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Human lysozyme variants form amyloid fibrils in individuals suffering
from a familial non-neuropathic systemic amyloidosis. In vitro, wild-type
human and hen lysozyme, and the amyloidogenic mutants can be induced
to form amyloid fibrils when incubated under appropriate conditions. In
this study, fibrils of wild-type human lysozyme formed at low pH have
been analyzed by a combination of limited proteolysis and Fourier-
transform infrared (FTIR) spectroscopy, in order to map conformational
features of the 130 residue chain of lysozyme when embedded in the
amyloid aggregates. After digestion with pepsin at low pH, the lysozyme
fibrils were found to be composed primarily of N and C-terminally
truncated protein species encompassing residues 26-123 and 32-108,
although a significant minority of molecules was found to be completely
resistant to proteolysis under these conditions. FTIR spectra provide
evidence that lysozyme fibrils contain extensive B-sheet structure and a
substantial element of non p-sheet or random structure that is reduced
significantly in the fibrils after digestion. The sequence 32-108 includes the
B-sheet and helix C of the native protein, previously found to be prone to
unfold locally in human lysozyme and its pathogenic variants. Moreover,
this core structure of the lysozyme fibrils encompasses the highly
aggregation-prone region of the sequence recently identified in hen
lysozyme. The present proteolytic data indicate that the region of the
lysozyme molecule that unfolds and aggregates most readily corresponds
to the most highly protease-resistant and thus highly structured region of
the majority of mature amyloid fibrils. Overall, the data show that amyloid
formation does not require the participation of the entire lysozyme chain.
The majority of amyloid fibrils formed from lysozyme under the conditions
used here contain a core structure involving some 50% of the polypeptide
chain that is flanked by proteolytically accessible N and C-terminal regions.
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Introduction

More than 20 human disorders involve the
conversion of a specific protein or protein fragment
from a soluble native state into insoluble amyloid

fibrils that are deposited in a variety of organs and
tissues.!> Among the amyloidogenic proteins are
the AR peptide involved in Alzheimer’s disease, the
islet amyloid polypeptide involved in type II
diabetes, a-synuclein involved in Parkinson’s dis-
ease and the prion proteins in the transmissible
spongiform encephalopathies.® Although the pro-
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teins associated with amyloid diseases differ in their

enzyme to substrate ratio; FTIR, Fourier-transform
infrared spectroscopy; GAnHCl, guanidine hydrochloride;
MS, mass spectrometry; RP, reverse-phase; RT, retention
time; [0], mean residue ellipticity; ThT, thioflavin T.
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primary and tertiary structures, as well as their size
and function, all of them form elongated amyloid
fibrils that are similar to each other in structure and
properties.”® They possess a common cross-p
structural motif, having p-strands oriented perpen-
dicular to the fibril axis, and they bind selectively the
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aromatic dyes Congo Red” and thioflavin T (ThT).!°
More recently, it has been found that proteins not
associated with human disease can be induced to
form amyloid fibrils in vitro. On this basis, the ability
to form amyloid fibrils has been suggested to be a
general property of the polypeptide chain.> 113

The single-point mutants of lysozyme I56T, F57I,
W64R and D67H,'417 and the two double mutants
F571/T70N and W112R /T70N,6-18 have been found
to form amyloid plaques in individuals suffering
from non-neuropathic hereditary amyloidosis.
Another natural variant, T70N, has been found in
5% of the British population and 12% of the
Caucasian Canadian population but has not so far
been associated with disease.'® It has been shown
that the I56T, F571, W64R and D67H variants are less
stable than the wild-type protein.?°-22 Despite its
greater stability, however, wild-type human lyso-
zyme can form fibrils in vitro that are very similar to
those of the pathological variants; for example, when
incubated at low pH and elevated temperature® or
following application of high hydrostatic pressure.?*
Lysozyme is an excellent system with which to study
protein aggregation processes, as its structure and
folding mechanism are known in great detail.>2¢
Moreover, the mechanism of aggregation of both
variant and wild-type lysozymes has been investi-
gated in depth.?” It has been shown that the region
encompassing the R-sheet and helix C of the
amyloidogenic variants I56T and D67H undergoes
a locally cooperative unfolding event under physio-
logically relevant conditions.?!?® A proteolytic frag-
ment encompassing approximately the same
sequence region in the highly homologous hen egg-
white protein has been found to be the most
aggregation-prone segment of the protein, at least
at acid pH.?? Moreover, synthetic fragments corre-
sponding to the p-sheet region of hen lysozyme have
been shown to form amyloid structures very
readily.®® Overall, this evidence has led to the
hypothesis that lysozyme amyloid fibril formation
may be initiated by the partial unfolding of the
central region of the protein encompassing the (-
domain and the C-helix located in the alpha-domain,
to which it is linked by a disulfide bond.?"-2!

While many molecular features of the process of
lysozyme aggregation are known from these previous
studies, a detailed molecular description of the
protein aggregates, including the mature fibrils, is
still an important objective. Despite the intrinsic het-
erogeneity and sometimes transient nature of the
amyloid aggregates, making the application of high-
resolution structural techniques highly challenging,!
important information has been achieved by means of
X-ray diffraction studies,*3* atomic force micros-
copy,® cryo-electron microscopy,®®*” Fourier-trans-
form infrared (FTIR) spectroscopy,®®#! solid-state
NMR spectroscopy*>** and H/2H exchange ana-
lyzed by NMR or mass spectrometry (MS).45-48
Recently, limited proteolysis has been exploited
successfully to analyze aspects of fibril formation by
a number of amyloidogenic proteins, including the
Ap peptide,*® a-synuclein,®® Ure2p,®!-52 PI3-SH33

and bovine a-lactalbumin.*! The rationale behind this
approach is that proteolytic cleavage generally occurs
at flexible regions of the polypeptide chain devoid of
hydrogen bonded regular secondary structure such
as a-helices and p-strands.®*>° Indeed, limited
proteolysis experiments have been used successfully
to obtain valuable information regarding many
features of structure and dynamics of both native
and partly folded proteins.>”

In the present study, amyloid fibrils formed by
human lysozyme at low pH were digested by pepsin
and the resulting protease-resistant protein core
identified by MS analysis. Lysozyme fibrils before
and after proteolysis have been analyzed by FTIR
spectroscopy, in order to estimate the effect of
proteolysis on the secondary structure content of
the fibrils. Our results indicate that in some fibrils
the entire 130 residue chain of lysozyme is protected
from proteolysis, but in most cases only a relatively
limited part of the chain is involved in the fibril core,
since pepsin can cleave off the N and C-terminal
segments of the protein in the amyloid fibrils. This
study emphasizes further the value of limited
proteolysis as a technique that can lead to useful
structural information even for high molecular mass
protein complexes, such as amyloid aggregates, and
in this specific case provides important information
about the core structure of the lysozyme fibrils.

Results

Formation and characterization of human
lysozyme fibrils

In order to generate fibrils from human lysozyme,
a 1 mM solution of deuterated lysozyme was
incubated for eight days with stirring at 45 °C in
D,O (pD 1.5). The deuteration step was important in
order to produce fibril samples amenable to analysis
by FTIR spectroscopy. The kinetics of aggregation of
lysozyme were monitored by following the increase
in the thioflavin T (ThT) fluorescence emission of
aliquots removed from the reaction mixture at
different time-points.'° The experimental data points
fit to a sigmoidal curve, indicating the presence of an
initial lag phase of about four days, followed by a
rapid growth phase that reaches a plateau at eight
days (Figure 1(a)). Transmission electron microscopy
revealed that the fibrils produced in this way have
typical amyloid morphology (Figure 1(b)), being
unbranched, with a length of up to 1 um and a
diameter of ~8-10 nm, and are composed of two or
more protofilaments twisted around each other.
There was no evidence from these experiments for
significant quantities of non fibrillar aggregates.

The lysozyme fibrils were purified from non-
aggregated soluble material by ultracentrifugation.
At least 90% of the total lysozyme content of the
initial solution was found in the pellet, as assessed by
UV measurement of the supernatant, indicating that
almost all protein material has aggregated. The
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Figure 1. (a) Aggregation of human lysozyme in
32 mM 2HCl (pD 1.5) at 45 °C, with stirring, monitored
by the thioflavin T (ThT) binding assay. Aliquots (4 pl) of
the protein solution, incubated for the lengths of time
indicated, were added to a 25 uM solution (496 pl) of ThT in
25 mM phosphate buffer (pH 6.0). The excitation wave-
length was fixed at 440 nm and the fluorescence emission
was collected at 485 nm. (b) Electron micrograph of
lysozyme fibrils obtained after incubation for eight days.

morphology and composition of the species in the
pellet and supernatant were checked by transmis-
sion electron microscopy and by reverse phase (RP)-
HPLC, respectively. The fibrils in the pellet had
morphological features the same as those of fibrils
before purification (see Figure 1(b)); in the super-
natant, by contrast, only occasional small globular
aggregates were observed (not shown). In order to
conduct the RP-HPLC analysis, the pellet and
supernatant were treated with 7.4 M guanidine
hydrochloride (GdnHCI) in order to dissolve all the
aggregates, following a procedure previously used
for hen lysozyme fibrils.*” The protein material
eluting in the main chromatographic peaks was
then analyzed by electrospray ionization (ESI) mass
spectrometry (MS). Figure 2 (top, left) shows that the

pellet of fibrils is composed mainly of full-length
lysozyme (residues 1-130), accompanied by small
amounts of other species, notably 1-102/103-130
and 50-102. These two latter species are derived
from the acid-mediated hydrolysis of the peptide
bonds Asp49-Arg50 and Asp102-Prol103 (Figure 2,
bottom); such Asp-X peptide bond fission is known
to occur within proteins exposed to low pH and
relatively high temperatures.?-°8->? It is important to
note that, whereas fragment 50-102 is present in the
pellet, the complementary fragment species 1-49/
103-130 remains in soluble form in the supernatant
(Figure 2, top right). Interestingly, although prepara-
tions of hen lysozyme were found to be degraded
significantly at pH 2.0,% the human variant showed
much less hydrolysis under the conditions used here,
an observation likely to result from the increased rate
of aggregation caused by stirring the solution,
making it possible to use a lower temperature
(45 °C versus 65 °C) for inducing protein aggregation.

Mapping the conformation of lysozyme in
amyloid fibrils by proteolysis

Lysozyme is a very stable protein and, therefore,
very resistant to proteolysis in its native state.®® In
this study, proteolysis of the monomeric and fibrillar
protein by pepsin was achieved under rather harsh
denaturing conditions, such as pD 2.0 and 57 °C for
several hours. The pellet obtained by ultracentrifu-
gation of lysozyme fibrils was suspended in 2H,O at
pD 2.0 and incubated at 57 °C with pepsin at an
enzyme to substrate (E:S) ratio of 1:30 (w/w). A
relatively large amount of protease relative to
lysozyme was used in order to hasten the proteolytic
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Figure 2. Composition of lysozyme fibrils obtained
after incubation at pD 1.5, for eight days at 45 °C, with
stirring. Top: RP-HPLC chromatograms of the pellet (left)
and the supernatant (right) obtained after ultracentrifuga-
tion of the fibrils and their dissolution in 7.4 M GdnHCI
(see Materials and Methods). The identity of the various
protein species was determined by ESI MS and is given by
the labels near the chromatographic peaks. Bottom: Amino
acid sequence of the 130 residue chain of human
lysozyme.
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reaction and hence to minimize any dissolution of
the fibrils and/or degradation phenomena. Pepsin
was chosen because of its broad specificity;®! the
cleavage sites are not expected to be dictated by the
amino acid sequence, but by the conformational and
dynamical features of the polypeptide chain. The
samples of the digested fibrils were subjected to
ultracentrifugation, and the pellets resulting were
solubilized in 7.4 M GdnHCI and analyzed by RP-
HPLC. The digested fibrils show a morphology
quite similar to that of the undigested fibrils (Figure
3(a), inset), and indeed they exhibit the typical
amyloid morphology of long, unbranched and
twisted structures, with a diameter of ~7-10 nm.
However, RP-HPLC analysis of the fibrils digested
for 2 h with pepsin (Figure 3(a)) revealed that two
protein fragments, 26-123 and 32-108, are present,
as well as the 130 residue wild-type protein, and
remain tightly associated within the fibrils. The

same composition was observed when the proteo-
lysis of fibrils was conducted for different lengths of
time and up to 24 h (not shown), indicating that the
segment 32-108 is the minimal region of the
lysozyme sequence that is resistant to proteolysis.
Some of the lysozyme molecules in the fibrils have
therefore been cleaved firstly at peptide bonds
Leu25-Ala26 and GIn123-Tyr124, leading to the
loss of the two-chain species 1-25/124-130, where
the fragments are connected together by the
disulfide bond Cys6—Cys128 of the protein (Figure
3(d)). Subsequently, the peptide bonds Leu31-Ala32
and Argl08-Trp109 must be cleaved and fragment
species 26-31/109-123, containing the disulfide
bond Cys30-Cysl16, is therefore released. The
extent of proteolysis in the fibrils was calculated
from the areas of the chromatographic peaks in the
RP-HPLC chromatogram shown in Figure 3(a), and
the combined quantity of the two fragments (26-123

32-108
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Figure 3. Proteolysis of fibrillar
and monomeric human lysozyme.
(a) and (b) Proteolysis of purified
lysozyme fibrils. RP-HPLC chroma-
tograms of (a) the pellet and (b) the
supernatant obtained by ultracen-
trifugation of lysozyme fibrils
digested for 2 h at 57 °C with
pepsin at an E:S ratio of 1:30 (w/
w) at pH 2.0. The pellet and the
supernatant obtained by ultracen-
trifugation of the fibrils after pro-
teolysis were each dissolved in
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various protein species was deter-
mined by ESI MS. The fragment
species 1-102/103-130 and 50-102
that are present in the undigested
lysozyme fibrils (see Figure 2, top
left) were found in the digested
pellet but in negligible quantities:
these species are not indicated here.
(a) Inset: Electron micrograph of
lysozyme fibrils after proteolysis.
(c) Proteolysis of monomeric lyso-
zyme. RP-HPLC chromatogram of
the peptic digestion of soluble
lysozyme performed in 10 mM
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HCl (pD 2.0) for 2 h at 57 °C,
with an E:S ratio of 1:30 (w/w). The
two-chain peptide 58-84/93-108
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and the three p-strands S1-S3. The

connectivity of the four disulfide bonds Cys6—Cys128, Cys30-Cys116, Cys65-Cys81 and Cys77-Cys95 of the protein are
indicated by continuous lines. Short arrows indicate the pepsin cleavage sites on the monomeric protein, whereas the
longer lines show the pepsin cleavages of lysozyme in the fibrils.
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and 32-108) accounts for ~60% of the lysozyme
molecules present in the fibrils, the remainder being
the full-length protein 1-130.

Analysis of the supernatant of the proteolysis
mixture showed, by contrast, only trace amounts of
intact lysozyme but a variety of protein fragments
(Figure 3(b)). Among the latter are the species that
are complementary to the fragments found in the
digested fibrils, i.e. 1-25/124-130 and 26-31/109-
123, plus fragments 1-19/124-130, 20-25, 1-11/124-
130 and 12-19 that derive from additional cleavages
of the larger fragments. Other fragments are found in
the supernatant that are likely to be derived from the
peptic digestion of intact lysozyme following a small
amount of dissolution of the fibrils during proteo-
lysis. In order to examine whether lysozyme fibrils
are stable in the solution conditions used for peptic
digestion, or if they partially degrade, fibrils were
incubated at 57 °C in 10 mM 2HCl (pD 2.0) for up to
4 h, but in the absence of pepsin. The samples were
then subjected to ultracentrifugation and the super-
natant and pellet treated with 7.4 M GdnHCI. RP-
HPLC analyses revealed that the compositions of the
supernatant and the pellet obtained in this experi-
ment are identical with that of the fibrils before
proteolysis (not shown). Therefore, for these incuba-
tion times at least, the acidic buffer does not cause
significant chemical modification of the protein.
From UV absorbance measurements of the super-
natant, however, approximately 10% and 12% of the
lysozyme in the fibrils after 2 h and 4 h of incubation,
respectively, was found to dissociate from the fibrils
and remain soluble in the supernatant. Different
populations of the 130 residue chain of lysozyme
could therefore be cleaved by the proteolytic probe,
i.e. both the aggregated protein within the fibrils and
the soluble protein dissociated from the fibrils.
Indeed, it has been demonstrated that protein
molecules can dissociate within the fibril population,
illustrating the dynamic nature of amyloid fibrils.*®

A proteolysis experiment was conducted on
freshly dissolved monomeric lysozyme under the
same proteolysis conditions used for the digestion of
fibrils (pD 2.0, 57 °C, 2 h). Figure 3(c) indicates that
lysozyme is almost completely degraded by pepsin
under these conditions, since only a small peak
corresponding to the intact protein is still visible in
the RP-HPLC chromatogram. The protein is evi-
dently cleaved by pepsin at many sites along its 130
residue chain, and the relatively short fragments
produced in this way have much lower RP-HPLC
retention times than the larger fragments that
originate from the proteolysis of the fibrils (Figure
3(d)). This finding indicates that the fragments
observed in the present study must have arisen
from lysozyme in the fibrillar rather than solution
state.

Conformational analysis of lysozyme fibrils by
FTIR

The lysozyme fibrils before and after digestion
with pepsin were analyzed by FTIR spectroscopy in

order to investigate the features of the secondary
structure of the protein molecules within amyloid
aggregates. Figure 4(a) shows the FTIR spectrum of
the pellet produced by ultracentrifugation of the
undigested fibrils, recorded in 10 mM 2HC], (pD 2.0).
The spectral envelope can be deconvoluted into four
main components, each of which can be associated
with specific elements of secondary structure. The
bands 1 (32%) and 4 (7%) centered at 1614 cm™! and
1682 cm ™1, respectively, are typical of amyloid fibrils
absorption at ~1635 cm™! and 1675 cm ™!, character-
istic of antiparallel p-sheet structure, shift to 1611-
1630 cm™ ! and ~1684 cm™ !, respectively, in cross-p
amyloid aggregates.®>°3 However, the main contri-
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Figure 4. FTIR analysis of lysozyme fibrils (a) before
and (b) after proteolysis and (c) the difference spectrum.
(a) and (b) The FTIR spectra were obtained in 10 mM 2HCI
(pD 2.0) at room temperature and fitted with Gaussian
and Lorentzian curves. The peak position of the amide I
band components was deduced from the second deriva-
tive spectra. The sum of the fitted curves is shown as a
continuous heavy line, closely overlapping the experi-
mental trace, which is shown as a thin line. (c) The
difference spectrum obtained by subtracting the FTIR
spectrum of digested fibrils shown in (b) from that of
undigested fibrils shown in (a).



556

Proteolysis of Lysozome Fibrils

bution (47%) to the FTIR spectrum is given by the
broad band centered at 1640 cm ™! (band 2), which is
associated with disordered structure.®*®° In addi-
tion, there is a contribution at 1659 cm™! associated
with turns and/ or a-helix (band 3, 14%). Indeed, the
FTIR spectrum of fibrils derived from the D67H
amyloidogenic mutant of lysozyme suggests that the
predominant B-structure is accompanied by some
residual helical structure.?’

In the FTIR spectrum of the digested fibrils, the
same structural components can be observed but at
different relative intensities (see Figure 4(b)). The
major difference is that bands 2 and 3, attributable to
disordered structure, turns and helices, are
decreased significantly in their intensity (32% and
8%, respectively) relative to those from the 3-sheet
structure. The difference in the secondary structure
content between the fibrils before and after proteo-
lysis can be seen particularly clearly in the difference
spectrum obtained by subtracting the spectrum of
the proteolyzed fibrils from that of the undigested
ones (Figure 4C). The main peak in the difference
spectrum centered at 1641 cm™! is associated with a
decrease in disordered structure in the proteolyzed
fibrils. In addition to the change associated with
secondary structure, the spectral components result-
ing from side-chain signals are reduced in their
intensity in the digested fibrils, in particular those
resulting from the absorption of the carbonyl and
carboxylic groups of aspartic acid (1583 cm™land
1713 cm™1), of the OH group of tyrosine and of the
CN;H¢# side-chain group of arginine (1606 cm™1).%°
In the proteolyzed fibrils, there is also a decrease in
the signal intensity at 1680 cm™!, attributable to
antiparallel R-sheet elements, suggesting that the
core structure of lysozyme fibrils could have a
parallel B-sheet arrangement. Overall, therefore, the
FTIR data show that the main structural variation
caused by proteolysis of the fibrils is a reduction of
the content of disordered and/or helical structure.

Discussion

In this study, the conformational features of
human lysozyme when embedded into amyloid
fibrils have been examined by using proteolysis and
FTIR measurements. The aggregation conditions
were optimized in order to obtain fibrils containing
full-length lysozyme on a reasonable time-scale. The
process was carried out at pD 1.5, 45 °C, where CD
data suggest that a partially unfolded state of
human lysozyme is significantly populated at
equilibrium (~35%), while about 60% of the protein
is still native, and the remaining 5% is highly
unfolded.®” The protein aggregation process is
accelerated greatly by stirring the protein solution,
so that relatively homogeneous fibrils are formed
and Asp-X fragmentations occurring at low pH are
avoided.?” The only fragment found in the fibrils
along with the full-length protein, before pepsin
treatment, corresponds to the sequence 50-102,
present at low levels, that includes a part of the -

domain and helix C of the native protein (see Figure
3(d)). This species is similar to several fragments
found previously in the fibrils of hen lysozyme
obtained at pH 2.0 and 65 °C, derived by Asp-X
hydrolysis events.?

Human lysozyme fibrils treated with pepsin were
not digested completely even after a prolonged
reaction time. This result is in accord with the
finding that amyloid fibrils are usually very resistant
to proteolysis*®->3:68.69 and that their architecture is
formed by several twisted protofilaments.®”70 As a
consequence, any protein molecules buried on the
inner sides of the protofilaments might not be
accessible to a relatively large conformational
probe such as pepsin.®® However, a substantial
proportion (~60%) of molecules in the fibrils
examined here have been digested by pepsin,
revealing that they possess some segments of the
polypeptide chain that are flexible enough to
interact with the active site of the protease. Never-
theless, the fibrils experience proteolysis at very few
sites in the sequence, despite the fact that there are
many potential peptic sites distributed along the
protein sequence. Moreover, substantial differences
have been observed between the proteolytic pattern
of monomeric soluble lysozyme and that of lyso-
zyme in the fibrils under the same experimental
conditions (Figure 3). Of particular importance is the
observation that the fragment species 26-123 and
32-108 are generated by peptic proteolysis, but
remain incorporated into the fibrils. These frag-
ments are relatively large, whereas those produced
after proteolysis of monomeric lysozyme are much
shorter. This result shows that the polypeptide chain
of lysozyme in the aggregates is far less accessible to
the protease than it is in the soluble form. The main
finding from the proteolysis data, however, is the
absence of cleavage sites in the central region 32-108
of the protein sequence, indicating that the com-
plementary fragments 1-25/124-130 and 1-31/109—
130, containing the N and C-terminal segments of
the protein and linked by the two disulfide bonds
Cys6—Cys128 and Cys30-Cys115, must have dis-
sociated from the network of fibrils following
proteolysis and been cleaved further at positions
Thr1l-Leul2 and Gly19-Tyr20. Therefore, these
regions of the protein are not tightly associated in
the fibril core and must be structurally flexible or
highly unfolded. Although 32-108 is the minimal
sequence obtained by proteolysis, the polypeptide
chain involved in the fibril core could be even
shorter, as a stretch of about ten amino acids
residues is necessary to allow protease interaction.>®

Since pepsin removes the N- and C-terminal
segments of lysozyme in the fibrils, it can be
concluded that the region 32-108 of lysozyme
forms the major cross p-structure core of the fibril
and that the rest of the 130-residue chain is, at least
in the majority of molecules, largely unstructured
and/or weakly packed. The fact that the undigested
and digested lysozyme fibrils show essentially the
same morphology, as indicated by transmission
electron microscopy (see Figure 3(a)), can be
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explained by considering that the unstructured
regions are likely to be poorly stained due to their
lack of close-packing and/or hydrophilic nature.
Therefore, only the core of the lysozyme fibrils is
expected to be revealed by electron microscopy,
while the disorganised regions of the protein
molecules located outside the well-ordered fibrils
are likely to not be visible. This interpretation is
similar to that given in the recent analysis of the
fibril morphology of fragments of tau protein as
compared to that of the whole protein molecule.”*
The results of this study are in line with similar
observations indicating that the entire sequence of a
protein molecule need not be incorporated in the
amyloid core structure.3!.3%.36,37,49.50.72 For exam-
ple, only the central region 31-109 of the 140 amino
acid residue chain of a-synuclein is involved in the
fibrillar R-sheet core, as deduced from proteolysis
experiments with proteinase K,°° and in the case of
the AR(1-40) peptide, some 12 to 16 residues of the
N-terminal region of the peptide appear to be
excluded from the fibril structure and therefore
prone to proteolysis.*

The pepsin-resistant segment 32-108 encompasses
the p-sheet and helix C of native lysozyme (Figure
3(d)) and corresponds to the region, approximately
residues 31-104 that readily undergoes local unfold-
ing in the amyloidogenic variants 156T and D67H of
human lysozyme?!?® and in the wild-type protein
under more extreme conditions.”> Moreover, this
region also encompasses fragment 57-107 that was
found to be highly amyloidogenic in hen lyso-
zyme.?” In addition, a camel antibody fragment
that binds to 14 residues located in the loop between
helices A and B, in the long loop within the B-domain
and in the C-helix was found to be able to restore the
global cooperativity of mutant lysozymes I56T and
D67H, therefore preventing the aggregation process
of these mutants.?!”* These data suggest that the
region involved in the cooperative local unfolding of
the molecule, and which is also the most amyloido-
genic part of the sequence, is a key factor in
determining the specific structure of the lysozyme
fibrils. Interestingly, proteolysis experiments con-
ducted at 45 °C on monomeric human lysozyme at
pD 1.5; on the conformational state of the protein that
is the precursor to the fibrils, show that the first
peptide bonds that are cleaved by pepsin are Phe57-
GIn58 and Alal08-Trp109, located in the B-domain
and in the 319 helix between helices C and D,
respectively (not shown). These results support the
conclusion that unfolding of these segments of the
chain triggers the formation of the amyloid structure
by human lysozyme. Indeed, it is very likely that
partial unfolding of a globular protein will often be a
key factor in initiating the aggregation process.
Protein destabilization, by the addition of a dena-
turant, low pH, high temperature or amino acid
substitution, can lead to an increased population of
partially unfolded monomeric protein molecules
that are key species in the initiation of fibril
formation. Such partially unfolded conformations
presumably enable the specific intermolecular inter-

actions that are necessary for protein oligomeriza-
tion and fibrillation.20-7>-7%

The incomplete digestion of lysozyme fibrils by
pepsin can be explained on the basis that the non-p-
sheet segments of specific regions of the molecules
in the fibrils are so tightly packed in the structure
that they are not accessible to the protease. There is
also evidence that the fibrils exhibit a significant
degree of polymorphism, as a population of protein
molecules (approximately 40%) appears to be
completely resistant to proteolysis and, therefore,
could in principle have their entire polypeptide
chain involved in the highly organized core struc-
ture of the fibrils. This hypothesis appears to be
unlikely, however, as the process of aggregation of
the protein was conducted whilst stirring the
solution, and electron microscopy suggests that the
fibrils are relatively homogeneous, at least in terms
of their morphology. In addition, the FTIR spectrum
of the proteolyzed fibrils indicates the presence of
relatively unstructured regions that have not been
cleaved by the protease. This finding suggests
instead that pepsin may not be able to gain access
to all the disorganized or loop regions within the
fibrils, perhaps because they are buried in the rigid
structure of the fibril, by the packing of the
constituent protofilaments. Interestingly, the inac-
cessibility of approximately 50% of flexible regions
of proteins in amyloid fibrils has been seen
elsewhere,*89 a fact that could be related to the
idea that a double sheet could be a common building
block of the amyloid structure.345!

Analysis of the aggregation properties of peptides
corresponding to fragments of a protein provides
information about the relative propensity of different
regions of a protein sequence to form the amyloid
structure, and hence is useful for probing the physi-
cochemical determinants of aggregation.*!82.%3 The
approach used in the present study is complemen-
tary to this approach but is based, instead, on the
identification of the core regions of an intact protein
after its conversion into an amyloid fibril. In this way,
we have obtained conformational information relat-
ing to lysozyme in its fibrillar context, taking into
account all the structural constraints, such as the
native disulfide bonds and other long-range interac-
tions that influence the way that the protein converts
into the amyloid structure.

Detailed knowledge of the structure of the well-
ordered protein aggregates that constitute amyloid
deposits is essential for understanding the nature of
protein homeostasis and for developing insight into
the molecular aspects of protein aggregation diseases,
including neurodegenerative disorders such as Alz-
heimer’s and Parkinson’s disease. An increasing
variety of physicochemical techniques is being used
for analyzing protein aggregates and substantial
progress is now being made in describing the
molecular architectures of amyloid fibrils.?!%® The
use of conventional analytical approaches is, how-
ever, still a major challenge, so that novel and un-
conventional analytical approaches need to be
devised.®* Here, we have shown that limited pro-
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teolysis is a technique that can be used successfully to
obtain valuable information about the structure and
dynamics of proteins in a wide variety of the many
states accessible to peptides and proteins. In the case
of the human lysozyme fibrils described here, limited
proteolysis has proved to be of great value in
revealing that the segment of the protein that appears
to form the most stable region of the amyloid core
structure (residues 32-108) is essentially identical
with the region of the native structure that is most
susceptible to local unfolding (residues 31-104).21:28
This remarkable correlation between the dynamic
behavior of the soluble precursor and the structural
properties of the protein in an amyloid fibril provides
compelling evidence for the hypothesis that partial
unfolding of the native structure of lysozyme is a
crucial factor in its conversion to the generic amyloid
structure.?-?7

Materials and Methods

Materials

Wild—ty7§>e human lysozyme was expressed as
described.”” Porcine pepsin and thioflavin-T (ThT) were
purchased from the Sigma Chem. Co. (St. Louis, MO). All
other chemicals were of analytical reagent grade and were
obtained from Sigma or Fluka (Buchs, Switzerland).

Methods

Preparation and characterization of lysozyme fibrils

Deuterated lysozyme was prepared by incubating at
81 °C for 45 min a 10 mg/ml protein solution in *H,O at pD
3.8, followed by lyophilization.®® Lysozyme fibrils were
obtained bzy stirring a 1 mM deuterated lysozyme solution
in 32 mM “HCI (pD 1.5), at 45 °C for up to ten days.

In order to confirm the presence of protein fibrils,
aliquots of the samples were examined by ThT fluores-
cence and transmission electron microscopy. The ThT
binding assays were performed using a freshly prepared
25 uM ThT solution in 25 mM sodium phosphate (pH 6.0)
that had been passed through 0.45 pm pore size filters.
Aliquots (4 pl) of protein samples containing aggregates
were taken at specified times and diluted into the ThT
buffer (final volume 500 pl). Fluorescence emission
measurements were conducted at 25 °C using an excita-
tion wavelength of 440 nm and recording the ThT
fluorescence emission at 485 nm. Electron micrographs
were taken with a JEOL model JEM1010 instrument
operating at 80 kV. Samples for electron microscopy
were diluted 20 times and a drop of the solution was
placed on a Formvar-coated nickel grid (400-square mesh,
Agar Scientific), followed by a drop of 2% (w/v) uranyl
acetate. After a few seconds, the grid was washed with
deionized water (MilliQ).

Separation of lysozyme fibrils from monomers and
soluble oligomers was performed by ultracentrifugation
with a Beckman-Coulter MLA-130 ultracentrifuge (model
Optima MAX-E, Palo Alto, CA) at 4 °C for 1.5 h at
90,000 rpm (380,000g). The quantity of fibrils precipitated
in the pellet was estimated by measuring the concentra-
tion of the protein in the supernatant, using the extinction
coefficient of the intact protein, as below.

Proteolysis of monomeric and fibrillar lysozyme

Monomeric lysozyme or purified lysozyme fibrils were
subjected to proteolysis in 10 mM 2HCI (pD 2.0) at 57 °C,
using pepsin at an E:S ratio of 1:30 (w/w). For peptic
digestion of fibrils, lysozyme fibrils were collected by
ultracentrifugation and the pellet was suspended in the
proteolysis buffer at ~10 mg/ml. After proteolysis, the
fibril sample was subjected to ultracentrifugation again
and both pellet and supernatant were dissolved in 7.4 M
GdnHCI, mixed overnight and subsequently analyzed by
RP-HPLC. All RP-HPLC analyses were performed on a
Vydac Cig column (4.6 mmx150 mm; The Separations
Group, Hesperia, CA) eluted with a linear gradient of
acetonitrile containing 0.1% (v/v) trifluoroacetic acid from
5% to 22% in 5 min and from 22% to 50% in 17 min, at a
flow-rate of 0.6 ml/min. The effluent from the column was
monitored by measurement of the absorbance at 226 nm.
The identity of protein fragments was assessed by
electrospray mass spectrometry (ESI-MS) with a Q-Tof
Micro mass spectrometer (Micromass, Manchester, UK).
Since many proteolytic fragment species of lysozyme are
crosslinked by disulfide bonds, these species were
reduced with tris(2-carboxyethyl)phosphine (TCEP) in
order to cleave the disulfide bonds, and the individual
peptides were then purified by RP-HPLC and analyzed by
ESI-MS.

Spectroscopic measurements

Protein concentrations were determined by absorption
measurements at 280 nm on a double-beam Lambda-20
spectrophotometer from Perkin Elmer (Norwalk, CT).
The extinction coefficient (¢ mg/ml) at 280 nm for
lysozyme was evaluated on the basis of its amino acid
composition, % and was 2.49.

Fourier-transform infrared (FTIR) spectra were recorded
at 2022 °C using a Perkin Elmer 1720x spectrometer,
purged with a continuous flow of N, gas. Pellets from the
ultracentrifugation of lysozyme fibrils were suspended in
10 mM 2HCl (pD 2.0) to give a concentration of ~10 mg/
ml. Protein samples were placed between a pair of CaF,
windows separated by a 50 um mylar spacer. For each
protein sample, 50 interferog?rrams were accumulated at a
spectral resolution of 2 cm™'. The spectra were analyzed
using the Grams 32 program version 4.14 (Galactic
Industries Corporation, Salem, NH). Buffer spectra were
recorded under conditions identical with those used for
protein samples and subtracted from the protein spectra.
The second derivative of the amide I band was used to
identify the different spectral components. Thereafter,
curve fitting was performed with Gaussian and Lorentzian
lineshapes, and with bandwidths varying between
15 cm™ ! and 20 cm™!.88 The heights, widths and positions
of each band were optimized iteratively.8° The difference
spectrum was calculated by subtracting the spectrum of
digested lysozyme fibrils from that of undigested fibrils.
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