
marshy deposits are present, and their existence is
generally related to the mouth of groundwater-fed
rivers, which had a stable position within the la-
goon since the middle Holocene (Fontana, 2006).

Similarly to the eastern Friulian Plain (Section
6), this sector is characterized by deep post-LGM
incised valleys, with gravel at their bottom, formed
by the Isonzo-Natisone-Torre fluvial system. In
the mainland of Grado Lagoon, near Aquileia,
some of these valleys were recognized through
core analysis, and micropalaeontological studies
detected the presence of brackish deposits within
the fine-grained portions of the IVF (Arnaud-
Fassetta et al., 2003). Although deep fluvial inci-
sions have not been identified yet in the Grado
Lagoon, they likely might be present in the sub-
surface of Isonzo River delta.

Between Tagliamento River and Grado, as in
the western Friulian sector (Section 6), lagoonal
deposits beneath the barrier-island are present
from shallow depths down to the boundary with
the LGM, and they were transgressed by coastal
environments during the late Holocene (Section
7). Consequently, the most landward position of
nearshore sediments coincides with the present
one, documenting an erosional trend affecting the
coast.

The geomorphology of the Grado Lagoon was
described in detail by Gatto and Marocco (1992),
while Desio (1922) studied the eastward migration
of Isonzo River mouth. The relationships between
groundwater-fed rivers flowing into Marano La-

goon and Holocene sea-level rise are considered
in Fontana (2006). Provenance studies in the
Eastern Friulian coastal plain are based on mi-
neralogical data, which showed the relative
abundance of picotite in the Isonzo River sedi-
ments, and of garnet and kyanite in Tagliamento
River deposits (Brambati and Venzo, 1969;
Brambati, 1970; Marocco and Princivalle, 1997).

Post-LGM sedimentary evolution and the
maximum marine ingression

Detailed reconstruction of stratigraphic archi-
tecture across the Romagna (Sections 1-3), Ve-
netian (Sections 4-5) and Friulian (Sections 6-7)
coastal plains enables to draw a common picture
of sedimentary evolution for the whole NW
Adriatic area during the last 20 ka BP. Above
undifferentiated lowstand deposits (“pre-LGM
and LGM alluvial plain facies association” in Figs.
2 and 3), stratigraphic architecture of the post-
LGM succession over a large part of the NW
Adriatic coastal area (Sections 1-4) records the
characteristic ~ transgressive-regressive  trend
widely reported from previous work (Rizzini,
1974; Bondesan et al., 1995b; Amorosi and Milli,
2001). In terms of sequence stratigraphy, this
tendency reflects sedimentation during the post-
glacial sea-level rise (TST) and the following
highstand (HST) (Amorosi et al., 1999a; Stefani
and Vincenzi, 2005).

The turnaround from lowstand to transgressive
conditions was characterized by a widespread
phase of fluvial incision, which led to the develop-
ment of incised valleys, especially in the Venetian
and Friulian area. Soon after the onset of the de-
glaciation phase, between 16.5-14.5 ka BP, the
glacier’s fronts retreat and the formation of large
valley lakes caused a dramatic change in the sedi-
ment supply/discharge ratio of the Alpine rivers,
triggering an erosional phase that transformed the
whole Venetian-Friulian Plain in a by-pass area.

Between the Lateglacial and the early Holo-
cene, a major incised valley developed in the
proximal sector of each megafan, while several
incisions took place in the distal tract (Fontana,
2006; Fontana et al., 2008). In the Tagliamento
megafans, these erosional features generally had a
width of 500-2000 m and a depth of 40-70 m from
the LGM surface in the proximal sector, and of
about 10-25 m at distal locations. Similar incisions
developed in the coastal plain of Isonzo (Arnaud-
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Fassetta et al., 2003) and Piave (Bondesan et al.,
2009 - see Section 6) rivers, whereas no valley
incision related to the Brenta and Adige river
systems has been identified, so far. A significantly
different picture is recorded south of Po Delta,

where the low topographic gradient of the
Adriatic shelf prevented the formation of deep
incised valleys, and valley incision was restricted
to scattered, broad and shallow-relief (<10 m)
depressions (see Sections 2 and 3).
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Latest Pleistocene “transgressive” sedimenta-
tion in the NW Adriatic coastal area was restricted
to alluvial deposition within the “incised valleys”
and, more in general, within low-lying areas in-
herited from pre-existing topography (“trans-
gressive alluvial plain facies association and in-
cised valley fills” — IVF — in sections 2, 3 and 6).
The IVFs are invariably overlain by organic-rich
deposits that accumulated within poorly-drained
alluvial plain settings and organic-rich, freshwater
swamps (see Figs. 2 and 3). Peat development in
southern Romagna (i.e, Rimini and Cesena
coastal plains) is commonly dated to between 13
and 11 uncalibrated ka BP (Carminati et al,
2003). Similar, but slightly younger deposits
(around 11-9 ka BP) are recorded in the Co-
macchio coastal plain (Section 2) and, at scattered
locations, beneath the modern Po Delta (Amorosi
et al.,, 2008). In the Friulian coastal plain, the
coarse gravel-channel deposits at the bottom of
the incised valleys are overlain by less than 1 m of
peat and organic-rich sediments, dated to about
8.5-6 ka BP, which separate the fluvial deposits
from overlying lagoonal/coastal deposits or
younger fluvial sequences.

Fluvial-channel entrenchment resulted in the
formation of laterally extensive hiatal surfaces on
the interfluves, where soil development took
place. In these areas, the pedogenized and in-
durated horizon (caranto) that marks the lower
boundary of transgressive sedimentation (Gatto
and Previatello, 1974; Tosi, 1994; McClennen et
al., 1997; Mozzi et al., 2003) represents a readily
identifiable stratigraphic marker all throughout
the North Adriatic coastal plain (TS in Figs. 2 and
3). Owing to its widespread mappability, this dis-
continuity has been taken as the lower boundary
of the uppermost unconformity-bounded strati-
graphic unit in the new Geological Map of Italy to
scale 1:50,000 (“Po Synthem” in the Venetian-
Friulian Plain, and “Ravenna Subsynthem” in
Romagna). The stratigraphic gap (non-deposi-
tional hiatus) recorded by the transgressive sur-
face invariably encompasses the Pleistocene-Ho-
locene boundary, and has progressively larger
extent from South to North, as well as from sea-
ward to landward locations, owing to the onlap-
ping geometry of transgressive packages onto the
subaerial unconformity.

Transgressive sedimentation in the Adriatic
area went on within backstepping barrier-lagoon
systems and wave-dominated estuaries (Trincardi
et al., 1994). Paralic sedimentation was negligible

during transgression across the entire study area,
as documented by the generally very reduced
thickness (<2 m) of transgressive freshwater and
brackish back-barrier deposits above the caranto
(see Sections 1-7). These are separated from the
overlying transgressive shoreline deposits by a
widespread ravinement surface (RS in Figs. 2 and
3) that formed in response to the landward mi-
gration of the shoreline (Swift, 1968; Nummedal
and Swift, 1987).

The diachroneity of the transgressive surface
(TS), which is marked by an obvious facies change
from indurated alluvial deposits to overlying or-
ganic-rich clays, is testified by the different ages of
the basal layers that overlie the caranto and its
equivalents. A dark, organic horizon of paludal
origin commonly is recorded at the very base of
the TST in the interfluvial areas, and provides
suitable material for radiocarbon dating. This is
overlain by fossiliferous clays bearing evidence of
a brackish fauna (lagoonal deposits). In the
Adriatic coastal plain, radiocarbon dates provide
evidence for progressively younger ages of the TS
moving northwards. In southern Romagna (south
of Ravenna), the thin transgressive succession of
back-barrier (paludal and lagoonal) deposits
comprised between the TS and the RS is generally
recorded between 9.5 and 8.5 ka BP (Carminati et
al., 2003). On the other hand, the lowermost
transgressive deposits between Ravenna and the
Po Delta almost invariably provide radiocarbon
dates between 8.5 and 7.5 ka BP (Sections 1 and
3). A significantly different picture is observed
north of Po Delta, in the Venetian and Friulian
plains, where a delayed response of transgression
is observed. In this area, the stratigraphic hiatus
that followed LGM sedimentation extends up to
around 7.0-5.5 ka BP (Sections 5-7), i.e. the age of
the lowermost transgressive deposits.

The Holocene sea-level rise led to rapid back-
stepping of the shoreline and flooding of pre-
viously exposed areas. The landward migration of
the coastline is reflected by the characteristic
retrograding pattern of almost flat, laterally ex-
tensive sand bodies, less than 2 m thick, above the
RS. The transgressive shoreline sands grade sea-
wards into condensed, mollusc-rich horizons and
offshore-transition clay-sand alternations. The
Holocene transgression was punctuated by epi-
sodes of rapid sea-level rise, separated by periods
of sea-level stillstand (see parasequence archi-
tecture in Amorosi et al., 2005, and Stefani and
Vincenzi, 2005). This interpretation, which is
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supported by the backstepping geometry of fluvial
mouth bodies (bay-head delta sands) and by the
occurrence of correlative transgressive shoreline
sand bodies at distinct stratigraphic levels (see
Section 2), could account for the apparently con-
tinuous transgressive sand sheet observed in Sec-
tions 1 and 4.

At peak transgression (around 5-6 ka BP), the
shoreline was 20 km landward of its present po-
sition in Romagna, 35 km West of the present Po
River mouth, but only few km inland in the Ve-
netian and Friulian coastal plain, between Venice
and Tagliamento River mouth (Fig. 4). Between
Marano and Grado the present position of the
coast is the most landward position reached dur-
ing the Holocene. Similarly, the inner margin of
the lagoons was located 35 km west of the present
shoreline in Romagna, 50 km inland of Po River
mouth, but less than 15 km in the Venetian and
Friulian coastal plain, where it coincides with the
inner margin of the present Venice and Grado
lagoons (Fig. 4).

When sediment supply was able to compensate
for relative sea-level rise, transition from trans-
gressive to highstand conditions occurred. This
led to progradation of arcuate, wave-dominated
deltas (Po, Brenta, Piave, Tagliamento and Iso-
nzo), with their adjacent strandplains. The recent
(less than 5 ka BP) evolution of the Adriatic
coastal plain has been described at length on the
basis of geomorphological, historical and archae-
ological data, and for reason will not be repeated
here. The reader is referred to relevant papers,
which are listed in the previous section.

Interplay of sea-level changes, tectonic subsi-
dence and sediment supply

Sea-level change is the sum of eustatic, glacio-
hydro-isostatic, and tectonic factors. Eustasy is
global and time-dependent, while the other two
factors also differ with location. The glacio-hydro-
isostatic part exhibits a well-defined pattern and is
readily predictable, whereas the tectonic compo-
nent exhibits a less regular pattern. The nature of
the sea-level signal across the Italian coasts and
the Mediterranean Sea has been previously dis-
cussed by Lambeck et al. (2004) and Lambeck and
Purcell (2005). When attempting sea-level re-
constructions in the Mediterranean area, owing to
relative proximity to the former Northern Hemi-
sphere ice sheets, gravitational and deformational

effects of both Scandinavian and North American
ice caps should be taken into account.

The NW Mediterranean coasts invariably show
negative vertical movements (isostatic sub-
sidence), which are related to two major control-
ling factors: i) glacio-isostasy due to post-LGM ice
melting of the Northern European ice caps (up to
3.5 km of ice thickness); this has led to vertical
uplift in Fennoscandia due to loss of weight, and
to enhanced subsidence in the Mediterranean
area due to mantle viscosity effects; ii) hydro-
isostasy, as a consequence of weight variations of
the water column (about 140 metres in 21 cal ka)
on the continental shelf. Hydro-isostasy attains
comparatively high values in coastal areas where
the continental shelf shows an extended surface
due to the very low topographic gradient (Fig. 1).
In contrast, most of the southern Mediterranean
coasts do not show significant isostatic movements
as for the last 3-4 ka.

In order to calculate tectonic movements, pre-
vious work has compared the Italian relative sea-
level observations with the sea-level “eustatic”
curve of Bard et al. (1996), obtained through
coring of corals sequences at Tahiti or Barbados
(Bard et al., 1990). However, in the light of recent
calculations of hydro-isostasy on these islands and
documentation of tectonic activity (0.3-0.4 mm/a)
at Barbados, it is clear that this comparison may
suffer sensitive errors. In addition, comparison
with curves obtained from distinct coastal sectors
of Italy could be affected by the different isostatic
movements recorded in these areas. Lack of a
predicted sea-level curve, taking into account both
eustatic and isostatic components, has re-
presented in the past an important limiting factor
for the precise calculation of vertical tectonic
movements. The recent comparison between ob-
served data (e.g. radiocarbon dates from lagoonal
fossils sampled on cores) and the values predicted
by the Lambeck model, has enabled the calcula-
tion of precise tectonic rates (Lambeck et al 2004,
Antonioli et al, 2007; 2009).

In general terms, an observed ({Aobs) point on
a coast at an altitude z that provided an age tis a
function of:

CAobs = CAe + CA(ICA + w) + CAtect

where CAe + CA(iA + w) represent the eu-
static plus isostatic model-dependent contribu-
tions, respectively, and CAtect corresponds to a
corrective parameter to the nominal eustatic term
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used to compute the isostatic component, which
represents the tectonic contribution. The term
“tectonic” here includes also the effects of sedi-
ment compaction and sedimentary load, which are
not comprised neither in the “eustatic” nor in the
“isostatic” term. In order to reconstruct the tec-
tonic history in a given area, the estimated eustatic
and isostatic components should be matched with
observational markers that may act as reliable
indicators of former sea level (e.g. lagoonal fossils,
ancient harbours or fish-pond structures, mor-
phological indicators, etc.). When field data plot
above the curve, this implies that the area was
affected by uplift; conversely, if data plot below
the curve, this means that subsidence occurred.
Finally, when observational points are in agree-
ment with the curve there is tectonic stability.

The geophysical model of Lambeck et al.
(2004), based on viscosity mantel differences and
ice load-and-upload effects, has been used to re-
construct, for the Holocene, the isostatic varia-
tions of sea-level indicators for the central Medi-
terranean region. Here, we provide examples
from two distinct epochs (2 and 8 ka cal BP, re-
spectively). Figure 5 shows that differences in
isostatic subsidence between the NE Adriatic and
Sardinia coasts have been on the order of mag-
nitude of 1.5 meters for the last 2 ka (Fig 5a) and
of 10 m in just 8 ka (Fig. 5b). This implies that
distinct palaeo-sea-level indicators, formerly at
the same elevation, may change significantly their
position because of different isostatic movements
at different locations.

The theoretical model of Lambeck has been
recently tested by Antonioli et al. (2007), who
compared on the tectonically stable coasts of
Sardinia the altitude of archaeological markers,
such as tombs or harbours (2 and 2.4 ka BP), with
the predicted values of the local curve. Figure 6
shows how these markers (with relative error
bars) are in good agreement with that curve. The
curves calculated for the NE Adriatic coast are
also shown in Figure 6: if compared with the
Sardinia curves, they indicate a significantly dif-
ferent isostatic behaviour of these two areas dur-
ing the last 4 ka. The predicted sea-level curves
calculated for Venice and Trieste are shown on
Figure 7: the discrepancies between these two
curves are interpreted to reflect mostly the dif-
ferent influence of the glacio-isostatic component
related to the Fennoscandian deglaciation, which
probably caused a different mantle adjustment
even in areas only few tens of km apart.

The curve of predicted sea level has been used
to calculate tectonic deformations affecting Istria
and the Trieste Gulf (Antonioli et al., 2007); the
same method has been recently applied to the
whole Northern Adriatic by Antonioli et al.
(2009), who inferred the Holocene downlifting
rates from Istria to Rimini, and compared them
with the long-term subsidence, calculated for the
last 125 ka BP. As reported by Ferranti et al.
(2006), the sea-level peak during the last inter-
glacial highstand (MIS 5.5, ca 125 ka BP) was
about +6 m a.s.l. in the Adriatic area. If tectonic
deformation had not occurred since that time,
sea-level indicators such as lagoonal or foreshore
deposits should be found at this altitude. In con-
trast, all along the NW Adriatic coastal area the
stratigraphic markers of MIS 5.5 highstand are
tens of metres deep, highlighting a clear subsiding
trend (Ferranti et al., 2006; Antonioli et al., 2009).
In this paper, the long-term subsidence rates were
considered, because they are more representative
of the regional trend and less sensitive to local
variations (e.g. compaction of soft Holocene la-
goonal, paludal and deltaic sediments). As re-
corded by the Pliocene to Quaternary succession
(Carminati et al., 2003; Barbieri et al., 2007), the
downlifting values, to be considered as yearly
average values for the last 125 ka BP, regularly
increase from NE to SW. These rates show lateral
transition from about 0.3-0.45 mm/a in the Friu-
lian coastal plain, to 0.5-0.7 mm/a in the Venice
Lagoon, up to 1 mm/a or even more south of
Chioggia, in the Romagna coastal plain (Anto-
nioli et al., 2009).

Considering these rates and the 7.0-10.0 ka in-
terval of time elapsed between the end of LGM
alluvial sedimentation and the onset of trans-
gressive deposition in the Adriatic area, it is ap-
parent that subsidence played an important role in
shaping the surface of the former alluvial plain
and its gradient, especially in the Romagna
coastal plain, where the higher subsidence led to a
remarkable increase of the accomodation space
available for Holocene coastal sedimentation.
This is clearly reflected by the peculiar strati-
graphic architecture of the post-LGM succession
along the NW Adriatic coast (Figs. 2 and 3),
where a remarkably different thickness of the
Holocene succession above the ravinement sur-
face (RS) is recorded south and north of Chioggia,
respectively. In the coastal plain between Ra-
venna and Chioggia (Sections 1 to 4 in Fig. 2), the
Holocene deposits above the RS display a con-
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Fig. 5 - Isostatic variations of sea level for the central Mediterranean region at two distinct epochs (2 and 8 ka cal BP, respectively). The dark
contours (negative) refer to the sea-level change. The ice-volume-equivalent sea level (esl) values for each epoch are given in metres (- 0.1
m at 2 ka cal BP, and -13 m at 8 ka cal BP). From Lambeck et al. (2004), redrawn.

stant thickness of about 30 m. In contrast, a con-
siderably lower thickness is observed in the Ve-
nice, Piave, Tagliamento and Isonzo coastal plains
(Sections 5 to 7), where the transgressive-re-
gressive wedge that overlies the RS is generally
thinner than 15 m.

Due to the N-S elongated morphology of the
Adriatic Sea and its low topographic gradient, the
marine transgression firstly reached the Romagna
coastal plain, then migrated towards the Ve-
netian-Friulian Plain, its delay being a function of
pre-existing topography and the rate of sea-level
rise (Cattaneo and Trincardi, 1999). As shown in
the previous section, early transgressive deposits,
below the RS, display highly variable thickness
along the NW Adriatic coast, as a function of the

presence vs. lack of incised valley bodies. Topo-
graphic differences induced by differential sub-
sidence were likely an additional controlling fac-
tor for the thickness of early transgressive de-
posits.

In the Venetian-Friulian area, the limited
thickness of the post-LGM succession was also
strongly influenced by the reduced sedimentary
load supplied by the Venetian-Friulian rivers to
the coastal plain. In coincidence of the alluvial
megafans, the post-LGM sediment input was
dramatically reduced with respect to LGM sedi-
mentation (Fontana et al., 2008): this is clearly
documented in Sections 5 to 7, along the Venice,
Caorle, Marano and Grado lagoons, where large
sectors of the LGM alluvial plain still crop out
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and, unlike the whole Po coastal plain, have not
been buried by younger alluvial sediments. Sedi-
ment starvation in the Venetian-Friulian Plain is
also documented by the sedimentological char-
acteristic of the highstand deposits, which mainly
consist of lagoonal clays (Sections 5 to 7), with
reduced and even almost lacking coastal-ridge
sands (Sections 5 and 6). The low sediment supply
to the Holocene marine-coastal system is testified
also by the seafloor topography between Chioggia
and Trieste, where transgressive deposits crop out
patchily and are strongly reworked (Correggiari et
al., 1996a; b; Cattaneo and Trincardi, 1999; Gor-
dini et al., 2002). This condition took place in the
Northern Adriatic area with the onset of post-
glacial conditions, which led to the shift of the
Alpine rivers from a fluvio-glacial to a fluvial re-
gime. The fronts of the glaciers, which during
LGM had reached the Venetian-Friulian Plain
and largely fed the megafan formations, quickly
disappeared since the beginning of the Lateglacial
(Fontana et al., 2008). In addition, large lakes
developed in the main Alpine valleys soon after
deglaciation, trapping the coarser- and part of the
finer-grained sediment fractions. As from the
middle Holocene, delivery efficiency of NE Al-
pine rivers was absolutely uncomparable to their
transport efficiency during the LGM.

Conclusions

By integrating existing literature with the high-
quality stratigraphic dataset derived from the ex-
tensive drilling campaign promoted by the Geo-
logical Mapping Project of Italy to scale 1:50,000,
we carried out a comprehensive reconstruction of
post-LGM sedimentation along the NW Adriatic
coast, delineating for the first time the pa-
laeoenvironmental evolution of the entire NW
Adriatic coastal plain during the last 20 ka. The
major outcomes of this study can be summarized
as follows:

1) The post-LGM succession in the subsurface
of the Po coastal plain, between Ravenna and
Chioggia, consists of a transgressive-regressive (T-
R) sedimentary wedge of nearshore and shallow-
marine deposits, approximately 30 m thick, elon-
gated for about 100 km in N-S direction and about
30 km wide. The T-R cycle records the Holocene
landward migration of barrier-estuary-lagoon
systems, followed by the progradation of wave-
dominated deltas and adjacent strandplains. A

contrasting stratigraphic framework is observed in
the Venetian-Friulian Plain, between the Venice
Lagoon and Isonzo River, where the coeval
coastal succession is thinner (generally < 15 m),
narrower (10 km) and represented almost entirely
by lagoonal sediments, with subordinate near-
shore sands. Early transgressive (pre-Holocene)
sedimentation in the NW Adriatic coastal plain is
patchily distributed and restricted to fluvial inci-
sions developed after the onset of the deglaciation
phase and to topographic depressions inherited
from the LGM topography.

2) The caranto, a pedogenized and over-
consolidated horizon investigated since the Se-
venties in the area of the Venice Lagoon and
traditionally regarded as a stratigraphic marker
over the Venetian Plain, is a readily identifiable
surface that can be recognized throughout the
NW Adriatic coastal plain, from the southern part
of the Po coastal plain to the Friulian Plain. In
terms of sequence stratigraphy, this surface is an
unconformable surface where a hiatus of 7-10 ka
is recorded, and where the (interfluve) sequence
boundary and the transgressive surface merge. In
this respect, this unconformable surface can be
regarded as a powerful tool for regional geological
mapping of the late Quaternary succession, and
for its subdivision into LGM and post-LGM
stratigraphic units.

3) Detailed facies analysis from continuous
cores allows precise delineation of the maximum
marine ingression during the post-LGM period.
In the Po Plain, south of Chioggia, the Holocene
transgression led to the landward migration of the
Adriatic shoreline up to 20 km West of its present
position. About 5-6 ka BP, the landward limit of
the brackish (lagoonal, estuarine, and brackish
marsh) environments was 35 km West of the
present shoreline. During the following sea-level
highstand, Po River Delta experienced pro-
gradation for about 50 km. Also in the Venetian
coastal plain the innermost shoreline position was
reached around 5-6 ka BP, but the most landward
position of the brackish deposits is dated to sub-
sequent land reclamation (XX century). A similar
situation characterizes the lagoonal margin in the
Friulian Plain, with the local exception of estuar-
ine environments that developed around 6 ka BP
in former incised valleys, leading to the landward
migration of the shoreline up to 25 km from the
present coastline. In the Tagliamento delta, the
innermost sandy coastal deposits are found 5 km
landward of the present river mouth and date to
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the middle Holocene. In contrast, in the other
sectors between Livenza and Isonzo rivers the
present shoreline coincides with the innermost
one.

4) This study emphasizes the combined role of
eustatic sea-level change, isostatic and tectonic
subsidence and changes in sediment supply as the
key factors in shaping stratigraphic architecture of
the post-LGM succession in the study area. The
predicted, model-dependent, sea-level curves for
the Holocene in Venice and Trieste suggest a
possible contribution of isostatic subsidence.
Tectonic subsidence played a major role in con-
trolling Holocene sedimentation within the Po
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