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Abstract 

Morandi Cecchi, M. and M. Redivo Zaglia, Computing the coefficients of a recurrence formula for numerical 
integration by moments and modified moments, Journal of Computational and Applied Mathematics 49 (19931 
207-216. 

To evaluate the class of integrals /‘,e-“Xf(x) dx, where (Y E [WC and the function f(x) is known only 

approximately in a tabular form, we wish to use a Gaussian quadrature formula. Nodes and weights have to be 
computed using the family of manic orthogonal polynomials, with respect to the weight function eeolX, 
obtained through the three-term recurrence relation Pk+I(x)= (x + B,+,)P,(x)- C,+,P,_,(x). 

To guarantee a good precision, we must evaluate carefully the values for the coefficients Bk+l and Ck+ i. 
Such evaluations are made completely formally through a Mathemafica program to obtain great precision. 

A comparison between various methods, starting from moments and modified moments, is shown. Numeri- 
cal results are also presented. 

Keywords: Orthogonal polynomials; recurrence relation for orthogonal polynomials; Gaussian quadrature; 
moments; modified moments; symbolic computation 

1. Introduction 

In quantum mechanics it is very important to evaluate, with great precision, the class of 
integrals 

/ 

1 
emaxf(x) dx, 

-1 
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with (Y E R+ and f(x) known in a tabular form. Having a positive weight ePcux and /‘rePaX dx 
< +m, we can use a Gaussian quadrature formula like 

I= ’ epaxf(x) dx= iAtp’f(x,)+R,=I,+R,, 
/ -1 i=l 

where xi, -1 <x1 < *** <x, < 1, are the real zeros of the polynomial P,(x) E Pn, orthogonal 
in [ - 1, 11 with respect to ePax and the Ay)‘s are the weights, depending on n and on the knots 
distribution. In such a way the formula is exact over PZn_i. 

To determine the zeros and the weights, we must compute, with great accuracy, the 
coefficients of the polynomials Pk E P,, satisfying the orthogonality conditions 

c(xiP&)) = 0, i = 0 )..., k - 1, 

where c is a linear functional over the space P of real polynomials [2, Chapter 21 defined as 

c(xi) = ci = /I xiemax dx. 
-1 

Thus, after computing the first 2k moments ci, the orthogonal polynomial P,(x) = a, + u,x 
+ - - - +a,xk can be determined by setting uk = 1 and solving the classical system 

Lz()CO + arci + . . . +u,_,c,_, = -ck, 

i: 

UOCl + qcz + * * * +u,_,c, = -ck+I, 

I’ Uock_l + UlCk + * ” +u,_,c,,_, = -C2k-l- 

This problem has been already considered in [12], where, for some significant values of (Y 
and n, zeros and weights have been provided. However, this system, always nonsingular, is 
often ill-conditioned. Thus, to avoid the computation of the k + 1 coefficients u,‘s solving this 
system, we can determine them using the three-term recurrence relation 

P-I(X) = 0, PO(X) = 1, 

Pk+~(X)=(X+Bk+~)P&)-c~+~Pk-~(X), k=o, I,..., (1) 

that is, computing the 2k coefficients Bi, Ci, for i = 1,. . . , k. 
Using this approach, a recursive algorithm to determine, for any value of (Y and II, the zeros 

and the weights has been proposed in [13]. This algorithm allows, in a very easy way, to increase 
the number of knots of a Gaussian quadrature formula using the values computed in the 
preceding formula. This is possible because only the moments, the coefficients of the two 
preceding orthogonal polynomials and the last computed zeros are needed. 

As previously said, to get a good approximation of the integral, the coefficients of the 
polynomial can be determined in the best possible way. But, in all methods considered, the 
crucial point seems to be the computation of moments ci and that of modified moments ui (see 
Section 3). 

Therefore, in this work comparisons among different methods based on moments and on 
modified moments are presented. We use the usual numerical approach but, above all, we 
consider the formal evaluation made through a Muthemuticu program. Such comparisons will 
show, in a formal way, the possible advantages of using modified moments methods, but also 



M. 

report some possible unpredictable results. All the comparisons presented here are made over 
the symbolic and numerical computation of the moments, of the modified moments and of the 
coefficients Bi and Ci of the recurrence formula (1). 

2. Moments-based methods 

Two moments-based methods have been considered in this paper. The first one, called 
Chebyshev method [5], allows to determine, starting from the moments, the coefficients of the 
recurrence relation. Unfortunately, this method is often ill-conditioned in practice. 

Let us give a matrix 2 whose elements are defined as 

zk,i=c(Pkxi), k, i=o, 1,2 )..., 

where the z,,+ for i < k, due to the orthogonality conditions, are always zero. The first row of 
this matrix represents the moments, since z~,~ = c(P,xi) = c(x’> = ci. 

Multiplying (1) by xi and applying the functional c, we obtain the Chebyshev method: 

=k,i =‘k-l,i+l + Bkzk-l,i - CkZk-2,i, i=k, k+l 7 * * * , 

B 
zk-l,k ‘k,k+l =k,k 

k+l = 
-~ 

7 C kfl = 7 
=k-l,k-1 ‘k,k =k-l,k-1 

for k = 1, 2,. . . and with the initial conditions 

Z _l,i=o, i= 1,2 )...) =lJ,i = ci 3 i = 0, 1, 2,. . .) 

B,= -2, 
CO 

Cl = co. 

The second method, used in [13], directly gives the coefficients of the recurrence relation and 
also the coefficients of the orthogonal polynomial Pk+l. Thus no additional multiplications as 
in (1) have to be made. 

Let us write P,(x) = a, + a,x + . -- +akxk as Pk( x) = Cf= opi(k)~i = phk) + plk)x 
+ . * * +pik’Xk with pk (k) = 1 Vk. As shown in [2], the following relations hold: , 

B 
“k 

k+l = 
-- 

hk ’ 

where h, = c(xkPk) and (Ye = c<xk+‘Pk) +pf‘)l~(~kPk). 
Putting them into the recurrence relation (1) and considering the coefficients of the powers 

of x, the coefficients pj”) can be computed recursively as follows [2]: 

p,‘-i” =p$-l) = 0, h_, = 1 3 

p’“‘, =p’p’ = 0, p. (0) = 1, 

p’ki’ 1) = piy21) = 0 9 Pk+l 9 
(k+l) = 1 

p~k+l)=p{k\+Bk+lp!k)-Ck+lpjk-l), i=O,...,k, 1 
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where for k = 0, 1,. . . the quantities 

i=O 

(Yk = yk f Pik?@k, 

B 
ak hk 

k+l = 
-- 

hk ’ 

c k+l= - 
h k-l 

have to be computed. 
This recursive method can be viewed also as an application of the bordering method (see 

[6,15]). It permits to compute, starting from the solution of the initial system, in a recursive 
form, all the other solutions. In fact, the system to be solved for computing the coefficients pik) 
can be obtained by adding a new equation and a new unknown to the preceding system used 
for computing the coefficients pi (k-1) Thus the new matrix has been bordered by a new row . 

and a new column. The bordering method works on a general linear system, and a version to 
avoid division by zero, called block bordering method, can be found in [3] with two subroutines 
corresponding to these methods. For determining the coefficients of the orthogonal polynomi- 
als, the matrices are always Hankel matrices and then the bordering method simplifies (see 
[16]), and finally we obtain the previous form of the method. 

3. Modified moments-based methods 

If the methods are based on the computation of moments, they may be severely ill-condi- 
tioned, as shown in [7]. 

In [14], using families of classical orthogonal polynomials (Legendre, Chebyshev, . . . >, Sack 
and Donovan present a method, called modified moments method, for computing the coeffi- 
cients of the recurrence relation. The sensitivity of orthogonal polynomials using this method 
has been studied in [lo]. If the modified moments are accurately computed, the results 
proposed in various works (see, for example, [9,14]) seem to prove that the computation of the 
coefficients Bi and Ci becomes more stable. 

In this approach, the moments are presented in a modified form like 

q=c(Lq, i=o, l)...) 

where {Ll,J is an auxiliary family of manic orthogonal polynomials satisfying 

K,(x) = 0, n,(x) = 1, 

&+1(x) = (x +BL+,)Il,(x) - c;+,&_,(x), k = 0, 1,. . . . 

Obviously, when 17,(x) =x’, then ui = ci. 
When the intervals of the families [Pn} and {Jl,} are finite, the modified Chebyshev algorithm 

seems to be stable for computing the coefficients Bi and Cj. This method, first proposed in [17] 
(see also [2,9]), is defined as follows. 

We consider the matrix 2 with elements 

zk.j=c(pkni), k, i=O, 1,2 ,... . 
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All the z~,~, with i < k, are zero, due to the orthogonality conditions, and the first row contains 
the modified moments because z~,~ = c(P,U~) = ~(17,) = ui. 

The method, for k = 1, 2,. . . , is as follows: 

=k,i ==k-1,i+1 -BI+1~k_l,i + CI+,zk_l,i-l +Bkzk-l,i - Ckzk-z,i, i = k, k + 1,. . . , 

B = B;+l + 
‘k-1,k ‘k,k+l ‘k,k 

-~ 
kfl , C kfl = 7 

Zk-l,k-l Zk,k Zk-l,k-l 

with the initial conditions 

Z _l,i=O, i=l,2 ,..., Z&i = ui 7 i=O, 1,2 ,..., 

B,=B;-L”, 
UO 

Cl = uo. 

If we choose KIi = xi, this method reduces to the Chebyshev method described in Section 2. 
As shown in [4], it is not necessary that the family {UJ be orthogonal, and the modified 

moments can be built up starting from any family of polynomials. 

4. Computing moments and modified moments 

For our 
computing 
hold. 

Let ci = 

integral, either moments and modified moments are analytically computable. For 
the moments, two formulas have been proposed in [13] and the following theorems 

1’ lXie-nx dx, a E R, i = 0, l,... . We proved the following theorems. 

Theorem 4.1. 

1 
Co = - -(Ka - ea), 

(Y 
QCi= -[epa- (-l)iea] +ici_,, i= 1,2 ,... . 

Theorem 4.2. 

ci= (-l)‘i! i 
j=O 

ajJlj~~jj, [em - ( - l)'+'e-"1 . 

For modified moments, we choose the family of manic orthogonal polynomials 

no(X) = To(x), 
T,(x) 

Il,(x)=2”1, n=l,2 ,..*, 

where the T,‘s are the Chebyshev polynomials of the first kind. This choice seems to be suitable 
because of the coincidence of the interval of definition of the two families. The auxiliary 
polynomials are defined by the following relations: 

K,(x) = 0, n,(x) = T,(x) = 1, 

&+1(x) =x&(x) - C;+,n,_,(x), k = 0, 1,. . . , 

B;+l=O, k=O, l,..., C;+1=+, k=O, 1, C;+l=+, k=2,3 ,... , 
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For computing the modified moments, two theorems directly obtained from Theorems 4.1 
and 4.2 hold. 

We consider the modified moments ui = ~(17,) = /?,17Jx)e-aX dx, (Y E IR, i = 0, 1,. . ., 

where Iii is the ith Chebyshev manic polynomial of the first kind. Thus we have the following 
theorem. 

Theorem 4.3. 

ug=co, u1 = Cl, 

[i/21 
ui=i C (-1)” (i-m-1)! 2-2mCi_2m, 

m!(i-2m)! 
i=2 3 

, )... . 
m=O 

Proof. Having II,(x) = 1 and IT,(x) =x, the first two relations immediately hold. The explicit 
form of TJx) (see, for example, [l]) is as follows: 

[i/21 (i-m-l)! 
T(x) = 9 C (-l)mm, (i _ 2m)! CW2” 

m=O 
[i/21 *(i-m-l)! 

=i2’-’ c (-l)mm,(i _2m)r 2-2mXi-2m. 
m=O 

Thus, 
[i/21 (i-m - l)! 

IIi(x)=i C (-l)mm,(i_2m),2-2”xi-2”. 
m=O 

Applying the functional c to both sides of the relation, we obtain 
[i/21 (i-m-l)! 

ui=c(lI~(x))=i C (-l)mm,(i_2m),2-2mC(-+2”) 
m=O 
[i/21 

=i C (-1)” 
(i-m - v 2-2mC, 

r-2rn' 0 

m=O 
m! (i - 2m)! 

Theorem 4.4. 

[i/21 
u,=i C (-l)i-m2-2m 

m=O 

‘i-“,[ ‘I! ir aj+lc,‘_~~ _j), [ea- (_l)ip2m+je-~], 
j=O 

i = 2, 3,. . . . 

Proof. Substituting the formula of Theorem 4.2 into that of Theorem 4.3 gives the result after 
trivial simplifications. 0 

5. Numerical results 

The numerical results, obtained on a ).LVAX 3100 using H-float storage to obtain a good 
precision (about 33 significant decimal digits), do not permit to decide if, in our case, the 
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‘\\ 
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I 
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L\ - 
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15. 
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Fig. 1. (A) Bi, a = 2.0; (B) B,, (Y = 5.0; (C) Bj, (Y = 15.0; (D) Ci, a = 2.0; (E) CL, a = 5.0; (F) Ci, a = 15.0. 

modified moments methods give a better computation of the coefficients Bi and Ci. Thus we 
have decided to choose the symbolic computation in order to look for a correct answer to the 
question. 

For performing this symbolic computation we considered Muthematica [181, running on a 
Macintosh II. This program allows to specify formal calculations requiring a certain number of 
exact decimal digits (in our case we have chosen 300 digits). When the operations of 
simplification introduce uncertainty over some digits, then the program automatically reduces 
this number and returns as output only the digits considered to be exact. 

In all the comparisons presented here, three values for (Y, namely (Y = 2.0, 5.0 and 15.0, and a 
degree for the orthogonal polynomial Pi varying from i = 1 to i = 22 have been considered. 

First of all, in Fig. 1 we consider a comparison between the coefficients Bi and Ci formally 
obtained with Muthematica, using the Chebyshev method and the modified Chebyshev method. 
In the x-axis the values of i are reported. In the y-axis the number of decimal digits given in 
output by Mathematics (and then considered exact) are represented. As we can see, the 
behaviour shows that the modified Chebyshev algorithm (solid lines) gives, for the values 
cy = 2.0 and cr = 5.0, better results than those of the Chebyshev method (dash lines). When (Y 
increases, the behaviour of the two methods becomes almost the same. 

In Fig. 2 a comparison between the numerical results and the results obtained with 
Muthemutica is shown. We denote with dash lines the number of common digits between the 
numerical results obtained with three numerical methods: Chebyshev method, bordering 
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10 10 - 
““\ 

\\ 
\ 

0 
0 5 10 15 20 25 

0 
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0 5 10 15 20 25 

Fig. 2!(A) IIt, (Y = :“o; (B) Bi, a = 5.0; (C) Bj, a = 15.0; (D) Ci, a = 2.0; (E) Ci, a = 5.0; (F) C,, a = 15.0. 

method and modified Chebyshev method. The solid lines represent the number of common 
digits between all the numerical results and the results obtained with Mathematics. The 
graphical representation clearly shows that even if one can believe that the common digits 

Fig. 3. (A) a = 2.0; (B) a = 5.0; (C) a = 15.0. 
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Fig. 4. (A) Bi, a = 2.0; (B) Bi, a = 5.0; CC> Bi, a = 15.0; (D) Ci, (Y = 2.0; (E) Ci, (Y = 5.0; (F) Ci, (Y = 15.0. 
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between the three numerical methods are “exact” digits, in reality only a lower number of these 
digits are “exact”. Thus, one can say that the three methods give a wrong answer with the same 
behaviour. 

The unsolved problem is to understand why the modified moments method (certainly more 
stable for the results given in Fig. 1) loses its advantages mostly when cy = 2.0 and (Y = 5.0. 
Figure 3 shows for moments (dash lines) and modified moments (solid lines), computed 
numerically with the analytical formulas, the number of common digits with the results 
obtained with Mathematics. As we can see, the computation of modified moments is less stable 
than that of the moments, and thus this is probably the reason for the results of Fig. 2. 

To prove this hypothesis, we give to the numerical program using the Chebyshev method 
(dash lines) and the modified Chebyshev method (solid lines), the values of the moments and of 
the modified moments obtained by Mathematics, namely we give to the program the “exact” 
values for such quantities. In such a way we retrieve in Fig. 4 a behaviour similar to that of Fig. 
1 and the results given by the modified moments method are really more stable. 

6. Conclusions 

Starting from our results, some remarks can be made. The computations made with the 
symbolic approach certify that, using modified moments, the methods for computing the 
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coefficients of the recurrence relation are really more stable. A condition “near necessary” 
anyway is to have the modified moments in a closed form. But, also in that case, we have no 
guarantee that the modified moments increase the stability. In fact, the numerical computation 
of the modified moments (starting from our analytical relation) can be, in some cases, less 
stable than the computation of the moments and thus the results do not improve. It should be 
noted that the contribution of symbolic computation is essential in the understanding of the 
behaviour of the recurrence formula considered. 

Various papers deal with the methods using moments and modified moments. Recently, 
Golub and Gutknecht [ll], extending the theory to the case of an indefinite weight function, 
presented a review of the basic algorithms. On the problem of Gaussian quadrature with 
modified moments, one can see [8]. 
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