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SUMMARY

In this paper a numerically developed homogenized constitutive relation for the global behaviour of periodic
composite materials with elasto-plastic components is derived. The algorithm presented is general and can
be applied to any kind of non-linear material behaviour respecting the complementarity rule. The method,
di!erent from those presented in the literature, is currently restricted to small strains, plane problems and
monotonic proportional loading conditions. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modern technical applications require more and more the use of arti"cial heterogeneous
materials which may be characterized by good mechanical properties (for example high sti!ness
and low weight) or may be designed to satisfy special technological purposes [1].

Many of such composite materials have a periodic structure at micromechanical level. We refer
to this type of materials. Homogenization, in the case of linear elastic behaviour of the component
materials, has been extensively studied [2}6], while the transfer between micro (local) scale and
macro (global) scale in case of non-linear material properties is still a research topic. In such a case
every integration point, in a "nite element analysis at macroscopic level, may undergo a di!erent
stress history. A series expansion of the relevant variables, as in the linear case, may become
problematic.

We present here a procedure of transfer of information between the two scales, which is quite
general. The heterogeneous body, at microscale level, may be a continuum or even a discon-
tinuum following the complementarity rule. Through local analysis on a Representative Volume
Element (RVE) we de"ne, in a global stress space, a series of interpolation points. From these all
the necessary information is extracted to carry out at macroscopic level a conventional elasto-
plastic analysis of an equivalent continuum.



Figure 1. Periodic structure (macroscopic reference (X
1
, X

2
)) and single cell of periodicity (microscopic reference (>

1
, >

2
))

We show here the procedure for microscopic elasto-plastic behaviour of the components. After
description of the procedure, a series of numerical tests shows the applicability and the accuracy
of the method.

2. HOMOGENIZATION

A composite material is periodic if, for any mechanical or geometric property a (for example the
constitutive tensor), it is possible to write (see Figure 1)

if x3) and (x#y)3)Na (x#y)"a (x) (1)

In equation (1), ) is the domain occupied by the periodic medium and y is the (geometric) period
of the structure.

The characteristic size of the single cell of periodicity is assumed much smaller than the
geometrical dimensions of the global structure.

To reduce the enormous computational cost required by a "nite element discretization of such
kind of structures, some homogenization techniques were introduced, with acceptable results, to
solve linear problems [2}7]. Those methods are based on an asymptotic expansion of the
mechanical quantities in two variables linked with two di!erent length scales [8]: the macro-
scopic scale (called X in Figure 1), relative to the whole structure, in which the dimensions of the
heterogeneities are very small, and the microscopic scale (called > in Figure 1), relative to the
single cell of periodicity, which is the scale of the heterogeneities.

The approaches relative to linear problems are generally based on the principle of superposi-
tion and, therefore, are not applicable in the case of non-linear problems.

The three fundamental steps of a homogenization method are summarized as follows [9]:

(1) De"nition of a representative volume element (RVE), small enough to distinguish the
microscopic heterogeneities and large enough to represent the overall behaviour of the
heterogeneous medium.
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(2) De"nition of macroscopic quantities (indicated in the following with capital letters) starting
from microscopic ones (indicated in the following with lower case letters) through an
averaging process. In the case of stress and strain tensors

&
ij
"

1

< P
V

p
ij

d<, E
ij
"

1

< P
V

e
ij
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where < is the volume of the cell of periodicity and p
ij

and e
ij

are, respectively, local (or
microscopic) stress and strain tensors while &

ij
and E

ij
are global (or macroscopic) stress

and strain tensors. Equations (2a) and (2b) de"ne macroscopic stresses and strains which
are assumed to be linked by a macroscopic constitutive law. Such a law can be constructed
starting from the constitutive relations of the single components and the geometry of the
unit cell; this step is often referred to as homogenization procedure (Section 4).

(3) Derivation of microscopic quantities from macroscopic ones through a localization proced-
ure which, in case of stress analysis, can be called stress-recovery procedure (Section 5).

In the case of periodic composite materials the choice of the RVE is naturally made by choosing
the unit cell as RVE. This paper aims at de"ning a homogenization procedure and a stress-
recovery procedure for the case of elasto-plastic components. The proposed method does not
assume any preliminary hypothesis about the global quantities (for instance the global anisot-
ropic yield criterion) and allows a large class of di!erent constitutive behaviours, all those which
obey the complementarity rule, to be described.

The current version of the method is applicable only in the case of plane situations, monotonic
proportional loading and small strains but we believe that it can be extended to more generic
situations.

The method presented in this paper represents an alternative approach with respect to those
presented in the literature [10}14] and more recently in [15}17].

3. BASIC CONCEPTS

The given data of the problem are: geometry of the RVE, elastic properties and yield stress of the
elasto-plastic components, while the macroscopic quantities that have to be determined are
elastic frontier, #ow rule, hardening law and the extremal surface of the global homogenized
material. In other words, our aim is to determine the global elasto-plastic constitutive law

&
ij
"&

ij
(E

kl
) (3)

Given the nature of the components, the microscopic stress "eld is constrained by the usual
relation

r(y)3P(y) (4)

where P(y) is the set of stress states that the material can admit in the space of stresses. P(y)
depends only on the single material and hence on the position y in the RVE.

P(y) can be de"ned by means of a yield function f (y, r):

P (y)"Mr D f (y, r))0N (5)
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which in the common case of metals P(y) assumes the von Mises form:

P(y)"Mr DJ3
2
s
ij
s
ij
!r

0
(y))0N (6)

where s
ij

denotes the deviatoric part of the stress tensor and r
0
(y) the yield stress at point y.

Since local stress states r must lie within the set given in equation (4), it seems reasonable that
all physical global stress states R are contained in a macroscopic (or e!ective) domain P%&& whose
frontier is called global (or e!ective) extremal yield surface [7]:

R3P%&& (7)

The global constitutive behaviour of the homogenized material presents an initial range with
a linear relation between global strains and global stresses followed by a non-linear range.

In this paper an algorithm for the non-linear range of the behaviour is described.
It is clear that the global behaviour of the cell can present some kind of hardening even if the

single components are perfectly plastic because the unit cell is a statically undetermined structure.

4. HOMOGENIZATION PROCEDURE

4.1. Boundary conditions

The basic idea of the method presented in this paper is to assume the unit cell as mechanical
element which determines the global constitutive law of the material. Therefore, if the relation
which links &

ij
to E

kl
in the unit cell is known, the global constitutive behaviour of the composite

material is known and given by relation (3).
In the case of monotonic proportional loading, we may simulate a large number of di!erent

loading paths on the unit cell in such a way that any generic monotonic proportional loading can
be approximated by an interpolation between some paths previously simulated.

One of the main problems in this approach is that the unit cell on which the di!erent loading
paths are simulated is constrained in a way which cannot represent all the possible in situ
conditions.

In the literature on homogenization of composite materials there are several di!erent boundary
conditions applied to RVE. In the case of periodic composite media, periodic boundary condi-
tions on L< are usually adopted (Figure 2):
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periodic on L< (8a)
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ij
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anti-periodic on L< (8b)

where u
i
"(u

1
, u

2
), for planar problems, is the displacement applied to the boundary of the cell

and is the sum of two contributions: a linear part given by E
ij

y
j
and a periodic part u*

i
which

gives no contribution to the global problem.
In this case the boundary of the unit cell is decomposed in two parts

L<"L<
1
#L<

2
(9)
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Figure 2. Periodic boundary conditions on a quadratic cell with circular inclusion: undeformed con"guration

Figure 3. Periodic boundary conditions on a quadratic cell with circular inclusion: deformed con"guration

Figure 4. Periodic boundary conditions on a quadratic cell with circular inclusion: periodic component of the
deformations

and each point P
1
:"P

1
3L<

1
has a corresponding point P

2
:"P

2
3L<

2
(see Figure 1) such that

(p
ij
n
+
)
P2
"!(p

ij
n
j
)
P1

(10)

This is the meaning of the anti-periodicity condition (8b).
In Figure 3 the deformed con"guration and in Figure 4 the periodic component of the

deformation of the cell of Figure 2 with periodic boundary conditions are shown.
These boundary conditions can represent, in an acceptable manner, the in situ con"guration

only in a region far from the real boundary of the global structure where arbitrary restraint
conditions are in general applied.
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From a numerical point of view, the periodic boundary conditions can be easily imposed in
many general purpose "nite element codes. In fact, if we consider two corresponding points P

1
,

P
2

of the unit cell, equation (8a) implies the following relation between their total displacements

u
i
(P

2
)!u

i
(P

1
)"E

ij
(y

j
(P

2
)!y

j
(P

1
)) (11)

Such a linear relation between two displacements can be imposed as boundary condition in many
"nite element codes when the global small strain E

ij
is given, whereas relation (8a) is automati-

cally satis"ed if we consider, as we do, symmetric unit cells.
Moreover, it is possible to show that, in the case of symmetric unit cell, the periodic component

of the displacement u* is zero at the corners of the cell. Therefore, the global strain tensor E
ij

can
be imposed by applying to the corners the displacements u

i
"E

ij
y
j
and to the other points of the

borders the periodic boundary conditions (11).

4.2. Numerical experiments

Given a unit cell on which the periodic boundary conditions (11) are imposed, the problem to
be solved is to "nd the constitutive law of the homogenized material (3). The unknown relation (3)
is numerically obtained by solving a &large' number of &local problems' given on the unit cell
[18}20]:

G
microscopic constitutive laws

div p"0 micro-equilibrium

E
ij
"

1

< P
V

e
ij

d<"Aa0#
a
0
c

mB E0
ij

given

(13)

In equation (13) E0
ij

indicates the direction of the loading path in the strain space, a
0

is a strain
multiplier which allows the "rst yielding in some points of the RVE to be reached and m"0, 1,
2, . . . , m

max
indicates the number of loading steps which follow the "rst &elastic' step; in the

numerical example shown in Section 6 we choose m
.!9

"25.
A global strain tensor E0

ij
is imposed to the cell and it is monotonically increased to generate

a kinematic loading path: in particular, a &large' elastic step is applied so as to reach the global
elastic frontier, which is de"ned as the set of points, in the stress space, corresponding to the "rst
yielding of any point of the unit cell for a "xed loading direction E0

ij
.

Then m
.!9
&small' load increments are applied to induce plastic deformations in the unit cell

(Figure 5), each &small' load increment is equal to 1/c times the "rst (elastic) increment.
The homogenized stress tensor &

ij
is computed, by means of equation (2a), for each step of the

load history. Therefore, we have one point, in the stress space, for each load step; all the points
characterized by the same E0

ij
form a loading path in the stress space. These points are called

interpolation points: here the behaviour of the homogenized material (and precisely the value of
the homogenized strains E

ij
and stress &

ij
) is known.

Repeating the procedure for several di!erent given tensors E0
ij

we know the behaviour of the
homogenized material in a discrete number of points and for a discrete variety of load situations.

Now we introduce a simplifying hypothesis: we assume that all the interpolation points, on
di!erent loading paths, characterized by the same number of steps, are on the same &plastic
surface', i.e. they are labelled by the same value of an internal variable k. By connecting points
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Figure 5. Generic load path in the three-dimensional stress space

Figure 6. Load paths, plastic surfaces and interpolation points in the plane &
11
}&

22

relative to the corresponding steps of di!erent loading paths it is possible to obtain a series of
&plastic surfaces' generated by the numerical experiments. We have however to stress that these
surfaces are not essential for our procedure. What matters are the interpolation points themselves
together with the internal variable k (see Remark 4.1).

In Figure 6 we show some loading paths and plastic surfaces with the relative interpolation
points; for clearness everything is represented in the plane &

11
}&

22
.

Let us consider, as an example, the cell of periodicity of Figure 7.
For the sake of simplicity the shear deformation will be equal to zero, so that only one

parameter, the ratio E
11

/E
22

, indicates the strain direction of the loading path which can be
represented in the stress plane &

11
}&

22
.

The cell is quadrangular and composed of two di!erent materials: a weak matrix and a strong
inclusion. The two materials are, in this case, isotropic and elastic perfectly-plastic with von Mises
associative plasticity.

NUMERICAL HOMOGENIZATION 1615

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1609}1637 (1999)



Figure 7. Geometric data of the cell of periodicity used to validate the procedure

Figure 8. Load paths and plastic surfaces for the cell of Figure 7

Geometric data:
¸
1
"20 mm d

4530/'
"8 mm

¸
2
"20 mm

Mechanical characteristics:
Inclusion (strong): Matrix (weak):

E"2)1 E#05 MPa E"2)1 E#04 MPa
l"0)18 l"0)18
p
Y
"220 MPa p

Y
"100 MPa

In Figure 8 the load paths and the "rst "ve &plastic surfaces' are shown.
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Figure 9. Interpolation of the stresses and of the #ow direction

4.3. Numerically developed elasto-plastic constitutive law

The behaviour of the material is linear up to the most interior closed curve of Figure 8, #ow
rule and hardening law have to be de"ned for the homogenized material beyond it.

In the space of global stresses, each interpolation point belongs to a loading path and to
a &plastic surface', therefore it is characterized by the values of three variables: the ratios E0

11
/E0

22
,

E0
12

/E0
22

and k.
For the homogenized elasto-plastic material the consistency condition is assumed as

R(x)3S%&& (x) (14)

where S%&& is the e!ective elastic domain. The size, shape and position of S%&& in the global stress
space varies in an unknown manner. In a way analogous to the homogeneous case we assume
that S%&& is contained in a yield surface

S%&&(x)"MR D f (R)"&
0
(x)N (15)

being &
0
(x) the global yield stress to be chosen.

Once the function f (R) has been de"ned, the yield stress &
0
(x) is known at the interpolation

points, and to obtain its value in a generic point of the stress space we can linearly interpolate
among the corners of the region where the current stress state lies (see Figure 9). This region
will be called &patch'. For clarity reasons, Figure 9 is drawn in the plane &

11
}&

22
but the

procedure has been developed for the full plane stress case and therefore a three-dimensional
interpolation is carried out. The patches in the three-dimensional space of global stresses are
shown in Section 6.

In principle, it would seem possible to compute a six-dimensional interpolation for a com-
pletely generic stress case.
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It is now necessary to derive the -ow rule which can be written, in a standard form, as follows
(radial return mapping algorithm):

R:"!R53#Rn#kQ Dm"0, k*0 (16)

where D is the elastic constitutive tensor obtained with the elastic homogenization [5, 6], kQ is the
increment of the plastic #ow, m is the &#ow direction' and R53, Rn the global stresses.

The &#ow direction' (which refers to an unknown plastic potential) can be calculated, at each
interpolation point, in the following manner (see Figure 9): starting from an interpolation point
on the &plastic surface' (n!1), one multiplies the known strain increment *E by the elastic
e!ective tensor D, obtaining the trial stress R53. Since there are plastic deformations in some part
of the unit cell, the strain *E actually generates the new stress Rn, di!erent from R53. The &#ow
direction' at the interpolation point at the level (n!1) can therefore be computed as

m"

1

kQ
D~1 [R53!Rn]""

1

kQ
[*E!D~1 Rn] (17)

The value of kQ has been arbitrarily chosen to be 0)1, hence the quantity m does not give only an
information about the #ow direction but also about the amount of the plastic #ow.

Since for m the interpolated value is taken and not the derivative of any consistency condition,
with this method both associative and non-associative plasticity can be indi!erently taken into
account.

Once consistency condition and #ow rule have been determined, the global constitutive law is
fully de"ned and can be assumed as constitutive law of the homogenized material.

Remark 4.1 (A clari,cation about the de,nition of 0plastic surfaces1). These surfaces are simply
the geometrical locus of points which are in some sense &equivalent' along di!erent loading paths
[20, 21]. The interpolation points on the same &plastic surface' are simply characterized by the
same number of loading steps along di!erent loading paths, therefore these &plastic surfaces'
(except the "rst one) do not limit a region of the stress space in which the behaviour of the
material is linear: in fact, in case of more general loading conditions, starting from a point on the
mth &plastic surface' along the nth loading path and reversing the kinematic loading, the material
behaves linearly in an interval smaller than the &diameter' of the mth &plastic surface' in the
direction of the nth loading path. See [21] for a better clari"cation.

This indicates that there exists a kinematic component of the global hardening which is
neglected by our method.

Remark 4.2 (About the extremal yield surface). If the number of loading steps is su$ciently large
and the single components are elastic perfectly plastic it is reasonable to assume that the "nal
point of the loading path lies in a position very close to the extremal yield surface [8]. If the single
components are characterized by an associative #ow rule, the plastic strain increment is normal
to the extremal yield surface and the method may also be used to "nd such a surface. This
possibility fails in the case of surfaces with corners which would attract a set of loading paths
characterized by a strain increment oriented along a direction internal to the cone of the surface
corner [22].

Remark 4.3 (About associative and non-associative -ow rules). The &plastic surfaces' previously
introduced give only a graphical representation of the non-linear material behaviour but they are
not the e+ective plastic surfaces. Therefore, the normality rule exhibited by the constituents does
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Figure 10. Geometry and boundary conditions of the periodic structure

not give any information on the global behaviour indicated by these surfaces [23]. Consequently,
the numerical elasto-plastic algorithm should not rely on any kind of normality rule.

4.4. Global problem

At this point a global problem can be solved.
Let us consider a periodic structure subjected to given external loads F and to given boundary

conditions; the global displacements can be found solving the problem

G
macroscopic constitutive law

div &"F macro-equilibrium

global boundary conditions

(18)

5. STRESS-RECOVERY PROCEDURE

The solution of the global problem (18) gives a reasonably good estimate of the displacements of
the structure. Nevertheless, very often stresses are the most relevant mechanical quantities but
they cannot be easily derived from global displacements.

The global solution is used to evaluate the local distribution of micro-stresses by solving a local
problem (13). This is the third step of the homogenization procedure summarized in Section 2.

If the stress distribution in a speci"c region is wanted, we take into consideration the
integration points used in the global solution which are close to the examined region of the real
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Figure 12. Geometrical data of the cell of periodicity used for numerical applications

Figure 11. Comparison between vertical reactions of the homogeneous and heterogeneous models

structure. If the number of unit cells is high a single integration point corresponds to a group of
cells. The strains computed in the global solution are assumed as global strains of the investigated
cell (or group of cells); in general the "nite element computation gives a sequence of n values of
strains if the load history is composed of n load steps. Such a sequence of values is taken as load
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Figure 13. Load paths for the cell of Figure 12

history on a unit cell with periodic boundary conditions and the following local problem is
solved:

G
microscopic constitutive laws

divp"0 micro-equilibrium

E
ij
"E

ij
(t) given by the global problem

(19)

The solution of such a local problem gives a stress distribution which constitutes a good
approximation of the real one, as shown in the next section.

6. NUMERICAL EXAMPLES

6.1. Validation of the method

In this paragraph we carry out a computation adopting the same discretization (180 elements
and 197 nodes) for both the heterogeneous and the homogeneous case. In this way we evaluate
the error caused by all the approximations involved in the method.

Figure 10 shows a periodic structure with 15 cells as the one shown in Figure 6.
The vertical displacements of the bottom edge and the horizontal displacement of the bottom

left corner are restrained to zero. A constant distribution of monotonically growing vertical
displacements is applied to the top edge.
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Figure 14. Plastic surfaces for the cell of Figure 12: projections on the three planes of reference

Figure 15. Patches and interpolation points in the three-dimensional stress space
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Figure 16. Three-dimensional view and level curves of the "rst plastic surface

The problem is solved, using the same discretization and two di!erent material descriptions:

1. heterogeneous model, which describes the real material distribution and the real mechanical
characteristics of the single components;

2. a homogeneous model with the numerical constitutive law, described in the previous
sections.

A comparison of the sum of the vertical reactions at the bottom edge calculated with the two
di!erent models is shown in Figure 11. We can note that the error induced by the homogenization
procedure is never larger than 5 per cent.

We consider the sum of the vertical reactions in order to have global quantities which are
comparable using the two models.

6.2. Numerical applications

With the following numerical applications it is possible to deduce some indications about the
applicability and the potentialities of the method.
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Figure 17. Three-dimensional view and level curves of the last plastic surface

Consider the rectangular cell described in Figure 12. The cell is composed of two di!erent
materials (weak and strong) and of a central void part. The two materials are isotropic and elastic
perfectly plastic with von Mises associative plasticity.

Geometric data: Mechanical characteristics

l
1
"30 mm t

4530/'
"3 mm Strong: =eak:

l
2
"21)3 mm t

8%!,
"0)9 mm E"2)1 E#05 MPa E"2)1 E#04 MPa

l"0)18 l"0)18
p
Y
"220 MPa p

Y
"100 MPa

In Figure 13 the projections of the loading paths on the plane &
11
}&

22
and on the plane

&
11
}&

12
are represented.

1624 C. PELLEGRINO, U. GALVANETTO AND B. A. SCHREFLER

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 46, 1609}1637 (1999)



Figure 19. Heterogeneous model for numerical examples 1}3 (48 cells)

Figure 18. Periodic structure for numerical examples 1}3 (48 cells)

To obtain the three-dimensional surfaces and the numerical constitutive law we simulate 153
load cases but, owing to the symmetries with respect to the origin of the axes &

11
}&

22
}&

12
and

the plane &
11
}&

22
, they represent 580 loading paths.

In Figure 14 the projections of the plastic surfaces in the planes &
11
}&

22
, &

11
}&

12
, &

22
}&

12
are

shown. Some of the patches are represented in Figure 15.
Three-dimensional views and contour representations of the "rst and of the 25th plastic

surfaces are, respectively, shown in Figures 16 and 17. We have shown only the half-space with
the positive &

12
, the other part is clearly symmetric with respect to the plane &

11
}&

22
. We believe

that the 25th surface is a good approximation of the extremal yield surface.
Now we consider a periodic structure with 6]8"48 cells (Figure 18).
The horizontal displacements of the left edge and the vertical displacement of the bottom left

corner of the periodic structure are restrained to zero. A linear distribution of horizontal
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Figure 20. Homogeneous model for numerical example 1

Figure 21. Homogeneous model for numerical example 2

displacements is applied to the right edge: the absolute value of ratio between the top and the
bottom displacement is equal to 3. A uniform distribution of vertical displacements is further
applied to the right edge.

The heterogeneous model of the structure, which describes the real material distribution and
the real mechanical characteristics of the single components, is discretized with 6984 elements and
8363 nodes (Figure 19) and is solved with ABAQUS code [24].

Three homogeneous models are considered:

Example 1: 4 elements and 9 nodes (1 element"12 cells)*Figure 20.
Example 2: 12 elements and 20 nodes (1 element"4 cells)*Figure 21.
Example 3: 48 elements and 63 nodes (1 element"1 cell)*Figure 22.
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Figure 22. Homogeneous model for numerical example 3

Figure 23. Comparison of reactions (example 1)

Figure 24. Comparison of reactions (example 2)
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Figure 25. Comparison of reactions (example 3)

The vertical and horizontal reactions at the left edge are compared to those of the equivalent
heterogeneous model of Figure 19.

The comparison between the reactions in the two models is shown in Figure 23 for example
no. 1, in Figure 24 for example 2 and in Figure 25 for example 3 (the reactions of the heterogen-
eous model are integrated along the restrained boundary in order to have quantities comparable
with those obtained with the homogeneous model).

Observing the results, it is clear that the values of the reactions of the homogeneous model
become nearer and nearer to the values of the reactions of the heterogeneous one when the
number of elements in the homogeneous model become larger.

It should be noted that the homogeneous model gives values of the reactions which are higher
than the corresponding values of the heterogeneous model (the homogeneous model is more rigid
than the heterogeneous one).

Example 4: Finally, we take into consideration a structure with 192 cells of periodicity. In this
case the discretization of the heterogeneous model requires 32 855 nodes and 27 792 elements
(Figure 26) while the homogeneous model consists of 63 nodes and 48 elements (Figure 27). The
comparison between the horizontal and vertical reactions of the two models is represented in
Figure 28. We observe that the maximum di!erence between the values of the reactions of the two
models does not exceed 3 per cent and that the time of execution is clearly reduced in the
homogeneous case. Moreover it is worth to observe that our research code is not optimized and
therefore a further increase of the velocity of homogeneous solution can increase the di!erence
between this one and the heterogeneous solution.
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Figure 26. Heterogeneous model for numerical example 4 (192 cells)
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Figure 27. Homogeneous model for numerical example 4
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Figure 28. Comparison of reactions (example 4)

Table I. Comparison of results

Heterogeneous model Homogeneous model

Ex. No. Nodes Elem. Exec. Nodes Elem. Exec.
Max di!.

(%)

1 8363 6984 100 min 9 4 20 min 20.00
2 8363 6984 100 min 20 12 50 min 5.06
3 8363 6984 100 min 63 48 260 min 4.81
4 32855 27792 634 min 63 48 300 min 3.07

A summary of the results of the four examples is shown in Table I.

Example 5: In this case the structure with 192 cells is subjected to the system of external forces
in Figure 29. Our aim is to obtain, with a stress-recovery procedure, the stress distribution, in the
real material components, in a zone of interest of the structure.

Consider the cell evidenced in Figure 29. In this particular case it is possible to associate
a Gauss point to each cell; in a more general cases it would be always possible to de"ne, in some
way, the global deformation corresponding to the analysed cell. In the homogeneous model we
point out in Figure 30 the Gauss point &corresponding' to the cell of interest. In this point we
know the values of the global strains. We apply, by means of the periodicity conditions, these to
the cell of periodicity and obtain the corresponding stress distribution.

In Figure 31(a) and 31(b) contours of the von Mises stresses, obtained with the heterogeneous
model and with the homogeneous solution and the stress recovery procedure, are shown.
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Figure 29. Cell of periodicity in which the distribution of stress has to be calculated (example 5)
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Figure 30. Gauss point in the homogeneous model corresponding to the considered cell
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Figure 31. (a and b) Von Mises stress distribution in the considered cell calculated with the heterogeneous model and with the homogeneous solution
and the stress recovery procedure
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Figure 31 (continued )
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It is apparent that the stress distribution obtained with the homogeneous model constitutes
a good approximation of the heterogeneous solution.

7. CONCLUSIONS

A homogenized constitutive relation for periodic composite media with non-linear material
components has been de"ned.

The method is valid for small strains, plane problems and monotonic proportional loading.
Such a procedure allows for considerable reduction of the computational e!ort needed for
"nite element analyses of real composite structures and it is applicable both to associative and
non-associative plasticity. Moreover it does not assume any a priori form of yield surface or
hardening mechanism but it closely follows the behaviour of the material.

It allows to obtain the real stress distribution in a generic zone of interest of the real composite
structure by means of a simple stress-recovery procedure.

General numerical examples have shown the potentialities and the applicability of the method.
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