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Approximating fixed-points of
decreasing operators
in spaces of continuous functions*
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Abstract

We prove constructively existence and uniqueness of a continuous
fixed-point for a class of decreasing and pointwise monotonically demi-
continuous (nonlinear) operators in spaces of (vector-valued) func-
tions, without resorting to complete continuity. As an application, we
rediscuss and improve recent results for a class of perturbed nonlinear
integral equations.
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1 The main result.

Consider a classical nonlinear integral equation associated with a decreasing
operator, i.e. the “Chandrasekhar-type” equation

N [ ez, :
u(:L)-/Dl_i_u(t)dt, z€D, (1)

where ¢(z,t) is measurable and nonnegative in D?, D being a closed subset
of RV, 0 < sup,ep [p #(z,t)dt < +o0, limzez, fp |d(2,t) — d(20,t)|dt = 0
for every xo € D.

Equations of the form (1) have been extensively and deeply investigated
in the literature, in view of their important meaning as physical models
(especially in heat transfer problems and nuclear physics), and also of their
interesting mathematical features (cf., e.g., [3, 9, 12]). Indeed, the well-known
Chandrasekhar H- equation, which plays a key role in the theory of radiative
heat transfer in semi-infinite atmosphere, can be easily rewritten in the form
(1), with D = [0, 1], cf. [9, 12, 14].

Starting from the late '40s, various instances, as well as generalizations,
of (1) have been studied, both analitically and numerically, by means of
successive approximations (cf. the pioneering work of Chandrasekhar [2]),
resting essentially (if not explicitly) on the fact that they are fixed-point
equations of the form

u= ), (2)

where ¢ : C*(D) — C*(D), is a decreasing (nonlinear) integral operator.
What is usually shown is that, given the sequence

Ung1 = P(Un), uo=0, (3)

then uzn < Ugnir, usn T U, uUgnyr | v*, where u* = (v*) and v* = P(u*),
and more that u* = v* by exploiting the special structure of the operator;
cf., eg., [5, 8,9, 12].

It should be noticed that complete continuity of ¢ (with respect to the
sup-norm on C(D) for D compact) is typically a key ingredient of the proofs,
in that it ensures uniform convergence of the subsequences {us,} and {uzn4:}.
In particular, equation (1) and some generalizations have been solved by
applying a general result on completely continuous decreasing operators in
the framework of abstract cones, cf. [7, 9].

We recall, in fact, that the integral operator in (1) is certainly completely
continuous when D is bounded and the limit as v — ¢ is uniform, as proved
for a generalization of (1) in [5, 9] (this being indeed the case of the classical
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Chandrasekhar H-equation). On the contrary, in absence of uniformity for
the limit above, compactness (and hence complete continuity) may fail (cf.
8-

The lackness of compactness has been cleverly circumvented for (a gener-
alization of) (1) with D = R™ in [8], where uniform (monotone) convergence
of ug, and uzn4; to the unique fixed-point is obtained by an extremely so-
phisticated use of the structure of the nonlinearity. Such a proof rests on
a quite general fixed-point result for a class of noncompact (and even dis-
continuous) decreasing operators in ordered Banach spaces. We recall also
another important fixed-point theorem for (—a)-convex decreasing operators
[9, Thm.2.2.6], which does not require complete continuity at all: it is not
applicable, however. to the integral equations above.

We started our analysis from the following question: is compactness really
needed in the analysis of the iterative process (3), to obtain constructively ex-
istence and uniqueness of a nonnegative continuous fixed-point? The answer
is negative by a quite simple argument, since we can conveniently exploit
the properties that the corresponding integral operator preserves pointwise
monotone convergence, and regularizes nonnegative measurable functions.
These entail that u* = ¥(v*) and v* = ¥(u*) (see (3) and below) are contin-
uous, hence we are done as soon as we prove that u* = v (by resorting in
the usual way to the special structure of the operator). Moreover, in view
of a famous theorem of Dini, convergence of 3, to u* and of uznyy to v7,
being pointwise monotone, becomes uniform on compact subsets of the sup-
port D. In such a way we recover all the features of the iterative process
(3) usually obtained via complete continuity; observe that neither continuity
with respect to the uniform convergence topology is used.

The approach just sketched can be extended to a general class of decreas-
ing operators in spaces of (vector-valued) functions, as it will be shown in
Theorem 1.1 below. For basic notations, definitions, and results concerning
monotone operators in ordered Banach spaces we refer the reader. e.g, to
[9, 10, 11]. Let X be a topological space, and " a regularly partially ordered
Banach space; we are concerned with nonlinear operators

p:(PCV)—> P, (4)

where P is the cone of positive functions of V', V' being a linear subspace of
Y-valued functions defined on X. We assume that V is closed with respect to
pointwise convergence, i.e., it is characterized by some additional properties
which are mantained by pointwise limits (for example measurability when
X is a measure space). Making a little abuse, we shall denote by > the
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order relation in Y as well as that canonically induced in spaces of Y'-valued
functions defined on X. Moreover we shall denote by 6 the zero element
of Y as well as the zero function on X. Following [9], the “order interval”
{z : u =%z < v} will be written as [u,v]. We recall that an operator
Y : (P CV)— Pis termed decreasing when

P(u) > (v) for every u,v € P, u=v. (5)
We are now ready to state and prove the following
Theorem 1.1 Consider the fixed-point equation (2), where
=1+, (6)

P1,%2 : P — P being two decreasing operators which are pointwise monoton-
ically demicontinuous, i.c., if v, € P converges pointwise increasing [decrea-
sing] to v, then ;(v,) converges pointwise weakly (decreasing [increasing))
to ¥i(v), 1 = 1,2 (observe that necessarily v € P, since V is closed under
pointwise convergence). Moreover assume that

(2) ¥1(0) > 0 or o(6) - 6.
(1) ¥1: P> PNC(X;Y), yo(PNC(X;Y)) C PNC(X;Y).

(i3t) The fized-point equation
u=1s(u)+4, (7)

has a unique solution in P, say ug with ug € C(X;Y), for every B €
[0,$(6)) N C(X; Y).

(iv) There exists e > 0 such that *(8) = eoip(8); for every u € [h2(8), ()],
for every T € (0,1), there exists n; = n;(7,u) > 0 such that

i(ru) 2 (r(1400) T hi(w), 1=1,2. (8)
Then, the sequence {u,} defined recursively by
Ung1 = P(Un) . ug=0, n=0,1,2.... 9)

converges (pointwise) to the unique fired-point of ¢ in P. say u* € C(X;Y),
and moreover,

0 < e0y(0) R P*(0) < oo Rugy X XUt <L K ugy <. < P(0), (10)

n = 2,3,... . Finally, the iterative process (9) converges uniformly to the
fized-point on compact subsels of X, starting from any initial choice ug € P.
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Before proving the theorem, some observations are in order. First, we stress
once again that the result is conmstructive: {rom the computational point
of view, the inequality uz, < u* =X uz,_;. when applied on a suitable dis-
cretization of X, can provide a simple and reliable stopping criterion in the
implementation of the successive approximations algorithm. Moreover

Remark 1.2 Observe that by (i2) we require that the operator ¥ has some
“regularizing” effect. This is a typical feature of integral operators, such as
for example that in (1) (where we can take ¥, = 0), as well as the feature
of preserving pointwise monotone convergence (essentially in view of Beppo-
Levi’s monotone convergence theorem). On the other hand, by (:2) 12 must
preserve continuity; this feature can be exhibited even by local operators,
like the superposition (or Nemytskii [1]) operator generated by a continuous
function (see the example below). .

Remark 1.3 If we take as topological space X the singleton {1}, then both
V and C(X;Y) can be trivially identified with the space Y. This entails
that Theorem 1.1 provides also a constructive fixed-point result in regularly
partially ordered Banach spaces, where the operators 1, and v, are assumed
to be only monotonically demicontinuous. This is reminiscent of a well-known
fixed-point (existence) theorem for increasing demicontinuous operators, cf.,
e.g., [9, Thm.2.1.1]. Observe also that when ¥ = RN (whatever be X), or
more generally when Y = ZN. with Z regularly partially ordered Banach
space, then Theorem 1.1 becomes a tool for studying systems of operator

equations.

Proof of Theorem 1.1. The sum % = ®; + ¥ is clearly positive and
decreasing, as such are its summands. First we observe that the order in-
terval [0,%(0)] is y-invariant, and that u, € [0,%()] N C(X;Y) for every
n, by (i4). Now, we prove by induction on n that every order interval
[u2n, Uznt1] is t-invariant. This is true for n = 0 (see above); assuming
that [ugm,Usn41] is ¥-invariant, we obtain easily that if u € [uzni2, Uan1)
where uzn42 = ¥(Uznt1) = Uzn, then ugniq = P(u) = P(Uznt1) = Uznt2, 1€
that [uan42,Uzns1] is P-invariant. In a similar way, from the y-invariance
of [ugny2,Uznt1] We recover that of [t2n42, Uznta), Which terminates the in-
ductive argument. The such proved invariance implies that ug, X uga42 =X
Ugn43 = Uznyr for every n 20, ie,

0 < ot (0) 2 PH(0) X . Rugn 2o Fugnoy X 2 (0)




Downloaded by [Universita di Padova] at 00:52 07 February 2012

640 SOMMARIVA AND VIANELLO

Now, the sequences {u;,} and {uz.+1} are monotone (increasing and
decreasing respectively), and pointwise bounded in order: hence, they are
pointwise convergent since the cone of Y is regular, i.e., there exist u*, v* €
P 0 [1%(0),9(0)], such that uss(z) T w (), uznsr(x) | v*(z) in Y for every
x € X (recall that V is closed with respect to pointwise convergence).

The operators ¢; and 1, and thus i, are pointwise monotonically demi-
continuous, so that, taking the pointwise weak limits as n — >0, we obtain
immediately from (9)

vt =), Ut =(eT). (11)

It remains to prove that u* = v* € C(X;Y'), and that this is the unique
fixed point of 1 in P. As for the former, if (iv) is verified, we can proceed as
in [9, Thm.2.1.5]. Set

7o = sup {7 € (0,1] : 70" < '}, (12)

which is well defined since u* »= ¥2(0) = epp(0) = eov*. If 75 = 1 we are
done; if 79 < 1, taking n = min {n;,7n,}, we get

v = () X P(1ov”) < (o(1 + 7)) eha(v") + (ro(1 + 72)) " ehy(v%)
=X (o(1+ 7)) (1 (v") + $a(v™)) = (0(1 + 7)) M,

which contradicts the definition of 7o. Moreover, any fixed-point of 4 in P,
say z = Y1(z) + (), is continuous. In fact, yy(2) € [0,%(8)]NC(X;Y) by
(¢1), so taking B = t(z) in (iit) we get ug = z € C(X;Y).

As for the uniqueness of the fixed-point, if z = 9(2), § < z € P, then
¥(0) = z = 0, and so by induction on n, uz, <X 2 < Upny; for every n =
0,1,2,.... Taking the pointwise limit of both sides in the inequality above,
and using the fact that the cone of Y is regular, and hence normal, we get
z = u* = limuy, = limug,yy, in view of the so-called “two militia-men”
theorem (cf. [10, Thm.4.1.6]).

At this point, a straightforward generalization to functions valued in or-
dered Banach spaces of a well-known theorem of Dini [4, Thm.7.2.2] (we
omit details for brevity), gives uniform convergence of the sequences {us,}
and {uzn41} on compact subsets of X, since they are both monotonically
pointwise convergent to the continuous function u*.

Finally, for any initial choice uy € P, the inequalities u,, < P2 (ug) <
Upn-1, Uzn =X PP (ug) < Upnyr, can be easily proved by induction on
n > 1. Observe that, in view of the just written inequalities, we have
0 < ¢™(uo) =X ¢¥(0) for every n > 1, wherefrom YP™(uw) € B(N;Y) = {u:
K =Y, sup,ek |lu(z)|ly < +oo} for every n > 1 (recall that 3(6) is continu-
ous on the compact K by (ii)). This shows that ¢™(uo) converges uniformly
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to u* on every fixed compact subset I C D. by applying the “two militia-
men” theorem in the normally ordered Banach space B(K;Y') (endowed with
the norm ||u|| = sup,¢p [lu(z)|ly)- O

Remark 1.4 The assumption at the beginning of (¢v) is essential in proving
that u* = v*, since it ensures that the set in (12) is nonempty. Existence
of such gy is guaranteed, for example, when ¥ = R, X is compact. and
$2(0)(z) > 0 for every & € X. In fact, ¥(6) and ¢*(8) are continuous
functions of x by (i), so they are bounded by positive numbers from above
and from below, respectively.

Observe also that, in this case, (8) holds with ¢ = 1 whenever 74 (7u)(x) <
Pi(u)(z), and ;(u)(z) > 0 for every z € X, since Tp1(Tu)/th1(u) is contin-
uous on the compact X.

2 Applications.

In two recent papers [5, 8], certain (possibly perturbed [5]) Hammerstein
integral equations, associated with decreasing (possibly noncompact (8]) op-
erators, have been studied. We show that Theorem 1.1 above can be used to
rediscuss, generalize, and improve in part such results, as in the following

Example 2.1 (Perturbed Hammerstein equations.) Consider the perturbed
Hammerstein integral equation

u@) = [ 80 S u®)dt+glul@), A>0,  (13)

where

(I) the kernel ¢(z,1) is measurable and nonnegative in D?, D being a closed
subset of RN (not necessarily bounded), 0 < M := sup,¢p [p #(x.1)dt <
+00, lim,_z, Jp |6(7,t) — (20, t)|dt = 0 for every fixed zo € D:

(II) f : D x [0,400) — [0,400) is measurable, f(t,-) is continuous and
nonincreasing for a.e. t € D, f(-,0) € L=(D), and there exists 0 < { =
€(,u) < 1, with €(7,-) € C[0,4+00), such that

Tf(t,Tu) < &(7,u)f(t,u), (14)

for every T € (0,1), u > 0, and for a.e. t € D; moreover, if g = 0, we
assume that there exists a constant ¢, > 0 such that f(f,p) > ¢, for

a.e.t € D, where p = AM||f(+,0)||c;
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(II1) either ¢ =0, or g : [0,400) — (0,400) is continuous and nonincreas-
ing, and
Tg(Tu) < g(u), (15)

for every 7 € (0,1), u > 0.
Let u be a nonnegative measurable function; we can define an operator 1) as
Y(u) = ¢y(u) + ¢2(u), where
(@)= A [ glat) flt,u(®) (16)

and
Pa(u)(x) = g(u(z)) . (17)

It is easily seen that t;(u) is continuous on D by (1), (IT), while t5(u) is
continuous whenever such is u, in view of (I11). It is also immediate that
any fixed point equation like u = ,(u) + B has a unique nonnegative and
bounded measurable solution, say ug such that

ug(e) = (id - g)7'(B(z)), z €D, (18)

for every nonnegative and bounded measurable 3. Clearly, ug(z) is continu-
ous on D if such is 3.
Observe that, for every z € D,

0 <$(0)(x) =) [ dla,0) f(t,0)dt +(0)

S A0l [ 6w 1)dt+9(0) < AMISC, )l +9(0) =, (19)
and that

0)) =X [ gla,0) [(6$(0)(0) di + g($(0)(2))

> hess jnf f(t,) [ o(z,t)dt+g() . (20)
Moreover, if y € [0, u], then by (14), (15), for every fixed 7 and a.e. fixed ¢,
Tf(t,Ty) S o1 f(ty), o1:= max &(r.y) <1, (21)

yelov/‘]

and, if ¢ is not identically zero,

Tg\(T1
Tg(Ty) < 029(3/) , 02 := max M

<1. 22
velol g(y) (22)




Downloaded by [Universita di Padova] at 00:52 07 February 2012

FIXED-POINTS OF DECREASING OPERATORS 643

In fact, g(y) > g(u) > 0 for y € [0, u], so that both £(7,y) and Tg(7y)/g(y)
are continuous functions on [0, u], strictly bounded by 1. If g = 0, we can
take, e.g., o2 = 0 in (22).

By (21), (22) we obtain that, if u is a measurable function such that
0 < u(z) < ¢()(z) for (almost) every x € D, then

ri(ru)(z) < opi(u)(z), i=1,2, (23)

for (almost) every @ € D, where oy, 0, depend only on 7 and p.
With these considerations at hand, equation (13) can be studied in two
different functional frameworks, via Theorem 1.1.

First approach. Taking into account Remark 1.3, when D is bounded
(hence compact), we could consider 9 as a decreasing operator from LP(D)
into LP(D), 1 < p < oc: observe that if u € LP(D) is nonnegative, then both
11(u) and t5(u) are measurable, nonnegative, and bounded, and hence their
p-th power is integrable. As known, LP(D) can be partially ordered in the
obvious way, and its cone is fully regular but non solid [9, Ch.1].

The properties discussed above, see (16)-(23), entail that all assump-
tions of Theorem 1.1 are satisfied. In particular, in (sv) we can take o =
eu/IF(s0)loo if g = O, otherwise eo = g(u)/p, and n; = 07" — 1,1 = 1,2,
cf. (19)-(23). The only remaining point concerns monotone demicontinuity
of ¥, and : this is an almost immediate consequence of the continuity of
f(t,-) and g, and of Beppo-Levi’s monotone convergence theorem, in view of
the Riesz representation theorem of linear continuous functionals on L?(D)
(cf. [6, Thm.6.15]).

The final result is that equation (13) has a unique nonnegative and
bounded fixed-point u* € LP(D), and that the successive approximations
converge to u* in the norm || - ||z», for any initial nonnegative function
uo € L?(D). The fixed-point turns out to be strictly positive whenever ¢
is not identically zero, or [, ¢(z,t)dt > 0 for every x € D. Moreover, in
view of the considerations above (cf. (16)-(18)), the fixed-point u™ turns out
to be continuous on D, as well as the successive approximations starting
from any continuous nonnegative function ug (or even from any nonnegative
L? function, when ¢ is constant).

Second approach. If we make the natural choice X = D, Y = R (with D
in general unbounded), and we take as V' the space of measurable functions
defined on D, again (16)-(23) show that all assumptions of Theorem 1.1
are fulfilled. As for monotone demicontinuity, it can be easily derived by
the continuity of f(¢,-) and g, and by Beppo-Levi’s monotone convergence
theorem.
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The final result is now that equation (13) has a unique nonnegative and
bounded fixed-point u* € C(D), and the sequences u,, and wuz,4; defined
in (9) converge, increasing and decreasing respectively, to u*, uniformly on
compact subsets of D. Convergence of the successive approximations is also
uniform on compact subsets of D, starting from any nonnegative measurable
function up. The observations made above. concerning strict positivity of u*
and continuity of the successive approximations, still apply.

Various instances of the nonlinear integral equation (13) have been inves-
tigated in [5, 8], under the common assumption that

m

-1
f(tu) = [Z cu(t)u"'] , (24)
1=0

where 0 = a9 < a1 < ... < am =1, the a;’s are nonnegative and bounded on
D, and ess inf;ep ao(t) > 0.

Note that the function f in (24) satisfies our assumption (II), in partic-
ular [|f(-,0)]leo = (ess infiep ao(t)) ™", eu = (Liko Supiep ai(t) u) 7!, and by
simple calculations

Tftme) 14+ ¥R ai(t)u/ao(t)
fu) 1+ Ty ai(t)u/ao(t)
ess infiep ao(t) + oIt sup,ep ai(t)u®
~ Zess infiep ao(t) + L, supyep ai(t)u
where we used the fact that (1 + w)/(1/7 + w) is an increasing function of
w € R* (clearly £(7,u) in (25) is a continuous function of u). Note that
when ¢ is not identically zero, boundedness of a(-) is not required, since it
is explicitly needed only in the evaluation of the lower bound c,.

We recall that in [5] the support D is bounded (hence compact) and the
limit in (1) is uniform with respect to zo, while in [8] D = R", the limit is not
assumed to be uniform, but only the unperturbed case (g = 0) is considered.
Indeed, in absence of uniformity for the limit above, compactness may fail, cf.
[8]. Here we are able to treat the case of a general (not necessarily bounded)
integration domain D, and of a continuous and nonincreasing perturbation g,
either identically zero, or satisfying only assumption (15). In [5] the analysis
of the “perturbed” case is regarded as a difficult problem, which requires
special tools and strong additional hypotheses on the perturbation.

The application of Theorem 1.1 to equation (13), via the second approach
described above, represents a generalization of both [5] and [8], and an im-
provement with respect to [5], since there, in addition, g is assumed to be a

0<

=:{(r,u) <1, (25)
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contraction (to allow the use of Darbo’s fixed-point theorem); a trivial ex-
ample of a function g which satisfies (I11) but is not a contraction, is given
by g(u) = 1/(1 + ).

On the other hand, when D is unbounded (e.g. D = RY, cf. [8]), we
obtain uniform convergence of the successive approximations only restricted
to compact subsets of D. In a forthcoming paper [13], we'll show how Guo’s
theorem [8] can be used as an alternative approach to the constructive anal-
ysis of the nonlinear integral equation (13), under the general assumptions

(I) - (I11).
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