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Abstract—The transport function of an indicator through an
organ allows the calculation of important physiological param-
eters, but its estimation. especially in the presence of recircu-
lation, can be difficult. In this paper. we estimate the transport
function of *H-mannitol (an extraceliular tracer of glucose) in
the human leg skeletal muscle. To do so, an indicator bolus is
administered into the femoral artery and its recirculating dilu-
tion curves are nonuniformby sampled in both the femoral ar-
tery and the fermoral vein. A new deconvolution-based method
is used to simultaneousty estimate the indicator transport func-
tion and the organ plasma flow. Subsequently, the indicator
mean transit time and distribution volume are calculated, The
reHability of the method is assessed by Monte Carlo simulation,
The ability to estimate parameters, like mean transit time and
extracellular distribution volume, is critical to the study of
pathophysiologic states such as diabetes, insulin resistance. and
hypertension. ®© 7998 Biomedical Engineering Society.
[S0090-6364(98)01001-7]
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INTRODUCTION

An indicator dilution curve (IDC) at the inlet of an
organ. say u(f). can be put in relation. assuming the
system linear and time invariant, with the concentration
of the same indicator at the outlet of the organ, say z(t).
by the convolution integral

z(r):jllz(f—r)at(-r)dr= J-IHH-T)h{T)dT, (n
o 0

where +=0 is the time of the indicator administration,
The function h(r) is the impulse response of the system,
i.e.. the output of the system when the input is a Dirac
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puise. If there is no loss of the indﬁ;é‘ 'vbﬁﬂ? en the
input and output, £(z) can be interpreted as the probabil-
ity density of the transit times through the organ from
inlet to outlet'® and is called the transport function of the
indicator through the organ.

The knowledge of the transport function A(7) is es-
sential to compute important physiological parameters.
For instance. the mean transit time (MTT), i.e.. the ay-
erage time a particle of the indicator spends in the organ
before exiting it. and the distribution volame (V) can be
calculated. respectively. as

MTT= J':rh(t)dz. (2}

V=FMTT, (3) .
where F is the organ plasma flow.

If no recirculation is present, the estimation of h(1) is
straightforward if a bolus injection of a tracer mass D is
administered in the organ inlet in a time shorter than the
minimum system transit time. Under this hypothesis, the
bolus injection is equivalent. for the system described by
Eq. (1), to a pulse input u(r)=Uy8(¢), where Uy is the
amplitude of the concentration pulse, related to D by
Uy=D/F. The owput IDC is, thus, z(=Uxh(1), a
curve which typically exhibits a sharp increase with an
unimodal peak and a slow decrease. The plasma flow F
can be obtained by dividing the indicator mass D by the
area under z(¢).%'"” Then, having obtained U, h(t) is
calculated from z(r).

Often. however. there is a significant recirculation of
the indicator. i.e.. a particle exiting the organ returns to
the inlet and acts as input again. This is, for instance, the
case of the indicator examined in this work, where a
bolus of *H-mannitol. an extracellular tracer of glucose,
is injected into the femoral artery but a significant frac-
tion of it appearing in the femoral vein returns to the
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artery because of recirculation. As g result, a smooth
inilet IDC s generated and both <(t) and wu(z) exhibit
very long tails, In the recirculation case, the estimation

h(t) from u(t) apd z(t) exploiting the convolution
integral.' OF pote is that a similar necessity also arises

cides with that of the unknown a(r), e.g., Ref. 17,
The most namura) way to attack this kind of problem is
deconvolution, Deconvolution can be parametric or nog-

~ port function can exhibit artifactual oscillations, thus,
producing unreliable estimates of MTT., Moreover, non-

occurs, the input IDC ajso depends on an unknown quan-
tity and deconvolution cannpt be performed. There is,
thus, the need to simuitaneously estimate h{(¢) and F
from the recirculating anery and vein IDC.

In this paper, the problem is approached by a recently
developed nonparametric deconvolution method coupled
with a suitably designed modeling procedure, which ex.
trapolates the 1ail of the transport function up to infinity,
The method is applied to *H-mannito] data obtained ip
the leg skeletal muscle of normal subjects, the final aim
of the experiments being to provide a measure of the
extracellular distributjon volume. This parameter is
physiologically important becayse evidence is accumuiat.
ing 10 suggest that insulip stimulation is associated with
an increase in the Exiravascular space by virtue of an
increase in tissue recruitment,*B ang that pathophysi-
ologic states such as diabetes, insulip resistance, and
hypertension may be associated with a reduced insulip
effect at that leyel [+18 The accuracy ang precision of
the method are assessed by a Monte Carlo strategy,

EXPERIMENTAL PROTOCOL AND DATABASE

Twelve healthy volunteers were studied at the Indjana
University General Clinical Research Center, Indianapo-
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dis Corporation. Miami, FL) was pladeq in the right
femoral vein w0 obiaig venous blood. The right femnoral
anery was cannulated with 3.5 French double lumen

cephalad). An average dose of 22X10% dpm of
3H-mannitol (New England Nuclear Research Products,
Wilmington. DE) was administered at time 2ero into the
femoral artery in about 1.5 g, Plasma samples were col.
lected for 45 mip, say, the experiment duration D, , from
both the femoral artery and the femoral vein on a nop-
uniformly spaced grid. The sampling period ranged from
0.2 to 3 min, Let us denote by ., and Qg the vein and
the artery sampling grids, respectively, A typical ), is:
0.204,06.08. 1. 1.2, 14, 1.6, 1.8, 2,24,28.3.2, 34,

13, 14, 15, 16, 17. 18, 20, 22, 24, 26, 28, 30, 33, 36, 39:

the same duration of @, but it can be slightly sparser
than Q, in the first 20 min, The sampling schedules
reflect the expected changes in the IDCs, ie., the

and normal,

A representative artery and vein IDC (subject No. 4)
is shown in Fig. 1. Note that, since a large (but up-
known) plasma flow is present, sampling at the input site
does not allow tracing the “‘original"’ nput pulse in the
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FIGURE 1. A representative data set (subject No, 4). Top.
Samples of the recirculating artery IDC. Botom, Samples of
the vein IDC,

METHODOLOGY
The Straregy

The input u(r) of the system we are considering con-
sists of two components: the *‘original’’ puise, i.c.. the
administered tracer bolus, and the *‘recirculation’ input,
i.e., the smooth contribution originated by the tracer,
which returns to the organ inlet. Figure 2 displays a
block diagram of the system, where the signal over the
arrow exiting a block (output) is causally related to the
signal over the arrow entering the same block {input):
the recirculating inlet IDC is viewed as the effect of a
positive feedback. The system input #(t) is thus modeled
as

D
u(r)=-j__— S+ u®(e), 4)

hit)

OIF3(Y u(t) z{t)
g=-{  ORGAN

outlet

infection

ufft)

REMAIKDER
OF THE
BODY

FIGURE 2. Block diagram of the system. The signal over the
arrow exiting a block (output) is causally related to the sig-
nal over the arrow entering the same block {input}), The circte
denotes a signals adder.

where D is the (known) bolus mass. F is the {unknown)
plasma flow through the organ. and S(f) denotes the
Dirac pulse. Samples of 1®(r) are measured in the femo-
ral artery. Note that the Dirac function approximation of
the input used in Eq. {4) is realistic only if the duration
of the tracer injection is less than the minimum system
transit time.

Our goal is to estimate A(7) from the sampled input,
ie. u{t) on {g, and output, ie., 2() on Q... IDCs.
However. deconvolution in Eq. (1) cannot be done in a
straightforward manner because the input IDC, given by
Eq. (4), depends on an unknown parameter, the plasma
flow F.

To proceed, we have exploited the physiological in-
formation that no loss of indicator occurs between the
organ inlet and outlet. In mathematical terms. this a
priori knowledge translates into the statement that a
“consistent’’ estimate of A(t), say f;( 1). must satisfy

j:ﬁ( ndr=1. (5)

The physical constraint given by Eq. (5) has suggested to
us the following strategy: (1) Assume a trial value for F
in Eq. (4); (2) provide. by a deconvolution-based
method, an estimate l;(r), of the transport function for
O=r<=; and (3) compute the left side of Eq. (5): if the
estimate does not satisfy Eq. (5), select a different tria]
value of F and repeat step (2). The core of this strategy
is the estimation of #(#), which is discussed below.

Estimation of the Transport Function

State of the Art. For the estimation of the transport func-
tion by deconvolution. the literature has often resorted to
parametric methods. Roughly speaking. in parametric
methods. the transport function is given a priori a known
functional form. usually depending on a small number of
unknown parameters, which are fitted against the
data *1*167222% However, the use of parametric meth-
ods can be difficult and restrictive for both practical and
theoretical reasons. In fact. these methods are not general
purpose but problem orented. and a precise functional
form is often difficult to be assumed. In addition, even
when a certain functional form is chosen. e.g., a sum of
lagged normals,'” critical issues remain, e.g., the number
of terms. Although parametric deconvolution has been
intensively exploited to estimate the transport function,
these and other critical issues, e.g., local minima in pa-
rameter optimization, have encouraged the use of non-
parametric deconvolution approaches.>>820 However,
obtaining the transport function by nonparametric decon-
volution. especially in the presence of recirculation. can
~0f all. nonparametric deconvolution

.
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cannot provide estimates at times greater than D . For
instance, in our case, D,=45_ but, since the duration of
A(t) is greater than D,, an estimate of the transport
function up to infinity is needed in order to evaluate the
left term of Eq. (35) comrectly. Such a knowledge is also
crucial for a correct calculation of the MTT by Egq. (2).
Even when D, is large enough, accurate estimates of the
MTT are difficult to provide since, because of il condi-
tioning, the tail of the estimated transport function can be
artifactuaily oscillatory and can present a maximum tran-
sit time, which is *‘determined by the duration of the
data collection period rather than the duration of the
actual transport function,” 8

Our approach will thus be as follows. First, we will
develop a nonparametric deconvolution method to pro-
vide an estimate of A(t) for t= D,. Then, we will use a
model to extrapolate 4(f) up to infinity.

The Deconvolution Method to Estimare h(t} for Times

not Greater than the Experiment Duration. To estimate
h{t) for r<D,, we will use a recently presented non-
parametric deconvolution method.""™ For certain as-
pects. this methed can be seen as an evolution of the
widely  known  Phillips—Tikhonov regularization
approach.”**? which was applied to the estimation of
transport functions in Refs. 3, 5. and 8 under the as-
sumption of uniform sampling. :

Let us denote by v={y,,y, F3eeav,]T the
n-dimension vector of the {noisy) output IDC data. Hav-
ing assumed that measurement error is additive, we have

y=z+u, (6)

where z=[zy,25.23,....z,]7 is the vector whose compo-
nents are the # (noise-free) samples of 2(2) of Eq. (1) on
Qg and v=[v,.v1,03,....0,]7 is the n-dimension vec-
tor of the measurement errors, independent. and with
zero mean. The covariance matrix of v is diagonal and
its ith entry is assumed to be equal to (CVy;)?, with
CvV=0.06.

The function A(t) is, in general, a smooth function
since it represents the probability density function of the
transit times of the indicator through the organ. In order
to exploit this a priori information, we calculate the
estimate /( t) by solving the following optimization
problem:

subject to

il_\-—fllg—l=(y~z")rB"(_v—f)=§, (8)

where /1'2(s) denotes the second time derivative of
!;( !‘).ﬁ < is the n-dimension vector obtained by consider-
ing A+, ie. the “‘reconvolution.' on {}.,, Bisa ma-
trix of weights (typically, the covariance matrix of v),
and £ s a real non-negative number (the symbol *'=”
denotes convolution).

The problem of Eqgs. (7) and (8) is defined by having
in mind the following rationale: Equation (8) fixes a
distance, denoted by £, between the (noisy) data vector ¥
and the model predictions vector Z. [Thanks to the pres-
ence of B~ ' in Eq. (8). the adherence 1o each datum can
be weighted differently.] Due 1o the il] posedness of the
deconvolution problem, there is ap infinite number of
contineous-time functions i;(r) having the selected dis-
tance £ between their convolution with u(t) and the data.
By virtue of Eq. (7), the algorithm selects the one having
a mjnimurr} second time derivative ¢nergy, i.e., the
smoothest A(t) according to Ref. 21. The smalier is £
the more the adherence to the data vector ¥ will be
pursued.

To solve the probler [Eqs. (7) and ¢ 81}, a continuous-
time function should be obtained from discrete data. In
order to numerically provide an approximate solution, let
us consider two grids, in keeping with Refs. 10 and 25.
The first grid, denoted by stx{tl,tz....,t,,,...,t,,}, is
simply the (experimental) vein sampling grid. The sec-
ond grid, denoted by Qu={T\,T3,...T¢,... T4}, is an
arbitrary grid much finer than Qg (N®n). The grid Q,
does not need to have any experimental counterpart and,
for such a reason, it is called the virtua] grid. Here, we
define ©,={0.1,0.2,...,45} (note that 2,,C0,).

Let z,(7,) denote the {noise-free) cutput at virtual
sampling times T,. The grid {1, is so fine that the true
but unknown 4 () can be well approximated by a piece-
wise constant within each time interval of it, so that,
from Eq. (1), it holds,

Ty
(T = f w(T,—1)hi(rdr
0

k T
= h(T)
i=1 T

i—

w(T—rdr, (%)
i

where T=0. In matrix-vector notation. we have
z,=U,h, (10)

where 2, and & are the vectors of the output IDC and of
the transport function samples considered on the viryal
grid {2, and U, is a NXN lower trjﬁangq_!a\{ qﬁﬂm
whose entries are g VRV
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' 7 . of /1. The tuneable parameter y [or the correspondent ¢

Uu(k-f)=L WTy—nydr, k=i {1 of Eq. {14)] balances the relative importance of these

i~1

Note that, since the virtual sampling is uniform, U.isa
square lower-triangular Toeplitz matrix, i.e., the elements
of each diagonal of U, are equal, so that it is determined
by its first column. Times belonging to the virtual grid
{1, but not present in the output grid {1, do not corre-
spond to sampled output data. We can regard them as
(virwaily) missing data. Denote by U the n XN matrix
obtained by canceling from U, those rows, which do not
correspond to actually sampled data. I/ has a near-to-
Toeplitz structure. meaning that it misses the rows de-
leted from the Toeplitz matrix U,. The n-dimension
vector v of Eq. (6) can thus be modeled as

y=z+uv=Uh+y. (12)

In this matrix-vector model, the N-dimension vector # is
unknown. An estimate of vector /1, say vector h. can be
obtained by solving

min ATQTQh, (13)
i

subject to
b= Ukllg-1=(v=URB~ (s~ UR)=¢,  (14)

where O is a N-dimension square lower-triangular
Toeplitz matrix whose first column is [1.-2.10.,..,0",
such that Q}; is the vector of the second differences of A
on {1,. The solution of the *‘finite-dimensional" prob-
lem given by Egs. (I13) and {i4) approximates the solu-
tion of the “'infinite-dimensional’* problem given by Egs,
(7) and (8), and can be found by solving the optimization
problem

min(y— URTB™(v— UR)+ yATQTQh,  (15)

h

where the real non-negative parameter 7 is the inverse of
the Lagrangian multiplier associated with £ of Eq. (14).
The closed-form solution of Eq. (15) is

h=(UTB™'U+yQT0) ' UTB 'y, (16}

Readers familiar with the Phillips—Tikhonov regulariza-
tion method will easily recognize the characteristic cost
function of problem (15), made up of two terms: the first
term gives the distance of the model predictions from the
data: the second term gives a measure of the regularity

two quantities. By raising v, the cost of roughness of /
increases, and matching the data vector v becomes rela-
tively less important. For such a reason, v is called the
regularization parameter. Too large values of v will lead
to very smooth realizations of i, which may be not able
to explain the data (oversmoothing). Conversely, too
small values of  can lead to ill-conditioned estimates /.
To choose vy, several criteria have been proposed in the
literature. Here, we will adopt the widely used discrep-
ancy regularization criterion proposed in Ref. 28, which
allows us to exploit the available knowledge on the mea-
surement error variance, differently from, e.g., the gen-
eralized cross-validation criterion of Ref, 12. The dis-
crepancy criterion suggests to adjust v until the residual
sum of the squares equals the sum of the measurement
error variances, In our notation. y must be tuned until
WRSS:{)'—Ul;}TB_’(y—Ui;)=n. where WRSS de-
notes the weighted residual sum of squares.

Remark 1. To generate the entries of U given by Eq.
(11), we used in place of u(¢) the linear interpolation of
its raw samples. We also tried more sophisticated tech-
niques, such as exponentials sums or cubic splines ap-
proximations. but we obtained estimates of A virtually
identical to those provided by the simple linear interpo-
lation method, at the cost of considerable extra modeling
effort. A possible explanation of why this happens is
that. in the solution of the problem we are dealing with,
the deconvolution algorithm takes advantage from the
Fact that the input mostly consists of a large Dirac pulse,
which renders the shape of the output IDC very similar
to that of the transport function. especially in the first 10
min.

Remark 2, If the actual time course of u(¢) in Eq. (11)
were known. the used discrepancy regularization crite-
rion would be at risk of oversmoothing.'!* Here, the
fact that the discrepancy criterion provides more smooth-
ing than other criteria is welcome because of the pres-
ence. in addition to output IDC data noise, of a second
source of error in Eq. (12), i.e., the errors on the entries
of U/, Of note is that, in order to avoid bias error to
affect the initial sharp variations of the transport func-
tion. regularization was performed for /=5 min only.
This is accomplished by infinitely weighting the adher-
ence 1o the vein data for 1<(3, ie., B{{,)=0 if 4,5,
tie (.. As a consequence, the algorithm selects the
smoothest fungtion, which exactly describes the data for
1<3 andhas the same time, the prescribed distance ¢
from the datd '




o> Remark 3. The solution of problem {135) can be effi-
ciently obtained by employing the singular value decom-
position strategy of Ref. 1. which. in order to further
speed up calculations, can also exploit the Toeplitz struc-
ture of ¢/ and Q. Should *‘linear regularization’* be not
sufficient to obtain non-negative estimates because of
high ill conditioning, one can employ the constrained
conjugate gradient algorithm of Ref, 7.

Having fixed a trial value of F, the above deconvo-
lution algorithm can provide an estimate of the transport
function on {2,,. Of note is that, for a finer and finer &,
the estimate would converge to a time-continuous func-
tion.

Extrapolation of .’;( t} 1o Infinity and Estimation of F

The algorithm. cannot estimate h(t) for t>D,, but
this knowledge is crucial to assess if constraint {5) is
satisfied. In fact, in our case. & for t=D, is small, but
not small enough to neglect the contribution of the trans-
port function for r>D, in the calculation of the integral
of Eq. (5). There is, thus, the need of providing A (1) for
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FIGURE 3. Estimation of the transport function by deconvo-
lution in a representative subject {No. 4). Top. The recircula-
tien input u®(1), obtained by first-order interpolation of the
artery [DC samples of Fig. 1. Middle. Deconvoluted transport
function A1) for t=[0, 45] with F=175. Bottom. Reconvalu-
tion Z(f) vs vein IDC satnpies,
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=D, also. Since the kinetics of the tracer are linear, it
is expected that. for large 1. the impulse response A(r)
decays with its slowest exponential,*'® ie. the tail of the
transport function can be described by a monoexponen-

tial mode!
: h()=Ae (17)

whose parameters can be estimated from the samples of
h(t) for te(t,,D,] by nonlinear least squares,® with t,
ranging between 30 and 36, depending on the individu-
al’s deconvoluted transport funetion, Note that this ex-
ponential approximation of the transport function tail
will also contrast possible oscillations to come into play
in the estimation of MTT.

Having estimated the parameters of i;e(t), the area
under /1(¢) can be computed. by the Eulero numerica
integration method for I<t, and algebraically for
£>t,. to verify if constraint (5) is satisfied. Note that,
for any trial value of F, if one accepts only those lzf(t),
which fit well the tail of l;. the area under fr( 1) is
monotonically increasing with F. Thus. for a certain trial
value of F, if the area under i;(r) is less than 1, F must
be increased, otherwise it must be decreased.

Remark 4. The following aiternate strategy would also
be feasible. Having provided hi(e) for r< D, for a trial
value of F, one first computes the area under I:(r) for
I<t,, say a4, and then defines Ares= 1 —ag... Having
replaced A in model (17) with Asae™e, the parameter o
is estimated from the samples of /1 for teft,,D,]. Since
the area under f';e(t) for 1>¢, is, by construction, equal
10 dp., l;(r) satisfies Eq. (5) independently on the good-
ness of the trial value of F. The algorithm terminates if
the selected F allows i;,_,(t) to fit well the samples of
h(t) for teft,.D,], ie. “white” residuals are pro-
duced; otherwise a different F is selected and the proce-
dure is repeated. This strategy leads to results identical to
those obtained with the previously presented technique,
However, since the constraints on the parameters of
i;e(t) makes Eq. (5) satisfied for any value of F, this
strategy is much more demanding because an inspection

of f1,(¢) fit is required even for very wrong trial values
of F.

RESULTS

Figure 3 shows the results for a representative study,
The recirculation input #%(¢}, obtained by the first-order
interpolation of the raw artery IDC samples of Fig. |, is
shown (tgp panel} toget er with the estimated transport

SONP O . .
function A(¢) for .f-zp;oc‘mpu\te\d by deconvolution with
i~ 3 *

CEER
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FIGURE 4. Extent of recirculation in the vein IDC in a repre-
sentative subject (No. 4) caleulated from Eq. (18).

F=175 {middle panel) and the convolution of u(¢) with
ﬁ(!), i.e., the reconvolution profile 2(r), against the vein
IDC samples (bottom panel).

To assess the extent by which recirculation affects the
vein data, it is useful to define the function

.. D.
()= 5 k(D)

I(n= X100, {18)

(1)

whose numerator gives the difference between the model
predictions of what is observable in the vein. ie., £(1),
and what would have been observed if recirculation did
not occur, ie., (D/F)sz(r). Equation (18) thus gives
the percent weight of recirculation in the vein IDC. It is
easily understood that 7'(¢) is an estimate of a function,
which is expected to be monotonically increasing, and,
for t—=, to tend to the plateau value of 100. Figure 4
displays £(z) in the representative subject. Note that, for
instance, 20% of the indicator concentration in the vein
at r=12 is due to the presence of early recirculation,
while at r=435, recirculation contributes to 80% of the
datum.

Similar results have been obtained for all the other
subjects.

Of note is that, in three/four subjects, the area under
I;(r) for 1> D, resnlted up to 0.08. In other words, there
can be up to the 8% of probability that a particle leaves
the ideally open-loop system for times greater than D,.
This indicates that extrapolation is here a necessity at
variatice, e.g., of Ref. 8, where the probability that transit

SPARACING er al,

TABLE 1. Estimates of plasma flow, mean transit time, and
extracellular volume.

Subject F (ml/min) MTT {min) V {ml)

1 330 5.94 1960

2 240 10.24 2467

3 240 8.01 1923

4 175 1.M 1920

5 280 7.48 2096

5] 190 8.19 1556

7 230 8.61 1982

i 8 135 10,13 1368

9 275 9.75 2684

10 225 7.12 1603

11 235 9.62 2282

12 215 10.68 2296
Mean=8D 230=51 8.89+1.58 2002+=386

times go beyond D, was not significant and, in order to
avoid oscillations in /i to affect the estimation of MTT,
the transport function tail was simply forced to zero
when it was decreased down to 0.5% of the amplitude of
its peak, Results also indicate that, in order to improve
the robustness of the monoexponential model of the
transport function tail in these subjects, and thus. of the
MTT estimate, an increase of D, e.g., by 10 min, wouid
be beneficial; in addition. more samples in the IDCs tails
should be taken. The overall cost of the experiment
would not increase with this improved sampling schedule
since less data can be collected in the interval 8-25 min
(see the simulation study below).

Having obtained i;(r) from zero to infinity, the MTT
can be calculated in a straightforward manner. Subse- ,
quently, the extracellular volume V can be computed by
Eq. (3). Table 1 reports a summary of the results ob-
tained in the 12 human subjects. The mean MTT, F , and
V' are. respectively. equal to 8.897%1.58 min, 230
* 51 mi/min, and 2002+ 386 mt.

To assess reproducibility, the experimental protocol
was repeated on a separate occasion in subjects Nos. 7,
8, 9. and 11 under the same conditions. A summary of
the results together with their percent variations from the
previous study are reported in Table 2,

The estimates of F, MTT, and V are reasonable. In
fact, various direct measurement techniques?® provided

TABLE 2. Estimates of plasma flow, mean transit time, and extraceiiufar volume in the
reproducibility study, Percentage variations from the previous study (Table 1),

AMTT
Subject F {ml/min) AF% MTT {min) % V (mi} AV%
7 235 2 9.94 15 2338 17
8 1585 14 10.74 1665 21
9 210 —23 11.44 2396 - 10
11 225 -4 11.33 2550 12
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FIGURE §. Simuiation study. Top. True recirculating artery
IDC (continuous line) with one noisy simulated data set
(open bullets). Middle. True transport function h(f) for
te[0,67]. Bottom. True vein IDC (continuous line) with one
noisy simulated data set {open buliets).

blood flow values ranging from 150 to 500 mV/min.
Thus. the mean plasma flow we obtain is within the
expected range. In addition, since total leg volume in
humans ranges from 5 to 10 1, a mean extracellular
volume around 2000 mi is in line with expectations.

MONTE CARLO SIMULATION

In this section, the accuracy and the precision of the
method are assessed by a Monte Carlo study.

A functional expression was chosen for u®(s) and
h(t) (see the Appendix for details). The bolus contribu-
tion 10 u(r) of Eq. (4) was given by D=2X10* and F
=230. The “‘true”” MTT and V are 9.98 min and 2296
ml, respectively. 300 sets of simulated noisy samples of
the IDCs were generated by assuming an additive mea-
surement error. independent, and Gaussian with a con-
stant CV equal to 6%. An improved sampling grid was
chosen (see the Appendix}, with D, increased to 57 min,
more samples in the IDC tails and less in the interval
8-25 min. One of the 300 simulated data sets is shown
in Fig. 5 together with the true IDCs and transport func-
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FIGURE 6. Transport function Monte Carlo resuits, Top. True
h(t) (dashed line), mean () (continuous line) with 85% vari-
ability bands (shaded area) for te[0, 57}, Bottom, Tail of the

true A(t) (dashed line), mean of h,(#) (continuous line} with
95% variability bands (shaded area).

tion. Assuming F to be unknown, the method to recover
the transport function was applied to the 300 simulated
data sets. ‘

Figure 6 (top panel) shows, for re[0.D,], the true
A{t) and the mean of the 300 estimates };(t) together
with the 95% variability bands, i.e.. the interval between
the 2.5 and the 97.5 percentiles of the Monte Carlo
distribution of the estimate at each time point. The av-
erage h(t) is (slightly) biased in the interval 5-15 min
because of regularization.'” As expected, the variability
of I;(t) is larger for t<(5, i.e.. where smoothness is not
weighted (see Remark 2). Figure 6 also shows (bottom
panel), for te[45,70], the tail of the true A(¢) and the
mean of the 300 estimates ﬁe(t) together with their 95%
variability bands.

In each Monte Carlo run, MTT, F, and V were also
estimated. Figure 7 displays the histograms obtained
from the 300 simulations. Average values with CV for
MTT. F, and V are 9.82 (23%), 239 {6%), and 2361
(17%), respectively. Note that the mean MTT, F ,and V
are not significantly biased with respect to the ‘‘true”
parameter values. The slight underestimation of MTT
reflects the small bias of };(r) with respect 1o A(¢) in the
interval around 10 min. Note that. since the estimates of
F and MTT are somewhat correlated. the estimate of V
is less dispersed than that of MTT.

Additional simulation studies (not shown) were also
performed to assess if an extra modeling effort of ap-
proximating «®(¢) with techniques more sophisticated
than linear interpolation, e.g.. splines, would be benefi-
cial. No significant improvement was observed.
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CONCLUSIONS

The transport function of an extracellular indicator
through an organ. e.g.. the human skeletal muscle of the
leg. allows the computation of important physiological
parameters, e.g., the mean transit time of the indicator
from inlet to outlet and its distribution volume. The latter
quantity is of particular interest because, under particular
physiopathological conditions. it can significantly change
due to recruitment of new tissue.

In the presence of recirculation, the estimation of the
transport function is difficult because of both experimen-
tal and methodological problems. Here, in particular,
since the plasma flow was not directly measured. the
input IDC was not completely known and it was not
possible to apply the methods available in the literature
10 recover the transport function.

To attack the problem, we developed a methed which,
starting from the input IDC model of Eq. (4), jointly
estimates the transport function and the plasma flow. The
method is based on a recently presented nonparametric
deconvolution method and & monoexponential
interpolation/extrapolation  procedure, which approxi-
mates the tail of the transport function. The major ad-
vantage of the nonparametric approach to deconvolution
lies in the fact that it does not require dealing with
nontrivial problems such as system structure determina-
tion. The interpolation/extrapolation approach is para-
metric and has its basis on the linearity of the tracer
kinetics; however, in order to avoid identifiability prob-
lems. a suitably designed sampling schedule and experi-
ment duration is necessary. It is also worth noting that
the input IDC could be modeled as in Eq. (4) only
because the tracer bolus injection was very fast (about
1.5 st with respect to the minimum transit time of the
system (in our case, results predict that the probability
that a transit time is less than 30 s is of the order of 1%):
in well-perfused organs {where transit times may be very
short), the validity of Eq. (4} can be critical.

The accuracy and the precision of the method were
assessed by a Monte Carlo strategy. The good Monte
Carlo results, together with the satisfactory reproducibil-
ity. encourage the use of the method presented in this
paper for studying the transport of extracellular tracers in
various physiopathological situations. For instance. stud-
ies with *H-mannitol can be carried out to assess if, in
both normal and diabetic humans, the extracellular vol-
ume of the skeletal muscle is influenced by insulin.

ACKNOWLEDGMENTS

This work has been partially supported by a MURST
grant '‘Bioingegneria dei Sistemi Merabolici e Cellu-
fari.’”” by National Institutes of Health Grant Nos. RR-

SPARACING &7 al.

Megn Transit Time

Gl —
: ! .
207 i T :
st Pl f— :
105 - S L : 1
sr- ' i ! L : :
] I ] LI ' I
c’ H ; { L ! i o
[ 10 12 14 16 18

mu

Plasma Flgw

#15 Lo '
! H
! 1|
i '
! misn
.l —— . | ' ;I 2 B
80 180 200 210 220 230 240 250 280 b2 289
mYmin

0 150¢ 2000 2500 3000 3500

FIGURE 7. Monte Carlo frequency distribution of the param-
aters, Top. MTT. Middle. F. Bottom. V. Equally spaced bins
are used in each panel. Dashed-dot lines denote true param-
eter values,

11095. RR-02176, DK-42469, M01-RR-750-19. and DK-
20542, and by a Veterans Affairs Merit Review grant.

APPENDIX

In this appendix we report some details on the Monte
Carlo study.
The recirculation input #%(r) is

El
u¥(1)=2, Be P+ Bore Psl, (A

i=1|

B =14000. B,=0.005, By=4000. B,=005. B,
=6500. ﬁJ:O.I, 841_(B]+BE+BJ), ﬁ.,‘:D.S. 85
=000, 85=1.6. and =4,

The_transport function is
R TS

3
h(t)y=2, A, (A2)

i=1
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with  A,=0.0173.
=06243. A5= _'(Al +A2+A3+A4),
=0.1. a3=0.5. a,=1, and as=1.2.

The sampling grids are: Q,=0,={04.08. 1.2 1.6,
2.6,3.6, 5, 7.6. 10. 14, 19, 24, 29,33, 37, 41. 45, 49, 53,
and 57}.

A;=00173. A,=03468. A,

a;=0.05, a,
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