Bothrops snake myotoxins induce a large efflux of
ATP and potassium with spreading of cell damage

and pain
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Myotoxins play a major role in the pathogenesis of the envenoma-
tions caused by snake bites in large parts of the world where this is
a very relevant public health problem. We show here that two
myotoxins that are major constituents of the venom of Bothrops
asper, a deadly snake present in Latin America, induce the release
of large amounts of K* and ATP from skeletal muscle. We also show
that the released ATP amplifies the effect of the myotoxins, acting
as a "danger signal,” which spreads and causes further damage by
acting on purinergic receptors. In addition, the release of ATP and
K* well accounts for the pain reaction characteristic of these enve-
nomations. As Bothrops asper myotoxins are representative of a
large family of snake myotoxins with phospholipase A, structure,
these findings are expected to be of general significance for snake
bite envenomation. Moreover, they suggest potential therapeutic
approaches for limiting the extent of muscle tissue damage based
on antipurinergic drugs.
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S nakes of the genus Bothrops are responsible for the majority of
snakebite envenomations occurring in Latin America, from
southern Mexico to northern Argentina (1-5). These envenoma-
tions are characterized by anatomical and pathophysiological
alterations, which include prominent local tissue damage and
major systemic disturbances that may lead to death (1, 2, 6).
Common and abundant components of Bothrops venoms are
myotoxins that adopt the fold of phospholipases A, (PLA,) and
play a major role in the pathogenesis of local tissue damage (6-9).
These myotoxins are responsible for local myonecrosis, in-
flammation, and pain (6, 8). Venom PLA,s found in snakes of the
family Viperidae are classified within the structural group IIA, with
subunits of 121-122 amino acid residues characterized by a specific
pattern of disulfide bonds (9, 10). Among them, two subgroups can
be distinguished. One consists of enzymatically active PLA,s with
a characteristic Asp49, a key residue for catalysis. The other sub-
group includes proteins with a conserved PLA,; fold but devoid of
PLA, activity because the catalytically essential Asp49 has been
replaced with Lys or other amino acids. Additional changes involve
residues forming the Ca®*-binding loop, and members of this sub-
group are therefore termed PLA, homologs (6, 7, 10-12). Asp49
PLA, myotoxins depend on their enzymatic activity to induce
skeletal muscle fiber damage (6). In contrast, the catalytically in-
active Lys49 PLLA, homologs use, as major determinant of toxicity,
a C-terminal region (residues 115-129), which presents a variable
combination of cationic and hydrophobic/aromatic residues and
forms membrane pores (11-13). Both types of myotoxins cause
a large influx of Ca** in muscle cells, which triggers a cascade of
events such as loss of mitochondrial function, widespread pro-
teolysis, myofibrillar hypercontraction, and additional degenera-
tive events that still await a detailed description (6, 14). We re-
cently reported that a Lys49 Bothrops myotoxin is more direct and
rapid in its cytotoxic action than its Asp49 counterpart, although
they both eventually cause cell death (15).
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To gain further insight into the events involved in the patho-
genesis of tissue injury caused by these myotoxins, we studied the
effects of Bothrops asper myotoxins (Mt-I, an Asp49 myotoxin,
and Mt-1I, a Lys49 myotoxin) because they are representative of
myotoxins present in many Bothrops spp., as well as in many other
species belonging to different snake genera (11). The action of
Lys49 myotoxins has been extensively studied in various animal
models, in isolated muscle preparations, and in cells in culture.
The key role of the Ca®* entry from the extracellular medium
into the cell, following a steep concentration gradient, is one of
the best-characterized consequence of the rapid plasma mem-
brane perturbation induced by these toxins (6, 15-17). However,
no attention has been paid so far to the possible role of the efflux
of cytosolic molecules that may act as alarm signals or amplifiers
of the damage. Here we have focused on two major extracellular
signaling molecules: ATP and K™ ions, which are well known to
trigger a variety of pathophysiological reactions (18-21).

Using muscle cells in culture and isolated muscles, we have
found that Bothrops myotoxins induce a very rapid efflux of K*
and ATP, which well accounts for the strong pain commonly
reported after Bothrops bites (1). The strong structural similari-
ties between B. asper myotoxins and related toxins produced by
other snake species suggest that the present findings may have
general relevance in the context of snakebite envenomation.

Results

Bothrops Lys49 Myotoxin Induces Rapid and Extensive Loss of K* and
ATP from C2C12 Muscle Cells. Figure 14 shows that the Bothrops
asper Lys-49 Mt-1I myotoxin induces C2C12 myotubes to release
very rapidly their K content, and that this effect is dose de-
pendent. Within 5 min of exposure to 50 pg/mL Mt-II, muscle
cells have reduced their K* content by 60% (Fig. 14). It should
be noted that this myotoxin concentration is probably lower than
that reached in vivo close to the injection site if one considers that
B. asper injects 50-75 mg of venom proteins in a bite and that
myotoxins comprise ~20% of venom weight. The effect of the
myotoxin was dose dependent, and the half maximal effect was
reached after 10 min with a Mt-II concentration of 12.5 pg/mL,
which corresponds to ~1 pM.

The Mt-II myotoxin also induced a rapid ATP release from
C2C12 muscle cells; the extracellular ATP level continued to
increase for several minutes after toxin addition and then de-
creased, presumably owing to the action of ecto-ATP hydrolases
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Fig. 1. The Bothrops asper Lys49 Mt-Il myotoxin induces C2C12 myotubes to
rapidly release K* and ATP in a dose-dependent mode. Murine C2C12 cells
were plated on a 24-well plate and differentiated to myotubes for 5-7 d.
After washing with modified Krebs-Ringer medium, Mt-Il toxin was added to
a final concentration of 50 pg/mL (medium was added to control samples)
and incubated at 37 °C. At various time points, the supernatants were re-
covered and transferred to ice, and the cells were rapidly washed with the
choline buffer (Materials and Methods) and lysed in choline buffer con-
taining 0.5% Triton X-100. (A) Time course of toxin-induced release of K*,
measured by atomic adsorption in cell lysates and expressed as percentage
with respect to the total potassium content of untreated cells. (Inset) Dose
dependence of K* release after treatment with toxin for 10 min. (B) Time
course of ATP released from intoxicated (Hll) or control (@) cells, expressed as
ATP concentration in the medium, measured with a luciferase assay. Data
are the average of four independent experiments; bars represent SD values.

(22, 23). The kinetics of K* and ATP release from cells indicates
that both Mt-II binding to the sarcolemma and alteration of its
permeability to ions are very rapid events, and faster than those
caused by bacterial pore-forming toxins (24-26).

ATP is an extracellular danger signal molecule (19, 27) that acts
by binding to a variety of ATP purinergic receptors, which appeared
early in evolution (28). The purinergic receptors of the P2X family
is a cation-selective channel that is opened by ATP and allows the
transmembrane passage of K*, Na*, and Ca>* along their con-
centration gradients (19, 28). As purinergic receptors are present in
murine muscle cells (29, 30), this led us to consider the possibility
that the ATP released by muscle cells close to the site of toxin in-
jection may amplify the toxin-induced damage by binding to neigh-
boring cells with a consequent induction of Ca**-overload toxicity
and further release of K* ions.

Released ATP Induces Spreading of Ca®* Entry into Cells Close to Site
of Lys-49 Myotoxin Cell Injection. To test the possibility that the
ATP released from myotoxin-damaged cells may spread around
and induce Ca®* entry into neighboring muscle fibers, we chal-
lenged C2C12 myotubes and myoblasts (loaded with the cytosolic
Ca?* indicator Oregon Green-AM) with a pulse of toxin through
an adjacent patch-clamp micropipette (~1-pm tip diameter)
containing Mt-II. This experimental setting is different from that
presented in Fig. 1, where the myotoxin was simply added to the
medium, and is closer to the in vivo situation where the venom is
released from the tip of the snake fangs into a limited region of the
bitten muscle (31). The red arrows in Fig. 2.4 and B indicate the
position of the micropipette tip, wherefrom a pulse of Mt-1I (100
500 pg) was released. This would correspond to an average con-
centration in the medium of 0.1-0.5 pg/mL, which is not by itself
sufficient to trigger any release of ATP (Fig. 1). Figure 2.4 and B
are taken from two movies recorded by a confocal microscope
that measures the emission fluorescence of the cytosolic Ca**
indicator present within the C2C12 muscles cells (Movie S1). The
pattern of cytosolic Ca>* increase (given in a pseudocolor scale
increasing from blue to red) within neighboring myoblasts and
myotubes is particularly informative. The myotubes close to the
micropipette tip increased their fluorescence immediately after
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toxin release (Fig. 2C, trace 1), indicating an intracellular Ca**
rise induced directly by the toxin; additional myotubes then
lighted up with time delays increasing with their distance from the
toxin injection site (Fig. 2 4 and C, traces 2- 4, and Movie S1).
This latter increase could originate from the myotoxin diffusing
out from the site of injection and from ATP released by the
myotubes directly hit by the myotoxin, or from both effects.
Myoblasts close to the injection site remained blue, in agreement
with previous findings that they are Mt-II insensitive (15, 16);
however, their cytosolic Ca** did increase at later times (Fig. 2.4
and D, traces a—c). The most likely explanation is that this late rise
is a consequence of the action of ATP, released by myotubes, on
myoblast purinergic channels. If this is the case, micropipette
injected ATP should induce a similar pattern of rise of cytosolic
Ca?* in the the C2C12 cell culture. Movie S2 shows that this is the
case. The role of released ATP as mediator is also supported by
the analysis of culture plates treated with Mt-II myotoxin in the
presence of apyrase (Fig. 2 B and E and Movie S3). Under these
conditions only myotubes that can be directly reached by the toxin
did light up (Fig. 2 B and E, traces 1 and 2), whereas apyrase
activity quenched the ATP signal spreading to more distant
myotubes (Fig. 2 B and E, traces 3 and 4).

We showed previously that the snake myotoxins, including the
Mt-II myotoxin, caused cell death of myotubes in cultured C2C12
cells (15), and this was evident also in the present study, as shown in
Fig. S1 A and B. The large protective effect exerted by apyrase (Fig.
S1 C and D) provides a further evidence for the role of ATP.

These results unravel a previously uncharacterized aspect of
great significance in the action of B. asper Lys-49 Mt-II myotoxins,
as the results show that this myotoxin may damage muscle cells at
a distance from the injection site via an indirect action mediated
by the ATP released from cells directly hit by the venom, i.e.,
those close to the tip of the snake fangs. This event can rapidly
expand the anatomical dimensions of the direct myotoxin effect
and, consequently, the ability of the snake to capture prey.

Bothrops Lys49 Myotoxin Induces ATP and K* Release from Murine
Muscles. To further explore the hypothesis that ATP is indeed
released from myotoxin-treated muscle and acts as a toxic medi-
ator, we extended our studies to skeletal muscle. Different mouse
hind leg muscles were isolated and injected with Mt-1I or, alter-
natively, the toxin was added to the medium. Figure 34 shows that
Mt-II injection caused ATP release from tibialis anterior muscle,
whereas the untreated controls released smaller, although sig-
nificant, amounts of ATP, most likely a consequence of tissue
damage caused by the injection procedure. Indeed, when the toxin
was added to the bathing medium, the toxin was markedly less
effective in inducing ATP release, but no effect was seen in the
mock-treated muscle (Fig. 3B). The lower toxin efficacy under the
latter conditions is probably due to several factors, including
diffusion through connective tissue to reach its target. The myo-
toxin action was not specific for the tibialis muscle, as similar
findings were obtained with extensor digitorum longus and soleus
mouse muscles.

Five tibialis anterior muscles were assayed for their K content
by atomic absorption of cryo-crushed and resuspended samples;
muscles were found to contain 3.5 + 0.3 pg K*/mg fresh tissue.
Incubation of isolated muscle in choline-containing medium
caused the release of 25 + 3% of its K* content after 15 min,
whereas the presence of the Mt-II myotoxin in the medium caused
release of ~50 + 4% of the initial content. These results strongly
suggest that, following a snake bite, the K* concentration may
reach high values in the extracellular fluids before returning to the
basal level as a result of lymphatic and blood circulation. Under
such conditions of high, if transient, K concentrations, sensory
nerves are well known to be stimulated and to relay a strong
sensation of pain (21).

PNAS | August 10,2010 | vol. 107 | no.32 | 14141

CELL BIOLOGY


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009128107/-/DCSupplemental/sm01.wmv
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009128107/-/DCSupplemental/sm01.wmv
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009128107/-/DCSupplemental/sm02.wmv
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009128107/-/DCSupplemental/sm03.wmv
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009128107/-/DCSupplemental/pnas.201009128SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009128107/-/DCSupplemental/pnas.201009128SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1009128107/-/DCSupplemental/pnas.201009128SI.pdf?targetid=nameddest=SF1

PNAS

cHEEE W

E Mt-II+Apyrase on myotubes

C Mt-Il on myotubes D

m%lﬁ M
i ﬁ%f{ :
r T

Mt-Il on myoblasts

o

'

Fig. 2. Imaging and time course analysis of the cytosolic Ca®* concentration of myotubes and myoblasts induced by a pulse of Bothrops asper Lys49 Mt-Ii
toxin released from a micropipette. C2C12 muscle cells were grown on 13-mm coverslips coated with poly-L-lysine and collagen. Cells were loaded with the
Oregon Green 488 BAPTA-1 acetoxymethyl ester Ca%* indicator. The 1-um tip of a micropipette, filled with Mt-II (5 mg/mL in Hepes 10 mM, NaCl 150 mM, and
50% glycerol) was placed in the position indicated by the red arrow. The toxin was released from the micropipette tip by applying a positive pressure that
caused the release of 20-100 pL. (A and B) Videoframes taken at indicated time points (minutes) from Movie S1 and Movie S3, respectively, of cultures treated
with the Mt-Il myotoxin and containing apyrase (B) or not containing apyrase (A). Corresponding time courses of cytosolic Ca%* concentration of some
myotubes (indicated by numbers in A and B) and myoblasts (indicated by lower-case letters in A) are given in C and D (Mt-Il alone) and E (Mt-1l plus apyrase).
Scale for time courses of Ca®* changes in C-E is given in C, with respect to basal fluorescence signal (AF/Fo). Toxin addition is indicated on traces by black

arrows. (Scale bar, 100 pm.)

Purinergic P2X Channels Are Involved in Spreading of Lys49 Mt-Il
Myotoxin-Induced Damage. It is difficult to discern the individual
contribution of the many purinergic channel isoforms by phar-
macologic approaches (28, 32). Oxidized ATP (0-ATP) can be
considered, in a pure culture of muscle cells, a specific inhibitor
of P2X receptors with a preference for the P2X7 isoform. ATP
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Fig. 3. Bothrops asper Lys49 Mt-Il myotoxin induces release of ATP from the
mouse tibialis anterior muscle. (A) Adult muscles were exposed by gently
dissecting the skin and injected with 50 mg Mt-Il toxin in 10 pL vehicle or with
the same volume of vehicle alone (Hepes 10 mM and NaCl 150 mM with 50%
glycerol) using a 26-G gauge syringe. Muscles were rapidly removed from the
animal and suspended in 1 mL oxygenated physiological buffer (Materials
and Methods) at 37 °C. Time course of release of ATP in medium was mea-
sured by taking, at different time points, small samples that were assayed
with the luciferase assay. (B) Alternatively, muscles were dissected and sus-
pended in the same oxygenated buffer for at least 15 min; 50 pg/mL Mt-Il
toxin was then added to one muscle, and the contralateral muscle was
maintained in buffer and used as control. Medium ATP was similarly mea-
sured at indicated time points. Data are average of values obtained in three
different experiments + SD.
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binding to the P2X7 purinergic receptor opens a channel of high
conductance for K*, Na*, and Ca?* (18, 19, 28). Figure 44
shows that 0-ATP inhibited the toxin effect, indicating that the
toxin action is in part indirect and can be ascribed to an ATP-
induced K* release mediated by P2X channels. Figure 4 B shows
the result of the assay of the amount of lactate dehydrogenase
(LDH) released by the Mt-II-treated muscle cells, which sug-
gests large, irreversible muscle damage, paralleling the cell death
noticed in video imaging (Fig. S1). LDH release induced by
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Fig. 4. Oxidized ATP (0-ATP) inhibits K* and LDH release from C2C12 cells.
C2C12 myotubes were treated as described in Fig. 1 legend under three con-
ditions: Mt-Il at a final concentration of 12.5 pg/mL (l) in modified Krebs-
Ringer medium, Mt-Il 12.5 pg/mL with the additional presence of o-ATP 300 pM
(@), and medium alone (A). At given time points, K* content of cells was
measured asin Fig. 1. LDH activity was determined in both the supernatant and
lysate; for each well, the sum of the two values was taken as 100% and the
released LDH expressed as percentage of the total amount. Points are average
of values obtained in four different experiments + SD.
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myotoxins was used in previous studies as a marker of toxin
myotoxicity (5). Considering the large size of the tetrameric LDH
complex, it is not surprising that the time course of its release in
the medium (Fig. 4B) was slower than that of K* (Fig. 44) and did
not reach a plateau within 0.5 h. The finding that the P2X in-
hibitor o-ATP largely prevented the release of LDH (Fig. 4B) is
an additional indication that cell damage is due in part to the
indirect effect described above. Perhaps more importantly, this
result indicates that some P2X inhibitors should be considered for
their potential therapeutic value in human envenomings.

Bothrops Asp-49 Myotoxin Also Induces ATP and K* Release from
Muscle Cells. Another abundant pathogenic component of the
venom of Bothrops snakes is the Asp-49 myotoxin Mt-I, which is an
active PLA, enzyme (33). Mt-I also was capable of inducing the
release of K* and ATP from C2C12 myotubes in culture (Fig. 5)
and from mouse muscles (Fig. S2). The time course of K™ release
was slower than that induced by the Lys-49 Mt-II myotoxin, in
agreement with the different kinetics of Ca?* entry reported pre-
viously (15). This is likely due to the fact that the Mt-I alteration of
the sarcolemma is mediated by PLA, phospholipid hydrolysis,
which in turn requires some time to produce enough lysophos-
pholipids and fatty acids to increase sarcolemmal permeability.
Snake PLA, toxins are highly dependent on Ca®* for their enzy-
matic activity and are inhibited by Sr** (34,35). Indeed, the sub-
stitution of Sr** for Ca®* in the medium largely prevented K*
release (Fig. 54). On the other hand, the amount of ATP released
by the PLA, Mt-I myotoxin was less than that induced by the Lys49
Mt-1I myotoxin and peaked at earlier time points. This rapid small
ATP release has the features of a pool of vesicle-stored ATP that
could be induced to exocytose by the Mt-I toxin. ATP is stored in
vesicles in a variety of excitatory and nonexcitatory cells (36), and
this mechanism would make PLA, snake myotoxins very similar to
the snake presynaptic PLA, neurotoxins that induce exocytosis of
synaptic vesicles from neurons via the action of lysophospholipids
and fatty acids (37,38).

Discussion

Snakebite envenomation is a major, although neglected, health
problem in many parts of the world, particularly in Africa, Asia,
and Latin America (1-5, 39). In addition to lethality, one of the
most serious consequences of these envenomations, particularly
in the case of viperid and some elapid snakes, is associated with
prominent tissue damage leading to permanent sequelae such as
tissue loss and dysfunction, with important physical, psycholog-
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Fig. 5. Bothrops asper Asp49 Mt-I myotoxin induces release of K* and ATP
from murine C2C12 muscle cells, dependent on its PLA, activity. Cells were
treated in Krebs-Ringer medium with 50 pg/mL (final concentration) of Mt-I
myotoxin. (A) Time course of the loss of K* from cells in normal medium (@)
or in a medium where Ca®* was replaced by an equal concentration of Sr**
(squares), which is an inhibitor of the PLA, activity of Mt-l, expressed as
percentage of untreated controls taken as 100%. (B) Time course of the rise
of the ATP concentration in medium. Points are the average of values
obtained in three different experiments + SD.
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ical, and social consequences (2, 5). Many snakes produce venoms
that include myotoxins as major determinants of their pathogenic
action; these protein toxins damage the plasma membrane of
muscle cells, causing myonecrosis (6, 14).

The present report provides a major advancement in the un-
derstanding of the pathogenesis of the muscle necrosis caused by
these myotoxins and in the pain reaction characteristic of snakebite
envenomation. Indeed we have shown that these myotoxins, in ad-
dition to inducing Ca®* entry with the consequent Ca®*-mediated
cell toxicity previously characterized (15-17), also promote an
even faster efflux of K™ ions. At the same time, the toxin-damaged
muscle fibers release ATP into the extracellular environment.
These ATP molecules spread around the primarily damaged
fibers, bind to the muscle P2X purinergic receptors (28), and in-
duce Ca®" and Na*entry and K™ efflux in cells that have not been
directly hit by the myotoxins themselves. It appears that an im-
portant role is played by the P2X7 channel, but further studies
are needed to address this point.

The present data also highlight the different mechanisms of
sarcolemmal damage by the Lys49 and Asp49 myotoxins (15).
Indeed, the fast time course and lower extent of ATP release
induced by the Asp49 Mt-I myotoxin endowed with PLA,; activity
suggests that ATP derives from a vesicular pool that is rapidly
induced to exocytose by the local changes of lipid composition of
the membrane, as previously defined for the snake PLA, neu-
rotoxins (37, 39). In the same samples, the release of K*, which
derives from the cytosol, follows the slower time course of the
increased membrane permeability to extracellular Ca** (15, 40).
On the other hand, the Lys49 Mt-II myotoxin is believed to form
a dimeric membrane pore that is large enough to mediate the
passage of K*, Ca®*, and ATP, as it allows the passage of calcein
and other rather large molecules (7, 10-12).

The present work represents a paradigm shift for the mechanism
of action of these snake myotoxins. Besides direct plasma membrane
damage, our findings reveal an indirect, ATP-mediated mechanism
through which muscle cells are affected. Indeed, inhibition by o-ATP
and by apyrase indicates that the indirect, ATP-based mechanism of
damage plays a major role in the overall myotoxicity induced by the
Bothrops Lys-49 myotoxin. Accordingly, the anatomical region
reached by the activity of these myotoxins may extend well beyond
the limited physical volume where they are injected by the snake
fangs, resulting in a muscle damage that is much larger than that
directly caused by the myotoxins. This contributes to explain systemic
effects mediated by interleukins (8) because K* efflux and extra-
cellular ATP are activators of the inflammasome (41) and muscles
have very recently been shown to possess inflammasome (42). It
appears that these myotoxins induce a disease with features of
asystemic inflammatory response syndrome (43). This mechanism of
amplification sheds light on the evolutionary significance of the
presence of these myotoxins in the venoms.

Immediate pain after venom injection is characteristic of viperid
snake bites, and myotoxic PLA,s play a significant role in pain
induced by B. asper venom (31). Previous studies have implicated
several mediators in the onset of pain induced by these myotoxins
(8, 44, 45). The present findings of K* and ATP release provide
a novel basis for the strong pain sensation reported by bitten
individuals. Extracellular ATP and K* are strong stimulants of
peripheral sensory neurons (21, 46), and this reaction is predicted
not to be limited to humans but to extend to a range of potential
prey of viperid snakes, such as reptiles, amphibians, and birds, in
addition to mammals. In fact, purinergic receptors are present in
these animal classes (28), and K*-induced membrane depolariza-
tion is common to neurons of different origins (21). If one con-
siders that pain has a strong immobilizing effect, it can be con-
cluded that the snake myotoxins induced release of ATP and K*
(and possibly other mediators as well) contributes to prey immo-
bilization and ingestion, providing an evident evolutionary ad-
vantage for the presence of myotoxins in snake venoms.
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The present data also provide an additional explanation to the
finding that the antitrypanosomal drug suramin protects from the
toxic effects of the Lys49 myotoxins of the Bothrops jararacussu and
Bothrops asper venoms (47). This was explained previously as a direct
neutralization of the myotoxin by formation of a suramin-myotoxin
complex (48). However, suramin also binds to P2X channels (32),
and this property could, at least in part, account for suramin in-
hibitory activity because it would prevent the ATP-dependent
spreading effect of the injected myotoxin. Furthermore, the suramin
and the 0-ATP effects indicate that the ATP-mediated indirect action
of the myotoxin plays an important role in the overall extent of muscle
tissue damage.

We conclude with two considerations of far-reaching conse-
quences and of rather general interest. B. asper myotoxins Mt-I and
Mt-II are prototypes of a large family of myotoxins present in many
other viperid venoms. Therefore, the present findings could be ex-
tended to all snake myotoxins, although the potency and kinetics of
action of these myotoxins may be different. It would be relevant to
assess to what an extent this amplifying effect on tissue damage
occurs in the muscles of potential prey other than rodents, to further
reveal the adaptive biological impact of these observations. Fur-
thermore, the present findings have significant potential implications
for the therapy of these envenomations. Abrogation of acute muscle
damage induced by viperid venoms and their purified myotoxins by
the administration of antivenoms is difficult to achieve, mostly owing
to the very rapid development of these effects (49, 50). The pre-
viously uncharacterized mechanism of amplification of cell damage
presented in this study may be also responsible for this poor neu-
tralization, as once ATP has been released from muscle cells, an am-
plification cascade of cellular damage is unleashed. Accordingly,
this amplification effect may be reduced by the timely administra-
tion of antipurinergic drugs, thus opening possibilities for comple-
mentary therapies, a hypothesis that is currently being tested in
animal models.

Materials and Methods

Myotoxins. Myotoxins | and Il were isolated from the crude venom of Bothrops
asper, a pool obtained from at least 30 specimens kept at the serpentarium of
Instituto Clodomiro Picado, University of Costa Rica, as described before (30, 51).

Cell Cultures. Murine skeletal muscle C2C12 cells were obtained from the
American Type Culture Collection (CRL-1772; ATCC), and were maintained at
subconfluent levels in DMEM (Gibco) supplemented with 10% FBS (Euro-
Clone). To induce differentiation (5-6 d), cells were grown to 80% conflu-
ence and then the medium was replaced with DMEM supplemented with
2% equine serum (Gibco) and changed every 24-48 h. For imaging analysis,
cells were plated on coverslips, coated overnight with poly-L-lysine (Sigma)
and for 2 h with collagen (BD Biosciences).

Muscle Isolation. All experimental procedures were carried out in accordance
to the European Communities Council Directive n° 86/609/EEC. Muscles (tibialis
anterior, soleus, extensor digitorum longus) were isolated from CD-1 mice
weighing 25-35 g and immediately transferred to vials containing 1 mL oxy-
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genated (95% O,, 5% CO,) physiological buffer (139 mM NacCl, 12 mM NaHCOs,
4mM KCl, 2mM CaCly, 1 mM MgCly, 1 mM KH,POy4, and 11 mM glucose, pH 7.4)
at 37 °C. Toxins were added to the physiological solution or injected in the
muscles just before dissection, as indicated.

Potassium Measurement. After treatments, cells were rapidly washed twice
with a choline buffer (129 mM CholineCl, 1.5 mM CaCl,, 0.8 mM MgCl,, 5 mM
H3PO,4, 5 mM citric acid, and 5.6 mM glucose, pH 7.4) and then dissolved in
120 pL of the same buffer containing 0.5% wt/vol of Triton X100. Samples
were diluted in bidistilled water and the K* content was measured by flame
photometry with a Perkin-Elmer AAnalyst atomic absorption photometer.
The K* content of control cells of the mock treated culture was taken as 100%.

ATP Measurement. ATP was determined with the ATPlite luciferase assay
(Perkin-Elmer). Briefly, the supernatant of control and intoxicated samples
were collected in a white 96-well plate, and mammalian lysis solution was
added. The plate was shaken for 5 min in an orbital shaker at 700 rpm at RT.
ATP substrate solution was added and a 5-min shake was performed, pro-
tected from light. After 10 min, the luminescence was measured by Fluo-
roskan Ascent FL (Thermo Electron Corporation). The ATP concentration was
calculated from a calibration curve obtained using ATP standard solutions.

LDH Measurement. The release of LDH was measured as an index of cellular
necrosis using the commercial kit TOX7 (Sigma), which is based on the LDH-
catalyzed reduction of NAD*, which then converts a tetrazolium dye to a soluble
colored formazan derivative.

Calcium Imaging. Cells were plated on coverslips (13-mm diameter) and loaded
with Oregon Green 488 BAPTA-1 acetoxymethyl ester (OGB-1 AM, 3 uM;
Invitrogen.) by incubation at 37 °C for ~30 min in modified Krebs-Ringer
Buffer (described below) containing 0.04% pluronic (Molecular Probes). To
prevent OGB-1leakage and sequestration, 250 uM sulfinpyrazone was present
throughout the loading procedure and [Ca**] measurements. The coverslips
were washed with a modified Krebs-Ringer buffer (140 mM NacCl, 2.8 mM KCl,
2 mM MgCl,, 1 mM CaCl,, 10 mM Hepes, and 11 mM glucose, pH 7.4), and
emitted cell fluorescence at 530 nm was acquired with a TCS-SP5-RS confocal
microscope (Leica) equipped with a 20x objective (NA, 1.0). Laser emission at
488 nm was used for stimulation of OGB-1. Time frame acquisition of 491 ms
(with seven-line averaging) was used. Where indicated, apyrase (Sigma) was
introduced (final concentration, 2 U/mL). The tip of a glass micropipette, filled
with Mt-lIl myotoxin (5 mg/mL in Hepes 10 mM, NaCl 150 mM, and 50% glyc-
erol), was placed at a 30-um distance from the cell layer and a micropuff (0.3
bar of pressure and 2-s duration) was performed using a pressure ejection unit
(PDES, NPI Electronics).
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