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Abstract. A minimum time problem with a nonlinear smooth dynamics and a target satisfying
an internal sphere condition is considered. Under the assumption that the minimum time T be
continuous and the normal cone to the hypograph of T , Nhypo(T ), be pointed, we show that hypo(T ) is
ϕ-convex, i.e., satisfies a strong external sphere condition. Consequently, T is a.e. twice differentiable
and satisfies some further regularity properties. Our results are based on a representation of Clarke
generalized gradient of T . An example is provided, showing that if Nhypo(T ) is not pointed, then
the result may fail.
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1. Introduction. This paper is concerned with a rather general class of min-
imum time problems with a nonlinear dynamics and with a target which is not a
singleton. More precisely, the dynamics⎧⎨

⎩
ẏ(t) = f(y(t), u(t)) a.e.,
u(t) ∈ U a.e.,
y(0) = x

is considered, where the function f : RN × U −→ R
N is (for simplicity) C2 and the

control set U is a compact nonempty subset of Rm. The target S is assumed to be a
closed subset of the state space RN , and the minimum time to reach S subject to the
above dynamics is denoted by T .

Minimum time problems are widely studied from several viewpoints (see, e.g., [1,
Chapter IV], [2], and [7, Chapter 8] and references therein). In particular, it is well
known that, in general, the minimum time function T is not everywhere differentiable.
It is also well known that suitable controllability conditions imply the Hölder conti-
nuity of T (see, e.g., [1, Chapter IV] and references therein), which, however, provides
no information on differentiability and on the structure of the nondifferentiability set.

In a 1995 paper (see [6] and also Chapter 8 in [7]), Cannarsa and Sinestrari
found a connection between the dynamics and the target which actually implies the
semiconcavity (or the semiconvexity) of T . Semiconcave functions are essentially
C2-perturbations of concave functions and therefore inherit several regularity proper-
ties from convexity. Several features of semiconcavity were thoroughly studied (see
Chapters 3, 4, and 5 in [7] and references therein), thus providing a rich set of infor-
mation on the structure of the minimum time function and suggesting semiconcav-
ity/semiconvexity as a good regularity class for such value functions. The main result
in [6] shows that if the target satisfies a uniform internal ball condition (see Definition
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2.2 below) and the dynamics is smooth enough, then T is semiconcave, provided a
strong controllability assumption, called Petrov’s condition, holds. A partially sym-
metric result, also contained in [6], states that if the target is convex and the dynamics
is linear, then T is semiconvex, provided, again, Petrov’s condition holds. The latter
requires that the minimized Hamiltonian at all boundary points of S, computed along
unit normal vectors, be bounded away from zero locally uniformly, i.e., for all R > 0,
there exists μ > 0, such that

(1.1) min
u∈U

〈f(x, u), ζ〉 < −μ for all x ∈ bdryS∩B(0, R) for all ζ ∈ NS(x), ‖ζ‖ = 1.

It is well known that Petrov’s condition is equivalent to the local Lipschitz continuity
of T (see, e.g., [7, section 8.2]).

Other semiconcavity results for T appear in [8, 5, 25]. In these papers the regu-
larity assumption on the target is substituted by suitable properties on the dynamics.
In particular, in [8] no controllability assumption is made, yet a kind of semiconcavity
(implying local Lipschitz continuity) is established on an open dense subset of the
complement of the target.

In an entirely different setting, a class which includes both convex and C2-sets was
studied independently by several authors (including Federer [15], Canino [4], Clarke,
Stern and Wolenski [9], and Poliquin, Rockafellar, and Thibault [22]) under differ-
ent names, for example, sets with positive reach [15], ϕ-convex sets [4], proximally
smooth sets [9], and prox-regular sets [22]. This class, which we prefer to name with
ϕ-convexity, is characterized by a strong external sphere condition (see Definition 2.1
below): every normal vector must be realized by a locally uniform ball. By observing
that a convex set satisfies the same type of external sphere condition with an arbi-
trarily large radius, it is natural to expect that ϕ-convex sets enjoy locally several
properties that are enjoyed globally by convex sets. In particular, this is the case for
the metric projection, which is unique in a neighborhood of a ϕ-convex set K. This
fact is used in proving all the regularity properties which are satisfied by ϕ-convex
sets (see, e.g., [15, section 4]).

Semiconcave functions and ϕ-convex sets are linked together through the hypo-
graph (see, e.g., Theorem 5.2 in [9], where semiconvex functions are called lower–C2):
a locally Lipchitz function is semiconcave if and only if there exists ϕ0 > 0 such
that its hypograph is ϕ0-convex. Of course, an entirely symmetric characterization
for semiconvex functions can be expressed using the epigraph. Trying to generalize
to functions with a ϕ-convex hypograph/epigraph some regularity properties enjoyed
by semiconcave/convex functions was therefore a natural challenge. Some results
on this line were obtained in [11, 12], including the a.e. twice differentiability (see
Theorem 2.2 below) together with an analysis of the structure of singularities (i.e.,
nondifferentiability points).

In several minimum time problems, controllability assumptions weaker than
Petrov’s condition hold, and therefore T is not locally Lipschitz. A natural question
therefore is trying to understand whether the structure of the minimum time function
remains unchanged if, in the above setting, the controllability assumptions are weak-
ened. In other words it is natural to investigate whether the hypograph/epigraph of T
is ϕ-convex if T is supposed to be only continuous. For a linear dynamics and a convex
target, the answer is positive, as proved in [13]. This paper is devoted to the nonlinear
analogue: we assume that the dynamics is (essentially) C2, the target S satisfies an
internal sphere condition, and T is continuous, and we study the hypograph of T in
the complement of S. Here the situation is more complicated than in the Lipschitz



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4778 GIOVANNI COLOMBO AND KHAI T. NGUYEN

case: the results depend on the pointedness of the normal cone to the hypograph.
More precisely, we show (Theorem 3.3) that if the normal cone to the hypograph is
pointed in the complement of S, then the hypograph of T is ϕ-convex for a suitable ϕ
(Theorem 3.3) so that the minimum time function satisfies the regularity properties
contained in Theorem 2.2 below and in [12]. Our result is based on an analysis of how
proximal normals (to the complement of the target) are transported by the adjoint
flow, which in turn permits a representation of the generalized gradient of T in terms
of suitable adjoint vectors (Theorems 3.1 and 3.2). Here the pointedness assumption
plays a major role: actually exposed rays of the normal cone to the hypograph are
special normals as they can be approximated by normals at differentiability points of
T (Lemma 4.7). Moreover, pointedness is used in Theorem 3.3 in order to obtain a
uniform estimate for radii of the balls realizing proximal normals to the hypograph.
We show also through an example (Example 2 in section 7) that if the normal cone is
not pointed, then Theorem 3.3 may fail. However, a weaker external sphere condition
to the hypograph of T still holds (see Proposition 3.1). An analysis of this general case
is contained in the papers [18, 19], where topological and measure theoretic results on
the set where the normal cone is not pointed are given. In particular, in [18, Theorem
3.1] this set is shown to be closed with Lebesgue n-dimensional measure zero.

The paper is organized as follows: section 2 is devoted to definitions and basic
facts, while section 3 contains assumptions and statement of the main results. De-
tailed arguments begin in section 4, which contains several lemmas whose geometrical
meaning is illustrated, and ends with a result (Theorem 4.1) giving a representation
of the normal cone to the hypograph of (T ) under the pointedness assumption. Sec-
tion 5 is devoted to the conclusion of the proof of the main theorems, which is now
only a simple use of the lemmas contained in section 4. Section 6 is dedicated to
an improvement of Theorems 3.1 and 3.2 for an optimal point, i.e., a point which is
crossed by a time-optimal trajectory, while section 7 contains examples and section 8
some general basic estimates.

2. Preliminaries.

2.1. Nonsmooth analysis. Let C ⊂ R
N be a cone (i.e., if x ∈ C and λ ≥ 0,

then λx ∈ C). We say that C is pointed if C ∩ (−C) = {0}. In [23, Corollary 18.7.1,
p. 169] it is proved that

if C is closed, convex, and pointed,

then it is the closed convex hull of its exposed rays.
(2.1)

We recall (see [23, p. 163]) that an exposed ray R
+v of a convex cone C is defined

by the property that there exists a linear functional h which is zero on it and is such
that if h(p) = 0 and p ∈ C, then p ∈ R

+v.
Let K ⊂ R

N be closed. Its boundary will be denoted by bdryK and its interior
by intK. Let now x ∈ K and v ∈ R

N . We say that v is a proximal normal to K at x
(and we will denote this fact by v ∈ NP

K(x)) if there exists σ = σ(v, x) ≥ 0 such that

(2.2) 〈v, y − x〉 ≤ σ ‖y − x‖2 for all y ∈ K;

equivalently v ∈ NP
K(x) if and only if there exists λ > 0 such that πK(x+ λv) = {x}.

We say that the proximal normal v is realized by a ball of radius ρ > 0 if ρ is the
supremum of all λ such that πK(x+λv) = {x}. In this case the best constant σ such
that (2.2) holds true is ‖v‖ /(2ρ). The following further concepts of normal vectors
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will be used (see [10, Chapter 1] and [24, Chapter 6]). Let x ∈ K and v ∈ R
N . We

say that
(1) v is a Fréchet normal (or Bouligand normal) to K at x (v ∈ NF

K(x)) if

lim sup
K�y→x

〈
v,

y − x

‖y − x‖

〉
≤ 0;

(2) v is a limiting, or Mordukhovich, normal to K at x (v ∈ NL
K(x)) if

v ∈ {w|w = limwn, wn ∈ NP
K(xn), xn → x}

and is a Clarke normal (v ∈ NC
K(x)) if v ∈ coNL

K(x). It is well known that
NP

K(x) is convex.

Let f : RN → R ∪ {+∞} be a lower semicontinuous function. By using epi(f) :=
{(x, ξ)| ξ ≥ f(x)} and hypo(f) := {(x, ξ)| ξ ≤ f(x)}, one can define some concepts
of generalized differential for f at x ∈ dom(f) = {x ∈ R

N | f(x) < +∞}. Let
x ∈ dom(f), v ∈ R

N . We say that
(1) v is a proximal subgradient of f at x (v ∈ ∂P f(x)) if (v,−1) ∈ NP

epi(f)(x, f(x));

equivalently (see [10, Theorem 1.2.5]) v ∈ ∂P f(x) if and only if there exist σ,
η > 0 such that

(2.3) f(y) ≥ f(x) + 〈v, y − x〉 − σ ‖y − x‖2 for all y ∈ B(x, η) ∩ dom (f);

(2) v is a proximal supergradient of f at x (v ∈ ∂P f(x)) if (−v, 1) ∈
NP

hypo(f)(x, f(x)); equivalently v ∈ ∂P f(x) if and only if −v ∈ ∂P (−f)(x),
i.e., if and only if there exist σ, η > 0 such that

(2.4) f(y) ≤ f(x) + 〈v, y − x〉+ σ ‖y − x‖2 for all y ∈ B(x, η) ∩ dom (f);

(3) v is a Fréchet subgradient of f at x (v ∈ ∂F f(x)) if (v,−1) ∈ NF
epi(f)(x, f(x)),

i.e.,

lim inf
y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖ ≥ 0;

(4) v is a Fréchet supergradient of f at x (v ∈ ∂Ff(x)) if (−v, 1)∈NF
hypo(f)(x, f(x));

(5) v is a limiting subgradient of f at x (v ∈ ∂Lf(x)) if (v,−1) ∈ NL
epi(f)(x, f(x));

(6) v is a limiting supergradient of f at x (v ∈ ∂Lf(x)) if (−v, 1)∈NL
hypo(f)(x, f(x));

(7) v is a Clarke generalized gradient of f at x (v ∈ ∂f(x)) if (v,−1)∈NC
epi(f)(x, f(x)).

We recall that if f is Lipschitz continuous in a neighborhood of x, then
v ∈ ∂f(x) if and only if v ∈ co{ζ| ζ = limDf(xi), xi ∈ dom(Df), xi → x}
(see [10, Theorem 8.1]).

It follows readily from the definitions that the inclusions

NP
K(x) ⊆ NF

K(x) ⊆ NL
K(x) ⊆ NC

K(x)

hold, together with their analogues for the sub- and supergradient. Moreover, if a
vector v belongs to both the Fréchet sub- and supergradient of f at x, then f is
Fréchet differentiable at x and Df(x) = v.
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For a not necessarily Lipschitz function f , the horizon subgradient ∂∞f plays an
important role. This is defined as

∂∞f(x) = {v ∈ R
N | (v, 0) ∈ NC

epi(f)(x, f(x))}

and is clearly a closed convex cone. In particular, if f is not locally Lipschitz in
a neighborhood of x, then ∂f(x) may be represented using ∂∞, namely (see [17,
Proposition 2.6] or [24, Theorem 8.49]),

(2.5) ∂f(x) = cl (co ∂Lf(x) + co ∂∞f(x)) .

Finally we also consider a notion of proximal horizon supergradient, namely, the
convex cone

∂∞f(x) = {v ∈ R
N | (−v, 0) ∈ NP

hypo(T )(x, f(x))}.

We introduce now two classes of sets which will be used throughout the paper.
Definition 2.1. Let K ⊂ RN be closed, and let ϕ : K → [0,∞] be continuous.

We say that K is ϕ-convex if for all x, y ∈ K, v ∈ NP
K(x), the inequality

〈v, y − x〉 ≤ ϕ(x) ‖v‖ ‖x− y‖2

holds. By ϕ0-convexity we mean ϕ-convexity with ϕ ≡ ϕ0.
It is clear that every closed and convex set is ϕ0-convex with ϕ0 = 0, and every

closed set with a C1,1-boundary is L/2-convex, where L is the Lipschitz constant of a
suitable parametrization of bdryK. Some properties of the distance from a ϕ-convex
set K and the metric projection onto K are important features of this class of sets.

Theorem 2.1. Let K ⊂ R
N be a ϕ-convex set. Then there exists an open set

U ⊃ K such that
(1) dK ∈ C1,1(U \K) and DdK(y) = y−πK(y)

dK(y) for every y ∈ U \K;

(2) πK : U → K is a locally Lipschitz single-valued map. In particular, if K is
ϕ0-convex (with ϕ0 > 0), then πK : {x ∈ R

N | d(x,K) < 1/(4ϕ0)} → K is
Lipschitz with Lipschitz ratio 2.

Moreover,
(3) K has finite perimeter in R

N (provided it is compact);
(4) for every x ∈ K, NP

K(x) = NC
K(x);

(5) the set-valued map NP
K(·) has closed graph in bdryK × R

N .
Proof. The proof of (1) and (2) can be found in [4, Propositions 2.6 and 2.9,

Remark 2.10] or in [15, section 4]. The proof of (3) is in [11, section 5], while (4) and
(5) can be found in several papers, including [22].

Remark 2.1. Conditions (1) and (2) in Theorem 2.1 are actually equivalent to
ϕ-convexity as it is proved, e.g., in [15, section 4]. Examples of finite dimensional ϕ-
convex sets can be found, e.g., in [15]. In both optimal control and partial differential
equations theory, semiconcave functions play an important role (see, e.g., [1, 7]). Let
Ω ⊂ R

N be open: a function f : Ω −→ R is said to be semiconcave if for every x ∈ Ω
and every δ > 0 there exists a constant C > 0 such that

f(x)− C ‖x‖2 is concave in B(x, δ).

Semiconcave functions are therefore locally Lipschitz. Moreover, thanks to Theo-
rem 5.2 in [9], the hypograph of such functions is ϕ0-convex for a suitable ϕ0 ≥ 0.
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More in general, upper semicontinuous functions with ϕ-convex hypograph (or
lower semicontinuous functions with ϕ-convex epigraph) enjoy several of the regular-
ity properties, except Lipschitz continuity, that semiconcave functions satisfy. Such
functions identify the class to which we want to show that our minimum time belongs.
To this aim, we state a result which collects the main properties. We denote by LN

the Lebesgue N -dimensional measure in R
N and by Hk the k-dimensional Hausdorff

measure, 0 ≤ k ≤ N . For basic concepts of geometric measure theory, we refer to [14].
Theorem 2.2. Let Ω ⊂ R

N be open, and let f : Ω → R∪{+∞} be proper, upper
semicontinuous, and such that hypo(f) is ϕ-convex for a suitable continuous ϕ. Then
there exists a sequence of sets Ωh ⊆ Ω such that Ωh is compact in dom(f) and

(1) the union of Ωh covers LN -almost all dom(f);
(2) for all x ∈

⋃
hΩh there exist δ = δ(x) > 0, L = L(x) > 0 such that

(2.6)
f is Lipschitz on B(x, δ) with ratio L and hence semiconcave on B(x, δ).

Consequently,
(3) f is a.e. Fréchet differentiable and admits a second order Taylor expansion

around a.e. point of its domain.
Moreover, the set of points where the graph of f is nonsmooth has a small Hausdorff
dimension. More precisely, for every k = 1, . . . , N , the set {x ∈ int dom(f) | the
dimension of ∂P f(x) is ≥ k} is countably HN−k-rectifiable.

This result is essentially Theorem 5.1 in [11].
For any set K ⊂ R

N , we denote by Kc the complement of K, i.e., RN \K.
Definition 2.2. Let K ⊂ R

N be closed, and let ρ > 0 be given. We say that K
satisfies the external sphere condition with radius ρ if for all x ∈ bdryK there exists
v ∈ NP

K(x), v �= 0, which is realized by a ball of radius ρ. We say also that K satisfies
the internal sphere condition with radius ρ if Kc satisfies the external sphere condition
with radius ρ, namely, for all x ∈ bdryK there exists v ∈ NP

Kc(x), v �= 0, which is
realized by a ball of radius ρ.

Obviously the complement of an open convex set satisfies the internal sphere
condition of radius ρ for any ρ > 0. A comparison between the external sphere
condition and ϕ-convexity was performed in [20, 21].

2.2. Control theory: Generalities. We consider throughout the paper a non-
linear control system of the form

(2.7)

⎧⎨
⎩
ẏ(t) = f(y(t), u(t)) a.e.,
u(t) ∈ U a.e.,
y(0) = x,

where the Lipschitz function f : RN × U −→ R
N and the control set U , a compact

nonempty subset of Rm, are given. We denote by Uad the set of admissible controls,
i.e., the measurable functions u : R → R

m such that u(t) ∈ U a.e. For any u(·) ∈ Uad,
the unique Carathéodory solution of (2.7) is denoted by yx,u(·).

The adjoint vectors associated with a trajectory yx,u(·) can be represented using
the fundamental solution matrix M(·, x, u) of the linear equation

(2.8) ṗ(t) = Dxf(y
x,u(t), u(t)) p(t), p(0) = I

N×N .

We also defineM−1(·, x, u) to be the fundamental solution matrix of the time reversed
adjoint equation

(2.9) q̇(t) = −q(t) Dxf(y
x,u(t), u(t)), q(0) = I

N×N .
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Suppose we are now given a closed nonempty set S ⊂ R
N , which is called the target.

For a fixed x ∈ R
N \ S, we define

θ(x, u) := min {t ≥ 0 | yx,u(t) ∈ S}.
Of course, θ(x, u) ∈ (0,+∞], and θ(x, u) is the time taken for the trajectory yx,u(·)
to reach S, provided θ(x, u) < +∞. The minimum time T (x) to reach S from x is
defined by

(2.10) T (x) := inf {θ(x, u) | u(·) ∈ Uad}.
In general, an optimal trajectory, i.e., a trajectory which attains the infimum in (2.10),
does not exist. Therefore, we need also to consider minimizing sequences and limiting
optimal trajectories steering x to the target S. In particular, we will consider the
limits of the endpoints (thus belonging to S) of minimizing sequences of trajectories.
More precisely,

Sx = {x̄ ∈ S | there exist sequences {xn} ⊂ Sc and {ūn(·)} ⊂ Uad such that

xn → x, θ(xn, ūn) → T (x), yxn,ūn(θ(xn, ūn)) → x̄}.
Observe that if T (x) < +∞, then ∅ �= Sx ⊆ bdryS.

For any x̄ ∈ Sx, we define also

Ux̄ = {{ūn(·)} ⊂ Uad | there exists a sequence {xn} satisfying

xn → x, θ(xn, ūn) → T (x) and yxn,ūn(θ(xn, ūn)) → x̄},
i.e., the set of minimizing sequences of controls steering x to x̄. Together with Ux̄, we
define also

Tx̄ = {{yxn,ūn(·)} | xn → x, ūn ∈ Uad,

θ(xn, ūn) → T (x), and yxn,ūn(θ(xn, ūn)) → x̄},
i.e., the set of trajectories corresponding to minimizing sequences of controls steering
x to x̄.

Correspondingly, the limiting adjoint trajectories related to minimizing sequences
of controls are defined by the following:

Mx̄ = {M : [0, T (x)] → M
N×N | there exists {yxn,ūn(·)} ⊂ Tx̄ such that

M(·) is the uniform limit on [0, T (x)] of M(·, xn, ūn)}.
(2.11)

Remark 2.2. If T (·) is everywhere finite, both Sx and Tx̄ are nonempty. By com-
pactness, Mx̄ is nonempty as well for all x̄ ∈ Sx. Moreover, if F (x) := {f(x, u)|u ∈ U}
is convex for all x, then the infimum is attained and the sets Sx, Ux̄, and Tx̄ can be
substituted by the simpler sets

Sx = {x̄ ∈ S | there exists ū ∈ Uad such that

θ(x, ū) = T (x), x̄ = yx,ū(T (x))},
Ux̄ = {ū ∈ Uad | θ(x, ū) = T (x), yx,ū(T (x)) = x̄},
Tx̄ = {yx,ū | ū ∈ Ux̄}.

Finally, the maximized Hamiltonian, namely, the function

H : RN × R
N −→ R, H(x, p) = max

u∈U
〈f(x, u), p〉 ,

will be important in our analysis.
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3. Statement of the main results. We repeat first the setting we are con-
cerned with and specify our assumptions.

We consider the nonlinear system (2.7) under the following assumptions:
(H1) U ⊂ R

N is compact.
(H2) f : RN × U → R

N is continuous and satisfies

‖f(x, u)− f(y, u)‖ ≤ L ‖x− y‖ for all x, y ∈ R
N , u ∈ U

for a positive constant L. Moreover, the differential of f with respect to the
x variable Dxf exists everywhere, is continuous with respect to both x and
u, and satisfies the following Lipschitz condition:

‖Dxf(x, u)−Dxf(y, u)‖ ≤ L1 ‖x− y‖ for all x, y ∈ R
N , u ∈ U

for a positive constant L1.
(H3) The minimum time function T : RN −→ [0,+∞) is everywhere finite and

continuous, (i.e., controllability and small time controllability hold).
(H4) The target S is nonempty, closed, and satisfies the internal sphere condition

of radius ρ > 0.
Remark 3.1. Conditions ensuring small time controllability when the target is

not necessarily a singleton can be found, e.g., in [1, Chapter IV], [7, Chapter 8], and
[16].

Our analysis will be based on the transportation of certain vectors, normal to the
closure of the complement of the target S, by means of the (limiting) adjoint flow.
More precisely, two sets of transported normals will be considered, according to the
Hamiltonian:

N0(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc(x̄), x̄ ∈ Sx, and H(MT (r)v, x) = 0},

N1(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc(x̄), x̄ ∈ Sx, and H(MT (r)v, x) = 1}.

Our main results are the following three theorems, together with the corollary.
Theorem 3.1. Let x ∈ Sc and r = T (x). Under the conditions (H1), (H2),

(H3), and (H4), together with the further assumption

(3.1) NP
hypo(T )(x, T (x)) is pointed,

the (proximal) horizontal supergradient of the minimum time function T (·) at the
point x can be computed as follows:

(3.2) ∂∞T (x) = −co(N0(x)).

Theorem 3.2. Let x ∈ Sc and r = T (x). Under the same assumptions of
Theorem 3.1, the proximal supergradient of the minimum time function at the point
x can be computed as follows:

(3.3) ∂PT (x) = −[co(N1(x)) + co(N0(x))].

Theorem 3.3. Let the assumptions of Theorem 3.1 hold for all x ∈ Sc. Then
there exists a continuous function ϕ : hypo(T ) ∩ (Sc × R) −→ [0,+∞) such that, for
every closed set S ′ ⊂ Sc, hypo(T ) ∩ (S ′ × R) is ϕ-convex.

Corollary 3.1. Let the assumptions of Theorem 3.1 hold. Then the minimum
time function T satisfies all the properties listed in Theorem 2.2.
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The last result is concerned with the case where the pointedness assumption (3.1)
does not hold. We will present here, for the sake of brevity, only a partial result
together with two examples, a thorough analysis being postponed to a forthcoming
paper.

Proposition 3.1. Let the assumptions (H1), (H2), (H3), and (H4) hold. Then
the hypograph of the minimum time function T satisfies the external sphere condition
with a locally uniform radius, namely, for every x ∈ Sc there exists a unit proximal
normal v to hypo(T ) at (x, T (x)) which is realized by a sphere with a locally constant
radius σ > 0.

Remark 3.2. Both ϕ and σ can be explicitly computed and depend only on x, on
f and U , and on the constants L, L1, and ρ appearing in the assumptions (H2) and
(H4).

4. Some preparatory lemmas. This section is devoted to several partial re-
sults which are needed to prove Theorems 3.1 and 3.2. In particular, the proof of “⊇”
inclusions in (3.1) and (3.2) will be based on Lemmas 4.2 and 4.3 below.

In the first three lemmas we do not assume that S satisfies the internal sphere
condition nor that the normal cone to the hypograph of T (·) at (x, T (x)) is pointed.

The following notation for sublevels of the minimum time function will be used:
for r > 0, we set

S(r) := {x ∈ R
N | T (x) < r},

Sc(r) := {x ∈ R
N | T (x) ≥ r}.

We state first a technical lemma, showing that the limiting adjoint flow transports
proximal normals to the complement of the target to proximal normals to the comple-
ment of sublevels of T . Moreover, the radius of the ball which realizes the transported
normal can be explicitly estimated.

Lemma 4.1. Assume that S is closed, and let the assumptions (H1), (H2), and
(H3) hold. Let x ∈ Sc, and set r = T (x) > 0. Fix x̄ ∈ Sx, v ∈ NP

Sc(x̄), and
M(·) ∈ Mx̄. Then

MT (r)v ∈ NP
Sc(r)(x).

More precisely, assume that v is realized by a ball of radius ρ > 0. Then there exists
an explicitly computable continuous function K depending only on r, ‖x‖, ρ such that
for all z ∈ Sc(r), we have

(4.1)
〈
MT (r)v, z − x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖z − x‖2 .

Proof. Let xn → x, x̄ ∈ Sx, and {ūn} ⊂ Uad be such that {yxn,ūn(·)} ∈ Tx̄ and
M(·, xn, ūn) converges to M(·) uniformly on [0, T (x)]. By definition of the proximal
normal realized by a ρ-ball,

〈v , z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 for all z̄ ∈ Sc.

Fix z ∈ Sc(r). We define

x̄n = yxn,ūn(θ(xn, ūn)), z̄n = yz,ūn(θ(xn, ūn)),

and observe that x̄n ∈ S, x̄n → x̄, and we can assume without loss of generality that
z̄n converges to a point z̄ which belongs to Sc since θ(xn, ūn) → r ≤ T (z).
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We set, for simplicity, αn(·) = yxn,ūn(·), βn(·) = yz,ūn(·), tn = θ(xn, ūn) so that

x̄n = xn +

∫ tn

0

f(αn(s), ūn(s))ds , z̄n = z +

∫ tn

0

f(βn(s), ūn(s))ds;

whence

z̄n−x̄n = z−xn+
∫ tn

0

(∫ 1

0

Dxf(αn(s) + τ(βn(s)− αn(s)), ūn(s))dτ

)
(βn(s)−αn(s))ds.

We define now

A1
n(s) = Dxf(αn(s), ūn(s)),

A2
n(s) =

∫ 1

0

Dxf(αn(s) + τ(βn(s)− αn(s)), ūn(s))dτ

and observe that, thanks to (H2), for all s ∈ [0, tn], we have

(4.2)
∥∥A2

n(s) − A1
n(s)

∥∥ ≤ L1

2
‖βn(s) − αn(s)‖ .

Using (iv) in Lemma 8.1 and the definition of L2 in (8.1), we obtain

(4.3)
∥∥A1

n(s)
∥∥ ≤ L2(s, ‖xn‖)

for all s ∈ [0, tn]. Thus,

(4.4)
∥∥A2

n(s)
∥∥ ≤ L2(s, ‖xn‖) +

L1

2
‖βn(s) − αn(s)‖

for all s ∈ [0, tn]. Now Gronwall’s lemma yields

(4.5) ‖βn(s)− αn(s)‖ ≤ eLs ‖z − xn‖

so that by combining (4.4) and (4.5), we obtain

(4.6)
∥∥A2

n(s)
∥∥ ≤ L2(s, ‖xn‖) +

L1

2
eLs ‖z − xn‖ .

Define M2
n(·) to be the solution of the problem

ṗ(s) = A2
n(t)p(s), p(0) = I

N×N .

Recalling thatM(·, x, u) is the fundamental solution of (2.8), setM1
n(·) =M(·, xn, ūn),

z1n(s) = M1
n(s)(z − xn), and z2n(s) = M2

n(s)(z − xn) for all s ∈ [0, tn]. Using these
notations, we can write

〈v, z̄n − x̄n〉 =
〈
v, z2n(tn)

〉
=
〈
v, z1n(tn)

〉
+
〈
v, z2n(tn)− z1n(tn)

〉
=
〈
v,M1

n(tn)(z − xn)
〉
+
〈
v, (M2

n(tn)−M1
n(tn))(z − xn)

〉
≥
〈
v,M1

n(tn)(z − xn)
〉
− ‖v‖

∥∥(M2
n(tn)−M1

n(tn))(z − xn)
∥∥ .

(4.7)
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To simplify our writing, we set, for all s ≥ 0 and y, z ∈ R
N , L3(s, y, z) =

L1

2 e
Ls ‖z − y‖.

By (4.3), (4.6), Lemma 8.3, and (4.2), we have∥∥(M2
n(tn)−M1

n(tn))(z − xn)
∥∥ ≤

≤ e[2L2(tn,‖xn‖)+L3(tn,xn,z)]tn

∫ tn

0

∥∥A2
n(s)−A1

n(s)
∥∥ ds ‖z − xn‖

≤ L1

2
e[2L2(tn,‖xn‖)+L3(tn,xn,z)]tn

∫ tn

0

‖βn(s)− αn(s)‖ ds ‖z − xn‖ .

Recalling (4.5), we obtain∥∥(M2
n(tn)−M1

n(tn))(z − xn)
∥∥

≤ L1

2
e[2L2(tn,‖xn‖)+L3(tn,xn,z)+L]tn ‖z − xn‖2 .

(4.8)

Therefore, by passing to the limit in (4.7) and (4.8) (recall that M1
n(·) → M(·) uni-

formly), we have

〈
MT (r)v, z − x

〉
≤ 〈v, z̄ − x̄〉+ ‖v‖ L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r ‖z − x‖2

≤ ‖v‖
2ρ

‖z̄ − x̄‖2 + ‖v‖ L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r ‖z − x‖2 .

Moreover, from (4.5) we have ‖z̄ − x̄‖ ≤ eLr ‖z − x‖. Therefore,

(4.9)
〈
MT (r)v, z − x

〉
≤
(
L1

2
e[2L2(r,‖x‖)+L3(r,x,z)+L]r +

e2Lr

2ρ

)
‖v‖ ‖z − x‖2

for all z ∈ Sc(r).
Observe that

‖v‖ =
∥∥(MT (r))−1MT (r)v

∥∥
≤
∥∥M(r)−1

∥∥ ∥∥MT (r)v
∥∥ .

By (ii) in Lemma 8.2, we obtain∥∥M(r)−1
∥∥ ≤ eL2(r,‖x‖)r.

Combining the above inequalities with (4.9), we thus have〈
MT (r)v, z − x

〉
≤
(
L1

2
e[3L2(r,‖x‖)+L3(r,x,z)+L]r +

e2Lr+L2(r,‖x‖)

2ρ

) ∥∥MT (r)v
∥∥ ‖z − x‖2 .

(4.10)

In order to complete the proof, we consider two cases.
If ‖z − x‖ < 1, then L3(r, x, z) ≤ L1

2 e
Lr. Thus, by (4.10) we have

〈
MT (r)v, z − x

〉
≤
(
L1

2
e[3L2(r,‖x‖)+L1

2 eLr+L]r +
e2Lr+L2(r,‖x‖)

2ρ

)
·
∥∥MT (r)v

∥∥ ‖z − x‖2 .
(4.11)
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If instead ‖z − x‖ ≥ 1, then
〈
MT (r)v, z − x

〉
≤
∥∥MT (r)v

∥∥ ‖z − x‖2.
Therefore, in both cases we have that

(4.12)
〈
MT (r)v, z − x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖z − x‖2 for all z ∈ Sc(r),

where the continuous function K, defined for r, δ ≥ 0 and ρ > 0 as

(4.13) K(r, δ, ρ) := max

{
1,
L1

2
e[3L2(r,δ)+

L1
2 eLr+L]r +

e2Lr+L2(r,δ)

2ρ

}
,

depends only on the variables r, δ, ρ and on the constants L, L1, K1, K2.
The proof is complete.
Remark 4.1. It follows from (4.13) that K(r, δ, ρ) is nondecreasing with respect

to both r and δ.
The next lemma establishes that normals transported along the limiting adjoint

flow generate horizontal proximal normals to the hypograph of T (·), provided their
Hamiltonian is zero. Moreover, the radius of the ball realizing them can be explicitly
estimated.

Lemma 4.2. Let S be closed, and let the assumptions (H1), (H2), and (H3)
hold. Let x ∈ Sc, set r := T (x) > 0, and let ξ ∈ N0(x). Then −ξ ∈ ∂∞T (x), or,
equivalently, (ξ, 0) ∈ NP

hypo(T (x))(x, T (x)).

More precisely, let x̄ ∈ Sx, and let v ∈ NP
Sc(x̄), M(·) ∈ Mx̄ be such that

H(MT (r)v,
x) = 0. Assume that v is realized by a ball of radius ρ. Then there exists an ex-
plicitly computable continuous function K3(r, x, ρ), depending only on r, x, ρ, such
that for all z ∈ Sc and all β ≤ T (z), we have

(4.14)
〈
MT (r)v, z − x

〉
≤ K3(r, x, ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2 + |β − T (x)|2

)
.

Proof. Let v ∈ NP
Sc
(x̄) be such that

(4.15) 〈v, z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 for all z̄ ∈ Sc.

Recalling Lemma 4.1, for all z ∈ Sc(r), we have

(4.16)
〈
MT (r)v, z − x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖z − x‖2 .

Let z ∈ Sc. Two cases may occur:
(i) T (z) ≥ T (x),
(ii) T (z) < T (x).

In the first case, (4.14) follows immediately from (4.16).
In the second case, define r1 = T (z), and take sequences {xn} with xn → x,

{ūn} ⊂ Uad, and {αn(·) := yxn,ūn(·)} corresponding to M(·), according to the defini-
tion given in (2.11). For all n large enough, there exists r1n < r for which

x̄1n := αn(r − r1n) = xn +

∫ r−r1n

0

f(αn(s), ūn(s))ds

is such that T (x̄1n) = r1. We can assume without loss of generality that αn(·) converges
uniformly to some α(·) and that r1n → r̄1. Observe that r̄1 < r.
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Setting x̄1 = α(r − r̄1)(= lim x̄1n), one can easily see that T (x̄1) = r1 by the
continuity of T (x). Then by Lemma 4.1, we obtain that

(4.17)
〈
MT (r1)v, z − x̄1

〉
≤ K(r1,

∥∥x̄1∥∥ , ρ)∥∥MT (r1)v
∥∥ ∥∥z − x̄1

∥∥2 .
We write 〈

MT (r)v, z − x
〉
=
〈
MT (r)v, z − x̄1

〉
+
〈
MT (r)v, x̄1 − x

〉
and perform some estimates.

First we consider〈
MT (r)v, z − x̄1

〉
=
〈
MT (r1)v, z − x̄1

〉
+
〈
(MT (r) −MT (r1))v, z − x̄1

〉
.

By (4.17) we have

〈
MT (r)v, z − x̄1

〉
≤ K(r1,

∥∥x̄1∥∥ , ρ)∥∥MT (r1)v
∥∥ ∥∥z − x̄1

∥∥2
+
∥∥(MT (r) −MT (r1))v

∥∥ ∥∥z − x̄1
∥∥ .

Moreover, from (ii) in Lemma 8.2, we have∥∥MT (r1)v
∥∥ ≤

∥∥(MT (r − r1))
−1
∥∥∥∥MT (r)v

∥∥
≤ eL2(r−r1,‖x‖)(r−r1)

∥∥MT (r)v
∥∥

≤ eL2(r,‖x‖)r ∥∥MT (r)v
∥∥ .

Also, by using (iv) in Lemma 8.1, we obtain

∥∥(MT (r) −MT (r1))v
∥∥ ≤

∫ r

r1

∥∥∥ṀT (s)v
∥∥∥ ds

≤
∫ r

r1

eL2(r,‖x‖)r ∥∥MT (r)v
∥∥ ds

= eL2(r,‖x‖)r ∥∥MT (r)v
∥∥ |r − r1|.

Therefore,

〈
MT (r)v, z − x̄1

〉
≤ K(r1,

∥∥x̄1∥∥ , ρ) eL2(r,‖x‖)r ∥∥MT (r)v
∥∥ ∥∥z − x̄1

∥∥2
+ eL2(r,‖x‖)r ∥∥(MT (r)v

∥∥ |r − r1|
∥∥z − x̄1

∥∥ .
Recalling (i) in Lemma 8.1 for α(·) = yxn,ūn(·) and t = r−r1 and then taking n→ ∞,
we obtain

(4.18)
∥∥x̄1 − x

∥∥ ≤ (L ‖x‖+K1)(e
L(r−r1) − 1)

L
≤ (L ‖x‖ +K1)(e

Lr − 1)

L
,

from which it follows that
∥∥x̄1∥∥ ≤ eLr ‖x‖ + (eLt−1)K1

L . Hence,

〈
MT (r)v, z − x̄1

〉
≤ R1(r, ‖x‖ , ρ) eL2(r,‖x‖r ∥∥MT (r)v

∥∥ ∥∥z − x̄1
∥∥2

+ eL2(r,‖x‖)r ∥∥MT (r)v
∥∥ |r − r1|

∥∥z − x̄1
∥∥ ,(4.19)
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where

R1(r, δ, ρ) = K

(
r, eLrδ +

(eLt − 1)K1

L
, ρ

)
for r, δ ≥ 0, ρ > 0.

Observe also that we obtain from (iii) in Lemma 8.1 that

∥∥z − x̄1
∥∥ ≤ lim

n→∞

(
‖z − xn‖+

∫ r−r1n

0

‖f(αn(s), ūn(s))‖ ds
)

≤ lim
n→∞

(
‖z − xn‖+

∫ r−r1n

0

(
LeLs ‖xn‖+ eLsK1

)
ds

)

≤ ‖z − x‖+ L4(r, ‖x‖) |r − r1|,

where L4(s, δ) = LeLsδ + eLsK1 for s, δ ≥ 0.
Combining the above inequality and (4.19), we obtain

(4.20)
〈
MT (r)v, z − x̄1

〉
≤ R2(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2 + |r − r1|2),

where we have defined, for r, δ ≥ 0, ρ > 0,

(4.21) R2(r, δ, ρ) = eL2(r,δ)r

(
2R1(r, δ, ρ)

(
3

2
+ L2

4(r, δ)

)
+ L4(r, δ)

)
.

Second we consider

〈
MT (r)v, x̄1n − x

〉
=
〈
MT (r)v, xn − x

〉
+

〈
MT (r)v,

∫ r−r1n

0

f(αn(s), ūn(s))ds

〉

=
〈
MT (r)v, xn − x

〉
+

〈
MT (r)v,

∫ r−r1n

0

f(x, ūn(s))ds

〉

+

〈
MT (r)v,

∫ r−r1n

0

(f(αn(s), ūn(s)) − f(x, ūn(s))) ds

〉
.

Recalling that H(MT (r)v, x) = 0, we obtain from the above expression that〈
MT (r)v, x̄1n − x

〉
≤
〈
MT (r)v, xn − x

〉
+

〈
MT (r)v,

∫ r−r1n

0

(f(αn(s), ūn(s))− f(x, ūn(s))) ds

〉

≤
∥∥MT (r)v

∥∥ (
‖xn − x‖

+

∫ r−r1n

0

‖f(αn(s), ūn(s))− f(x, ūn(s))‖ ds
)

≤
∥∥MT (r)v

∥∥( ‖xn − x‖ + L

∫ r−r1n

0

‖αn(s)− x‖ ds
)

≤
∥∥MT (r)v

∥∥( ‖xn − x‖ + L ‖xn − x‖

+ L

∫ r−r1n

0

∫ s

0

‖f(αn(τ), ūn(τ))‖ dτds
)
.
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By (iii) in Lemma 8.1 and recalling that r̄1 < r, we now obtain that

〈
MT (r)v, x̄1n − x

〉
≤
∥∥MT (r)v

∥∥((L+ 1) ‖xn − x‖+ L

∫ r−r1

0

∫ s

0

(
LeLr ‖xn‖+ eLrK1

)
dτds

)
;

whence, taking n→ ∞,

(4.22)
〈
MT (r)v, x̄1 − x

〉
≤ L(LeLr ‖x‖ + eLrK1)

2

∥∥MT (r)v
∥∥ |r − r1|2.

Set now, for r, δ ≥ 0, ρ > 0,

(4.23) K3(r, δ, ρ) = R2(r, δ, ρ) +
L(LeLrδ + eLrK1)

2
.

Recalling (4.20) and (4.22), the proof is complete.
Now we prove a similar result for normals such that the Hamiltonian along the

limiting adjoint flow is 1. Actually, if ξ is such a vector, we show that (ξ, 1) is a
proximal normal to the hypograph of T (·), and again the radius of the sphere which
realizes it can be explicitly estimated.

Lemma 4.3. Let S be closed, and let the assumptions (H1), (H2), and (H3)
hold. Let x ∈ Sc, set r := T (x) > 0, and let ξ ∈ N1(x). Then −ξ ∈ ∂PT (x), or,
equivalently, (ξ, 1) ∈ NP

hypo(T (x))(x, T (x)).

More precisely, let x̄ ∈ Sx, and let v ∈ NP
Sc(x̄), M(·) ∈ Mx̄ be such that

H(MT (r)v, x) = 1, and assume that v is realized by a ball of radius ρ > 0. Then
there exists an explicitly computable continuous function K6(r, ‖x‖ , ρ) depending only
on r, ‖x‖, ρ such that for all z ∈ Sc and all β ≤ T (z), we have

(4.24)
〈
MT (r)v, z − x

〉
+β− r ≤ K6(r, ‖x‖ , ρ)

∥∥(MT (r)v, 1)
∥∥ (‖z − x‖2+ |β− r|2).

Proof. Let v ∈ NP
Sc(x̄) be such that

〈v, z̄ − x̄〉 ≤ ‖v‖
2ρ

‖z̄ − x̄‖2 for all z̄ ∈ Sc.

Let z ∈ Sc. Two cases may occur:
(i) T (z) ≥ T (x),
(ii) T (z) < T (x).
First case. Recalling that H(MT (r)v, x) = 1, one can find ū ∈ U such that

〈
MT (r)v, f(x, ū)

〉
= 1.

Set zū(·) := yz,ū(·) to be the trajectory starting from z with the constant control ū,

namely, zū(t) = z +
∫ t

0 f(zū(s), ū)ds.
Taking T (x) ≤ r1 ≤ T (z), we have that zū(r1− r) ∈ Sc(r). Recalling Lemma 4.1,

we obtain that

(4.25)
〈
MT (r)v, zū(r1 − r)− x

〉
≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ ‖zū(r1 − r)− x‖2 .
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We estimate

〈
MT (r)v, z − zū(r1 − r)

〉
=

〈
MT (r)v,−

∫ r1−r

0

f(zū(t), ū)dt

〉

=

〈
MT (r)v,−

∫ r1−r

0

f(x, ū)dt

〉

+

〈
MT (r)v,

∫ r1−r

0

(f(x, ū)− f(zū(t), ū)) dt

〉

≤ r − r1 + L
∥∥MT (r)v

∥∥ ∫ r1−r

0

‖zū(t)− x‖ dt.

Combining the above inequality with (4.25), we get

〈
MT (r)v, z − x

〉
≤ r − r1 + L

∥∥MT (r)v
∥∥ ∫ r1−r

0

‖zū(t)− x‖ dt

+K(r, ‖x‖ , ρ)
∥∥MT (r)v

∥∥ ‖zū(r1 − r)− x‖2 .
(4.26)

Moreover,

‖zū(s)− x‖ ≤ ‖z − x‖+
∫ s

0

‖f(zū(τ), ū)‖ dt

≤ ‖z − x‖+ K̃(‖x‖)s+ L

∫ s

0

‖zū(τ)− x‖ dτ,

where we set for δ ≥ 0, K̃(δ) := Lδ +K1. Thus, Gronwall’s inequality yields, for all
0 ≤ s ≤ r1 − r,

(4.27) ‖zū(s)− x‖ ≤ eLs ‖z − x‖+ K̃(‖x‖)
(
s+

eLs − Ls− 1

L

)
.

Since eLs − Ls− 1 ≤ L(eL − 1)s for all s ∈ [0, 1], we obtain from (4.27)

(4.28) ‖zū(s)− x‖ ≤ eL ‖z − x‖ + K̃(‖x‖)eLs for all s ∈ [0, 1].

Now we consider two subcases.
First subcase: 0 ≤ r1 − r ≤ 1. Combining (4.28) with (4.26), we obtain

(4.29)
〈
MT (r)v, z − x

〉
+ r1 − r ≤ K5(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2 + |r1 − r|2),

where for r, δ ≥ 0, ρ > 0, we set

(4.30) K5(r, δ, ρ) = eL

(
L

2
+ 2eLK(r, δ, ρ)

(
1 + K̃(δ)2

)
+
K̃(δ)

2

)
.

Second subcase: r1 − r > 1. Recalling Lemma 4.1, we obtain〈
MT (r)v, z − x

〉
+ r1 − r

≤ (K(r, ‖x‖ , ρ) + 1)
∥∥(MT (r)v, 1)

∥∥ (‖z − x‖2 + |r1 − r|2).
(4.31)

Observe now that if β ≤ T (x), recalling Lemma 4.1, we have

(4.32)
〈
MT (r)v, z − x

〉
+β−T (x) ≤ K(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2+|β−T (x)|2).
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We are now ready to conclude the first case. Indeed, it suffices to combine (4.29),
(4.32), and (4.31) and recall (4.30), obtaining, for all z ∈ Sc(r) and β ≤ T (z),〈

MT (r)v, z − x
〉
+ β − T (x)

≤ (K5(r, ‖x‖ , ρ) + 1)
∥∥(MT (r)v, 1)

∥∥ (‖z − x‖2 + |β − T (x)|2).
(4.33)

Second case. It is entirely similar to the proof of the second case of Lemma (4.2).
Indeed, by using the condition H(MT (r)v, x) = 1, we can replace (4.22) with

(4.34)
〈
MT (r)v, x̄1 − x

〉
≤ T (x)− T (z) +

L(LeLr ‖x‖+ eLrK1)

2
|r − r1|2.

Then by combining (4.20) and (4.34), we obtain

(4.35)
〈
MT (r)v, z − x

〉
+β−T (x) ≤ K3(r, ‖x‖ , ρ)

∥∥MT (r)v
∥∥ (‖z − x‖2+|β−T (x)|2)

for all β ≤ T (z), z ∈ Sc, and T (z) ≤ T (x).
To conclude the proof of the lemma, we recall (4.35), (4.33), and (4.30) and we

set, for r, δ ≥ 0, ρ > 0,

(4.36) K6(r, δ, ρ) = max{K5(r, δ, ρ) + 1,K3(r, δ, ρ)}.

The next result is a crucial step in order to show that singularities of T may be
only of the “upwards type.” Assuming that the target satisfies the internal sphere
condition of radius ρ, we show that if ξ belongs to the proximal subgradient of T (·) at
x, then it belongs also to the proximal supergradient. Moreover, −ξ is the transported
vector by the limiting adjoint flow of a normal to Sc, which is realized by ρ, and the
radius of the sphere realizing (−ξ, 1) as a proximal normal to the hypograph of T (·)
can be explicitly estimated. In this lemma, the internal sphere condition (H4) is used
for the first time.

In order to simplify our writing, we will replace the functions K, K3, and K6

appearing in Lemmas 4.1, 4.2, and 4.3, respectively, by the explicit (continuous)
function

(4.37) k(r, ‖x‖ , ρ) = max{K6(r, ‖x‖ , ρ),K(r, ‖x‖ , ρ)}.

Lemma 4.4. Let the assumptions (H1)–(H4) hold, let x ∈ Sc, and let ξ ∈ ∂PT (x).
Then

(i) ξ ∈ ∂PT (x), and therefore T is differentiable at x;
(ii) −ξ ∈ N1(x).

Moreover, for all z ∈ Sc and for all β ≤ T (z),

(4.38) 〈−ξ, z − x〉+ β − T (x) ≤ k(T (x), ‖x‖ , ρ) ‖(−ξ, 1)‖ (‖z − x‖2 + |β − T (x)|2).

Proof. Set r = T (x), and let ξ ∈ ∂PT (x). By Proposition IV.2.3 in [1], H(x,−ξ) ≥
1 so that ξ �= 0. It follows from the definition of proximal subgradient that there exists
σ ≥ 0 such that

(4.39) 〈ξ, z − x〉 ≤ σ ‖z − x‖2 for all z ∈ S(r).

Let x̄ ∈ Sx and M(·) ∈ Mx̄, and take a sequence {yxn,ūn(·)} ⊂ Tx̄ such that M(·) is
the uniform limit of M(·, xn, ūn). We claim that (MT (r))−1ξ ∈ NP

S (x̄).
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Indeed, take z̄ ∈ S, and set z̄−n (·) = y−(·, z̄, ūn), where y−(·, z̄, ūn) is the solution
of {

ẏ(t) = −f(y(t), ūn(r − t)) a.e.,
y(0) = z̄.

We set zn = z−n (θ(xn, ūn)) and consider z̄n = yzn,ūn(θ(xn, ūn)). We can assume
without loss of generality that {zn} converges to some z, which is easily seen belonging
to S(r).

To simplify our writing, we set tn = θ(xn, ūn), αn(·) = yxn,ūn(·), x̄n = αn(tn),

and M1
n(·) = M(·, xn, ūn). Let also βn(·) = yzn,ūn(·) and An(t) =

∫ 1

0 Dxf(αn(t) +
τ(βn(t) − αn(t)), ūn(t)) dτ , and let M2

n(·) be the fundamental solution of ṗ(t) =
An(t)p(t), p(0) = I

N×N . Finally, we set wi
n(t) =M i

n(zn − xn) for i ∈ {1, 2}.
Using Lemma 8.2 and the same argument leading to (4.8), we can perform the

following estimate:〈
MT (r)−1ξ, z̄n − x̄n

〉
=
〈
MT (r)−1ξ, w2

n(tn)
〉

=
〈
MT (r)−1ξ, w1

n(tn)
〉
+
〈
MT (r)−1ξ, w2

n(tn)− w1
n(tn)

〉
≤
〈
MT (r)−1ξ, w1

n(tn)
〉
+
∥∥MT (r)−1

∥∥ ‖ξ‖
∥∥w2

n(tn)− w1
n(tn)

∥∥
≤
〈
MT (r)−1ξ, w1

n(tn)
〉
+ K̃0 ‖zn − xn‖2

≤
〈
MT (r)−1ξ, w1

n(tn)
〉
+ K̃1 ‖z̄ − x̄n‖2 ,

where K̃0 and K̃1 are suitable constants. Taking n → ∞ in the above inequalities,
we obtain 〈

MT (r)−1ξ, z̄ − x̄
〉
≤
〈
MT (r)−1ξ,MT (r)(z − x)

〉
+ K̃1 ‖z̄ − x̄‖2

= 〈ξ, z − x〉+ K̃1 ‖z̄ − x̄‖2 .

Recalling (4.39) and Lemma 8.2, we thus obtain〈
MT (r)−1ξ, z̄ − x̄

〉
≤ σ ‖ξ‖ ‖z − x‖2 + K̃1 ‖z̄ − x̄‖2

≤ K̃2 ‖z̄ − x̄‖2

for a suitable constant K̃2. The above inequality, in turn, implies that

(4.40) (MT (r))−1ξ ∈ NP
S (x̄).

Thanks to (H4), there exists 0 �= ζ ∈ NP
Sc(x̄). Therefore, both S and Sc admit at

x̄ an external nonzero proximal normal. This means that S is smooth at x̄, and so, by
(H4), the unique external normal to Sc at x̄, namely, −MT (r)−1ξ, must be realized
by a ball of radius ρ.

Using Proposition IV.2.3 in [1], we see that H(x,−ξ) ≥ 1, and so we can choose
λ ∈ (0, 1) such that H(−λξ, x) = 1. Applying Lemma 4.3 for v = λMT (r)−1ξ, we
obtain that λξ ∈ ∂PT (x). Therefore, T is differentiable at x, and so λξ = ξ. Thus,
both (i) and (ii) are proved.

In order to complete the proof, we apply the last statement of Lemma 4.3.
The next lemma classifies limiting normals and shows that limiting subgradi-

ents generate proximal normals to the hypograph which are horizontal/nonhorizontal
according to the unboundedness/boundedness of the corresponding sequence of proxi-
mal subgradients. Also, the radius of the sphere realizing the limiting vector can be
explicitly estimated.
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Lemma 4.5. Let the assumptions (H1)–(H4) hold, and let {xn} be a sequence
converging to x ∈ Sc. Assume that there exists a sequence {ξn} satisfying ξn ∈
∂PT (xn).

Then the following alternatives hold true:
(i) If lim supn→∞ ‖ξn‖ < +∞, then there exists a subsequence {ξnk

} converging
to a vector ξ such that −ξ ∈ N1(x). Moreover, (−ξ, 1) ∈ NP

hypo(T )(x, T (x)), and, for

all z ∈ Sc and all β ≤ T (z), the inequality

(4.41) 〈−ξ, z − x〉+ β − T (x) ≤ k(T (x), ‖x‖ , ρ) ‖(−ξ, 1)‖ (‖z − x‖2 + |β − T (x)|2)

holds.
(ii) If lim supn→∞ ‖ξn‖ = +∞, then there exists a subsequence of {ξn/ ‖ξ‖n}

converging to a vector ξ such that −ξ ∈ N0(x). Moreover, (−ξ, 0) ∈ NP
hypo(T )(x, T (x)),

and for all z ∈ Sc and all β ≤ T (z), the inequality

(4.42) 〈−ξ, z − x〉 ≤ k(T (x), ‖x‖ , ρ)(‖z − x‖2 + |β − T (x)|2)

holds.
Proof. Set r = T (x). Recalling Lemma (4.4), the function T (·) is differentiable

at xn. Taking x̄n ∈ Sxn and Mn(·) ∈ Mx̄n , it follows from Lemma 4.4 that for all
n ∈ N,

(a) −MT
n (T (xn))

−1ξn ∈ NP
Sc(x̄n), and each −MT

n (T (xn))
−1ξn is realized by a

ball of radius ρ, namely,
(4.43)〈
−MT

n (T (xn))
−1ξn, z̄ − x̄n

〉
≤
∥∥MT

n (T (xn))
−1ξn

∥∥
2ρ

‖z̄ − x̄n‖2 for all z̄ ∈ Sc;

(b) H(−ξn, xn) = 1.
If lim supn→∞ ‖ξn‖ < +∞, we choose subsequences {x̄nk

} and {ξnk
} converging,

respectively, to x̄ ∈ S and ξ̄. By compactness and without loss of generality, we can
assume that {Mnk

(·)} converges uniformly to M(·). We now take nk → ∞ in (4.43)
and obtain

(4.44)
〈
−MT (r)−1ξ̄, z̄ − x̄

〉
≤
∥∥MT (r)−1 ξ̄

∥∥
2ρ

‖z̄ − x̄‖2 .

Thus, −MT (r)−1ξ̄ ∈ NP
Sc(x̄), and −MT (r)−1ξ̄ is realized by a ball of radius ρ .

On the other hand, we also take nk → ∞ in b) and obtain H(−ξ̄, x) = 1.
One can also easily show thatMT (·) ∈ Mx̄ so that −ξ̄ ∈ N1(x). Recalling Lemma

4.3 and setting ξ := ξ̄, the proof of (i) is concluded.

Analogously, if lim supn→∞ ‖ξn‖=+∞, we can assume that−ξ̄=− limnk→∞
ξnk

‖ξnk‖
,

together with −MT (r)−1 ξ̄ ∈ NP
Sc(x̄) and H(−ξ̄, x) = 0. Thus, −ξ̄ ∈ N0(x). Finally,

recalling Lemma 4.2 and setting ξ := ξ̄, we conclude the proof of (ii).
The final results of this section use for the first time the pointedness assumption

for the normal cone NP
hypo(T )(x, T (x)). They show essentially that NP

hypo(T )(x, T (x))

is a closed cone and that horizontal (respectively, nonhorizontal) exposed rays of
NP

hypo(T )(x, T (x)) belong to N0(x) (respectively, N1(x)). As a by-product of our

argument, we obtain a representation of NP
hypo(T )(x, T (x)) through N0(x) and N1(x)

(see Theorem 4.1).
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Lemma 4.6. Let s ∈ Sc, and let the assumptions (H1)–(H4) hold. Assume that
NP

hypo(T )(x, T (x)) is pointed, and set

Ñ0(x) = {(ξ, 0) | ξ ∈ N0(x)},
Ñ1(x) = {λ(ξ, 1) | ξ ∈ N1(x), λ ≥ 0},
N(x) = coÑ0(x) + coÑ1(x).

Then N(x) is a closed, convex, and pointed cone contained in NP
hypo(T )(x, T (x)).

Proof. Thanks to Lemmas 4.2 and 4.3 and the definition of k in (4.37), every
ζ ∈ Ñ0(x) ∪ Ñ1(x) satisfies the following property: for every y ∈ Sc and every
β ≤ T (y), the inequality

(4.45) 〈ζ, (y − x, β − T (x))〉 ≤ k(T (x), ‖x‖ , ρ) ‖ζ‖
(
‖y − x‖2 + |β − T (x)|2

)

holds. It follows immediately from the above property that both Ñ0(x) and Ñ1(x) are
cones contained in NP

hypo(T )(x, T (x)). Thus, coÑ0(x) and coÑ1(x) are contained in

NP
hypo(T )(x, T (x)), and so they are pointed. Set N1

0 = {ξ ∈ R
N | ξ ∈ N0(x), ‖ξ‖ = 1},

and observe that on one hand, Ñ0(x) = {λ(ξ, 0) | ξ ∈ N1
0 , λ ≥ 0}, and on the other,

N1
0 (by the continuity of the Hamiltonian) is compact and 0 �∈ N1

0 . Analogously,
observe that N1(x) is compact and does not contain zero. Therefore, using Lemma
8.4, we obtain that both coÑ0(x) and coÑ1(x) are closed, and the proof is con-
cluded.

Lemma 4.7. Let x ∈ Sc, and let the assumptions of Theorem 3.1 hold. Let Ñ be
a closed convex cone in R

N+1 with the property

(4.46) N(x) ⊆ Ñ ⊆ NP
hypo(T )(x, T (x)).

Let ζ belong to an exposed ray of Ñ . The following statements hold true:
(i) if ζ = (ξ, 0) with ξ ∈ R

N , then ξ ∈ N0(x);
(ii) if ζ = (ξ, λ) with ξ ∈ R

N and λ > 0, then ξ/λ ∈ N1(x).
Moreover, ζ satisfies (4.45) for all y ∈ Sc and all β ≤ T (y).

Proof. By our assumption on ζ, there exists v̄ = (v0, λ0) satisfying v0 ∈ R
N ,

‖v0‖ = 1, and λ0 ∈ R such that

(4.47)

⎧⎨
⎩

〈(v0, λ0), ζ〉 = 0,

〈(v0, λ0), w〉 ≤ 0 for all w ∈ Ñ,

〈(v0, λ0), w〉 = 0, and 0 �= w ∈ Ñ ⇒ w
‖w‖ = ζ

‖ζ‖ .

We now begin proving (i). Since ζ = (ξ, 0) ∈ NP
hypo(T )(x, T (x)), there exists a

constant σ ≥ 0 such that, for all z ∈ Sc and all β ≤ T (z), the inequality

(4.48) 〈ξ, z − x〉 ≤ σ(‖z − x‖2 + |β − T (x)|2)

holds. Set now xn = x + v0
n + ξ

n
√
n
. Then by the density theorem (see [10, Theo-

rem 1.3.1]), for each n there exists zn such that

∂PT (zn) �= ∅,(4.49)

‖zn − xn‖ ≤ 1

n2
.(4.50)
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First we show that

(4.51) T (zn) ≤ T (x) for all n large enough.

Indeed, assume by contradiction that T (zn) > T (x). Taking z = zn and β = T (x) in
(4.48), we obtain

〈ξ, zn − x〉 ≤ σ ‖zn − x‖2 .

It follows from the above inequality, (4.47), and (4.50) that there exists a suitable
constant σ1 for which

‖ξ‖2

n
√
n

≤ σ1
n2

for all n large enough, a contradiction.
Second we claim that there exists σ2 such that

(4.52) |T (zn)− T (x)| > σ2n
− 3

4 for all n large enough.

Indeed, by taking z = zn and β = T (zn) in (4.48), we obtain

〈ξ, zn − x〉 ≤ σ (‖zn − x‖2 + |T (zn)− T (x)|2).

From the above inequality, (4.47), and (4.50), one can easily see that (4.52) holds.
On the other hand, by (4.49) and Lemma 4.4, we know that T is differentiable at

zn, and we write ξn = DT (zn). Recalling (4.38), for all z ∈ Sc and all β ≤ T (z), the
inequality
(4.53)

〈−ξn, z − zn〉+ β − T (zn) ≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖z − zn‖2 + |β − T (zn)|2)

holds.
We claim that ‖ξn‖ → +∞.
Assume by contradiction that there exists a constant Q such that ‖ξn‖ ≤ Q for

all n. Taking z = x, β = T (x) in (4.53) and recalling (4.51), we obtain that

(T (x)− T (zn))
(
1− k(T (zn), ‖zn‖ , ρ)

√
Q2 + 1|T (x)− T (zn)|

)
≤ ‖x− zn‖

(
Q+ k(T (zn), ‖zn‖ , ρ)

√
Q2 + 1 ‖x− zn‖

)
.

By the continuity of T (·) and k(·) and by (4.51), (4.50), and (4.52), there exists a
constant Q1 > 0 such that

Q1

n
3
4

≤ 1

n
for all n large enough,

a contradiction.
Now recalling (ii) in Lemma 4.5 and assuming without loss of generality that

limn→∞ − ξn
‖ξn‖ = −ξ̄, we see that (−ξ̄, 0) ∈ Ñ0(x) ⊆ Ñ . By (4.51) we can take z = x

and β = T (zn) in (4.53), obtaining〈
− ξn
‖(−ξn, 1)‖

,
x− zn

‖x− zn‖

〉
≤ k(T (zn), ‖zn‖ , ρ) ‖x− zn‖ .
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Taking n→ ∞ in the above inequality and recalling (4.50), we obtain〈
−ξ̄,−v0

〉
≤ 0

or, equivalently,
〈
(−ξ̄, 0), (v0, λ0)

〉
≥ 0. Therefore, we obtain from (4.47) that (−ξ̄, 0) =

(ξ,0)
‖ξ‖ . Thus, ξ = −ξ̄, and the proof of claim (i) is concluded .

We now begin proving (ii), and take ζ = (ξ, 1) and v̄ = (v0, λ0) satisfying (4.47).
Set xn = x + v0

n . Then by the density theorem (see Theorem 1.3.1 in [10]), for each
n there exists zn such that

∂PT (zn) �= ∅,(4.54)

‖zn − xn‖ ≤ 1

n2
.(4.55)

Recalling Lemma 4.4, (4.54) implies that T (·) is differentiable at zn. Moreover, if we
set ξn = DT (zn), then −ξn ∈ N1(zn), and for all z ∈ Sc and β ≤ T (z), we have

〈−ξn, z − zn〉+ β − T (zn)

≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖z − zn‖2 + |β − T (zn)|2).
(4.56)

We claim that the sequence {ξn} is bounded.
Suppose by contradiction that lim supn→∞ ‖ξn‖ = +∞. Then assuming without

loss of generality that − ξn
‖ξn‖ → −ξ̄, (ii) of Lemma 4.5 yields that −ξ̄ ∈ N0(x) and

(−ξ̄, 0) ∈ Ñ0(x).
In order to obtain a contradiction, we consider two cases:
(a) T (x) ≥ T (zn) for infinitely many n;
(b) T (x) < T (zn) for infinitely many n.
In the first case, we can choose z = x, β = T (zn) in (4.56), obtaining〈

− ξn
‖(−ξn, 1)‖

,
x− zn

‖x− zn‖

〉
≤ k(T (zn), zn, ρ) ‖x− zn‖ .

Taking n→ ∞ and recalling (4.55), we get

(4.57)
〈
−ξ̄ , −v0

〉
≤ 0,

which implies
〈
(−ξ̄, 0), (v0, λ0)

〉
≥ 0. Thus, by combining (−ξ̄, 0) ∈ Ñ0(x) with (4.47),

we obtain (−ξ̄,0)

‖−ξ̄‖ = (ξ,1)
‖(ξ,1)‖ , a contradiction.

In the second case, since (ξ, 1) ∈ NP
hypo(T )(x, T (x)), there exists σ ≥ 0 such that

(4.58) 〈ξ, zn − x〉+ T (zn)− T (x) ≤ σ (‖zn − x‖2 + |T (zn)− T (x)|2) for all n.

The above inequality implies that there exists σ1 such that, for all n large enough,

(4.59) T (zn)− T (x) = |T (zn)− T (x)| ≤ σ1 ‖zn − x‖ .

Recalling (4.56) and taking z = x, β = T (x), we have, for all n large enough,〈
−ξn

‖(−ξn, 1)‖
,
x− zn
‖zn − x‖

〉
+

T (x)− T (zn)

‖(−ξn, 1)‖ ‖zn − x‖

≤ k(T (zn), ‖zn‖ , ρ)
(
‖x− zn‖+

|T (x)− T (zn)|2
‖x− zn‖

)
.

(4.60)
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Taking n→ ∞ in both (4.59) and (4.60), we obtain

(4.61)
〈
−ξ̄ , v0

〉
≥ 0,

which implies in turn that
〈
(−ξ̄, 0), (v0, λ0)

〉
≥ 0. Thus, by combining the condition

(−ξ̄, 0) ∈ Ñ0(x) with (4.47), we obtain (−ξ̄,0)

‖ξ̄‖ = (ξ,1)
‖(ξ,1)‖ , a contradiction.

We can now assume that

(4.62) ‖ξn‖ ≤ Q for all n,

for a suitable constant Q, and without loss of generality that

(4.63) lim
n→∞ ξn = ξ̄.

From (i) of Lemma 4.5, we have that −ξ̄ ∈ N1(x) and (−ξ̄, 1) ∈ Ñ1(x), and (4.41)
with ξ̄ in place of ξ holds.

We claim that there exists a constant σ2 such that

(4.64) |T (zn)− T (x)| ≤ σ2 ‖zn − x‖ for all n.

In the case T (x) < T (zn), this was already proved (see (4.59)).
Assume now T (x) ≥ T (zn). Then, by using (4.56) with z = x and β = T (x), we

obtain, for all n large enough,

〈−ξn, x− zn〉+ T (x)− T (zn)

≤ k(T (zn), ‖zn‖ , ρ) ‖(−ξn, 1)‖ (‖x− zn‖2 + |T (x)− T (zn)|2).
(4.65)

The above inequality and (4.62) imply, for all n large enough,

T (x)−T (zn) ≤ k(T (zn), ‖zn‖ , ρ)
√
Q2 + 1(‖x− zn‖2+ |T (x)−T (zn)|2)+Q ‖zn − x‖ ,

from which, by the local boundedness of k, the inequality (4.64) follows.
Summing (4.58) and (4.65) we obtain, for a suitable constant σ3 ≥ 0, that for all

n large enough,〈
ξn + ξ,

zn − x

‖zn − x‖

〉
≤ σ3

(
‖zn − x‖ + |T (zn)− T (x)|2

‖zn − x‖

)
.

Taking n→ ∞ in the above inequality and using (4.64) and (4.55), we obtain〈
ξ̄ + ξ , v0

〉
≤ 0

or, equivalently,

〈(ξ, 1) , (v0, λ0)〉 ≤
〈
(−ξ̄, 1) , (v0, λ0)

〉
.

Recalling (4.47), we have 〈(ξ, 1) , (v0, λ0)〉 = 0; whence
〈
(−ξ̄, 1) , (v0, λ0)

〉
≥ 0. Note

that (−ξ̄, 1) ∈ Ñ1(x), so that
〈
(−ξ̄, 1) , (v0, λ0)

〉
= 0 by (4.47). Moreover, using again

(4.47), we finally arrive to

(−ξ̄, 1)∥∥(−ξ̄, 1)∥∥ =
(ξ, 1)

‖(−ξ, 1)‖ .

Therefore, we see that ξ = −ξ̄ ∈ N1(x), and the proof is concluded.
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The lemmas contained in this section yield immediately the following result.
Theorem 4.1. Let x ∈ Sc, and let the assumptions of Theorem 3.1 hold. Then

NP
hypo(T )(x, T (x)) = N(x),

where N(x) was defined in the statement of Lemma 4.6 so that NP
hypo(T )(x, T (x)) is

a closed (convex) cone.
Proof. Assume by contradiction that there exists ζ ∈ NP

hypo(T )(x, T (x)) \ N(x).
Set

Ñ = co (N(x) ∪ {λζ | λ ≥ 0}) ,
and observe that Ñ is a closed convex cone which satisfies (4.46). Clearly, ζ belongs
to an exposed ray of Ñ so that, by Lemma 4.7, ζ ∈ Ñ0(x) ∪ Ñ1(x), a contradic-
tion.

5. Proof of the main results.
Proof of Theorem 3.1. It is clear that the “⊇” inclusion in (3.2) follows from

Lemma 4.2 and the convexity of ∂∞T (x).
In order to prove the “⊆” inclusion, take ξ ∈ ∂∞T (x), i.e., (−ξ, 0) ∈ NP

hypo(T )

(x, T (x)). Since NP
hypo(T )(x, T (x)) is pointed and closed (see Theorem 4.1), recalling

(2.1) we can find numbers αi, βi ≥ 0 and vectors ξi, ζi ∈ R
N , i ∈ {1, . . . , N + 2}

such that

(5.1)

⎧⎪⎨
⎪⎩
(−ξi, 1) belongs to an exposed ray of NP

hypo(T )(x, T (x)),

(−ζi, 0) belongs to an exposed ray of NP
hypo(T )(x, T (x)),

(−ξ, 0) =
∑N+2

i=1 αi(−ξi, 1) +
∑N+2

i=1 βi(−ζi, 0).

From the above equality we deduce that αi = 0 for all i ∈ {1, . . . , N + 2}. Thus, we
have

(5.2) (−ξ, 0) =

N+2∑
i=1

βi(−ζi, 0).

Recalling (i) in Lemma 4.7, we obtain −ζi ∈ N0(x). Setting ζ̄i = (
∑N+2

j=1 βj)ζi and

β̄i =
βi∑N+2

i=1 βi
, one can easily see −ζ̄i ∈ N0(x) and

∑N+2
i=1 β̄i = 1.

From (5.2), we obtain

ξ = −
N+2∑
i=1

β̄i(−ζ̄i).

The proof is concluded.
Proof of Theorem 3.2. Observe that from the definition, it follows that if ξ ∈

∂PT (x) and ζ ∈ ∂∞T (x), then ξ + ζ ∈ ∂PT (x). Thus, the “⊇” inclusion in (3.3)
follows from Lemmas 4.3 and 4.2 and the above observation.

In order to prove the “⊆” inclusion, take ξ ∈ ∂PT (x), i.e., (−ξ, 1)∈NP
hypo(T )(x, T (x)).

Since NP
hypo(T )(x, T (x)) is pointed and closed (see Theorem 4.1) and by recalling (2.1),

we can find numbers αi, βi ≥ 0 and vectors ξi, ζi ∈ R
N , i ∈ {1, . . . , N + 2}, such

that

(5.3)

⎧⎪⎨
⎪⎩
(−ξi, 1) belongs to an exposed ray of NP

hypo(T )(x, T (x)),

(−ζi, 0) belongs to an exposed ray of NP
hypo(T )(x, T (x)),

(−ξ, 1) =
∑N+2

i=1 αi(−ξi, 1) +
∑N+2

i=1 βi(−ζi, 0).
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From the above equality we deduce that
∑N+2

i=1 αi = 1. Thus, recalling (ii) in

Lemma 4.7, we obtain that
∑N+2

i=1 αi(−ξi) ∈ co(N1(x)).

On the other hand, arguing similarly to the above proof, we see that
∑N+2

i=1 βi(−ζi)
∈ co(N0(x)). Therefore,

ξ = −
(

N+2∑
i=1

αi(−ξi) +
N+2∑
i=1

β̄i(−ζ̄i)
)

∈ −[co(N1(x)) + co(N0(x))].

The proof is concluded.
Proof of Theorem 3.3.
We need the following technical lemma.
Lemma 5.1. Assume that NP

hypo(T )(x, T (x)) is pointed for all x ∈ Sc. Then

for each continuous function θ : Sc → [0,∞), there exists a continuous function
ψθ : Sc → (0, 1] such that

(5.4) 〈ζ1, ζ2〉 ≥ ψθ(x) − 1

for all x ∈ Sc and for all ζ1, ζ2 ∈ NP
hypo(T )(x, T (x)) satisfying both ‖ζ1‖ = ‖ζ2‖ = 1

and

(5.5) 〈ζj , (z − x, β − T (x))〉 ≤ θ(x)(‖z − x‖2 + |β − T (x)|2)

for all z ∈ Sc, β ≤ T (x), and j = 1, 2.
Proof. We need to show only that for every n ∈ N, there exists a continuous

function ψn : B(0, n) ∩ Sc → (0, 1] satisfying (5.4) with ψθ(x) replaced by ψn(x). It
is easy to see that the following statement is sufficient to this aim.

Let, for all m,n ∈ N, Km
n = B(0, n)∩Sc( 1

m ), and observe that, by the continuity
of T (·), Km

n is compact. Fix n. We claim that for each m ∈ N, there exists a constant
km ∈ (0, 1] such that

(5.6) 〈ζ1 , ζ2〉 ≥ km − 1

for all x ∈ Km
n , ζ1, ζ2 ∈ NP

hypo(T )(x, T (x)) satisfying ‖ζ1‖ = ‖ζ2‖ = 1 and (5.5).

Indeed, assume by contradiction that there exists a sequence {xi} ⊂ Km
n together

with vectors ζi1, ζ
i
2 ∈ NP

hypo(T )(xi, T (xi)) satisfying
∥∥ζi1∥∥ =

∥∥ζi2∥∥ = 1 and

(5.7)
〈
ζij , (z − xi, β − T (xi))

〉
≤ θ(xi)(‖z − xi‖2 + |β − T (xi)|2)

for all z ∈ Sc, β ≤ T (xi), and j ∈ {1, 2} but such that

(5.8) lim
i→∞

〈
ζi1 , ζ

i
2

〉
= −1.

We can assume without loss of generality that {xi}, {ζi1}, and {ζi2} converge, re-
spectively, to x̄ ∈ Km

n , ζ̄1, and ζ̄2. By the continuity of T (·), θ(·), and (5.7), we
obtain

ζ̄i ∈ NP
hypo(T )(x̄, T (x̄)) for i ∈ {1, 2}.

On the other hand, from
∥∥ζi1∥∥ =

∥∥ζi2∥∥ = 1 and (5.8), we get

ζ̄1 = −ζ̄2.
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But then the normal cone NP
hypo(T )(x̄, T (x̄)) contains a line, and this is a contradic-

tion.
End of the proof of Theorem 3.3.
We need to find a continuous function ϕ : Sc → [0,∞) such that for all x ∈ Sc,

ζ ∈ NP
hypo(T )(x, T (x)) and for all z ∈ Sc, β ≤ T (z), we have

(5.9) 〈ζ, (z − x, β − T (x))〉 ≤ ϕ(x) ‖ζ‖ (‖z − x‖2 + |β − T (x)|2).

Observe that for every ζ ∈ NP
hypo(T )(x, T (x)), by the pointedness assumption and

recalling Theorem 4.1, we have

(5.10) ζ =
N+2∑
i=1

ζi,

where each ζi belongs to an exposed ray ofNP
hypo(T )(x, T (x)). For k ∈ {1, 2, . . . , N + 2},

we set

NP
k (x) =

{
ζ | ζ =

k∑
i=1

ζi,

where ζi belongs to an exposed ray of NP
hypo(T )(x, T (x))

}
.

(5.11)

Of course, NP
k (x) ⊆ NP

hypo(T )(x, T (x)), and N
P
N+2(x) = NP

hypo(T )(x, T (x)).

Now we are going to construct by induction a continuous function ϕk(·) such that

(5.12)
〈
ζk, (z − x, β − T (x))

〉
≤ ϕk(x)

∥∥ζk∥∥ (‖z − x‖2 + |β − T (x)|2)

for all x ∈ Sc, ζk ∈ NP
k (x) and for all z ∈ Sc, β ≤ T (z).

For k = 1, we choose ϕ1(x) := k(T (x), ‖x‖ , ρ). Recalling Lemmas 4.7, 4.3, and
4.2, we obtain that for all ζ1 ∈ NP

1 (x) and for all z ∈ Sc, β ≤ T (z),

(5.13)
〈
ζ1, (z − x, β − T (x))

〉
≤ ϕ1(x)

∥∥ζ1∥∥ (‖z − x‖2 + |β − T (x)|2).

Thus, (5.12) holds.
Assume now that (5.12) is satisfied for k = h ≥ 1. We want to show that (5.12)

holds for k = h+ 1 with

(5.14) ϕh+1(x) =

√
ϕh(x)2 + ϕ1(x)2

ψmax{ϕ1,ϕh}(x)
,

where the function ψmax{ϕ1,ϕh}(·) is given by Lemma 5.1 for θ(·) = max{ϕ1(·), ϕh(·)}.
Indeed, given ζh+1 ∈ NP

h+1(x), one can write

ζh+1 = ζh + ζ1,

where ζh ∈ NP
h (x) and ζ1 ∈ NP

1 (x). From (5.13) and the inductive assumption, one
can easily see that
(5.15)〈

ζh+1, (z − x, β − T (x))
〉
≤
(
ϕ1(x)

∥∥ζ1∥∥+ ϕh(x)
∥∥ζh∥∥)(‖z − x‖2 + |β − T (x)|2)

for all z ∈ Sc, β ≤ T (z).
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On the other hand, by inductive assumption, (5.13), and Lemma 5.1 applied for
θ(·) = max{ϕ1(·), ϕh(·)}, we obtain〈

ζh

‖ζh‖ ,
ζ1

‖ζ1‖

〉
≥ ψmax{ϕ1,ϕh}(x) − 1.

Thus, since ψ(x) ∈ (0, 1], we see that∥∥ζh + ζ1
∥∥2 ≥ ψmax{ϕ1,ϕh}(x)

( ∥∥ζh∥∥2 + ∥∥ζ1∥∥2 ).
Therefore,

∥∥ζh + ζ1
∥∥2 ≥

ψmax{ϕ1,ϕh}(x)
ϕh(x)2 + ϕ1(x)2

(
ϕh(x)

∥∥ζh∥∥+ ϕ1(x)
∥∥ζ1∥∥)2.

Combining the above inequality, (5.14), and (5.15), we obtain that〈
ζh+1, (z − x, β − T (x))

〉
≤ ϕh+1(x)

∥∥ζh+1
∥∥( ‖z − x‖2 + |β − T (x)|2

)
for all z ∈ Sc, β ≤ T (z).
To conclude the proof, we choose ϕ(·) = ϕN+2(·).

Proof of Proposition 3.1. It is a straightforward consequence of Lemmas 4.2 and
4.3.

6. The case of optimal points. This section is devoted to the representation of
supergradient and horizontal gradient at optimal points. The corresponding formulas
are easier than in the general case, and the structure of the Hamiltonian exhibits
special properties.

The definition of optimal points here is based on the classical definition (see, e.g.,
Definition 2.24, p. 119 in [1]) but is adapted to limiting optimal trajectories since
optimal trajectories may not exist.

Definition 6.1. Let x ∈ Sc, and set r = T (x). The point x is called an optimal
point if there exist τ > 0 and xτ ∈ Sc such that

(i) T (xτ ) = r + τ ;
(ii) there exist x̄τ ∈ Sxτ and {ūn} ⊂ Ux̄τ , together with the corresponding sequence

xn → xτ , such that yxn,ūn(τ) → x.
At optimal points, the Hamiltonian has a special behavior. More precisely, let x

be an optimal point with T (x) = r > 0. Then the Hamiltonian H(x, ·) is additive on
the proximal normal cone to Sc(r). It follows from this property that the supergradient
and horizontal supergradient of T are contained, respectively, in the 1-level set and
the 0-level set of the Hamiltonian.

Theorem 6.1. Let x ∈ Sc be an optimal point. Under the same assumptions of
Theorem 3.1, the (proximal) horizontal gradient and the supergradient of the minimum
time function T (·) at the point x can be computed as follows:

(a) ∂∞T (x) = [−co(N(x))] ∩ {−ξ | H(ξ, x) = 0},
(b) ∂PT (x) = [−co(N(x))] ∩ {−ξ | H(ξ, x) = 1},

where

(6.1) N(x) = {MT (r)v | M(·) ∈ Mx̄, v ∈ NP
Sc(x̄), x̄ ∈ Sx}.

The proof of Theorem 6.1 requires some preliminary lemmas. The first one gives
information on a lower bound of the Hamiltonian computed at a proximal normal of
the sublevel of T at an optimal point.
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Lemma 6.1. Let x ∈ Sc be an optimal point, and let ξ ∈ NP
Sc(T (x))(x). Then

H(x, ξ) ≥ 0.
Proof. Set r = T (x). Let τ , xτ , x̄τ , ūn, and xn be with the properties stated in

Definition 6.1. To simplify our writing, we set γn(·) = yxn,ūn(·). Assuming without
loss of generality that γn(·) converges uniformly to γ(·), one can easily check that
γ(t) ∈ Sc(r) for all t ∈ [0, τ ]. In fact should t̄ ∈ (0, τ ] exist such that T (γ(t̄)) < r,
then one would have T (xτ ) < r + τ , a contradiction. Now since ξ ∈ NP

Sc(r)(x), there

exists σ > 0 such that for all t ∈ [0, τ ], we have

(6.2) 〈ξ , γ(t)− x〉 ≤ σ ‖γ(t)− x‖2 ,

namely, for all t ∈ [0, τ ],

lim
n→∞ 〈ξ, γn(t)− x〉 ≤ σ lim

n→∞ ‖γn(t)− x‖2 .

Equivalently, for all t ∈ [0, τ ],

lim
n→∞

〈
ξ, γn(τ)−

∫ τ

τ−t

f(γn(s), ūn(s))ds− x

〉

≤ σ lim
n→∞

∥∥∥∥γn(τ)−
∫ τ

τ−t

f(γn(s), ūn(s))ds− x

∥∥∥∥
2

.

Recalling (ii) in Definition 6.1, we obtain that for all t ∈ [0, τ ],

lim
n→∞

〈
ξ , −

∫ τ

τ−t

f(γn(s), ūn(s))ds

〉
≤ σ lim

n→∞

∥∥∥∥
∫ τ

τ−t

f(γn(s), ūn(s))ds

∥∥∥∥
2

.

From (iii) of Lemma 8.1 and (i) and (ii) in Definition 6.1, one can see that

lim
n→∞

〈
ξ , −

∫ τ

τ−t

f(γn(s), ūn(s))ds

〉
≤ O(t2) for t→ 0+.

Thus, for t→ 0+,

lim sup
n→∞

〈
ξ,−

∫ τ

τ−t

f(x, ūn(s))ds

〉

≤ O(t2) + lim sup
n→∞

〈
ξ,

∫ τ

τ−t

(
f(γn(s), ūn(s))− f(x, ūn(s))

)
ds

〉
.

Applying the Lipschitz condition of the function f(·, ·) and (iii) of Lemma 8.1, we
easily obtain that

lim sup
n→∞

〈
ξ,−

∫ τ

τ−t

f(x, ūn(s))ds

〉
≤ O(t2) for t→ 0+.

Therefore, there exists a constant Q > 0 such that for each t ∈ [0, τ ], one can find
nt ∈ N with the property〈

ξ,−
∫ τ

τ−t f(x, ūnt(s))ds

t

〉
≤ Qt.
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Set f̄t =
∫

τ
τ−t

f(x,ūnt(s))ds

t . Since f̄t ∈ co(f(x,U)), by the compactness of U , there
exists a sequence {tn} ⊆ [0, τ ] converging to 0 and f̄ ∈ cof(x,U) such that both

f̄ = lim
n→∞ f̄tn

and 〈
ξ , f̄

〉
≥ 0

hold. Since

H(x, ξ) = max{〈ξ , f〉 | f ∈ cof(x,U)},

the proof is concluded.
The next lemma is the key point in order to obtain the additivity of the Hamil-

tonian.
Lemma 6.2. Let x ∈ Sc be an optimal point, and set T (x) = r. Then there exists

f̄ ∈ cof(x,U) such that for all ξ ∈ NP
Sc(r)(x),

H(x, ξ) =
〈
ξ , f̄

〉
.

Proof. Let τ , xτ , x̄τ , ūn, and xn be with the properties stated in Definition 6.1.
To simplify our writing, we set γn(·) = yxn,ūn(·). Assuming without loss of

generality that γn(·) converges uniformly to γ(·), we see that γ(τ) = x and T (γ(τ −
t)) = r + t for all t ∈ [0, τ ]. Pick v ∈ U , and define, for each t ∈ [0, τ ], βv,t(·) =
yγ(τ−t),v(·), where v(·) is the constant control v(t) ≡ v. Observe that βv,t(t) ∈ Sc(r)
for all t ∈ [0, τ ].

Let now ξ ∈ NP
Sc(r), together with a constant σ ≥ 0 such that for all t ∈ [0, τ ],

〈ξ , βv,t(t)− x〉 ≤ σ ‖βv,t(t)− x‖2 .

Recalling (ii) in Definition 6.1, the latter is equivalent to

lim
n→∞

〈
ξ,

∫ t

0

(f(βv,t(s), v)− f(γn(τ − t+ s), ūn(τ − t+ s))) ds

〉

≤ σ lim
n→∞

∥∥∥∥
∫ t

0

(f(βv,t(s), v)− f(γn(τ − t+ s), ūn(τ − t+ s))) ds

∥∥∥∥
2(6.3)

for all t ∈ [0, τ ]. Moreover, by (iii) of Lemma 8.1, there exists a constant M such that
for all n ∈ N, t ∈ [0, τ ], and s ∈ [0, t],

‖γn(τ − t+ s)− γn(τ)‖ ≤ Mt

so that for all t ∈ [0, τ ] and s ∈ [0, t],

lim
n→∞ ‖γn(τ − t+ s)− x‖ ≤ Mt.

Combining the above inequality with (6.3) and recalling the Lipschitz condition on f ,
we obtain that, for t→ 0+,

lim sup
n→∞

〈
ξ,

∫ t

0

(
f(x, v)− f(x, ūn(r − t+ s))

)
ds

〉
≤ O(t2)
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or, equivalently,

lim sup
n→∞

〈
ξ, f(x, v)−

∫ t

0
f(x, ūn(r − t+ s))ds

t

〉
≤ O(t).

By arguing as in the proof of Lemma 6.1, we can find f̄ ∈ co(f(x, U)) independent of
ξ and v such that

〈ξ, f(x, v)〉 ≤
〈
ξ, f̄

〉
.

The proof is therefore complete.
The desired additivity property follows immediately from the above lemma.
Corollary 6.1. Let x ∈ Sc be an optimal point, and set T (x) = r. Then for all

ξ1, ξ2 ∈ NP
Sc(r)(x), the property

H(x, ξ1 + ξ2) = H(x, ξ1) +H(x, ξ2)

holds.
We are now ready to prove Theorem 6.1.
Proof of Theorem 6.1. Proof of part (a). It is clear that the “⊆” inclusion of the

equality in (a) follows from Theorem 3.1 and Corollary 6.1.
To prove the “⊇” inclusion, take ξ ∈ [−co(N(x))] ∩ {−ξ | H(x, ξ) = 0}, namely,

(6.4) ξ = −
m∑
i=1

MT
i (r)vi, where MT

i (r)vi ∈ N(x)

and

(6.5) H

(
x,

m∑
i=1

MT
i (r)vi,

)
= 0.

Applying Lemma 4.1 we get thatMT
i (r)vi ∈ NP

Sc(r)(x) for all i ∈ {1, 2, . . . ,m}. Thus,
it follows from Lemma 6.1 that

(6.6) H(x,MT
i (r)vi) ≥ 0 for all i ∈ {1, 2, . . . ,m}.

Combining (6.5) and (6.6), we obtain from Corollary 6.1 that H(x,MT
i (r)vi) = 0

for all i ∈ {1, 2, . . . ,m}. Therefore, MT
i (r)vi ∈ N0(x) for all i ∈ {1, 2, . . . ,m}. We

conclude the proof using (6.4) and Theorem 3.1.
Proof of part (b). Similarly to part (a), the “⊆” inclusion of the equality in (b)

follows from Theorem 3.2 and Corollary 6.1.
To show the “⊇” inclusion, let ξ ∈ [−co(N(x))] ∩ {−ξ | H(x, ξ) = 1}. Recalling

Lemma 6.1, ξ can be represented as

(6.7) ξ = −
m∑
i=1

αiM
T
0i(r)vi −

m∑
j=1

βjM
T
1j(r)wj ,

where αi ≥ 0, βj ≥ 0, MT
0i(r)vi ∈ N0(x), and M

T
1j(r)wj ∈ N1(x).

From MT
0i(r)vi ∈ NP

Sc(r)(x), M
T
1j(r)wj ∈ NP

Sc(r)(x), and Corollary 6.1, we have

(6.8) H(x, ξ) =

m∑
i=1

αiH(x,MT
0i(r)vi) +

m∑
j=1

βjH(x,MT
1j(r)wj) =

m∑
j=1

βj

so that
∑m

j=1 βj = 1. The proof is concluded by using (6.8), (6.7), and Theo-
rem 3.2.
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Fig. 1.

7. Examples. In this section we present some examples which illustrate our
results. In particular, we provide an example showing that Theorem 3.3 is no longer
valid if the pointedness assumption (3.1) is dropped.

Example 1. Consider the dynamics x′′(·) ∈ [−1, 1] =: U , i.e.,

(7.1)

(
ẋ1(t)
ẋ2(t)

)
= A

(
x1(t)
x2(t)

)
+

(
0
u

)
, u ∈ U , where A =

(
0 1
0 0

)
,

with the initial conditions x1(0) = x01, x2(0) = x02. The target is the set (see Figure 1)

S = { (x1, x2) ∈ R
2 | x1 ≤ 0 } ∪ { (x1, x2) ∈ R

2 | x1 ≥ 0, x2 ≤ −x1}
∪ { (x1, x2) ∈ R

2 | 0 ≤ x1 ≤ 1, x2 ≥ x1}
∪ { (x1, x2) ∈ R

2 | x1 ≥ 1, x2 ≥ 1}.

Optimal trajectories are arcs of parabolas

x1 =
1

2
(x2)

2 − 1

2
(x02)

2 + x01 (corresponding to the control u ≡ 1)

and

x1 = −1

2
(x2)

2 +
1

2
(x02)

2 + x01 (corresponding to the control u ≡ −1).

By direct computation, the minimum time function T is everywhere finite, continuous
on the whole of R2, and the open set Sc can be divided into three regions, say, H1,
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H2, and H3, where T has a different explicit expression. More precisely, consider the
curves

γ1(t) =
(√

2t(1− t), t
)
, 0 < t ≤ 2−

√
3,

γ2(t) =

(
1 + t2

2
, t

)
, 2−

√
3 < t < 1,

γ3(t) =

(
3− 8t+ 3t2

2
, t

)
, t ≥ 2−

√
3.

Observe that γ1(2−
√
3) = γ2(2−

√
3) = γ3(2−

√
3) = 4− 2

√
3 and, moreover, that

all points γ2(t), with 2−
√
3 < t < 1, are optimal (according to Definition 6.1), while

all points γ1(t), γ2(t) are not optimal. Set

H1 = {(x1, x2) ∈ Sc | 0 ≤ x2 ≤ 2−
√
3, γ1(x2) ≤ x1 ≤ γ3(x2)}

∪ {(x1, x2) ∈ Sc | x2 ≤ 0, −x2 ≤ γ3(x2)},

H2 = {(x1, x2) ∈ Sc | 0 ≤ x2 ≤ 2−
√
3, x2 ≤ x1 ≤ γ1(x2)}

∪ {(x1, x2) ∈ Sc | 2−
√
3 ≤ x2 ≤ 1, x2 ≤ x1 ≤ γ2(x2)},

H3 = {(x1, x2) ∈ Sc | 2−
√
3 ≤ x2 ≤ 1, x1 ≥ γ2(x2)}

∪ {(x1, x2) ∈ Sc | x2 ≤ 2−
√
3, x1 ≥ γ3(x2)}.

The minimum time function T : Sc → R can be explicitly computed as

T (x1, x2) =

⎧⎨
⎩
x2 − 1 +

√
1 + 2x1 + (x2)2 := θ1(x1, x2), (x1, x2) ∈ H1,

1− x2 −
√
1− 2x1 + (x2)2 := θ2(x1, x2), (x1, x2) ∈ H2,

1− x2 := θ3(x1, x2), (x1, x2) ∈ H3.

In the interior of each region Hi, i = 1, 2, 3, T is differentiable. Singularities appear
at each point of the curves γi, i = 1, 2, 3. Moreover, T is Hölder continuous with
exponent 1

2 .
In order to appreciate the role of nonsmoothness of the target, as well as optimal-

ity/nonoptimality of a point and failure of Petrov’s condition (see (1.1)), we compute
the generalized differential of T at the three points

P1 =

(
7

16
,
1

8

)
, P2 =

(
5

8
,
1

2

)
, P3 =

(
4− 2

√
3, 2−

√
3
)
.

Observe that T (P1) =
1
2 , T (P2) =

1
2 , and T (P3) =

√
3− 1.

To this aim we compute the adjoint flow

eA
T t =

(
1 0
t 1

)

and the Hamiltonian

H ((x1, x2), (ξ1, ξ2)) = x2ξ1 + |ξ2|.

The point P1 belongs to the curve γ1 and is steered optimally in time 1
2 to both

(58 ,
5
8 ) and (38 ,−

3
8 ), where the normal cones to Sc are, respectively, R+(−1, 1) and
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R
+(−1,−1), while P2 belongs to the curve γ2 and is steered optimally to (1, 1) in

time 1
2 , where the normal cone to Sc is R+co{(−1, 1), (0, 1)}. P2 is an optimal point.

Finally P3 is steered optimally to both (2
√
3− 3, 3− 2

√
3) and (1, 1) in time

√
3− 1.

Observe that H ((1, 1), (−1, 1)) = 0, i.e., Petrov’s condition fails, while at all other
(nonzero) points P of the boundary of S, we have H(P, ζ) > 0 for all ζ ∈ NP

Sc
(P ),

ζ �= 0.
According to Theorem 3.2 and, of course, also to explicit computations from the

expression of T , we have

∂cT (P1) = ∂PT (P1)

= −co

{
eA

T 1
2 v | v =

(
−λ
λ

)
or v =

(
−λ
−λ

)
, H(P1, e

AT 1
2 ) = 1

}

= −co

{ (
8
3

− 4
3

)
,

(
8
11

− 12
11

) }
,

∂∞T (P1) = {0};

∂cT (P2) = ∂PT (P2)

= −co
{
eA

T 1
2 v | v ∈ NP

SC (1, 1), H(P2, e
AT 1

2v) = 1
}

−co
{
eA

T 1
2 v | v ∈ NP

SC (1, 1), H(P2, e
AT 1

2v) = 0
}

=

(
0
−1

)
+

{
λ

(
1
− 1

2

)
| λ ≥ 0

}
=

{ (
λ

−1− λ
2

)
| λ ≥ 0

}
= [−N(P2)] ∩

{
ζ | H(P2,−ζ) = 1

}
(where N(P2) was defined in (6.1)),

∂∞T (P2) =

{
λ

(
1
− 1

2

)
| λ ≥ 0

}
;

∂cT (P3) = ∂PT (P3)

=−co
{
eA

T (
√
3−1)v | v ∈ NP

Sc(1, 1) or v ∈ NP
Sc(2

√
3− 3, 3− 2

√
3),

and H(P3, v) = 1
}

=−co

⎧⎨
⎩

(
0
1

)
,

⎛
⎝ −1

2(
√
3−1)

−√
3

2(
√
3−1)

⎞
⎠

⎫⎬
⎭−

{ (
λ

(2−
√
3)λ

)
| λ ≥ 0

}
,

∂∞T (P3) =

{ (
λ

(2−
√
3)λ

)
| λ ≥ 0

}
.

Observe that the vector f̄ ∈ co(f(P2,U)) appearing in the statement of Lemma 6.2 is
given by f̄ = (1/2,−1).

If the target is modified to become S ′ := S \ {(x1, x2) ∈ R
2 : x2 ≥ 1, x1 ≥

(x2)
2/2+1/2+(x2−1)4} (note that the boundary of S ′ is C2 at (1, 1) (see Figure 2)),

then the graph of the new minimum time function T ′ is smooth at all points of γ2,
but the unique normal is horizontal so that T ′ is not differentiable at those points.
The next two examples deal with the case where the normal cone to the hypograph of
T is not pointed. We show first that Theorem 3.3 does not hold in general. Next we
provide an example where—although the normal cone is not pointed—the situation
is entirely analogous to the case where the cone is pointed.
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H1

H2

H3
γ2

(1, 1)

Fig. 2.

Example 2. Set

γ1(y) =

⎧⎪⎨
⎪⎩
(1−

√
−y2 − 2y, y), −2 ≤ y ≤ −1,

(−1 +
√
−y2 − 2y, y), −1 ≤ t ≤ 0,

(−1−
√
−y2 + 4y, y), 0 ≤ y ≤ 3,

and

γ2(y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1 +

√
−y2 − 2y, y), −2 ≤ y ≤ 0,

(1−
√
−y2 + 2y, y), 0 ≤ y ≤ 1,

(0, y), 1 ≤ y ≤ 2,

(−1 +
√

−y2 + 4y, y), 2 ≤ y ≤ 3.

Observe now that the concatenation of γ1 with γ2 defines a C1,1-curve γ. We set the
target S to be the unbounded component of R2 \{γ} (see Figure 3) and the dynamics
to be ⎧⎨

⎩
ẋ(t) = u,
ẏ(t) = 0,
u ∈ U = [−1, 1].

It is readily verified that the minimum time function is everywhere defined and con-
tinuous. Observe furthermore that Petrov’s condition (1.1) holds at no points of the
segment [−1, 1]× {0}.

Consider now the curve

Γ(t) =
γ1(t) + γ2(t)

2
, t ∈ [0, 1]

and define T (t) to be the first coordinate of γ2(t)− Γ(t), t ∈ [0, 1]. Observe that T is
the minimum time to reach S from the point Γ(t).
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S
Γ

Fig. 3.

Observe that T (t) is constantly equal to 1 for −1 ≤ t ≤ 0, and in this interval all
points of Γ are maximum points for T . Therefore, (0, 0, 1) is a unit limiting normal
vector to the hypograph of T at (0, 0, 1).

On the other hand, it can be easily computed that a unit tangent vector to the
graph of T at (0, 0, 1) is

(
−2 +

√
2

2
√
3
, 0,

2−
√
2

2
√
3

)
.

Since the latter has a positive scalar product with the limiting normal (0, 0, 1), it is
clear that the hypograph of T is not regular at (0, 0, 1). In particular, the normal
vector (0, 0, 1) is not proximal, thus showing that hypo(T ) is not ϕ-convex (see (4) in
Theorem 2.1).

Observe that both (1, 0, 0) and (−1, 0, 0) are unit proximal normals to hypo(T )
at (0, 0, 1) so that NC

hypo(T )(0, 0, 1) contains a line. Therefore, the assumption (3.1)
used in Theorem 3.1 cannot be dropped in general.

Observe finally that the hypograph of T satisfies the external sphere condition
with radius ρ for a suitable ρ > 0. Therefore, this is a simple example showing that
this condition is weaker than ϕ-convexity.

Example 3. We consider again the dynamics (7.1) appearing in Example 1 and
modify the target in order to allow lines in the normal cone to the hypograph of T .

The target is the set (see Figure 4)

S = { (x1, x2) ∈ R
2 | x1 ≤ 0 } ∪ { (x1, x2) ∈ R

2 | 0 ≤ x1 ≤ 1, x2 ≤ x1 − 1}
∪ { (x1, x2) ∈ R

2 | x1 ≥ 1} ∪ { (x1, x2) ∈ R
2 | 0 ≤ x1 ≤ 1, x2 ≥ x1}.

The minimum time function is everywhere finite and continuous, but Petrov’s con-
dition (1.1) does not hold. Computations of the same type of Example 1 show
that the normal cone to the hypograph of T at (1/2, 0, 1) is not pointed; however,
NC

hypo(T )(1/2, 0, 1) can be represented exactly as in (3.3), and the hypograph of T is



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE STRUCTURE OF THE MINIMUM TIME FUNCTION 4811

S

P

Fig. 4.

ϕ-convex. More precisely,

NP
hypo(T )(1/2, 0, 1) = NC

hypo(T )(1/2, 0, 1) = R

⎛
⎝ 1

0
0

⎞
⎠+R

+co

⎧⎪⎨
⎪⎩
⎛
⎜⎝

1√
3
1√
3
1√
3

⎞
⎟⎠ ,

⎛
⎜⎝

− 1√
3

− 1√
3

1√
3

⎞
⎟⎠
⎫⎪⎬
⎪⎭

and

∂PT (1/2, 0) = ∂CT (1/2, 0) = R

(
1
0

)
+ co

{(
1
1

)
,

(
−1
−1

)}
.

Observe thatH((1/2, 0), (1, 0)) = 0, whileH((1/2, 0), (1, 1)) = H((1/2, 0), (−1,−1)) =
1 so that the conclusion of Theorem 3.2 holds. An explicit computation of the mini-
mum time function shows also that the conclusion of Theorem 3.3 holds as well.

8. Appendix. In this section, under the assumptions (H1) and (H2) on (2.7),
we prove first some elementary estimates which are needed in Lemmas 4.1, 4.2, and
4.3. At the end we state a result on the closedness of the convex hull of a closed
pointed cone.

For future use, we set

K1 = max
u∈U

‖f(0, u)‖ ,

K2 = max
u∈U

‖Dxf(0, u)‖ ,

L2(s, δ) = L1e
Lsδ +

L1(e
Ls − 1)K1

L
+K2 for all s, δ ≥ 0.(8.1)

Lemma 8.1. Let α(·) := yx,u(·) be the solution of (2.7). The following estimates
hold true for all t > 0:

(i) ‖α(t)− x‖ ≤ (L‖x‖+K1)(e
Lt−1)

L .

(ii) ‖α(t)‖ ≤ eLt ‖x‖ + (eLt−1)K1

L .

(iii) ‖f(α(t), u(t))‖ ≤ LeLt ‖x‖ + eLtK1.

(iv) ‖Dxf(α(t), u(t))‖ ≤ L2(t, ‖x‖).
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Proof. Since α(·) is the solution of (2.7), for all t > 0 we have

‖α(t)− x‖ =

∥∥∥∥
∫ t

0

f(α(s), u(s))ds

∥∥∥∥ ≤
∫ t

0

‖f(α(s), u(s))‖ ds

≤
∫ t

0

‖f(α(s), u(s)) − f(x, u(s))‖ ds

+

∫ t

0

‖f(x, u(s))− f(0, u(s))‖ ds+
∫ t

0

‖f(0, u(s))‖ ds

≤ L

∫ t

0

‖α(s)− x‖ ds+ L ‖x‖ t+K1t.

Applying Gronwall’s inequality we obtain

(8.2) ‖α(t) − x‖ ≤ (L ‖x‖+K1)(e
Lt − 1)

L
;

whence

(8.3) ‖α(t)‖ ≤ eLt ‖x‖+ (eLt − 1)K1

L
.

Recalling the condition (H2), we obtain

(8.4) ‖f(α(t), u(t))‖ ≤ LeLt ‖x‖+ eLtK1

and also

(8.5) ‖Dxf(α(t), u(t))‖ ≤ L1e
Lt ‖x‖+ L1(e

Lt − 1)K1

L
+K2.

The proof is concluded.
In the next lemma, we will give some estimates related to the limiting adjoint

trajectories MT (·).
Lemma 8.2. Let x ∈ Sc, set r = T (x) > 0, and take x̄ ∈ Sx and M(·) ∈ Mx̄.

Then
(i) ‖M(t)‖ ≤ eL2(t,‖x‖)t for all t ∈ [0, r],
(ii)

∥∥M(t)−1
∥∥ ≤ eL2(t,‖x‖)t for all t ∈ [0, r].

Proof. Let xn → x, {ūn} ⊂ Uad be such that {yxn,ūn(·)} ⊂ Tx̄ and M(·, xn, ūn)
converges to M(·) uniformly on [0, T (x)]. By (iv) in Lemma 8.1 and Theorem 2.2.1,
p. 23, in [3], we obtain that for all w ∈ R

N ,

‖M(t, xn, ūn)w‖ ≤ e[L1e
Lt‖x‖+L1(eLt−1)K1

L +K2]t ‖w‖ .

Taking n→ ∞, we conclude the proof of (i).
The proof of (ii) proceeds exactly as the proof of (i) by replacing M(·, xn, ūn)

with M(·, xn, ūn)−1.
The following result is essentially Theorem 2.2.4, pp. 25 and 26 in [3].
Lemma 8.3. Let A1, A2 : [0, T ] → MN×N be matrices with L∞-entries, and set

‖Ai‖ = Li, i = 1, 2. Let M1,M2 be the fundamental solution of, respectively,

ṗ(t) = A1(t)p(t), p(0) = I
N×N ,

ṗ(t) = A2(t)p(t), p(0) = I
N×N .
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Then for every t ∈ [0, T ] and every unit vector v ∈ R
N , we have

‖(M2(t)−M1(t))v‖ ≤ e(L1+L2)t

∫ t

0

‖A2(s)−A1(s)‖ ds.

The last result is concerned with pointed cones in general.
Lemma 8.4. Let K ⊂ R

N be compact, and assume that 0 �∈ K. Set

C := {λx | λ ≥ 0, x ∈ K},

and assume that coC is a pointed cone. Then coC is closed.
Proof. Let sequences {αn

k ∈ R | k = 0, . . . , N, n ∈ N}, {vnk ∈ R
N | k =

0, . . . , N, n ∈ N} be such that αn
k ≥ 0 and vnk ∈ K for all k = 0, . . . , N , n ∈ N.

Assuming that

(8.6) lim
n→∞

N∑
k=0

αn
kv

n
k = v,

we wish to show that v ∈ coC, i.e., there exist αk ≥ 0, vk ∈ K, k = 0, . . . , N
such that v =

∑N
k=0 αkvk. Since K is compact, there is no loss of generality in

assuming that vnk → vk ∈ K for all k = 0, . . . , N . We claim that the sequences αn
k are

bounded. Indeed, assume by contradiction that αn :=
∑∞

k=0 α
n
k → +∞, and set, for

k = 0, . . . , N , βn
k = αn

k/αn. By (8.6) we obtain that

N∑
k=0

βkvk = 0,

where βk ≥ 0 and
∑N

k=1 βk = 1. Since vk �= 0 for all k = 0, . . . , N , we deduce from
the above equality that coC is not pointed, a contradiction. Therefore, without loss
of generality we can assume that αn

k → αk for all k = 0, . . . , N , and so the proof is
concluded.
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