
E L S E V I E R Robotics and Autonomous Systems 25 (1998) 219-229

Robotics and

Autonomous
Systems

Multirobot motion coordination in space and time

Carlo Ferrari a,,, Enrico Pagello a,b,1, Jun Ota c'2, Tamio Arai c,3
a Department of Electronics and Informatics, The University of Padua, Via Gradenigo 6a, 1-35131 Padova, Italy
b Institute of System Sciences and Bioengineering - LADSEB-CNR, Corso Stati Uniti 4, 1-35127 Padova, Italy

c Department of Precision Machinery Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract

This paper describes a solution to the multirobot motion planning problem based on a decoupled analysis in the space
domain and in the time domain. It investigates the practical use of the notion of motion plan quality and of the motion plan
robustness measures for computing safe motions. The use of anytime algorithms allows one to evaluate the opportunity of
looking for alternative solution paths by generating small variations of robot motions affecting both its geometrical path and
its scheduled velocity. By using the concept of plan robustness, several alternative paths are generated and evaluated through
various performance indices and impact factors, using heuristic rules. These indices allow one to know how much a variation
affects a given plan. Finally, some recent experiments are outlined. © 1998 Elsevier Science B.V. All rights reserved

Keywords: Multirobot motion planning; Multirobot coordination; Practical planning method

1. Introduct ion

The problem of coordinating the motion of several
robots moving in the same cluttered environment is
becoming more and more interesting as long as it is
reasonably possible to forecast a large use of multi-
robot systems both in industrial and civil environment.
Unfortunately well-e,;tablished planning method deal-
ing with a single robot cannot be used when there are
many different autonomous vehicles that share a com-
mon environment, because of the inherent intractabil-
ity characteristic of the problem. Moreover, it is clear
that planning cannot be avoided using pure reactive

* Corresponding author. Tel.: +39-049-827-7729; fax: +39-
049-827-7699; e-mail: carlo@dei.unipd.it

1 E-mail: pagello@ ladseb.pd.crtr.it
2 E-mail: ota@prince.pe.u-tokyo.ac.jp
3 E-mall: arai@prince.F¢.u-tokyo.ac.jp

schemata, that rely only on on-line computation of
sensor data. The reactive approach does not guarantee
convergence. In fact, the local nature of sensing can
easily trap robots in deadlock situations or it can delay
to infinity their goal satisfaction. Hence, multirobot
systems still require to study off-line planning meth-
ods, that can be used both for generating a first ba-
sic plan, and for updating that plan when some major
exceptions occur at run-time. However, practical real-
world situations call for a practical planning method
that can give a reasonable solution in a reasonably
small amount of time. As pointed out in [2], the time
for reaching an admissible solution is a variable that
should play a role in the planning algorithms. The gen-
eral layout of a practical planning algorithm for the
multirobot motion planning problem can be devised
as an iterative refinement process that starts from an
easy-to-find suboptimal solution. A solution consists
of a path for each robot and a collision-free velocity

0921-8890/98/$ - see front matter © 1998 Elsevier Science B.V. All fights reserved
PII: S0921- 8890(98)00051-7

220 C. Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229

profile for the robot running along its path. This very
first solution can be refined by introducing some local
and possibly small variations, in order to improve the
overall quality of the solution itself. The refinement
process can continue until it is reasonable to guess an
improvement that can pay the time spent in finding the
improvement itself. When there are no significative
improvements over time, the algorithm stops, and the
last solution with the best quality is picked up. This
approach needs to investigate the notion of solution
quality, i.e., the notion of a method to weigh how far
a solution is from the optimal, but maybe unknown,
solution.

This paper is devoted to present the main results and
implementation related to a multirobot motion plan-
ner. The planner can take into account various kind
of motion variations in order to choose a plan which
is robust to those variations. We will present how to
obtain better solutions from an original good one by
looking for alternative paths with respect to some
quality parameters. Heuristic rules for evaluating plan
robustness, according to a proper definition of robust-
ness [6], will form the core structure of the planner.
In our view, this should lead to a better general per-
formance for the robot motion planner when several
tens, or even hundreds of robot are involved.

The research work on motion planning for multiple
mobile robots (i.e. multirobots) finds its foundation on
a few papers that appeared in the early 1980s, among
which, one of the most important, is [10], where it
is showed that even the 2D problem of moving ar-
bitrarily many rectangles, in a rectangular region, is
PSPACE-hard. Significant improvements in this field
were later done in [4], where a configuration space-
time was used to represent the time-varying constraints
imposed by the other moving and stationary objects,
and in [15], where an algorithm, based on a global
cell decomposition approach was presented. Another
important contribution was the use of algorithms with
priority [3,4]. In [9], the case when the environment
contains obstacles whose existing periods are depen-
dent on time, was considered, allowing one to model a
variety of time-varying situations that can arise in ap-
plication domains. The previous list, of course, is not
exhaustive, since many other interesting approaches
would deserve to be quoted (see for instance [12]).

A common view in evaluating a multirobot motion
planning system is to classify the planner as a cen-

tralised planning system, or a decentralised one [1].
In centralised planning, all decisions are taken by a
single decision maker. We definitively took this ap-
proach, by relying on the application of some suitable
performance indices.

In engineering applications, it is often useful to in-
troduce some effective heuristic in order to develop a
practical solution to the problem. Therefore, we have
designed simple, but reliable, heuristics based on per-
formance indices [5]. Performance indices measure
the quality of some path attribute or the quality of the
robot behaviour while moving. They can be combined
and used in the decision process figuring out some
global property measure.

In [6], the concept of motion plan robustness has
been introduced. The basic idea is that a motion plan
is robust if it can be used in spite of small variations in
the motion context. Motion plan robustness is partic-
ularly useful when examining environments filled up
with many robots, because a small variation in the ex-
ecution plan of one of the robots may reflect in large
variations to the other robots' execution plans, bring-
ing, to the necessity of re-building the complete plan
for all robots.

Studying motion plan robustness has several advan-
tages. First, it becomes possible to set a proper library
of prototype plans that can be slightly modified to cope
with the classes of similar applications. Then, some
general heuristic rules, dealing with the most common
problems, can be extracted and used to improve the
goodness of proposed plans. Finally, it is possible to
approach the problem of merging off-line and on-line
methods by locally replanning portions of the solution
paths. Any learning method can make a full use of
the notion of plan quality and plan robustness both at
the planning level and at the execution and monitoring
level. In fact the availability of a library of plans, can
help in the process of planning, while performance in-
dices can be used and updated while the robots are
moving and acquiring more information about the en-
vironment and the object in it.

In [2], the idea of flexible computation was used
for the robot-tour problem. Once assumed that a robot
starts out with some initially selected tour, a plan-
ner can figure out how much time to devote to tour
improvement in order to minimise the expected time
spent in stationary deliberation and in combined de-
liberation and path traversal. In [8], we proposed to

C. Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229 221

use anytime algorithms in the context of multirobot
motion planning. Sohations are labelled with a qual-
ity measure that takes into account both the solution
performance indices and the solution robustness with'
respect to small variations.

The paper follows tlhis track. Section 2 presents how
to approach the multirobot motion planning problem
by decoupling the space analysis and the time analysis.
Moreover, it is devoted to summarise the performance
indices and robustness measures used by the planner.
Section 3 details how to use the deliberative approach
for selecting a good plan, while Section 4 describes
some experimental results. Final comments and future
work are in the conclusions.

2. Multirobot motion planning problem solved in
space and time

The generic solution of the multirobot motion plan-
ning problem is a proper set of motion commands
that determine both the position and the motion direc-
tion, for all the robots in the environment under exam.
The motion command for each robot can be generated
as a result of a proper choice of a geometrical path
and of a velocity profile along that path. Synchroni-
sation among all the moving objects can be obtained
by a proper tuning of their velocity. Hence a velocity
schedule must be determined for each robot, in order
to avoid collisions wJLth both the other robots and the
moving obstacles. It should be clear that solving the
multirobot motion planning problem involves some
sort of reasoning in the space domain as well as in the
time domain.

The approach we followed keeps the two domains
apart. More specifically, the computation of the ve-
locity profiles will follow the choice of safe geomet-
rical paths. The adwntage of this approach is that it
avoids to consider space and time in a unique extended
iper-space. This space cannot be considered as a 4-
Euclidean space because the axis representing time
has particular characteristics, that model the idea that
it is not possible to go back to the past. On the other
hand, decoupling the analysis in the space domain and
in the time domain make less evident that there ex-
ists a correlation between the choice of a path and
the computation of a velocity schedule; i.e., a simple
and short path can have more intersection points with

other paths, than a longer one. Increasing the number
of intersection points can increase the request of syn-
chronisations between robots, and it can result in a
less efficient plan. We approached this problem by in-
troducing some quality measures applied both to each
path and to the overall plan and using these quality
measures in all the planning phases. Moreover, in or-
der to reduce the backtracking request between the
analysis in the space domain and the analysis in the
time domain, we did not compute a single geomet-
rical path for each robot. Instead each robot was as-
signed to some different path. We do not consider all
the infinitely many feasible geometrical paths because
it is possible to group many of them with respect to
some invariant measures with respect to the velocity
schedule characteristic. Hence many different alterna-
tive paths, that form a family of paths, were assigned
to a robot to have several significative choices when
searching for a good solution of the motion problem,

Given r robots and k different paths toward the goal
for each robot, there are k r possible solutions to the
path scheduling problem, because for each robot you
can choose one of its k different paths. What is the
best choice among all the paths? What does differ-
entiate all the possible solutions? In order to answer
these questions it is necessary to evaluate how good a
solution is, i.e., it is necessary to introduce a method
for evaluating the quality of the solution. A good so-
lution is a good set of paths and of velocity schedules
according to some quality parameters. Note that the
solution quality must be a property of the whole so-
lution, and it depends on all the paths and on all the
velocity schedules in the motion plan.

It is straightforward that the algorithm for finding
the optimal solution by enumerating all the possi-
ble alternatives, has an exponential complexity. We
were interested in a search for a nonoptimal solu-
tion that could be done in polynomial time. The
approach we followed to obtain a suboptimal solu-
tion can be sketched as follows: a new problem can
be set, where r ' new robots, one for each possible
path, are taken into account (r t = kr); i.e., any robot
of the original problem is substituted by a family
of k robots each running along one of the different
paths connecting the starting position and the goal
position. In this way, a suboptimal solution can be
achieved by solving the synchronisation problem for
all r ' robots at the same time (ignoring intra-family

222 C Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229

collisions) and then choosing a single robot from each
family.

The search of a good solution is based on an any-
time path planner that build paths bringing to better
solutions according to some heuristic rule based on the
quality indices. Then a path for each robot is chosen
to improve solution's robustness. The process can be
continued until a deliberative scheduler says to stop.

A particular aspect of the solution quality is its ro-
bustness. We studied the concept of robustness applied
to motion plans and we defined a set of robustness
indices to evaluate the robustness of a plan.

In finding a solution there could be some degree of
freedom in choosing or modifying some local charac-
teristics. These small changes could make an improve-
ment locally, without affecting the quality of the solu-
tion as a whole. Hence robustness indices can be used
to analyse the effect of local changes. We used these
robustness indices not only to evaluate the goodness
of a solution, but even to guide the search for new and
better solutions, following the deliberative scheduling
approach.

2.1. The path planning and the velocity planning
problems

Even in a crowded multirobot environment, each
single robot has to face at least two basic problems,
namely, avoiding collisions with fixed obstacles and
with moving obstacles. In the literature there are
quite well-established techniques for modelling and
solving these two problems. We found particularly
interesting the approach proposed originally in [11]
for a single point robot. That method was based on
the separation of the space analysis from the time
analysis. Hence we firstly designed a planner for a
single robot [14] where the trajectory planning prob-
lem was divided into the two subproblems of plan-
ning a path to avoid collision with static obstacles,
(the path planning problem or PPP), and of planning
the velocity along the path to avoid collisions with
moving obstacles, (the velocity planning problem or
VPP). The pure geometric nature of PPP allowed
us to design and use fast and original algorithms
for collision detection resulting in a very efficient
planner [13]. In the same spirit we generalised to
the multirobot case that motion planner, approach-
ing the problem of multirobot motion planning by

"2 ,2.

,

• "I L),
- .,v-..- ' r . . . - ~ I

Fig. 1. The multirobot motion planning problem.

separating the space analysis from the time analysis
[5].

Let us look at PPP first (see Fig. 1). We solved
PPP by using a rough representation of fixed obstacles
in the C-space, based on the idea of enclosing the
C-obstacles in boxes, that are the closest rectangular
approximation of the C-obstacles. These boxes were
locally refined (when needed) using our fast collision
checking algorithms.

The PPP is solved firstly, i.e., some free paths for
each robot, connecting its start position with its goal
position among the fixed obstacles, are computed. The
output of the PPP phase is a family of paths related
to each robot in the environment. Those paths are
collision-free with respect to the fixed obstacles.

Two robots will collide if some segments of their
paths intersect and they are running on them in the
same time period. Hence in the multirobot motion
planning algorithm we need to consider a collision
checking step to determine if two robots running on in-
tersecting segments will collide. Furthermore, we also
need a policy for solving collisions, i.e., there should
be a delaying step to decide which is the robot to stop
(or delay) and to recompute the basic time scheduling
for each robot.

As the PPP output is a set of paths for each robot
the VPP is approached by considering all those paths
simultaneously, and computing the schedule for each

C. Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229 223

robot running on all of its path. At the end of the VPP
phase the plan is built by picking up the best path for
each robot.

Then, we analysed VPP, looking first for those path
segments that are in use in the same time interval,
i.e., making a temporal collision analysis, and check-
ing later for spatial intersections between the pair of
segments in use, i.e., making a spatial collision anal-
ysis. The basic point here is that the time analysis
is performed first. Only if two path segments tempo-
rally overlap, the system checks for spatial path seg-
ments intersections. If a collision occurs, one of the
two robots is stopped until the other has cleared the
path, or it can be applied a shape changing algorithm
[8] to locally modify the geometric structure of the in-
tersection point. We should note that the intra-family
robot collisions are ignored.

With this method we can avoid a combinatorial ex-
plosion of the solution space, but we were not assured
to find out the optimal solution.

I
I C ~

~ B I
I I

I

• Stop point Critical region

Fig. 2. VE evaluation for robot path.

2.2. Performance indices

We associate to a path three performance indices.
The first one is the running time RT, i.e., the minimum
time a robot should need for reaching the goal using
that path. The second one is the motion error ME,
that measures how st robot can move away from its
path without colliding with obstacles or other robots.
The third performance index is the velocity error VE,
that measures how much a robot can vary its velocity
schedule without worsening the global plan.

Performance indices can be used to choose which
robot has to be delayed and which is the path to be
considered for each robot. Any time some robot is
stopped or some path is modified they are recomputed.

RT is the minimura time a robot needs for reaching
the goal using its assigned path. This index is propor-
tional to the maximum speed of the robot. The RT
index can be used to choose which robot has to be de-
layed and which is the path to be considered for each
robot. Each time a robot is stopped this index is re-
computed. Note that RT is not a property of a path,
but a property of the solution: it depends not only
on the single path but on the set of paths that com-
pose the chosen solution, and on the velocity sched-
ule of all robots in the plan. In fact, each robot may
interact with all the others, so that a variation in the

morion of a robot can affect all the other robots in the
system.

ME measures how a robot can move away from its
path without any risk of collision, i.e., without collid-
ing with fixed obstacles. The ME index is computed
during the PPP phase and it is proportional to the dis-
lance of the path from the obstacles. A locally op-
timal path as regards ME can be constructed using
Voronoi graphs (whose edges have the property of be-
ing equally distant from each obstacle). However, this
local optimality does not solve the problem of ME op-
timisation. In fact, ME can be computed as the min-
imum of path's distance from obstacle or as a mean
distance. In both cases it is possible to find differ-
ent paths, for each robot, with different ME. So, even
if locally ME is optimal for a single stretch of path
computed by Voronoi graphs, the value of ME for the
whole path depends on the particular path chosen.

VE measures how a robot can vary its scheduled ve-
locity without causing any collision with other robots.
See for example Fig. 2: if robot RA is scheduled to
stop at point A for a delaying time interval A (waiting
for robot RB to pass), robot RB cannot arrive later than
scheduled, without any risk to collide with RA. Hence
robot RB has a value of VE equal to zero. Instead,
robot RA can arrive later than scheduled, without in-
troducing any collision with RB. Moreover, if Rc is

224 C. Ferrari et al./ Robotics and Autonomous Systems 25 (1998) 219-229

scheduled to stop at point C for a delaying time interval
A (waiting for robot RA to pass), robot RA should not
arrive at its stop point A later than the time scheduled
for its re-start, otherwise this delay could affect the
following synchronisation with Rc. The value of VE
for RA has a finite value different from zero. The value
of VE for Pc, in this example, is positive infinite, be-
cause Rc is not involved in any further intersection.

Note that once again VE is not a property of the
single path, but a property of the whole solution. A
way to search a solution with a good VE is to look
for different paths for each robot with different RT. As
we have already seen, the idea is to take into account
different choices for each robot, building a path family
for each one, planning the motion for all the possible
paths and then choosing the best for each robot.

2.3. Robustness with respect to environmental model

In our geometric representation, C-space obstacles
are approximated by bounding boxes, that may have,
or not, a large tolerance. It is possible to refine boxes
around some robot path to estimate segment path
safety. If the path is not safe enough, then it will be
assigned a low ME index value. Then, there exists a
path substitution problem: if a path p is not any more
feasible, then we need to look for a new path q.

Consider an alternate path q for a robot r already
running on a path p. Call parent plan the plan that
has been already computed without considering q. It
is very time expensive to evaluate RT for the new so-
lution obtained by substituting path p with path q, be-
cause the whole solution should be recomputed. Thus,
we evaluate a collision impact factor (CIF) for q,
where CIF is the ratio between the number of robots
whose paths cross q and the total robot number. A CIF
almost equal to 1 suggests to discard the new path,
because there are too many candidate collisions.

In our experimentation, we found that a CIF so de-
fined is not a good parameter for deciding to discard a
path or not, because the kind of geometrical intersec-
tion is much more interesting than the bare number of
intersections. For this reason, it is better to estimate
the length of the piece of path inside the critical colli-
sion area. So, it is possible to define the CAF quality
measure as the ratio between the length of path inside
critical collision area and the total path length. CAF
has demonstrated to be a good parameter to decide if

to discard a path or not both when we try to optimise
RT and when we try to optimise VE.

Each proposed plan has a quality measure associ-
ated to it that is computed using the performance in-
dices of the paths related to that plan. If the emphasis
is on the "time to reach the goal", then the quality of
the plan is given by the highest value of the RT index
associated to the plan. If the quality must take into ac-
count security issues, then the quality measures can be
computed by a weighted average of the RT, ME and
VE indices of the paths. The new plan's quality index
is also computed using the quality indices of the new
path(s). Note that collision impact factors take part in
the choice of paths that will constitute the solution to
the motion plan problem. Such parameters are very
useful because, as we said, RT and VE depends on
the whole solution, and not on the single path, and
their computation is not always simple, so we need
a simple coefficient to help us choose a path or an-
other. CIF and CAF give an evaluation criterion for
choosing which paths will be used in the new motion
plan.

3. Applying deliberative scheduling to families of
varying paths

The quality criteria described previously play a ma-
jor role in the procedure for finding a suboptimal so-
lution to the multirobot motion planning problem. It
is useful to point out that a complete search algorithm
in the number of robots is not interesting from a prac-
tical point of view due to its exponential complex-
ity. The planner uses the quality indices in anytime
algorithms by applying the deliberative scheduling ap-
proach [17]. Within this approach the time for build-
ing a good solution together with the solution quality
measures are the control variables of the planning al-
gorithms. Moreover, this approach calls for iterative
refinement of the candidate solutions, that adds more
and possibly better solution to the initial ones. The
process of growing path families is controlled by a
monitor, which continuously evaluates the robustness
indices for the solution paths found by the path plan-
ner and measures the time passing by. The monitor
decides continuing or stopping the elaboration of the
path planner, depending on the values evaluated for
the solution paths.

C. Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229 225

The space of the possible paths for each robot with
the possible velocity schedules along each path is the
search space, that can be increasingly built starting
from an initial and easy-to-find solution, and then
adding to it several alternative choices, i.e., many dif-
ferent paths or velocity schedules. It is necessary to
point out that we need some criterion to generate those
alternative choices, and that their generation should be
incremental, in order to provide the search algorithm
with a growing space to be investigated, so that it may
ideally continue its search gradually coming nearer to
the optimal solution.

The first step requires to provide the planner with
an irtitial set of paths. Suppose we use any roadmap
path planning method (visibility graphs, voronoi dia-
grams, silhouettes, etc.) to find a path in the free-space
for each robot in the system. Then, it is possible to
find some different path for each robot, by forcing the
robots to go through some particular points in the free-
space. In this way, it is possible to generate a family
of paths for each robot, each family with a growing
number of paths in it, as time goes by.

These families are the growing space to be inves-
tigated: the search algorithm chooses a single path
for each robot selecting it from the respective family,
according to some criteria, as for example "choose
the set of paths which gives the best robustness
index".

The second and third steps are the core of the plan-
ner and deal with the ways of generating the grow-
ing family and of selecting one path from each fam-
ily. Criterion to build alternative paths starting from
the first given solution and to design the search algo-
rithm able to choose one path for each robot need to
be defined. One of the simplest choices for building
alternative paths is to choose randomly a point in the
free space at a growing distance from the mid-point
of the first solution path. We have experimented this
strategy for testing our approach, as it is illustrated
in Section 4. This choice showed good performance,
even if it may not give any particular interesting infor-
mation about the goodness of initial solution. Experi-
mentation showed that, as the growing distance grows
too much, the paths added to the family are too far
away to be useful.

An important point is to decide how the search
algorithm operates. Given a number r of robots, each
one with a family of k different paths, the algorithm

chooses one path from the first family evaluating
which one of the paths in the family is the best; then
it is the turn of the second family, and so on. Natu-
rally the given solution is suboptimal, but we found
that almost always it is very near to the optimal one.
In particular, each time the search algorithm tries a
different path from a family, it must recalculate or
reestimate the values for the robustness index of all
paths in the solution, unless the robustness criterion
chosen is ME because, only this one is a property of
the single path, while the others are a property of the
whole solution.

We can denote the plan execution time as Texe. From
the definition of the quality indices we have

Texe = R T.

Let Telab be the time actually elapsed and used for
the plan elaboration. The total time can be given as
follows:

Ttot = Zelab ' } Zexe.

The monitor can estimate Ttot by measuring on-line
Telab and by estimating Texe on the base of the actual
best solution provided by the search algorithm. If Ttot
is going to result better and better (i.e. smaller and
smaller) the monitor continues to allocate time for new
elaboration cycles to the search algorithm, but when
Ttot begins to grow, the monitor stops the computation
and starts the execution of the plan, because probably
any further time dedicated to computation would delay
the end of the execution. In this way, the planner tries
to optimise the total time elapsed since the start of
the computation till the end of the execution of the
plan.

4. Experimental system

Our experimental system (called AnyRob) was built
in C++ , on an Indy Silicon Graphics workstation [7].
We present now an example of how AnyRob works.

In Fig. 3 we show an environment with some fixed
obstacles. The points marked with a plus sign (+)
are the robot start positions while the points marked
with a cross sign (×) are the robot goal positions. The
obstacles have been enclosed within their bounding
boxes, and the robots shrink to a point. In Fig. 3, some

226 C. Ferrari et aL /Robotics and Autonomous Systems 25 (1998) 219-229

Fig. 3. An initial solution for motion planning.

tentative solution paths are also shown. These paths
form the initial solution.

The planner starts constructing incrementally the
path families (see Fig. 4). The alternative paths are
generated using the mid-point method which consists

of forcing the paths to go through some points whose
distance from the generator path gradually increases.

The control monitor watches the elaboration of
new solutions by estimating Ttot each time new paths
become available. The monitor can interrupt the elab-
oration at any time. One path from each family is
selected by the search algorithm and the total time of
elaboration and of plan execution, Ttot, is estimated.
Note that the time of execution is just RT. If Ttot
is getting worse, the monitor stops the path family
growing phase and it activates the collision avoider,
otherwise it will ask for new paths.

The collision avoidance phase solves chronologi-
cally all the possible collisions using the Stop & Go

method or the Shape Changing method. The Stop &
Go method consists in modulating the robot velocity
to avoid collisions with the other robots and with mo-
bile obstacles by introducing some stops in the robot
motions. The Shape Changing method solves collision
by introducing local variations on the shape of paths.
Shape Changing method demonstrated to be very pow-
erful, in all the cases in which the Stop & Go method
introduces very long delays.

The result of the experiment is shown in Fig. 5.
We give in the following some more experimental

results. With 12 robots working in a simple environ-
ment, AnyRob elaborates for 19 s to find a good solu-
tion to the PPP problems (trying four different paths

Fig. 4. The path family growing phase. Fig. 5. The final solution.

C. Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229 227

for each robot). Then, the control passes to the colli-
sion avoider which finds a solution using Stop & Go
and Shape Changing algorithms in 6 s. The RT value
was 284 s while the RT for the first simple solution
found was of more than 400 s with 121 robots, Any-
Rob elaborates for 463 s in the PPP phase, and for
500 s in the collision avoiding phase, while RT was
142 s. In this situation, controlling the algorithm with
our approach is not too efficient, because there are too
many robots and the first solution found is still the
best, because the time. to find a second solution is too
high.

5. Conclusions

can be used in the family-growing step rather than in
the collision-avoiding step to obtain better families.

Another interesting problem is the one of premature
convergence. It might happen that the system finds a
solution which seems to be optimal because all efforts
have been concentrated to refine a first good solution,
while much better solutions exist, but are not found
because they are too distant from the first good solu-
tion. A way to avoid the problem is always to try some
solution different from the actual best one, just like it
is done using genetic algorithms [16]. Indeed an in-
teresting analogy may be done between our approach
and GA. We plan to further investigate the relation
between these two approaches.

In this paper, we presented a solution to the
multirobots motion planning problem based on the
definition of plan robustness and on the use of flexible
computation. We applied the idea of time-dependent
planning to the problem of searching for alternative
robot paths to a given initial solution. Variations of
initial solutions for collision-free robot paths are ob-
tained with respect to quality parameters that give
heuristic rules for evaJtuating plan robustness. As qual-
ity parameters, we used both collision impact factors
(CIF and CAF), for evaluating the quality of a single
path, and performance indices (RT, ME and VE), for
evaluating the overallt quality of a plan. A prototype
of the multirobot motion planner, called AnyRob, has
been implemented in C + + and tested on an Indy
Silicon Graphics workstation.

A particular problem which emerged from exper-
imenting AnyRob is the existence of critical paths:
there are some robots which arrive at their destina-
tion (goal) later than the other, because they are much
slower or have paths much longer than the other robots.
Robots corresponding to critical paths can be identi-
fied since the beginning of computation, in order to
optimise the plan for these robots and for all those
which are involved in collisions with them. If only the
family corresponding: to critical robots is allowed to
grow, there will be less new paths, and the computa-
tion step will be quicker.

Moreover, the criterion for creating new paths can
be improved. For example, the new paths can be cho-
sen in a way that allows to avoid collisions (improv-
ing RT and ME), i.e., the algorithm of shape changing

Acknowledgements

This research is being pursued in co-operation be-
tween the Department of Electronics and Informatics
(DEI) of the University of Padua, from the Italian side,
and the Department of Precision Machinery Engineer-
ing of the University of Tokyo, from the Japanese side.
Financial support has been provided by the Italian
Ministry of University, and Scientific and Technolog-
ical Research. We like to acknowledge L. Marangoni,
M. Martello, E. Modolo and M.Voltolina, master stu-
dents at University of Padua, for their contribution in
implementing some software modules of the motion
planner.

References

[1] T. Arai, J. Ota, Motion planning of multiple mobile
robots, in: Proceedings of the 1992 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Raleigh,
NC, 1992, pp. 1761-1768.

[2] M. Boddy, T.L. Dean, Deliberation scheduling for problem
solving in time-constrained environments, Artificial
Intelligence 67 (1994) 245-285.

[3] S.J. Buckley, Fast motion planning for multiple moving
robots, in: IEEE Proceedings of the International
Conference Robotics and Automation, Phoenix, AZ, 1989,
pp. 322-326.

[4] M. Erdman, T. Lozano-P&ez, On multiple moving objects,
Algorithmica 2 (1987) 477-521.

[5] C. Ferrari, E. Pagello, J. Ota, T. Aral, Planning
multiple autonomous robots motion in space and time,
in: Proceedings of the 1995 IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 2,
Pittsburgh, PA, 1995, pp. 253-259.

228 C. Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229

[6] C. Ferrari, E. Pagello, J. Ota, T. Arai, A framework
for robust multiple robots motion planning, in: 1996
IEEE/RSJ Proceedings of the International Conference on
Intelligent Robots and Systems, Osaka, Japan, 1997, pp.
1684-1690.

[7] C. Ferrari, E. Pagello, M. Voltolina, J. Ota, T. Arai,
Varying paths and motion profiles in multiple robot motion
planning, in: Proceedings of the 1997 IEEE International
Symposium on Computational Intelligence in Robotics and
Automation, Monterey, CA, 1997, pp. 186-194.

[8] C. Ferrari, E. Pagello, M. Voltolina, J. Ota, T. Arai,
Multirobot motion coordination using a deliberative
approach, in: Proceedings of the Second Euromicro
Workshop on Advanced Mobile Robots, Brescia, Italy,
1997, pp. 96-103.

[9] K. Fujimura, Motion planning amid transient obstacles,
The International Journal of Robotics Research 13 (5)
(1994) 395--407.

[10] J.E. Hopcroft, J.T. Schwartz, M. Sharir, On the complexity
of motion planning for multiple independent objects;
PSPACE hardness of 'Warehouseman's Problem', The
International Journal of Robotics Research 3 (4) (1984)
76-88.

[11] K. Kant, S.W. Zucker, Towards efficient planning: The
path-velocity decomposition, International Journal of
Robotics Research 5 (2) (1986) 72-89.

[12] J.C. Latombe, Multiple moving objects, in: Robot Motion
Planning, Kluwer Academic Publishers, Dordrecht, 1991
Chapter 8.

[13] C. Mirolo, E. Pagello, Local geometric issues for spatial
reasoning, in: Robot Motion Planning, 1991 IEEE/RSJ
Proceedings of the International Workshop on Intelligent
Robots and Systems, Osaka, Japan, 1991, pp. 569-574.

[14] E. Modolo, E. Pagello, Collision avoidance detection
in space and time planning for autonomous robots, in:
IAS-3 Proceedings of the International Conference on
Autonomous System, Pittsburgh, PA, 1993, pp. 216-225.

[15] D. Parsons, J. Canny, A motion planner for multiple
mobile robots, in: Proceedings of the IEEE International
Conference on Robotics and Automation, Cincinnati, OH,
1990, pp. 8-13.

[16] J. Xiao, Z. Michalewicz, L. Zhang, K. Trojanowski,
Adaptative evolutionary planner/navigator for mobile
robots, IEEE Transactions on Evolutionary Computation 1
(1997) 18-28.

[17] S. Zilberstein, S.J. Russell, Anytime sensing, planning
and action: A practical model for robot control, in:
Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), Chambery, France, 1993,
pp. 1402-1407.

Carlo Ferrari was born in 1960 in
Genua, Italy. He received the Laurea
degree from the University of Genua
in 1985, and the doctoral degree from
the University of Padua in 1992. He
was visiting the University of Califor-
nia at Berkeley from 1990 to 1991.
Since 1992 he is Assistant Professor in
Computer Science at the School of En-
gineering of the University of Padua,
within the Department of Electronics
and Informatics (DEI). His research in-

terests are motion planning for multiple mobile robot system,
assembly planning, RISC robotics, dynamic simulation.

Enrico Pagello is an Associate Profes-
sor of Computer Science, since 1983,
at the School of Engineering of the
University of Padua, where he belongs
to the Department of Electronics and
Informatics (DEI). He has also a joint
appointment with the Institute Ladseb
of CNR as a part-time Senior Scien-
tist. He is the Chairman of the Work-
ing Group on Robotics (GLR) of the
Italian Association for Artificial Intel-
ligence (ALIA). He is the Chairman of

the Italian RoboCup Scientific Committee. He is a member
of the Council Board of the Italian Association of Robotics
(S1RI). He will be the General Chairman of next Intelligent Au-
tonomous System 6, to be held in Venice, in July 2000. He is an
Associate Editor of IEEE/Trans. on Robotics and Automation,
since 1997.

Tamio Arai was born in 1947 in
Tokyo, Japan. He received the M.S.
degree and D.S. degree in Engineer-
ing from the University of Tokyo in
1972 and 1977, respectively. He was a
visiting researcher in the Department
of Artificial Intelligence, Edinburgh
University in 1979-1981, He has been
a professor in the Department of Pre-
cision Machinery Engineering, the
University of Tokyo since 1987. He
has mainly worked on robotics and

manufacturing engineering. Currently his research interests
include (1) automatic assembly, (2) planning and control of
plural mobile robots, and (3) robot language and protocols in
manufacturing.

C. Ferrari et al./Robotics and Autonomous Systems 25 (1998) 219-229 229

Jun Ota was born in 1965 in Saitama,
Japan. He received M.S. and D.S. de-
~xees from the Faculty of Engineering,
the University of Tokyo in 1989 and
in 1994, respectively. From 1989 to
1991, he joined Nippon Steel Cooper-
ation. In 1991, he was a Research As-
sociate of the University of Tokyo. In
]996, he became an Associate Profes-
s.or at Graduate School of Engineering,
the University of Tokyo. From 1996
to 1997, he was a Visiting Scholar at

Stanford University. His research interests are multiple mobile
robot system, environmental design for robot systems, human-
robot interface, and cooperative control of multiple robots.

