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SUMMARY

Finite element discretizations of flow problems involving multiaquifer systems deliver large, sparse,
unstructured matrices, whose partial eigenanalysis is important for both solving the flow problem and
analysing its main characteristics.

We studied and implemented an effective preconditioning of the Jacobi–Davidson algorithm by
FSAI-type preconditioners.

We developed efficient parallelization strategies in order to solve very large problems, which could
not fit into the storage available to a single processor.

We report our results about the solution of multiaquifer flow problems on an SP4 machine and
a Linux Cluster. We analyse the sequential and parallel efficiency of our algorithm, also compared
with standard packages. Questions regarding the parallel solution of finite element eigenproblems are
addressed and discussed. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The equations governing transient 3D porous media flow are

∇ · (K∇�) = S
��

�t
+ f (1)

where � is the pressure head, K is the permeability tensor, S is the elastic storage of the
aquifer and f is a source or sink term. Dirichlet and Neumann boundary conditions must
be given to identify a well-posed mathematical formulation of the flow problem. Integration
of Equation (1) over a tetrahedral finite element (FE) grid [1, 2] yields the linear system of
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differential equations

C
��

�t
+ H� + q = 0 (2)

where H and C are the symmetric, positive definite (SPD), stiffness and capacity matrices,
respectively; q is a known vector. Integrating in time by finite differences, for instance using
the Crank–Nicolson scheme, leads to a sequence of linear algebraic systems.

The solution of Equation (2) can also be computed by evaluating a number of the generalized
eigenpairs

Hui = �iCui , i = 1, 2, . . . , N (3)

�1 � �2 � · · · � �N being the real positive eigenvalues and u1, u2, . . . , uN the corresponding
eigenvectors. Assume that �(0) = 0, q is time independent, and let

wi = − uT
i q

�i

(1 − exp(−�i t)), i = 1, 2, . . . , N

The solution �(t) of (2) can be written as �(t) = Uw(t), where U = [u1, u2, . . . , uN ] is the
modal matrix [3]. Only a number q of the leftmost eigenpairs need to be evaluated, since
the importance of the flow modes, in capturing the actual response, decreases from smaller
(leftmost) eigenvalues to larger (rightmost) ones.

Using mass-lumping technique, the matrix C is reduced to diagonal form, Ĉ, hence Ĉ−1 is
straightforwardly evaluated and the generalized problem (3) becomes computationally equivalent
to the SPD classical eigenvalue problem

Aui = �iui , i = 1, 2, . . . , N

In the sequel we refer to this reduced problem and the matrix A = Ĉ−1H involved in it.
Our previously published results show that the Jacobi–Davidson (JD) method [4], precondi-

tioned by AINV [5, 6] or FSAI-type [7] approximate inverses is an effective tool for the partial
eigenanalysis of flow problems [8, 9]. For parallel preconditioner evaluations, we focused on
FSAI, since the parallelization of AINV preconditioners proved more cumbersome (see e.g.
Reference [10]).

This paper is organized as follows: Section 2 recalls some features of JD algorithm, and
FSAI-class preconditioners. Section 3 sketches our parallelization strategy. Section 4 reports
some considerations on the discretization of our problems. Section 5 displays and analyses
distinguished numerical results. Section 6 summarizes our conclusions.

2. SEQUENTIAL PRECONDITIONED JD

We thoroughly experimented with JD algorithm in the partial eigensolution of our flow and
transport problems [11, 12].

We found that unpreconditioned JD is unable to solve our large problems, while effective
preconditioning by approximate inverse preconditioners, like those of FSAI type [7], allows for
efficiently solving all our problems.

Tables I–III sketch the preconditioned JD algorithm after Reference [13].

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:2069–2085



PARALLEL EIGENANALYSIS OF MULTIAQUIFER SYSTEMS 2071

Table I. JD algorithm (preconditioned Jacobi–Davidson) for computing kmax exterior eigenpairs.

begin
Set V:,0 starting vector and � reference value;
Set �, nit,max, mmin, mmax;
t := V:,0, k := 0, m := 0, U := [ ], nit := 0;
while (k < kmax) and (nit < nit,max) do nit := nit + 1;

for i := 1, m do t := t − (VT:,i t)V:,i ; endfor
m := m + 1, V:,m = t/‖t‖2, VA:,m = AV:,m;
for i := 1, m do Mi,m := VT:,iVA:,m; endfor
Compute the eigenpairs (�i , si ) of the matrix M, ‖si‖2 = 1;
Sort the pairs (�i , si ) such that

∣
∣�i − �

∣
∣�

∣
∣�i−1 − �

∣
∣;

u := Vs1, uA := VAs1, r := uA − �1u;
{inner loop}
{correction step}

endwhile
if k < kmax

then print ’less than kmax eigenpairs computed’;
endif

end

Table II. JD inner loop.

while (‖r‖2 � � · �1) and (k < kmax) do
k := k + 1; �k := �1, U := [U|u];
print the new eigenpair (�k, u);
nit := 0;
if k < kmax

then m := m − 1, M := 0;
for i := 1, m do

V:,i := Vsi+1, VA:,i := VAsi+1;
Mi,i := �i+1, si := ei , �i := �i+1;

endfor
u := V:,1, r := VA:,1 − �1u;

endif
endwhile

Table III. JD correction step. The matrix K is an approximate inverse preconditioning matrix.

if k < kmax
then

if m�mmax
then M := 0;

for i := 2, mmin do
V:,i := Vsi , VA:,i := VAsi , Mi,i := �i ;

endfor
V:,1 := u, VA:,1 := uA, M1,1 := �1, m := mmin;

endif
� := �1, Q := [U|u], P = (I − QQT);
Solve the problem P(A − �I)P t = −r, for t ⊥ span{Q},
using BiCGSTAB, preconditioned with the projected matrix PKP;

endif
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Note that in order to solve the symmetric correction equations we used BiCGSTAB [14],
while other authors exploit conjugate gradients (CG). Indeed, preconditioned CG converges
when solving JD correction equations, though they are not positive definite. However, we
showed in Reference [15] that CG performance in our problems is not any time superior to
BiCGSTAB.

2.1. The FSAI preconditioner

Let P(M) = {(i, j) s.t. Mij �= 0} be the pattern of a matrix M , and let M = ML + MD + MT
L

the classical splitting of M into lower triangular (ML), diagonal (MD), and upper triangular
parts. Let A be a SPD matrix and let A = LLT be its Cholesky factorization. The FSAI
preconditioning method gives an approximate inverse of A in the factorized form K = GTG,

where G is a sparse non-singular lower triangular matrix approximating L−1. In order to
compute G, one must first prescribe a sparsity pattern W = {(i, j) : 1 � i<j � n}; a lower
triangular matrix Ĝ is computed, by solving the equations

(ĜA)ij = �ij , (i, j) ∈ W

A common choice for the sparsity pattern is W =P(AL). A slightly more sophisticated and
more expensive choice relies upon setting W =P((Ak)L), where k is a small positive integer,
say k = 2 or k = 3 (see Reference [16]). This variant is called enlarged FSAI. We found that
k = 2 is an effective choice for our eigenproblems. Let us label the ensuing preconditioner
FSAI(A2). In Reference [17] a simple approach, called post filtration, was proposed to improve
the quality of enlarged FSAI preconditioners. This method is based on a posteriori sparsification
of a given preconditioner, by dropping all the elements whose absolute value is below a given
threshold, �. The aim is to reduce the number of non-zero elements of the preconditioner
factors, thus decreasing the arithmetic complexity of the iterative phase. Also, in a parallel
environment, when performing products of the preconditioning matrix times a vector, one can
achieve a substantial reduction in data exchange. To compute an efficient preconditioner, the
drop tolerance parameter, �, must be identified. We tested values ranging from 0 to 1. We found
that, as a preconditioner in the solution of linear systems, the efficiency of FSAI(A2) with post
filtration does not heavily depend upon �, as reported in Reference [18]. We found that � = 0.1
works well in our problems. In the sequel, the FSAI preconditioner with W =P(AL) will be
called simply ‘FSAI1’. The enlarged FSAI with pattern W =P((A2)L) and post filtration with
� = 0.1, will be called ‘FSAI2’. The JD algorithm preconditioned with FSAI1 will be labelled
‘JDF1’, while ‘JDF2’ will denote JD preconditioned with FSAI2.

We detected a large number of cache misses, when performing sparse matrix–vector mul-
tiplications. To enhance the sequential performance, we implemented the pre-fetching strategy
sketched in Algorithm 2 after Reference [19]. Our implementation for the local matrix–vector
product, supplemented with data pre-fetching instructions, is reported in Table IV. Data pre-
fetching reduce data dependencies in the innermost loop iteration. All data are loaded from
memory one loop iteration before it is actually needed, so that the processor can better over-
lap computation and memory transfer. While the algorithms in Reference [19] are written for
matrices stored in symmetric sparse skyline (SSS) format, we exploited the compressed sparse
row (CSR) format. Note that, albeit our matrices are symmetric ones, in order to enhance
parallel efficiency, we stored them in full form, not only the upper (or lower) part.
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Table IV. Our implementation of Algorithm 2 after Geus and Röllin.

subroutine matvec(n, ia, ja, a, x, y)
c Matrix--vector product y = A x, with data pre-fetching.
c The matrix A is stored in CSR format.
c

implicit none
integer n, i, j, j1, k, k1, l
integer ia(*), ja(*)
real*8 a(*), x(*), y(*), xi, s, v, v1

c
k = 1
do i = 1, n

xi = x(i) ! pre-fetch
s = 0.
k1 = ia(i+1)
if (k .lt. k1) then

j = ja(k) ! pre-fetch
v = a(k) ! pre-fetch
k = k+1
do while (k .lt. k1)

j1 = ja(k) ! pre-fetch
v1 = a(k) ! pre-fetch
s = s + v * x(j)
j = j1 ! pre-fetch
v = v1 ! pre-fetch
k = k + 1

end do
s = s + v * x(j)

endif
y(i) = s

end do
return
end

3. ALGORITHM PARALLELIZATION

A data-splitting approach was exploited to perform in parallel the following tasks: The compu-
tation of the stiffness, H , and capacity, C, matrices; the evaluation of the FSAI preconditioners;
the execution of the preconditioned JD algorithm.

3.1. Parallel evaluation of H and C

Our code assumes that the 3D domain is discretized into a mesh counting T tetrahedral elements
and N nodes [2]. Data splitting of the tetrahedral mesh is performed as follows. Assume that
P processors are engaged. Each processor, p, manages only those tetrahedrons whose node
numbers, i, fall into the range [N/P ] · (p − 1)+ 1 � i � [N/P ] ·p (the operator [·] denotes the
integer part of a real number). Since we numbered the nodes in a stratum-wise manner, each
processor owns a subset of adjacent strata nodes.

The assembling procedure is performed independently on each processor, which owns merely
[N/P ] rows of the global matrices.
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3.2. FSAI parallelization

We implemented the parallel computation of FSAI1 and FSAI2 preconditioning factors. Though
for a given matrix A the computation of a generic FSAI preconditioning matrix, G, is an
inherently parallel computation, there are some issues to be addressed, in order to attain an
efficient implementation on a distributed memory computer. We used a block row distribution
of matrices A and G, i.e. complete rows were assigned to different processors. All our matrices
are stored in static CSR format. In the SPD case any row, i, of matrix G can be computed
independently of each other, by solving a small SPD dense linear system, whose size, ni , is
equal to the number of non-zeros allowed in that row of G. Hence, the processor that computes
row i must access ni rows of A. A small subset of these rows must be received from the
other processors. All the data exchanges among the processors are carried out before starting
the computation of G, which proceeds afterward entirely in parallel.

Each processor computes its local rows of G by solving, for any row, a (small) dense linear
system. To form the dense sub-matrix the local part of A and the previously received auxiliary
non-local rows are needed.

The dense linear systems are solved using BLAS3 routines from LAPACK. Once G is
obtained, a parallel transposing routine provides every processor with its local part of GT.

3.3. Parallelization of JD

JD algorithm can be decomposed into a number of scalar products, daxpy-like linear combi-
nations of vectors, �v + �w, and matrix–vector (MV) products.

We focused on parallelizing these tasks, assuming that the code is to be run on a fully
distributed uniform memory access machine with identical, powerful processors. This assumption
is nowadays not usually true for parallel systems, but exploring and identifying architectural
parameters in order to exploit the best efficiency on those different machine architectures that
are available, is beyond our scope.

Scalar products, v · w, were distributed among the P processors by uniform block mapping.
We tailored the implementation of parallel matrix–vector products for application to sparse

matrices, using a technique for minimizing data communication between processors [20]. In
the greedy matrix–vector algorithm, each processor communicates with each other. Using our
approach with our sparse FE matrices, usually each processor sends/receives data to/from at
most 2 other processors, and when running on P processors, the amount of data exchanged is
far smaller than [N/P ].

4. DISCRETIZATION

Our test domain, which is the unit cube [0, 1]3, is divided into NS aquifers (strata), whose top
and bottom surfaces are discretized by a Friedrichs–Keller-type mesh [21] (squares divided by
their left-to-right diagonals) counting NT triangles. By joining each surface node of each aquifer
with the corresponding node on the bottom, the domain is divided into NT × NS triangular
prisms. By dividing each prism into three tetrahedrons, we obtain the final grid, with N nodes
and T = 3 × NT × NS tetrahedrons [2]. We used three meshes which exploit different numbers
of strata and triangles. Table V shows the values of the discretization parameters.
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Table V. Main characteristics of our test meshes and matrices.

Problem NT NS N Na dd HB

1 10240 50 268515 3926823 −2.67e-02 5265
2 10240 100 531765 7817373 −1.33e-02 5265
3 40960 50 1059219 15605175 −2.67e-02 20769
4 40960 100 2097669 31066125 −1.33e-02 20769
5 163840 50 4027347 62216919 −2.67e-02 82497
6 10240 50 268515 3926823 3.13e-09 5265
7 10240 100 531765 7817373 1.56e-09 5265

In Problems 1–5 the permeability, K , and the thickness, l = 1/NS , are constant on each
stratum. Two more problems were considered, i.e. Problems 6 and 7, sharing the same mesh
structure as Problems 1 and 2, respectively, but featuring strata having unequal permeability and
thickness, whose values were chosen in order to attain real-life-like problems. The minimum
thickness was 5/10 000 of the domain height, the maximum one 1/20. Two permeability values,
K ′ and K ′′ were chosen, whose ratio is K ′′/K ′ = 5 × 10−5; the value K ′ was set into the first
couple of adjacent strata, then K ′′ in the following couple, and so on.

Dirichlet boundary conditions, 	 = 0, were set on the x = 0 face of the domain; Neumann
flux �	/�n = − 1 was set on the top face node with co-ordinates x = 1, y = 0. The remaining
part of the boundary is impervious.

Each FE sparse matrix, A, arising in our eigenproblems, has Na active entries, shown in
Table V. The table also reports the diagonal dominance parameter dd = maxi{|Aii | −∑

i �=j |Aij |}. One can see that the matrices arising in Problems 1–5 are not diagonally dominant
ones, while Problems 6 and 7 involve strictly diagonally dominant matrices. Table V shows
the half-bandwidth HB = max{|i − j | s.t. Aij �= 0} of our matrices. Compared to matrix size,
small HB values are shown: Bandwidth reduction techniques should not reduce appreciably the
HB value. The performance of matrix–vector products is not likely to be increased by renum-
bering, as shown in Reference [19]. Moreover, node rearranging produces a non-stratum-wise
node numbering, which would reduce the efficiency of our data-splitting approach among the
processors.

The patterns of our test matrices, due to our stratum-wise node numbering, are similar.
Figure 1 sketches the pattern of the first 67 354 rows and columns of some matrices with size
268 515. The remaining part of the matrices has the same pattern. The matrices, A, arising in
Problems 1 and 6, are considered, together with the pattern of the lower triangular part of A2,
which undergoes an appreciable fill-in, and has HB = 10 530, twice the bandwidth of A. The
FSAI2 lower triangular factor for Problem 6 is also shown. The FSAI2 factor has the same
bandwidth as A2, but a smaller number of active entries, due to post filtration.

We recall that our code treats unstructured matrices. It does not take advantage of any
pattern regularity. Note that our sample FE matrices display band, unstructured patterns. The
preconditioning factors display a larger bandwidth and a more irregular structure than the FE
matrices.

Figure 2 shows the first 9 relative eigenvalue gaps, gi = 1 − �i−1/�i , i = 2, . . . , 10, which
drive the convergence of eigenvalue algorithms [22] for the leftmost eigensolution. Note that
all problems with constant permeability and layer thickness (Problems 1–5) display the same
gaps, suggesting that the coarseness of our uniform mesh discretizations does not affect the
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Figure 1. Patterns of the 67 354 size principal sub-matrices of 268 515 size matrices. A 5000 element
wide square grid was superimposed. Left frame: pattern of the matrices, A, arising in Problems 1 and 6.
Centre: the pattern of the lower triangular part of A2. Right: the pattern of the FSAI2 lower triangular

preconditioning factor for Problem 6.
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Figure 2. Relative eigenvalue gaps.

numerical properties of the ensuing leftmost eigenvalue problem. Heterogeneous problems 6
and 7 display worse (i.e. smaller) separation between eigenvalues, hence they are expected to
require a higher computational cost to perform an accurate eigenanalysis.

5. NUMERICAL RESULTS

To achieve the highest portability and efficiency, we implemented our code using Fortran 77
and accomplishing parallel tasks by calls to standard MPI 1.0 library.
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Our numerical tests were performed on both the IBM SP RS/6000 Power 4 Supercomputer
(called SP4 in the sequel) and the IBM Linux Cluster 1350 (called CLX in the sequel), both
located at the Supercomputing Centre CINECA, in Italy (http://www.cineca.it).

The SP4 system includes 512 POWER 4, 1.3 GHz, processors. The current configuration
features 48 virtual nodes, 32 nodes with 8 processors and 16 GB RAM each, 14 nodes with
16 processors and 32 GB RAM and 2 nodes with 16 processors and 64 GB RAM each. The
nodes are connected with 2 interfaces to a dual plane set of Colony switches.

The CLX cluster features 256 nodes, each one encompassing two Intel Xeon Pentium IV
3.055 GHz CPUs. Each processor has a 512 KB L2 cache, each node has a 2 GB DRAM. The
processing elements are connected by a Myrinet-2000 network, consisting of 256 M3F-PCI64C
adapters and 6 128-port switches, which guarantee full bisectional bandwidth functionality. The
theoretical maximum bandwidth allowed is 200 MB/s.

5.1. Performance analysis

We recorded the CPU times spent for evaluating the numerical part of our code, i.e. (a) the
evaluation of the stiffness and capacity matrices (task Matr in Table VI), (b) the computation
of the preconditioning matrices (tasks FSAI1, FSAI2), and (c) computation of q = 10 leftmost
eigenpairs via preconditioned JD (tasks JDF1, JDF2). From Table VI one can see that most of
the computational effort is spent for performing the preconditioned JD algorithm.

The CPU time spent for each task changes appreciably from run to run, on both the SP4 and
the CLX. We run 10 times each job, activating in turn P = 1, 2, 4, 8, 16 processors. Table VII
summarizes the CPU seconds recorded through 10 runs, spent by JDF1 and JDF2, when
solving Problem 2 on the SP4. Table VII reports the minimum time, T

(min)
P , the maximum

Table VI. CPU seconds spent on the SP4 to perform each main task, and corresponding
percentages, when P = 16 processors were exploited.

Times Percentages

Problem Matr FSAI1 JDF1 Tot Matr % FSAI1 % JDF1 %

1 0.1 0.3 35.3 35.7 0.28 0.84 98.88
2 0.2 0.6 135.5 136.3 0.15 0.44 99.41
3 0.6 1.3 213.7 215.6 0.28 0.60 99.12
4 1.1 2.4 680.5 684.0 0.16 0.35 99.49
5 3.3 5.4 1593.0 1601.7 0.21 0.34 99.46
6 0.1 0.3 862.3 862.7 0.01 0.03 99.95
7 0.2 0.6 4812.0 4812.8 0.00 0.01 99.98

Problem Matr FSAI2 JDF2 Tot Matr % FSAI2 % JDF2 %

1 0.1 1.4 26.2 27.7 0.36 5.05 94.58
2 0.2 2.7 89.4 92.3 0.22 2.93 96.86
3 0.6 5.6 191.4 197.6 0.30 2.83 96.86
4 1.1 11.1 504.0 516.2 0.21 2.15 97.64
5 3.3 23.0 1347.8 1374.1 0.24 1.67 98.09
6 0.1 1.4 174.1 175.6 0.06 0.80 99.15
7 0.2 2.8 412.2 415.2 0.05 0.67 99.28
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Table VII. Problem 2. Minimum, maximum, and average CPU seconds spent on the
SP4, counting 10 runs for each value of P . The ensuing speedup values and their

maximum variations are also shown.

P T
(min)

P
T

(max)
P

T
(�)

P
V

(T )
P

(%) S
(min)
P

S
(max)
P

V
(S)
P

(%)

FSAI1

1 4.2 4.4 4.3 4.76 — — —
2 2.3 2.4 2.4 4.35 1.75 1.91 9.32
4 1.3 1.4 1.3 7.69 3.00 3.38 12.82
8 0.8 0.8 0.8 0 5.25 5.50 4.76

16 0.6 0.6 0.6 0 7.00 7.33 4.76

FSAI2

1 34.1 35.5 34.8 4.11 — — —
2 17.3 17.4 17.4 0.58 1.96 2.05 4.71
4 8.9 9.2 9.1 3.37 3.71 3.99 7.61
8 4.7 4.8 4.8 2.13 7.10 7.55 6.32

16 2.7 2.8 2.7 3.70 12.18 13.15 7.96

JDF1

1 959.6 1002.2 979.7 4.44 — — —
2 545.9 558.8 553.5 2.36 1.72 1.84 6.91
4 334.7 359.0 348.3 7.26 2.67 2.99 12.02
8 228.9 241.3 233.6 5.42 3.98 4.38 10.10

16 135.5 157.3 143.5 16.09 6.10 7.40 21.24

JDF2

1 674.4 739.7 693.4 9.68 — — —
2 351.5 414.4 366.5 17.89 1.63 2.10 29.31
4 232.3 278.4 244.5 19.85 2.42 3.18 31.45
8 165.9 191.9 173.8 15.67 3.51 4.46 26.87

16 88.7 93.4 89.3 5.30 7.22 8.34 15.49

one, T
(max)

P , the average one, T
(�)

P , and the maximum variation V
(T )
P = T

(max)
P /T

(min)
P − 1.

Moreover, the minimum speedup is shown, together with the maximum one, and the speedup
variation, defined as

S
(min)
P = T

(min)
1

T
(max)

P

, S
(max)
P = T

(max)
1

T
(min)

P

, V
(S)
P = S

(max)
P

S
(min)
P

− 1

One can see from Table VII that the speedup of JDF2, as an example, can change more than
30%, which tells us that the speedup has a qualitative meaning, rather than a quantitative
one.

In the sequel we report the minimum CPU time recorded, assuming it is the ideal time which
would be reported if the machine loads merely our job (users are not allowed to run dedicated
jobs).

5.1.1. FE matrices evaluation. One can see from Table VI that our code evaluates the stiffness
and capacity matrices by a negligible fraction of the overall resolution time. A similar fraction
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Table VIII. CPU seconds for building the preconditioning
factors on the SP4.

Problem T1 T2 T4 T8 T16

FSAI1

1 2.2 1.2 0.7 0.4 0.3
2 4.2 2.3 1.3 0.8 0.6
3 8.9 4.9 2.7 1.6 1.3
4 * 9.5 5.3 3.2 2.4
5 * * * 6.9 5.4

FSAI2

1 17.1 8.8 4.6 2.4 1.4
2 34.1 17.3 8.9 4.7 2.7
3 69.2 35.6 18.6 9.9 5.6
4 * 70.4 36.3 19.4 11.1
5 * * * 41.5 23.0

is spent when P<16 processors are used. These results testify the efficiency of the matrix–
evaluation portion of our code.

5.1.2. Preconditioner computations. Table VIII shows the CPU seconds spent on the SP4 to
compute FSAI preconditioning factors by parallel runs. Problems 6 and 7 are not shown,
since they require practically the same time as 1 and 2, respectively. Note that we exploited
8-processor virtual nodes, where each processor shares (in principle) the whole 16 GB available
storage. Such amount of memory is larger than that required by our largest problem. However,
the SP4 scheduler practically prevents from running jobs requiring more than 3 GB/processor,
in order to avoid too large memory conflict rates. This limitation prevented us from running
our largest problems, unless we split the data between a suitable number of processors. In
our tables, a result which could not be obtained due to memory limitations is replaced by an
asterisk. The quantities which cannot be computed due to lacking results, are replaced by a
slash. As an example, inspecting Table VIII one can see that Problems 4 and 5 could not be
run on one processor; Problem 5 could not be run even on P = 1, 2, 4 processors.

Concerning the evaluation of the preconditioning matrices, inspecting Table VIII, one can
see that computing FSAI2 requires more than 4 times the CPU seconds required for FSAI1.
In any case Table VI shows that evaluating both preconditioning factors require a very small
fraction of the time spent by the JD algorithm.

Figure 3 shows the speedup ranges raised in Problem 2 when computing FSAI1 and FSAI2.
The minimum FSAI1 speedup values over 10 runs were linearly interpolated; the same interpo-
lation was performed for the maximum FSAI1 speedup values; the area encompassed by the two
piece-wise linear curves was filled. The same operations were performed for FSAI2. Figure 3
shows that the parallel degree of the FSAI1 construction phase is smaller. Indeed, the amount
of data to be exchanged among the processors remains roughly constant when the number of
processors changes, due to the band-like structure of the matrices involved (cf. Figure 1). On
the other hand, the complexity of the local computation decreases. This behaviour obviously
worsens the parallel performance. The situation changes when the pattern of A2 is used, since
it displays an increase in the bandwidth w.r.t. A (analogous to that one shown for Problem 6
in Figure 1), hence the speedup is larger when evaluating FSAI2.
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Figure 3. Problem 2. Speedup ranges on the SP4, recorded when evaluating FSAI1, FSAI2.

Table IX. SP4 CPU seconds spent by preconditioned JD for computing
q = 10 eigenpairs.

Problem T1 T2 T4 T8 T16

JDF1

1 246.8 138.2 85.7 62.3 35.3
2 959.6 545.9 334.7 228.9 135.5
3 1363.3 765.9 433.5 347.8 213.7
4 * 3200.5 1765.6 1069.0 680.5
5 * * * 2011.8 1593.0
6 7042.2 2660.1 1801.4 1539.3 862.3
7 38027.1 22494.5 10858.9 8561.6 4812.0

JDF2

1 205.0 118.6 65.3 51.2 26.2
2 674.4 351.5 232.3 165.9 88.7
3 1525.1 763.7 435.5 330.8 191.4
4 * 2470.3 1103.6 781.1 504.0
5 * * * 1957.5 1347.8
6 1238.4 679.4 421.3 299.8 174.1
7 3590.6 1863.4 1010.2 762.5 412.2

The overall speedup behaviour is typical of linear algebraic computations.

5.1.3. Eigenpairs. The leftmost q = 10 eigenpairs were computed, up to tolerance � = 10−3 in
the residual norm.

Table IX shows the CPU seconds spent to compute q = 10 leftmost eigenpairs, by either
JDF1 or JDF2. None of our test problems can be solved by unpreconditioned JD, while JDF1
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Table X. Ratios 
P between CPU times for performing JDF1
without/with pre-fetching.

Problem 
1 
2 
4 
8 
16

1 1.37 1.35 1.39 1.36 1.24
2 1.37 1.35 1.42 1.39 1.26
3 1.49 1.41 1.44 1.45 1.27
4 / 1.23 1.38 1.43 1.24
5 / / / 1.31 1.11
6 1.28 1.50 1.36 1.30 1.18
7 1.37 1.24 1.41 1.35 1.23

Average 1.38 1.35 1.40 1.37 1.22

Table XI. Average number of iterations spent on the SP4 by JDF1 and JDF2. The maximum
differences, di , are also shown.

Problem 1 2 3 4 5 6 7

JDF1

Average 1123.2 1908.4 1289.6 2106.0 1820.0 26878.8 70486.0
di (%) 2.8 4.9 3.2 12.3 0.0 19.0 9.7

JDF2

Average 993.2 1534.0 1102.4 1608.0 1404.0 6624.8 6708.0
di (%) 5.8 6.8 3.3 16.4 3.7 5.2 4.7

and JDF2 allow for efficiently computing the solutions. The CPU seconds spent by JDF2
are smaller than those for JDF1, except for Problem 3, P = 1, 4. Summarizing, JDF2 seems
preferable over JDF1.

Let T
(n)

P be the CPU times which was spent on the SP4 for performing JDF1 on P

processors, when no pre-fetching is exploited in matrix–vector products. Let T
(f )

P be the
time spent when pre-fetching is exploited (these latter CPU times are shown in Table IX).
Table X shows the ratios 
P = T

(n)
P /T

(f )
P , raised when solving Problems 1–5. Note that every-

where 
P > 1, hence pre-fetching is indeed effective for lowering JDF1 CPU time. Analogous
results hold for all our test problems, dealing with both JDF1 and JDF2 computations. On
the other hand, we found that the speedup recorded when pre-fetching is not exploited is in
the same range as the speedup recorded when pre-fetching is exploited. Hence pre-fetching is
indeed useful for enhancing the sequential performance of our algorithm, without lowering the
parallel performance. This is an interesting result, recalling also that we exploit CSR matrix
store format, instead of SSS one, used in Reference [19]. In the sequel we report the CPU
times spent when using the pre-fetching strategy in our matrix–vector code.

Note that using JD algorithm, we faced the well-known phenomenon that appreciable changes
in the number of iterations can be observed when one changes the number of engaged proces-
sors, since the evaluation sequence of floating point operations changes. Table XI shows the
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Figure 4. Problem 2. Speedup ranges on the SP4, recorded when running JDF1 or
JDF2 (same scales as in Figure 3).

Table XII. Same as Table IX, for JDF2, running on the CLX system.

Problem T1 T2 T4 T8 T16

1 212.1 113.2 66.3 37.4 25.1
2 537.0 293.9 147.0 88.0 56.0
3 * 594.6 322.8 183.4 109.4
6 1304.2 711.2 384.6 250.5 135.3
7 2528.5 1303.2 718.5 415.0 242.8

average JD iterations performed. The maximum differences

di = max
P=1,2,4,8,16

|Ii,P − �i |/�i , i = 1, . . . , 7

are also shown, being Ii,P the number of preconditioned JD iterations performed to solve the
ith problem by a P processor run, while �i , i = 1, . . . , 7, is the average value over the set
{Ii,P , P = 1, 2, 4, 8, 16}. Such a behaviour affects the speedup values of preconditioned JD, but
we found that its parallel performance is qualitatively unaffected.

Figure 4 is analogous to Figure 3, and it compares the speedup raised in Problem 2 when
performing JDF1 and JDF2. One can see that a smaller speedup is raised w.r.t. FSAI compu-
tations, due to larger amounts of data exchanged. Nevertheless, a speedup 8 for P = 16 can be
rated satisfactory in large flow problems.

To further analyse the efficiency of our code, we solved our problems on the CLX machine.
Table XII shows the CPU seconds spent on the CLX system for performing JDF2 in Problems
1–3, 6 and 7. We were unable to run Problems 4 and 5, due to lack of core memory (2 GB/node
is not enough). Note that when P>1 only one processor per physical 2-processor node was
exploited, to avoid memory conflicts which highly reduce the parallel performance.
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Table XIII. Same as Table IX, for pARPACK on SP4. The number of performed iterations,
I , is also shown, together with the ratio, R16 = T

(ARP)
16 /T

(JDF)
16 , between the CPU seconds

spent, when P = 16, by pARPACK core, and the time spent by JDF1 or JDF2.

Problem I T1 T2 T4 T8 T16 R16

FSAI1

1 35 1060.3 531.7 334.1 197.6 103.1 2.9
2 35 4543.6 2372.2 1341.4 874.0 408.9 3.0
3 30 5462.4 2955.3 1611.9 1160.9 633.3 3.0
4 35 * 10686.3 5935.2 4840.8 2712.1 4.0
5 35 * * * 8140.1 5127.8 3.2
6 192 * 23165.9 15693.5 8829.7 4458.7 5.2
7 63 * 36909.5 21785.6 13654.5 6045.4 1.3

FSAI2

1 35 675.5 374.1 217.4 136.4 77.7 3.0
2 35 2624.8 1421.2 790.2 511.9 268.4 3.0
3 30 4643.9 2510.4 1438.6 960.7 548.4 2.9
4 35 * 7679.3 4380.1 3136.9 1936.7 3.8
5 35 * * * 7376.7 4518.8 3.4
6 212 * 6070.7 3323.3 2480.5 1286.0 7.4
7 75 * 7278.3 4330.6 2654.3 1234.3 3.0

It is interesting to note that the wall-clock time spent on the CLX is usually smaller than
that on the SP4 machine, which is much more expensive than the CLX. Note, however, that
much larger amounts of I/O time can be spent on the CLX, amounts which subsume too odd
variations from run to run to be worth analysing.

From Table XII, one can argue that the speedup values on the CLX are larger than on the
SP4, which is not surprising. One can compute that for each problem, S16 is in the range
8–10. Indeed, the single processor peak performance on the CLX is worse than on the SP4,
while the interconnection network performance seems comparably larger on the CLX.

5.1.4. Comparison with pARPACK. In order to confirm the efficiency of our preconditioned JD
code, we also exploited the well-known pARPACK package [23, 24].

As suggested e.g. in Reference [13], we assumed that the dimension of the Ritz space is
s = 20, i.e. twice the number, q = 10, of required eigenvalues. When solving Problems 1 to 5,
we set the tolerance in the solution of linear systems to �g = 10−5, while we set �e = 10−4 the
tolerance on the eigenvalue norms. By these settings, the final, average relative residual norm
is r � 10−3, which well compares with that one obtained by preconditioned JD algorithm.
Note, however, that in order to achieve a residual norm r � 10−3 when solving Problems 6
and 7 by JDF2, we had to set �g = 10−7, �e = 10−6. Achieving a comparable accuracy using
JDF1, would require much smaller tolerances and unacceptably larger CPU times. Hence, also
when solving Problems 6 and 7 by JDF1, we set �g = 10−7, �e = 10−6, thus obtaining a larger
final residual r � 10−1.

Table XIII shows the CPU seconds spent for running the numerical core of pARPACK
code (the computation of the preconditioning matrix is not counted) on the SP4. Comparing
Tables IX and XIII one can see that the CPU time spent on the SP4 by pARPACK core
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is larger than that spent by JDF1 and JDF2. Moreover, recall that when solving Problems 6
and 7 pARPACK is less accurate than JD, as remarked previously. Table XIII reports also
the ratios R16 = T

(ARP)
16 /T

(JDF)
16 , concerning P = 16 parallel runs, where T

(ARP)
16 is the time

spent by pARPACK core, while T
(JDF)

16 is the time spent by either JDF1, when pARPACK is
preconditioned by FSAI1, or JDF2, when FSAI2 is the preconditioner. For P = 16 these ratios
show e.g. that the CPU time spent for performing pARPACK core, preconditioned by FSAI2,
is at least 2.9 times that consumed for running JDF2. We usually found that RP >1.

We equipped the pARPACK package with the same matrix–vector multiplication code which
we used for our JD solver, supplemented with the pre-fetching strategy by Geus and Röllin.
Since matrix–vector multiplication is one of the most time consuming blocks inside pARPACK,
it is not surprising that its parallel efficiency proved similar to that one of our JD code, as
one can argue by comparing Tables IX and XIII.

Incidentally, note that, unlike JD, the number of pARPACK iterations, reported in Table
XIII, does not change with the number of running processors, P .

6. CONCLUSIONS

The following points deserve mention:

• Performing parallel eigenanalysis of large, sparse, unstructured, symmetric matrices, arising
from FE integration of large multiaquifer flow problems can be effectively done by JD
algorithm, using FSAI-class preconditioners.

• We recommend using pre-fetching strategies when performing time consuming sparse
matrix–vector products. Pre-fetching allows for a valuable reduction in the CPU wall-
clock time.

• The fluctuations in the CPU time occurring from run to run, make it unpractical to
accurately measure the parallel efficiency of numerical algorithms on CINECA’s SP4 and
CLX machines. Qualitative measures must be devised.

• The efficiency of JDF1 and JDF2, together with the quite inexpensive cost of evaluating
the preconditioning factors, show that JDF1 and JDF2 are effective techniques for solving
our very large, sparse problems. JDF2 proved generally more efficient than JDF1.

• The pARPACK package requires larger CPU times than JDF2, when attacking our sym-
metric problems. Moreover, when solving Problems 6 and 7, pARPACK provides a less
accurate solution. These results confirm that exploiting our accurately tuned numerical
code, which takes advantage of the characteristics of our problems, delivers a more effi-
cient solver than using a standard, multi–purpose package.

• Compared to the SP4, the wall-clock time spent for performing JDF2 on the CLX machine
proved usually smaller, and the speedup was larger (note that the I/O time can be much
larger on the CLX).
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