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Abstract 

This paper describes a solution to the multirobot motion planning problem based on a decoupled analysis in the space 
domain and in the time domain. It investigates the practical use of the notion of motion plan quality and of the motion plan 
robustness measures for computing safe motions. The use of anytime algorithms allows one to evaluate the opportunity of 
looking for alternative solution paths by generating small variations of robot motions affecting both its geometrical path and 
its scheduled velocity. By using the concept of plan robustness, several alternative paths are generated and evaluated through 
various performance indices and impact factors, using heuristic rules. These indices allow one to know how much a variation 
affects a given plan. Finally, some recent experiments are outlined. © 1998 Elsevier Science B.V. All rights reserved 
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1. Introduct ion 

The problem of  coordinating the motion of  several 
robots moving in the same cluttered environment is 
becoming more and more interesting as long as it is 
reasonably possible to forecast a large use of  multi- 
robot systems both in industrial and civil environment. 
Unfortunately well-e,;tablished planning method deal- 
ing with a single robot cannot be used when there are 
many different autonomous vehicles that share a com- 
mon environment, because of  the inherent intractabil- 
ity characteristic of  the problem. Moreover, it is clear 
that planning cannot be avoided using pure reactive 
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schemata, that rely only on on-line computation of  
sensor data. The reactive approach does not guarantee 
convergence. In fact, the local nature of  sensing can 
easily trap robots in deadlock situations or it can delay 
to infinity their goal satisfaction. Hence, multirobot 
systems still require to study off-line planning meth- 
ods, that can be used both for generating a first ba- 
sic plan, and for updating that plan when some major 
exceptions occur at run-time. However, practical real- 
world situations call for a practical planning method 
that can give a reasonable solution in a reasonably 
small amount of  time. As pointed out in [2], the time 
for reaching an admissible solution is a variable that 
should play a role in the planning algorithms. The gen- 
eral layout of a practical planning algorithm for the 
multirobot motion planning problem can be devised 
as an iterative refinement process that starts from an 
easy-to-find suboptimal solution. A solution consists 
of  a path for each robot and a collision-free velocity 
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profile for the robot running along its path. This very 
first solution can be refined by introducing some local 
and possibly small variations, in order to improve the 
overall quality of the solution itself. The refinement 
process can continue until it is reasonable to guess an 
improvement that can pay the time spent in finding the 
improvement itself. When there are no significative 
improvements over time, the algorithm stops, and the 
last solution with the best quality is picked up. This 
approach needs to investigate the notion of solution 
quality, i.e., the notion of a method to weigh how far 
a solution is from the optimal, but maybe unknown, 
solution. 

This paper is devoted to present the main results and 
implementation related to a multirobot motion plan- 
ner. The planner can take into account various kind 
of motion variations in order to choose a plan which 
is robust to those variations. We will present how to 
obtain better solutions from an original good one by 
looking for alternative paths with respect to some 
quality parameters. Heuristic rules for evaluating plan 
robustness, according to a proper definition of robust- 
ness [6], will form the core structure of the planner. 
In our view, this should lead to a better general per- 
formance for the robot motion planner when several 
tens, or even hundreds of robot are involved. 

The research work on motion planning for multiple 
mobile robots (i.e. multirobots) finds its foundation on 
a few papers that appeared in the early 1980s, among 
which, one of the most important, is [10], where it 
is showed that even the 2D problem of moving ar- 
bitrarily many rectangles, in a rectangular region, is 
PSPACE-hard. Significant improvements in this field 
were later done in [4], where a configuration space- 
time was used to represent the time-varying constraints 
imposed by the other moving and stationary objects, 
and in [15], where an algorithm, based on a global 
cell decomposition approach was presented. Another 
important contribution was the use of algorithms with 
priority [3,4]. In [9], the case when the environment 
contains obstacles whose existing periods are depen- 
dent on time, was considered, allowing one to model a 
variety of time-varying situations that can arise in ap- 
plication domains. The previous list, of course, is not 
exhaustive, since many other interesting approaches 
would deserve to be quoted (see for instance [12]). 

A common view in evaluating a multirobot motion 
planning system is to classify the planner as a cen- 

tralised planning system, or a decentralised one [1]. 
In centralised planning, all decisions are taken by a 
single decision maker. We definitively took this ap- 
proach, by relying on the application of some suitable 
performance indices. 

In engineering applications, it is often useful to in- 
troduce some effective heuristic in order to develop a 
practical solution to the problem. Therefore, we have 
designed simple, but reliable, heuristics based on per- 
formance indices [5]. Performance indices measure 
the quality of some path attribute or the quality of the 
robot behaviour while moving. They can be combined 
and used in the decision process figuring out some 
global property measure. 

In [6], the concept of motion plan robustness has 
been introduced. The basic idea is that a motion plan 
is robust if it can be used in spite of small variations in 
the motion context. Motion plan robustness is partic- 
ularly useful when examining environments filled up 
with many robots, because a small variation in the ex- 
ecution plan of one of the robots may reflect in large 
variations to the other robots' execution plans, bring- 
ing, to the necessity of re-building the complete plan 
for all robots. 

Studying motion plan robustness has several advan- 
tages. First, it becomes possible to set a proper library 
of prototype plans that can be slightly modified to cope 
with the classes of similar applications. Then, some 
general heuristic rules, dealing with the most common 
problems, can be extracted and used to improve the 
goodness of proposed plans. Finally, it is possible to 
approach the problem of merging off-line and on-line 
methods by locally replanning portions of the solution 
paths. Any learning method can make a full use of 
the notion of plan quality and plan robustness both at 
the planning level and at the execution and monitoring 
level. In fact the availability of a library of plans, can 
help in the process of planning, while performance in- 
dices can be used and updated while the robots are 
moving and acquiring more information about the en- 
vironment and the object in it. 

In [2], the idea of flexible computation was used 
for the robot-tour problem. Once assumed that a robot 
starts out with some initially selected tour, a plan- 
ner can figure out how much time to devote to tour 
improvement in order to minimise the expected time 
spent in stationary deliberation and in combined de- 
liberation and path traversal. In [8], we proposed to 
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use anytime algorithms in the context of multirobot 
motion planning. Sohations are labelled with a qual- 
ity measure that takes into account both the solution 
performance indices and the solution robustness with' 
respect to small variations. 

The paper follows tlhis track. Section 2 presents how 
to approach the multirobot motion planning problem 
by decoupling the space analysis and the time analysis. 
Moreover, it is devoted to summarise the performance 
indices and robustness measures used by the planner. 
Section 3 details how to use the deliberative approach 
for selecting a good plan, while Section 4 describes 
some experimental results. Final comments and future 
work are in the conclusions. 

2. Multirobot motion planning problem solved in 
space and time 

The generic solution of the multirobot motion plan- 
ning problem is a proper set of motion commands 
that determine both the position and the motion direc- 
tion, for all the robots in the environment under exam. 
The motion command for each robot can be generated 
as a result of a proper choice of a geometrical path 
and of a velocity profile along that path. Synchroni- 
sation among all the moving objects can be obtained 
by a proper tuning of their velocity. Hence a velocity 
schedule must be determined for each robot, in order 
to avoid collisions wJLth both the other robots and the 
moving obstacles. It should be clear that solving the 
multirobot motion planning problem involves some 
sort of reasoning in the space domain as well as in the 
time domain. 

The approach we followed keeps the two domains 
apart. More specifically, the computation of the ve- 
locity profiles will follow the choice of safe geomet- 
rical paths. The adwntage of this approach is that it 
avoids to consider space and time in a unique extended 
iper-space. This space cannot be considered as a 4- 
Euclidean space because the axis representing time 
has particular characteristics, that model the idea that 
it is not possible to go back to the past. On the other 
hand, decoupling the analysis in the space domain and 
in the time domain make less evident that there ex- 
ists a correlation between the choice of a path and 
the computation of a velocity schedule; i.e., a simple 
and short path can have more intersection points with 

other paths, than a longer one. Increasing the number 
of intersection points can increase the request of syn- 
chronisations between robots, and it can result in a 
less efficient plan. We approached this problem by in- 
troducing some quality measures applied both to each 
path and to the overall plan and using these quality 
measures in all the planning phases. Moreover, in or- 
der to reduce the backtracking request between the 
analysis in the space domain and the analysis in the 
time domain, we did not compute a single geomet- 
rical path for each robot. Instead each robot was as- 
signed to some different path. We do not consider all 
the infinitely many feasible geometrical paths because 
it is possible to group many of them with respect to 
some invariant measures with respect to the velocity 
schedule characteristic. Hence many different alterna- 
tive paths, that form a family of paths, were assigned 
to a robot to have several significative choices when 
searching for a good solution of the motion problem, 

Given r robots and k different paths toward the goal 
for each robot, there are k r possible solutions to the 
path scheduling problem, because for each robot you 
can choose one of its k different paths. What is the 
best choice among all the paths? What does differ- 
entiate all the possible solutions? In order to answer 
these questions it is necessary to evaluate how good a 
solution is, i.e., it is necessary to introduce a method 
for evaluating the quality of the solution. A good so- 
lution is a good set of paths and of velocity schedules 
according to some quality parameters. Note that the 
solution quality must be a property of the whole so- 
lution, and it depends on all the paths and on all the 
velocity schedules in the motion plan. 

It is straightforward that the algorithm for finding 
the optimal solution by enumerating all the possi- 
ble alternatives, has an exponential complexity. We 
were interested in a search for a nonoptimal solu- 
tion that could be done in polynomial time. The 
approach we followed to obtain a suboptimal solu- 
tion can be sketched as follows: a new problem can 
be set, where r '  new robots, one for each possible 
path, are taken into account (r t = kr); i.e., any robot 
of the original problem is substituted by a family 
of k robots each running along one of the different 
paths connecting the starting position and the goal 
position. In this way, a suboptimal solution can be 
achieved by solving the synchronisation problem for 
all r '  robots at the same time (ignoring intra-family 
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collisions) and then choosing a single robot from each 
family. 

The search of a good solution is based on an any- 
time path planner that build paths bringing to better 
solutions according to some heuristic rule based on the 
quality indices. Then a path for each robot is chosen 
to improve solution's robustness. The process can be 
continued until a deliberative scheduler says to stop. 

A particular aspect of the solution quality is its ro- 
bustness. We studied the concept of robustness applied 
to motion plans and we defined a set of robustness 
indices to evaluate the robustness of a plan. 

In finding a solution there could be some degree of 
freedom in choosing or modifying some local charac- 
teristics. These small changes could make an improve- 
ment locally, without affecting the quality of the solu- 
tion as a whole. Hence robustness indices can be used 
to analyse the effect of local changes. We used these 
robustness indices not only to evaluate the goodness 
of a solution, but even to guide the search for new and 
better solutions, following the deliberative scheduling 
approach. 

2.1. The path planning and the velocity planning 
problems 

Even in a crowded multirobot environment, each 
single robot has to face at least two basic problems, 
namely, avoiding collisions with fixed obstacles and 
with moving obstacles. In the literature there are 
quite well-established techniques for modelling and 
solving these two problems. We found particularly 
interesting the approach proposed originally in [11] 
for a single point robot. That method was based on 
the separation of the space analysis from the time 
analysis. Hence we firstly designed a planner for a 
single robot [14] where the trajectory planning prob- 
lem was divided into the two subproblems of plan- 
ning a path to avoid collision with static obstacles, 
(the path planning problem or PPP), and of planning 
the velocity along the path to avoid collisions with 
moving obstacles, (the velocity planning problem or 
VPP). The pure geometric nature of PPP allowed 
us to design and use fast and original algorithms 
for collision detection resulting in a very efficient 
planner [13]. In the same spirit we generalised to 
the multirobot case that motion planner, approach- 
ing the problem of multirobot motion planning by 
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Fig. 1. The multirobot motion planning problem. 

separating the space analysis from the time analysis 
[5]. 

Let us look at PPP first (see Fig. 1). We solved 
PPP by using a rough representation of fixed obstacles 
in the C-space, based on the idea of enclosing the 
C-obstacles in boxes, that are the closest rectangular 
approximation of the C-obstacles. These boxes were 
locally refined (when needed) using our fast collision 
checking algorithms. 

The PPP is solved firstly, i.e., some free paths for 
each robot, connecting its start position with its goal 
position among the fixed obstacles, are computed. The 
output of the PPP phase is a family of paths related 
to each robot in the environment. Those paths are 
collision-free with respect to the fixed obstacles. 

Two robots will collide if some segments of their 
paths intersect and they are running on them in the 
same time period. Hence in the multirobot motion 
planning algorithm we need to consider a collision 
checking step to determine if two robots running on in- 
tersecting segments will collide. Furthermore, we also 
need a policy for solving collisions, i.e., there should 
be a delaying step to decide which is the robot to stop 
(or delay) and to recompute the basic time scheduling 
for each robot. 

As the PPP output is a set of paths for each robot 
the VPP is approached by considering all those paths 
simultaneously, and computing the schedule for each 
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robot running on all of its path. At the end of the VPP 
phase the plan is built by picking up the best path for 
each robot. 

Then, we analysed VPP, looking first for those path 
segments that are in use in the same time interval, 
i.e., making a temporal collision analysis, and check- 
ing later for spatial intersections between the pair of 
segments in use, i.e., making a spatial collision anal- 
ysis. The basic point here is that the time analysis 
is performed first. Only if two path segments tempo- 
rally overlap, the system checks for spatial path seg- 
ments intersections. If a collision occurs, one of the 
two robots is stopped until the other has cleared the 
path, or it can be applied a shape changing algorithm 
[8] to locally modify the geometric structure of the in- 
tersection point. We should note that the intra-family 
robot collisions are ignored. 

With this method we can avoid a combinatorial ex- 
plosion of the solution space, but we were not assured 
to find out the optimal solution. 
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Fig. 2. VE evaluation for robot path. 

2.2. Performance indices 

We associate to a path three performance indices. 
The first one is the running time RT, i.e., the minimum 
time a robot should need for reaching the goal using 
that path. The second one is the motion error ME, 
that measures how st robot can move away from its 
path without colliding with obstacles or other robots. 
The third performance index is the velocity error VE, 
that measures how much a robot can vary its velocity 
schedule without worsening the global plan. 

Performance indices can be used to choose which 
robot has to be delayed and which is the path to be 
considered for each robot. Any time some robot is 
stopped or some path is modified they are recomputed. 

RT is the minimura time a robot needs for reaching 
the goal using its assigned path. This index is propor- 
tional to the maximum speed of the robot. The RT 
index can be used to choose which robot has to be de- 
layed and which is the path to be considered for each 
robot. Each time a robot is stopped this index is re- 
computed. Note that RT is not a property of a path, 
but a property of the solution: it depends not only 
on the single path but on the set of paths that com- 
pose the chosen solution, and on the velocity sched- 
ule of all robots in the plan. In fact, each robot may 
interact with all the others, so that a variation in the 

morion of a robot can affect all the other robots in the 
system. 

ME measures how a robot can move away from its 
path without any risk of collision, i.e., without collid- 
ing with fixed obstacles. The ME index is computed 
during the PPP phase and it is proportional to the dis- 
lance of the path from the obstacles. A locally op- 
timal path as regards ME can be constructed using 
Voronoi graphs (whose edges have the property of be- 
ing equally distant from each obstacle). However, this 
local optimality does not solve the problem of ME op- 
timisation. In fact, ME can be computed as the min- 
imum of path's distance from obstacle or as a mean 
distance. In both cases it is possible to find differ- 
ent paths, for each robot, with different ME. So, even 
if locally ME is optimal for a single stretch of path 
computed by Voronoi graphs, the value of ME for the 
whole path depends on the particular path chosen. 

VE measures how a robot can vary its scheduled ve- 
locity without causing any collision with other robots. 
See for example Fig. 2: if robot RA is scheduled to 
stop at point A for a delaying time interval A (waiting 
for robot RB to pass), robot RB cannot arrive later than 
scheduled, without any risk to collide with RA. Hence 
robot RB has a value of VE equal to zero. Instead, 
robot RA can arrive later than scheduled, without in- 
troducing any collision with RB. Moreover, if Rc is 
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scheduled to stop at point C for a delaying time interval 
A (waiting for robot RA to pass), robot RA should not 
arrive at its stop point A later than the time scheduled 
for its re-start, otherwise this delay could affect the 
following synchronisation with Rc. The value of VE 
for RA has a finite value different from zero. The value 
of VE for Pc, in this example, is positive infinite, be- 
cause Rc is not involved in any further intersection. 

Note that once again VE is not a property of the 
single path, but a property of the whole solution. A 
way to search a solution with a good VE is to look 
for different paths for each robot with different RT. As 
we have already seen, the idea is to take into account 
different choices for each robot, building a path family 
for each one, planning the motion for all the possible 
paths and then choosing the best for each robot. 

2.3. Robustness with respect to environmental model 

In our geometric representation, C-space obstacles 
are approximated by bounding boxes, that may have, 
or not, a large tolerance. It is possible to refine boxes 
around some robot path to estimate segment path 
safety. If the path is not safe enough, then it will be 
assigned a low ME index value. Then, there exists a 
path substitution problem: if a path p is not any more 
feasible, then we need to look for a new path q. 

Consider an alternate path q for a robot r already 
running on a path p. Call parent plan the plan that 
has been already computed without considering q. It 
is very time expensive to evaluate RT for the new so- 
lution obtained by substituting path p with path q, be- 
cause the whole solution should be recomputed. Thus, 
we evaluate a collision impact factor (CIF) for q, 
where CIF is the ratio between the number of robots 
whose paths cross q and the total robot number. A CIF 
almost equal to 1 suggests to discard the new path, 
because there are too many candidate collisions. 

In our experimentation, we found that a CIF so de- 
fined is not a good parameter for deciding to discard a 
path or not, because the kind of geometrical intersec- 
tion is much more interesting than the bare number of 
intersections. For this reason, it is better to estimate 
the length of the piece of path inside the critical colli- 
sion area. So, it is possible to define the CAF quality 
measure as the ratio between the length of path inside 
critical collision area and the total path length. CAF 
has demonstrated to be a good parameter to decide if 

to discard a path or not both when we try to optimise 
RT and when we try to optimise VE. 

Each proposed plan has a quality measure associ- 
ated to it that is computed using the performance in- 
dices of the paths related to that plan. If the emphasis 
is on the "time to reach the goal", then the quality of 
the plan is given by the highest value of the RT index 
associated to the plan. If the quality must take into ac- 
count security issues, then the quality measures can be 
computed by a weighted average of the RT, ME and 
VE indices of the paths. The new plan's quality index 
is also computed using the quality indices of the new 
path(s). Note that collision impact factors take part in 
the choice of paths that will constitute the solution to 
the motion plan problem. Such parameters are very 
useful because, as we said, RT and VE depends on 
the whole solution, and not on the single path, and 
their computation is not always simple, so we need 
a simple coefficient to help us choose a path or an- 
other. CIF and CAF give an evaluation criterion for 
choosing which paths will be used in the new motion 
plan. 

3. Applying deliberative scheduling to families of 
varying paths 

The quality criteria described previously play a ma- 
jor role in the procedure for finding a suboptimal so- 
lution to the multirobot motion planning problem. It 
is useful to point out that a complete search algorithm 
in the number of robots is not interesting from a prac- 
tical point of view due to its exponential complex- 
ity. The planner uses the quality indices in anytime 
algorithms by applying the deliberative scheduling ap- 
proach [17]. Within this approach the time for build- 
ing a good solution together with the solution quality 
measures are the control variables of the planning al- 
gorithms. Moreover, this approach calls for iterative 
refinement of the candidate solutions, that adds more 
and possibly better solution to the initial ones. The 
process of growing path families is controlled by a 
monitor, which continuously evaluates the robustness 
indices for the solution paths found by the path plan- 
ner and measures the time passing by. The monitor 
decides continuing or stopping the elaboration of the 
path planner, depending on the values evaluated for 
the solution paths. 
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The space of the possible paths for each robot with 
the possible velocity schedules along each path is the 
search space, that can be increasingly built starting 
from an initial and easy-to-find solution, and then 
adding to it several alternative choices, i.e., many dif- 
ferent paths or velocity schedules. It is necessary to 
point out that we need some criterion to generate those 
alternative choices, and that their generation should be 
incremental, in order to provide the search algorithm 
with a growing space to be investigated, so that it may 
ideally continue its search gradually coming nearer to 
the optimal solution. 

The first step requires to provide the planner with 
an irtitial set of paths. Suppose we use any roadmap 
path planning method (visibility graphs, voronoi dia- 
grams, silhouettes, etc.) to find a path in the free-space 
for each robot in the system. Then, it is possible to 
find some different path for each robot, by forcing the 
robots to go through some particular points in the free- 
space. In this way, it is possible to generate a family 
of paths for each robot, each family with a growing 
number of paths in it, as time goes by. 

These families are the growing space to be inves- 
tigated: the search algorithm chooses a single path 
for each robot selecting it from the respective family, 
according to some criteria, as for example "choose 
the set of paths which gives the best robustness 
index". 

The second and third steps are the core of the plan- 
ner and deal with the ways of generating the grow- 
ing family and of selecting one path from each fam- 
ily. Criterion to build alternative paths starting from 
the first given solution and to design the search algo- 
rithm able to choose one path for each robot need to 
be defined. One of the simplest choices for building 
alternative paths is to choose randomly a point in the 
free space at a growing distance from the mid-point 
of the first solution path. We have experimented this 
strategy for testing our approach, as it is illustrated 
in Section 4. This choice showed good performance, 
even if it may not give any particular interesting infor- 
mation about the goodness of initial solution. Experi- 
mentation showed that, as the growing distance grows 
too much, the paths added to the family are too far 
away to be useful. 

An important point is to decide how the search 
algorithm operates. Given a number r of robots, each 
one with a family of k different paths, the algorithm 

chooses one path from the first family evaluating 
which one of the paths in the family is the best; then 
it is the turn of the second family, and so on. Natu- 
rally the given solution is suboptimal, but we found 
that almost always it is very near to the optimal one. 
In particular, each time the search algorithm tries a 
different path from a family, it must recalculate or 
reestimate the values for the robustness index of all 
paths in the solution, unless the robustness criterion 
chosen is ME because, only this one is a property of 
the single path, while the others are a property of the 
whole solution. 

We can denote the plan execution time as Texe. From 
the definition of the quality indices we have 

Texe = R T. 

Let Telab be the time actually elapsed and used for 
the plan elaboration. The total time can be given as 
follows: 

Ttot = Zelab ' }  Zexe. 

The monitor can estimate Ttot by measuring on-line 
Telab and by estimating Texe on the base of the actual 
best solution provided by the search algorithm. If Ttot 
is going to result better and better (i.e. smaller and 
smaller) the monitor continues to allocate time for new 
elaboration cycles to the search algorithm, but when 
Ttot begins to grow, the monitor stops the computation 
and starts the execution of the plan, because probably 
any further time dedicated to computation would delay 
the end of the execution. In this way, the planner tries 
to optimise the total time elapsed since the start of 
the computation till the end of the execution of the 
plan. 

4. Experimental system 

Our experimental system (called AnyRob) was built 
in C++ ,  on an Indy Silicon Graphics workstation [7]. 
We present now an example of how AnyRob works. 

In Fig. 3 we show an environment with some fixed 
obstacles. The points marked with a plus sign (+) 
are the robot start positions while the points marked 
with a cross sign (×) are the robot goal positions. The 
obstacles have been enclosed within their bounding 
boxes, and the robots shrink to a point. In Fig. 3, some 
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Fig. 3. An initial solution for motion planning. 

tentative solution paths are also shown. These paths 
form the initial solution. 

The planner starts constructing incrementally the 
path families (see Fig. 4). The alternative paths are 
generated using the mid-point method which consists 

of forcing the paths to go through some points whose 
distance from the generator path gradually increases. 

The control monitor watches the elaboration of 
new solutions by estimating Ttot each time new paths 
become available. The monitor can interrupt the elab- 
oration at any time. One path from each family is 
selected by the search algorithm and the total time of 
elaboration and of plan execution, Ttot, is estimated. 
Note that the time of execution is just RT. If Ttot 
is getting worse, the monitor stops the path family 
growing phase and it activates the collision avoider, 
otherwise it will ask for new paths. 

The collision avoidance phase solves chronologi- 
cally all the possible collisions using the Stop & Go 

method or the Shape Changing method. The Stop & 
Go method consists in modulating the robot velocity 
to avoid collisions with the other robots and with mo- 
bile obstacles by introducing some stops in the robot 
motions. The Shape Changing method solves collision 
by introducing local variations on the shape of paths. 
Shape Changing method demonstrated to be very pow- 
erful, in all the cases in which the Stop & Go method 
introduces very long delays. 

The result of the experiment is shown in Fig. 5. 
We give in the following some more experimental 

results. With 12 robots working in a simple environ- 
ment, AnyRob elaborates for 19 s to find a good solu- 
tion to the PPP problems (trying four different paths 

Fig. 4. The path family growing phase. Fig. 5. The final solution. 
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for each robot). Then, the control passes to the colli- 
sion avoider which finds a solution using Stop & Go 
and Shape Changing algorithms in 6 s. The RT value 
was 284 s while the RT for the first simple solution 
found was of more than 400 s with 121 robots, Any- 
Rob elaborates for 463 s in the PPP phase, and for 
500 s in the collision avoiding phase, while RT was 
142 s. In this situation, controlling the algorithm with 
our approach is not too efficient, because there are too 
many robots and the first solution found is still the 
best, because the time. to find a second solution is too 
high. 

5. Conclusions 

can be used in the family-growing step rather than in 
the collision-avoiding step to obtain better families. 

Another interesting problem is the one of premature 
convergence. It might happen that the system finds a 
solution which seems to be optimal because all efforts 
have been concentrated to refine a first good solution, 
while much better solutions exist, but are not found 
because they are too distant from the first good solu- 
tion. A way to avoid the problem is always to try some 
solution different from the actual best one, just like it 
is done using genetic algorithms [16]. Indeed an in- 
teresting analogy may be done between our approach 
and GA. We plan to further investigate the relation 
between these two approaches. 

In this paper, we presented a solution to the 
multirobots motion planning problem based on the 
definition of plan robustness and on the use of flexible 
computation. We applied the idea of time-dependent 
planning to the problem of searching for alternative 
robot paths to a given initial solution. Variations of 
initial solutions for collision-free robot paths are ob- 
tained with respect to quality parameters that give 
heuristic rules for evaJtuating plan robustness. As qual- 
ity parameters, we used both collision impact factors 
(CIF and CAF), for evaluating the quality of a single 
path, and performance indices (RT, ME and VE), for 
evaluating the overallt quality of a plan. A prototype 
of the multirobot motion planner, called AnyRob, has 
been implemented in C + +  and tested on an Indy 
Silicon Graphics workstation. 

A particular problem which emerged from exper- 
imenting AnyRob is the existence of critical paths: 
there are some robots which arrive at their destina- 
tion (goal) later than the other, because they are much 
slower or have paths much longer than the other robots. 
Robots corresponding to critical paths can be identi- 
fied since the beginning of computation, in order to 
optimise the plan for these robots and for all those 
which are involved in collisions with them. If only the 
family corresponding: to critical robots is allowed to 
grow, there will be less new paths, and the computa- 
tion step will be quicker. 

Moreover, the criterion for creating new paths can 
be improved. For example, the new paths can be cho- 
sen in a way that allows to avoid collisions (improv- 
ing RT and ME), i.e., the algorithm of shape changing 
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