CASE REPORT

Shift from Conn's syndrome to Cushing's syndrome in a recurrent adrenocortical carcinoma

L Barzon, G Masi, K Fincati, M Pacenti, V Pezzi¹, G Altavilla², F Fallo³ and G Palù

Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via A. Gabelli 63, I-35121 Padova, Italy ¹Department of Pharmaco-Biology, University of Calabria, Arcavacata di Rende, Cosenza, Italy and Departments of ²Pathology and ³Medical and Surgical Sciences, University of Padova, Via A. Gabelli 63, I-35121 Padova, Italy

(Correspondence should be addressed to L Barzon; Email: luisa.barzon@unipd.it)

Abstract

Objective: Adrenocortical tumors may originate from the zona glomerulosa, zona fasciculata, or zona reticularis and be associated with syndromes due to overproduction of mineralocorticoids, glucocorticoids, or androgens respectively. We report an unusual case of recurrent adrenocortical carcinoma (ACC), which seems to contradict the paradigm of functional adrenal zonation.

Case report: A male patient presented with severe primary aldosteronism due to an ACC, which relapsed after adrenalectomy and adjuvant mitotane therapy. After removal of the tumor recurrence and eight cycles of chemotherapy with etoposide, doxorubicin and cisplatin, the patient presented again with ACC masses, but in association with overt Cushing's syndrome and normal aldosterone levels.

Methods and results: Extensive pathologic examination showed that this shift in steroid hormone production was paralleled by an attenuation of tumor cell atypia and polymorphism, whereas gene expression profile analysis demonstrated a change in expression of adrenal steroidogenic enzymes. Moreover, cancer progression was associated with overexpression of the inhibin- α subunit, which could have contributed to the phenotypic changes.

Conclusions: This case of recurrent ACC demonstrates that adrenocortical cells can reverse their differentiation program during neoplastic progression and change their specific hormone synthesis, as a consequence of modifications in the expression profile of steroidogenic enzymes and cofactors. We hypothesize that this shift in steroid hormone secretion is a consequence of chromosome amplification induced by chemotherapy. These findings, besides opening new perspectives to study adrenocortical cell plasticity and potential, demonstrate how conventional clinical and pathologic evaluation can be combined with genomic analysis in order to dissect thoroughly the biology of cancer.

European Journal of Endocrinology 153 629–636

Case report

A 42-year-old man presented with severe hypertension (blood pressure, 200/120 mmHg) and hypokalemia (serum K⁺, 2.2 mmol/l). Endocrine evaluation showed elevated plasma and urinary aldosterone levels (upright plasma aldosterone, 1371 pmol/l; normal values, 140– 830 pmol/l) with suppressed plasma renin activity (PRA) (upright PRA, 0.1 ng/ml per h; normal values, 1.5–6 ng/ml per h), whereas cortisol, adrenal androgens and testosterone were within the normal range (Fig. 1). In particular, 24 h urinary free cortisol was 135 nmol/24 h (normal values, 82-330 nmol/l); plasma cortisol at 0800 h was 415 nmol/l (normal values, 138-550 nmol/l; at 1800 h, plasma cortisol was 287 nmol/l; and in the morning, 1 mg dexamethsone suppression test was 115 nmol/l (normal response, <138 nmol/l). Abdominal computed tomography (CT) scan demonstrated a 5 cm right adrenal mass, which was diagnosed as adrenocortical carcinoma (ACC) at histologic examination. After adrenalectomy, the patient received adjuvant mitotane therapy at doses up to 10 g/day, but after 9 months the patient presented again with isolated severe aldosteronism associated with a 3×5 cm tumor relapse in the right adrenal region and lymph-node and skin metastasis. The patient underwent complete removal of the tumor masses, followed by eight cycles of chemotherapy with etoposide, doxorubicin and cisplatin for residual disease. Notwithstanding initial control of the disease, tumor recurrence was identified by CT scan after about 8 months. Clinical examination demonstrated weight gain with central obesity (body-mass index change from 26 kg/m^2 at diagnosis to 31 kg/m^2), whereas endocrine investigations

Figure 1 Plasma aldosterone and cortisol levels in a patient with ACC during the course of his disease. The red hatching indicates normal values; vertical hatching, upright plasma aldosterone, 140–830 pmol/l; horizontal hatching, plasma cortisol at 0800 h, 138–550 nmol/l. Mitotane doses are reported in grams per day; EDP: etoposide, doxorubicin, cisplatin; IG: irinotecan, gemcitabine.

elevated 24 h urinary revealed free cortisol (528 nmol/24 h), plasma cortisol (plasma cortisol at 0800 h. 615 nmol/l), plasma dehvdroepiandrosterone sulfate (DHEA-S) (32.7 µmol/l; normal values. $0.5-9.0 \,\mu$ mol/l), and androstenedione (26.4 nmol/l; normal values, 2.0-9.2 nmol/l) values; undetectable plasma adrenocorticotropic hormone (ACTH); and normal levels of plasma aldosterone and PRA. Plasma and urinary cortisol were unresponsive to the highdose dexamethasone suppression test. The patient was operated again to remove three abdominal masses of 7. 5.5 and 5 cm in maximum diameter, and subsequently treated with second-line chemotherapy with irinotecan and gemcitabine. Eventually, the patient died from persistent hypercortisolism and metastatic disease at 24 months after diagnosis (Fig. 1).

Results and discussion

ACC is a rare and very aggressive cancer with poor prognosis. About half of cases are hormonally active and associated with clinical features of hypercortisolism (Cushing's syndrome), virilization, feminilization, or, rarely, primary aldosteronism (Conn's syndrome). Mixed syndromes due to overproduction of different steroid hormones and steroid precursors are also frequently observed.

This case of recurrent ACC attracted our attention because of the atypical clinical presentation, characterized by a shift from primary aldosteronism to Cushing's syndrome during tumor progression. This shift in adrenal steroid synthesis, which has been very rarely reported in the literature (1-3), seems to contradict the paradigm of functional adrenal zonation, according to which the three zones of the adult adrenal, that is, zona glomerulosa, zona fasciculata and zona reticularis, have specialized steroidogenetic activity, being committed to produce mineralocorticoids, glucocorticoids and androgens respectively.

In order to investigate the mechanism at the basis of this endocrine shift, we performed a thorough pathologic, genetic and gene expression profile analysis of the primary lesion and its recurrences. The patient gave written, informed consent for the scientific evaluation of the tumor samples.

Pathologic examination revealed quite variable findings, since cells of the primary tumor and the first recurrence showed great polymorphism and atypia, frequent and atypical mitoses, and no evident organoid growth pattern (Fig. 2A). In contrast, metastases of the second relapse showed monomorphism of the tumor

Figure 2 Pathologic examination of ACC specimens (A–C): A) hematoxylin and eosin (HE) staining of abdominal lymph-node metastasis from the primary ACC, showing polymorphic cells with wide eosinophil dense cytoplasm, atypical central nucleus of variable size and with chromatin, and no evident organoid growth pattern. Mitoses were very frequent and often atypical (mitotic index $> 20 \times 10$ high-power field); necrotic areas and vascular tumor cell invasion were also frequent. B) HE staining of a skin metastasis from the second ACC recurrence, showing monomorphism of the tumor cell population with a nodular growth pattern simulating an organoid structure. The neoplastic cells had large eosinophilic cytoplasm, but this was more regular than in the primary ACC and first recurrence, and nuclei were less variable in size and chromatin distribution. Mitosis was found, but necrosis was absent. Analysis of α -inhibin antibody (Serotec Ltd, Oxford, UK; 1:50) demonstrated positive staining in these second

metastatic cells (C), but not in the primary ACC and first recurrence. Representation of steroidogenic enzyme expression in ACC specimens as determined by real-time quantitative RT-PCR and DNA microarray analysis (D and E). Comparisons between (D) primary ACC and normal adrenal cortex, (E) second ACC recurrence and normal adrenal cortex, and (F) second recurrence and primary ACC. Genes showing at least a twofold difference in expression between samples were considered under- or overexpressed. Upregulated genes are represented as red boxes; downregulated genes as green boxes; no significant differential expression as yellow boxes. Results are consistent with the prevalence of the aldosterone biosynthetic pathway in the primary ACC and a shift to the androgen and gluocorticoid biosynthetic pathway in the second ACC relapse.

www.eje-online.org

Table 1 Results of microarray analysis of expression of steroidogenic enzymes and transcription factors in the recurrent ACC vs normal adrenocortical tissues.

Description	Gene	Normal adrenal ^a	Ratio ACC1/normal ^b	Ratio ACC2/normal ^b	Ratio ACC2/ACC1 ^b
Cytochrome P450, subfamily I, polypeptide 2	CYP1A2	8.59	1.92	1.99	1.49
P450 (cytochrome) oxidoreductase	POR	5.90	2.16	2.39	1.11
Cytochrome P450, subfamily XVII	CYP17	5.44	0.42	4.86	6.67
Steroidogenic acute regulatory protein	STAR	5.40	2.16	2.53	1.50
24-dehydrocholesterol reductase	DHCR24	5.02	0.94	1.35	1.91
Nuclear receptor subfamily 4, A1	NR4A1	4.98	1.95	2.28	1.16
Cytochrome P450, subfamily XXIA, polypeptide	CYP21A2	4.66	2.40	2.70	1.31
Cytochrome P450, subfamily IIB, polypeptide 6	CYP2B6	3.91	1.27	2.31	3.14
Cytochrome P450, subfamily IIS, polypeptide 1	CYP2S1	3.53	1.42	2.79	3.93
Hydroxysteroid (17-beta) dehydrogenase 1	HSD17B1	3.30	2.93	2.49	1.66
Cytochrome P450, subfamily XIB, polypeptide 1	CYP11B1	2.50	2.13	1.11	0.81
Cytochrome P450, subfamily IIA, polypeptide 7	CYP2A7	2.45	1.67	3.09	2.98
Hydroxyacyl-coenzyme A dehydrogenase, type II	HADH2	2.20	1.56	1.93	1.78
Hydroxysteroid (3-beta) dehydrogenase 2	HSD3B2	2.17	2.22	2.09	1.29
Cytochrome P450, subfamily XIA (cholesterol sec)	CYP11A	2.17	1.28	1.60	1.76
Hydroxysteroid dehydrogenase, 3 beta 1	HSD3B1	2.12	4.51	5.71	2.53
7-Dehydrocholesterol reductase	DHCR7	2.12	1.98	3.73	3.14
Steroid sulfotransferase 2A1, DHEA-preferring	SULT2A1	2.01	0.42	2.43	4.47
Hydroxysteroid (17-beta) dehydrogenase 7	HSD17B7	1.97	1.16	3.08	2.40
Aldo-keto reductase, 7A2	AKR7A2	1.95	1.42	1.29	1.28
Steroid sulfotransferase 1C2	SULT1C2	1.74	2.58	2.68	1.22
Steroid sulfatase (microsomal), isozyme S	STS	1.60	0.74	0.89	0.88
Ferrodoxin reductase	FDXR	1.58	3.19	2.85	1.21
Cytochrome P450, subfamily IIC9	CYP2C9	1.56	1.40	0.86	0.69
Steroidogenic factor-1 (SF-1)	NR5A1	1.51	1.38	1.53	1.15
Nuclear receptor subfamily 4, A2	NR4A2	1.48	0.37	0.22	0.61
Cytochrome P450, subfamily XIB, polypeptide 2	CYP11B2	1.43	5.10	1.19	0.40
Aldo-keto reductase, 1B1	AKR1B1	1.36	1.26	1.09	2.47
Cytochrome b5	CYB5	1.17	0.49	0.79	2.67
Hydroxysteroid (17-beta) dehydrogenase 4	HSD17B4	1.12	1.26	1.23	1.26
Aldo-keto reductase, 1A1	AKR1A1	1.09	0.89	0.59	0.65
Steroid sulfotransferase 1C1	SULT1C1	0.98	0.86	1.21	0.71
Steroid reductase, alpha polypeptide 1	SRD5A1	0.98	0.84	0.81	0.45
Aldo-keto reductase, 1B10	AKR1B10	0.96	0.22	0.39	0.17
Aldo-keto reductase, 1D1	AKR1D1	0.89	0.62	0.35	0.25
Steroid sulfotransferase, 2B1	SULT2B1	0.88	0.80	0.54	0.34
Liver receptor homolog 1 (LRH-1)	NR5A2	0.83	0.90	0.60	0.24
Cytochrome P450, subfamily XIX	CYP19	0.81	0.19	0.39	1.31
Aldo-keto reductase, 1C1	AKR1C1	0.69	1.01	0.36	0.84
Hydroxysteroid (17-beta) dehydrogenase 2	HSD17B2	0.60	0.72	0.48	0.19
Steroid sulfotransferase, 1B1	SULT1B1	0.59	0.55	0.66	1.21
Hydroxysteroid (11-beta) dehydrogenase 2	HSD11B2	0.55	0.31	0.73	1.88

Table 1 Continued

Description	Gene	Normal adrenal ^a	Ratio ACC1/normal ^b	Ratio ACC2/normal ^b	Ratio ACC2/ACC1 ^b
Steroid sulfotransferase, 1A2	SUL T1A2	0.55	1.66	1.03	2.03
Steroid sulfotransferase, 1A3	SULT1A3	0.49	1.37	1.17	1.54
Hydroxysteroid (11-beta) dehydrogenase 1	HSD11B1	0.43	0.80	1.70	1.29
Hydroxysteroid (17-beta) dehydrogenase 3	HSD17B3	0.42	0.62	1.79	2.12
Steroid sulfotransferase, 1A1	SULT1A1	0.31	0.68	0.90	1.26
^a Signal intensity values in normal adrenocortical tissues; ^t ACC2; second ACC recurrence.	^b ratios >2 (i.e., overex	oressed genes) are in boldfi	ace, ratios < 0.5 (i.e., underexpre	ssed genes) are in boldface and	italic; ACC1: primary ACC;

cell population with a nodular growth pattern simulating an organoid structure. The neoplastic cells had large eosinophilic cytoplasm, but this was more regular than in the primary ACC and first recurrence, and nuclei were less variable in size and chromatin distribution (Fig. 2B).

Sequence analysis of candidate genes (i.e., TP53, PTEN, GNAS1, GNAI2, CDKN1C, MEN1, PRKAR1A, INHA and APC) typically involved in adrenal tumorigenesis failed to demonstrate pathologic mutations either in the primary tumor or in recurrences, whereas measurement of mRNA levels of ACC marker genes (i.e., IGF2, H19, CDKN1C, EGFR and TOP2A) by guantitative real-time RT-PCR demonstrated very high IGF2 and TOP2A mRNA levels and underexpression of H19 and CDKN1C in both primary primary tumor and metastases, as typically observed in ACC (4).

DNA microarray analysis and quantitative real-time RT-PCR demonstrated that the expression pattern of steroidogenic enzymes was concordant with endocrine activity of the ACC masses. In fact, mRNA levels of CYP11B2 (aldosterone synthase) were extremely high in the aldosterone-producing tumors but very low in the second relapse, which, in contrast, had high mRNA levels of genes encoding enzymes involved in the production of cortisol and adrenal androgens, such as CYP17, CYP21 and SULT2A1 (Table 1 and Fig. 2D-F) (5). Of interest, microarray analysis (performed with microarray glass slides containing 70 mer oligonucleotide sequences of 21329 human genes, produced by CRIBI Core Facility, University of Padova, Italy) also showed that the most overexpressed genes in the second cortisol-secreting ACC recurrence. as compared with the aldosterone-producing primary ACC and first relapse, included a large number of genes mapping to the 19q13.3-4 chromosomal region. Among these genes, there were a large cluster of cytochrome P450 genes involved in the metabolism of steroids and xenobiotics (6) (e.g., CYP2B6, CYP2S1 CYP2A7) and the INHA gene, encoding the inhibin α subunit (Table 2). Overexpression of cytochrome P450 genes leading to increased inactivation of anticancer drugs has been linked to chemotherapy resistance (7). Chromosomal gains and amplifications in 19q13 are often found in ACC (8), and, in our case, they could indeed have occurred during chemotherapy. causing gene overexpression. The product of the SULT2A1 gene, DHEA sulfotranspherase, also located in 19q13.3-4, normally sulfates DHEA to DHEA-S, as well as pregnenolone and 17α -hydroxypregenolone to their sulfated metabolites, removing these substrates from mineralocorticoid and glucocorticoid pathways respectively (9). SULT2A1 overexpression, in the presence of high levels of CYP17 and CYP21, might have shifted aldosterone biosynthesis to both cortisol and androgen biosynthesis. These findings are in accordance with the clinical shift from Conn's syndrome to Cushing's syndrome seen in our patient.

Table 2 Transcripts expressed at >3 threefold higher or lower in the second ACC recurrence vs the primary ACC.

Description	Function	Мар	UniGene	Gene	Ratio
Overexpressed genes					
Ubiquitin carboxyl-terminal esterase L1	Ubiquitin hydrolysis; neuroendocrine tissues	4p14	76118	UCHL1	11.40
Synuclein, gamma	Oncogene	10q23	349470	SNCG	10.06
Clusterin	Downregulated in prostate cancer	8p21	75 106	CLU	7.79
Chymotrypsinogen B1	Serine protease	16a23	74 502	CTRB1	7.05
Cvtochrome P450, subfamily XVII	Steroid 17-alpha-hydroxylase	10g24.3	1363	CYP17	6.67
Paternally expressed 3	Growth-promoting functions, but also tumor suppressor	19a13.4	139033	PEG3	6.25
K562 cell-derived leucine-zipper-like protein 1	Transcription factor	19a13.43	31 854	LOC57106	5.91
Adlican	VEGF receptor	Xp22.33	72 157	DKFZp56411922	5.78
Zinc finger protein 573	Regulation of transcription	19a13.13	278871	ZNF573	5.59
K1AA1198 protein	Zink-finger protein 490	19p13.2	175475	KIAA1198	5.38
Synaptophysin	Adrenocortical neoplasm marker, cholesterol binding	Xp11.23	75.667	SYP	5.19
Leukocyte receptor cluster member 5	tRNA splicing	19a13.4	15,580	I ENG5	4.82
Retinol binding protein 1 cellular	Retinol transport antitumor activity	3023	101850	BBP1	4 76
Solute carrier family 4 anion exchanger member 3	Anion transport	2q36	1176	SI C4A3	4 74
Protein phosphatase 1 regulatory subunit 14A	Inhibitor of smooth muscle myosin phosphatase	19a13 1	348037	PPP1R14A	4 73
HMT1 bnBNP methyltransferase-like 1	Signal transduction	21022.3	235887	HRMT1L1	4.70
Solute carrier family 25	Mitochondrial carrier with calcium-binding domains	19a13.3	32 246	SI C25A23	4 66
Sulfotransferase 24 DHEA-preferring member 1	Steroid metabolism	190133	81 884	SLIL T2A1	4.00
K1AA1415 protein	Guanine nucleotide exchange factor	20a13 13	109315	KIAA1415	4 43
Inhibin alpha	Activin inhibitor activity	20910.10	1734	INIHA	4 4 1
Filamin B beta	Actin cytoskeleton organization	2q00 00 3n14 3	81.008	FLNR	4 32
Cargo selection protein	Similar to mannase 6-P recentor hinding protein 1	10n13 3	1/0/52	TIDA7	4.02
Retinol debudrogenase 13 (all-trans and 9-cis)	Ovidoreductase activity	10a13 /2	178617	RDH13	4.20
Fatty acid desaturase 1	Eatty acid biosynthesis	11a12 2-a13 1	132808	FADS1	4.13
PRP31 pro-mRNA processing factor 31	Retinitic nomentosa, enRNP formation	10a13/2	183/38	DRDE31	4.03
Libiquitin conjugating onzuma E2C	Coll growth and malignant transformation	20a12 12	02002	LIREOC	2.00
Stom loop (histopo) hinding protoin		20010.12 1016.2	75 257	SIRD	2.05
Cutochrome B450, cubfomily US, polypoptide 1	Drug metabolism and abalactoral ounthasia	4p10.3	09 270		3.95
Neuropal poptrovin I	Control noncours system development	17005 1 005 0	90370	NDTV1	3.93 2.00
Estadormal neural cortax (with PTP like domain)	Actin hinding protoin	17425.1-425.2 Fa10 a12 2	104005		0.92 0.70
Niemenn niek diesesse tune C1	Actin-binding protein	19a11	76 0 1 9		3.70
Thiorodovin like 44	Electron transport	1902	5074		3.72
Actinin alpha 4	Actin hinding protoin: tumorigonioity	10920	100/05	ACTNIA	3.72
Actiniin, alpha 4 Deticulor 4	Neuroendooring protein, tumongenicity	19413 Op16 2	102400	ACTN4 DTNA	3.70
Zino finger protein 92 (UDE1)	Transprintion factor	2010.0	205052		3.70
Zinc-inger protein 83 (PPFT)		19013.3	303933		3.00
Host cell foster C1 regulator 1 (XDO1 dependent)	LICE 1 hete prepeller interacting protein	19413.4	070501		3.05
	ACF-T beta-propener interacting protein	10p13.3	279001		3.01
Anti-mulierian normone	Gonadal development	19p13.3	112432		3.60
Thioredoxin reductase T	Protection against oxidative stress	18023	13046		3.48
Thus a sell surface entires	Facilitates the nuclear translocation of PTTGT	21022.3	105250	PHGHP	3.40
Porcupino	Processing of What protoins	11422.3-423 Vot1 02	120009	ITITI MC61	3.45
Porcupine	Processing of Whit proteins	APTI.23	5320		3.45
KRAB ZINC-TINGER PROTEIN KR18	Regulation of transcription	19013.41	206882	KH18 TDM0	3.43
ropomyosin 2 (beta)	Structural constituent of muscle	9p13.2-p13.1	300772	1 MM2	3.40
Similar to zinc-finger protein 268	Thursday AO and the state	19q13.42	209430	LUC91664	3.34
Inromboxane A2 receptor	I nromboxane A2 receptor activity	19p13.3	89887	I BXA2H	3.34
Serine carboxypeptidase 1	Serine carboxypeptidase activity	17q23.2	106747	SCPEP1	3.31
Growth hormone receptor	Growth factor	5p13-p12	125180	GHR	3.27

Table 2 Continued

Description	Function	Мар	UniGene	Gene	Ratio
Liver-specific bHLH-Zip transcription factor	Receptor activity	19q13.12	95 697	LISCH7	3.26
Brain abundant, membrane attached signal protein 1	Membrane bound protein	5p15.1-p14	79516	BASP1	3.26
CCR4-NOT transcription complex, subunit 3	Transcription regulator activity	19q13.4	343571	CNOT3	3.24
Dynein, cytoplasmic, light polypeptide	Inhibition of NOS activity	12q24.23	5120	PIN	3.23
Plexin A1	Semaphorin receptor activity	3q21.3	334666	PLXNA1	3.23
Oxysterol binding protein-like 10	Intracellular lipid receptor	3p22.3	285123	OSBPL10	3.22
WD repeat domain 18		19p13.3	325321	WDR18	3.22
Leukocyte receptor cluster member 8	Receptor	19q13.42	348571	LENG8	3.21 j
Clone MGC:9381 IMAGE:3865583		19q13.3	76277		3.19
Ovary-specific acidic protein		4q31.1	154140	OSAP	3.18
Stearoyl-CoA desaturase	Fatty acid biosynthesis	10q23-q24	119597	SCD	3.16
Cytochrome P450, subfamily IIB, polypeptide 6	Drug metabolism and cholesterol synthesis	19q13.2	1360	CYP2B6	3.14
7-dehydrocholesterol reductase	Endogenous cholesterol synthesis	11q13	11806	DHCR7	3.14
3-hydroxy-3-methylglutaryl-coenzyme A reductase	Rate-limiting enzyme for cholesterol synthesis	5q13.3-q14	11 899	HMGCR	3.10
CNDP dipeptidase 2 (metallopeptidase M20 family)	Metallopeptidase activity	18q22.3	273230	CNDP2	3.09
Pro-oncosis receptor inducing membrane injury gene	Oncosis-like cell death	11q22.1	172089	PORIMIN	3.08
Aquaporin 2 (collecting duct)	Water channel	12q12	37 0 25	AQP2	3.07
Glutathione S-transferase A4	Cellular defense against toxic compounds	6p12.1	169907	GSTA4	3.07
Breast cancer anti-estogen resistance 1	Signal transduction	16q22-q23	273219	BCAR1	3.06
Nucleobindin 2	Calcium-binding EF-hand protein	11p15.1-p14	3164	NUCB2	3.05
Cytochrome P450, subfamily IIA, polypeptide 7	Drug metabolism and cholesterol synthesis	19q13.2	250615	CYP2A7	3.05
Mitogen-activated protein kinase 4	MAP kinase activity	18q12-q21	269222	MAPK4	3.04
Underexpressed genes					
Fatty acid binding protein 4, adipocyte	Fatty acid uptake, transport, and metabolism	8q21	83213	FABP4	0.05
Cell adhesion molecule with homology to LICAM	Neural cell adhesion molecule	3p26.1	210863	CHL1	0.08
Urotensin 2	Vasoconstrictor	1p36	162200	UTS2	0.10
37 kDA leucine-rich repeat protein		7q22.1	155545	P37NB	0.11
Plasticity related gene 3	Lipid phosphate phosphatase activity	9q31.1	106825	PRG-3	0.14 ,
Hypothetical protein MGC10981		4p16.1	115912	MGC10981	0.15
Estrogen-related receptor gamma	Orphan nuclear receptor	1q41	151017	ESRRG	0.16
Chemokine (C-X3-C motif) ligand 1	Chemokine activity	16q13	80 4 20	CX3CL1	0.19
Chromosome 20 open reading frame 103		20p12	22920	C20orf103	0.20
Solute carrier family 25 member 15	L-ornithine transporter activity	13q14	78 457	SLC25A15	0.23
Growth differentiation factor 10	Cell growth and differentiation	10q11.22	2171	GDF10	0.25
Fatty-acid-coenzyme a ligase, long-chain 5	Long-chain-fatty-acid-CoA ligase activity	10q25	11638	FACL5	0.26
Putative nuclear protein	Acidic repeat containing	Xq13.1	135167	NAAR1	0.29
Cathepsin Z	Tumorigenesis	20q13	252549	CTSZ	0.29
Interferon, gamma-inducible protein 30	Lysosomal thiol reductase	19p13.1	14623	IFI30	0.30
Cytochrome P450, subfamily XIB, polypeptide 2	Aldosterone synthesis	8q21-q22	184927	CYP11B2	0.30
Secretin	Intestinal hormone	11p15.5	302005	SCT	0.31
Maternally expressed 3	Tumor suppressor	14q32	112844	MEG3	0.32
Neurotrimin	Cell adhesion, neuronal cell regonition	11q25	288433	HNT	0.32
Glutathione S-transferase M3 (brain)	Detoxification of electrophilic compounds	1p13.3	2006	GSTM3	0.33

Overexpression of the inhibin α -subunit in the cortisol-producing ACC recurrence (Fig. 2C) could have also contributed to the shift from mineralocorticoid to glucorticoid formation. The inhibin α -subunit is highly expressed in the fetal zone of the developing adrenal cortex and in the zona reticularis of adult adrenal cortex and tumors derived thereof. In this regard, the inhibin α -subunit has been found to stimulate cortisol and androgen secretion by antagonizing activin signaling through a dominant-negative effect (10).

In conclusion, this case of recurrent ACC, characterized by the sequential presentation of two endocrine syndromes, Conn's and Cushing's syndromes, demonstrates that adrenocortical cells can reverse their differentiation program during neoplastic progression and change their specialized hormone production, as a consequence of modifications in the expression profile of steroidogenic enzymes and cofactors. We hypothesize that this shift in steroid hormone secretion is a consequence of chromosome amplification induced by chemotherapy, even though we cannot exclude other molecular mechanisms, such as point mutations in steroidogenic enzymes or transcription factors, chromosomal translocations, and clonal progression of cells with different functional properties. Shift in endocrine activity has been also recently observed in a case of small-cell lung cancer treated by chemotherapy (11). Our findings, besides opening new perspectives to study adrenocortical cell plasticity and potential, demonstrate how conventional clinical and pathologic evaluation can be combined with genomic analysis to dissect thoroughly the biology of cancer.

Acknowledgements

This study was supported by grant no. RSF 168/04 from the Veneto Region and by funds from IOV (Istituto Oncologico Veneto) to G. Palù.

References

- Barzon L, Fallo F, Sonino N, Daniele O & Boscaro M. Adrenocortical carcinoma: experience in 45 patients. *Oncology* 1997 54 490–496.
- 2 Arteaga E, Biglieri EG, Kater CE, Lopez JM & Schambelan M. Aldosterone-producing adrenocortical carcinoma. Preoperative recognition and course in three cases. *Annals of Internal Medicine* 1984 **101** 316–321.
- 3 Hisamatsu H, Sakai H, Irie J, Maeda K & Kanetake H. Adrenocortical carcinoma with primary aldosteronism associated with Cushing syndrome during recurrence. *BJU International* 2002 **90** 971–972.
- 4 Gicquel C, Bertagna X, Gaston V, Coste J, Louvel A, Baudin E, Bertherat J, Chapuis Y, Duclos JM, Schlumberger M, Plouin PF, Luton JP & Le Bouc Y. Molecular markers and long-term recurrences in a large cohort of patients with sporadic adrenocortical tumors. *Cancer Research* 2001 **61** 6762–6767.
- 5 Fallo F, Pezzi V, Barzon L, Mulatero P, Veglio F, Sonino N & Mathis JM. Quantitative assessment of *CYP11B1* and *CYP11B2* expression in aldosterone-producing adenomas. *European Journal of Endocrinology* 2002 **147** 795–802.
- 6 Hoffman SMG, Nelson DR & Keeney DS. Organization, structure and evolution of the *CYP2* gene cluster on human chromosome 19. *Pharmacogenetics* 2001 **11** 687–698.
- 7 McFadyen MC, Melvin WT & Murray GI. Cytochrome P450 enzymes: novel options for cancer therapeutics. *Molecular Cancer Therapy* 2004 **3** 363–371.
- 8 Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S & Lichter P. Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. *Genes, Chromosomes and Cancer* 2000 **28** 145–152.
- 9 Rainey WE, Carr BR, Sasano H, Suzuki T & Mason JI. Dissecting human adrenal androgen production. *Trends in Endocrinology and Metabolism* 2002 **13** 234–239.
- 10 Beuschlein F, Looyenga BD, Reincke M & Hammer GD. Role of the inhibin/activin system and luteinizing hormone in adrenocortical tumorigenesis. *Hormone and Metabolic Research* 2004 **36** 392–396.
- 11 Mayer S, Cypess AM, Kocher ON, Berman SM, Huberman MS, Hartzband PI & Halmos B. Uncommon presentations of some common malignancies. Case 1. Sequential paraneoplastic endocrine syndromes in small-cell lung cancer. *Journal of Clinical Oncol*ogy 2005 **23** 1312–1314.

Received 16 May 2005 Accepted 26 July 2005