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Photon geodesics are calculated in a Swiss-cheese model, where the cheese is made of the usual
Friedmann-Robertson-Walker (FRW) solution and the holes are constructed from a Lemaı̂tre-Tolman-
Bondi solution of Einstein’s equations. The observables on which we focus are the changes in the redshift,
in the angular-diameter-distance relation, in the luminosity-distance-redshift relation, and in the corre-
sponding distance modulus. We find that redshift effects are suppressed when the hole is small because of
a compensation effect acting on the scale of half a hole resulting from the special case of spherical
symmetry. However, we find interesting effects in the calculation of the angular distance: strong evolution
of the inhomogeneities (as in the approach to caustic formation) causes the photon path to deviate from
that of the FRW case. Therefore, the inhomogeneities are able to partly mimic the effects of a dark-energy
component. Our results also suggest that the nonlinear effects of caustic formation in cold dark matter
models may lead to interesting effects on photon trajectories.
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I. INTRODUCTION

In this paper we explore a toy cosmological model in
order to attempt to understand the role of large-scale
nonlinear cosmic inhomogeneities in the interpretation of
observable data. The model is based on a Swiss-cheese
model, where the cheese consists of the usual Friedmann-
Robertson-Walker (FRW) solution and the holes are con-
structed out of a Lemaı̂tre-Tolman-Bondi (LTB) solution.
The advantage of this model is that it is a solvable model
with strong nonlinearities, in particular, the formation of
caustics as expected in the cold dark matter (CDM)
models.

Most, if not all, observations are consistent with the
cosmic concordance model according to which, today,
one-fourth of the mass-energy of the universe is clustered
and dominated by cold dark matter. The remaining three-
quarters is uniform and dominated by a fluid with a nega-
tive pressure (dark energy, or �).

While the standard �CDM model seems capable of
accounting for the observations, it does have the feature
that approximately 95% of the mass-energy of the present

universe is unknown. We are either presented with the
opportunity of discovering the nature of dark matter and
dark energy, or nature might be different than described by
the �CDM model. Regardless, until such time as dark
matter and dark energy are completely understood, it is
useful to look for alternative cosmological models that fit
the data.

One nonstandard possibility is that there are large effects
on the observed expansion rate due to the backreaction of
inhomogeneities in the universe. The basic idea is that all
evidence for dark energy comes from observational deter-
mination of the expansion history of the universe.
Anything that affects the observed expansion history of
the universe alters the determination of the parameters of
dark energy; in the extreme it may remove the need for
dark energy.

This paper focuses on the effects of large-scale nonlinear
inhomogeneities on observables such as the luminosity-
distance-redshift relation. The ultimate goal is to find a
realistic dust model that can explain observations (like the
luminosity-distance-redshift relation) without the need of
dark energy. The ultimate desire will be to have an exactly
solvable realistic inhomogeneous model. Our model is but
a first small step in this pragmatic and necessary direction.

If this first step is successful, we would show that
inhomogeneities must be factored into the final solution.
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Even if we live in a �CDM universe, inhomogeneities
‘‘renormalize’’ the theory adding an effective extra source
to the dark energy. We have to be very careful in what we
mean. The inhomogeneities renormalize the dust Einstein-
de Sitter universe only from the observational point of
view, that is luminosity and redshift of photons. Average
dynamics is beyond this and we will not be concerned with
this issue in this paper: if we find an effective cosmological
constant, this will not mean that the universe is accelerat-
ing, but only that its luminosity-distance-redshift relation
will fit the observational data.

Here we are not primarily interested in the backreaction
effect that comes from the averaging procedure in general
relativity (see e.g. [1]). Since we have an exact solution, we
can directly calculate observables. Indeed, in this paper we
are mainly interested in the effect of inhomogeneities on
the dynamics of photons.

We can reformulate our present approach as follows:
inhomogeneities renormalize the geodesics of photons.
In the extreme case in which such a renormalization leads
to a negative effective deceleration parameter in the
luminosity-distance-redshift relation, it might make us
think that a dark-energy component exists.

The paper is organized as follows: In Sec. II we will
specify the parameters of our Swiss-cheese model. In
Sec. III we study its dynamics. Then in Sec. IV we
will discuss the geodesic equations for light propagation.
We will apply them to see what an observer in the
cheese (Sec. V) or in the hole (Sec. VI) would observe.
The observables on which we will focus are the change
in redshift �z, angular-diameter-distance �dA�z�,
luminosity-distance-redshift relation �dL�z�, and the dis-
tance modulus �m�z�.

Conclusions are given in Sec. VII. In two appendices we
discuss the role of arbitrary functions in LTB models
(Appendix A) and some technical issues in the solution
of photon geodesics in our Swiss-cheese model
(Appendix B).

II. THE MODEL

We study a Swiss-cheese model where the cheese con-
sists of the usual Friedmann-Robertson-Walker solution
and the spherically symmetric holes are constructed from

a Lemaı̂tre-Tolman-Bondi solution. The particular FRW
solution we will choose is a matter-dominated, spatially
flat solution, i.e., the Einstein-de Sitter (EdS) model.

In this section we will describe the FRW and LTB model
parameters we have chosen. But first, in Table I we list the
units we will use for mass density, time, the radial coor-
dinate, the expansion rate, and two quantities, Y�r; t� and
W�r�, that will appear in the metric.

The time t appearing in Table I is not the usual time in
FRW models. Rather, t � T � T0, where T is the usual
cosmological time and T0 � 2H�1

0 =3 is the present age of
the universe. Thus, t � 0 is the present time and t � tBB �
�T0 is the time of the big bang. Finally, the initial time of
the LTB evolution is defined as �t.

Both the FRW and the LTB metrics can be written in the
form

 ds2 � �dt2 �
Y02�r; t�

W2�r�
dr2 � Y2�r; t�d�2; (1)

where here and throughout, the ‘‘prime’’ superscript de-
notes d=dr and the ‘‘dot’’ superscript will denote d=dt. It is
clear that the Robertson-Walker metric is recovered with
the substitution Y�r; t� � a�t�r and W2�r� � 1� kr2.

The above metric is expressed in the synchronous and
comoving gauge.

A. The cheese

We choose for the cheese model a spatially flat, matter-
dominated universe (the EdS model). So in the cheese there
is no r dependence to � or H. Furthermore, Y�r; t� factors
into a function of t multiplying r (Y�r; t� � a�t�r), and in
the EdS model W�r� � 1. In this model �M � 1, so in the
cheese, the value of � today, denoted as �0, is unity in the
units of Table I. In order to connect with the LTB solution,
we can express the line element in the form

 ds2 � �dt2 � Y02�r; t�dr2 � Y2�r; t�d�2: (2)

In the cheese, the Friedmann equation and its solution
are (recall t � 0 corresponds to the present time):

 H2�t� � 4
9��t� �

4
9�t� 1��2; (3)

TABLE I. Units for various quantities. We use geometrical units, c � G � 1. Here, the present
critical density is �C0 � 3H2

0;Obs=8�, with H0;Obs � 70 kms�1 Mpc�1.

Quantity Notation Unit Value

Mass density ��r; t�, ���r; t� �C0 9:2� 10�30 g cm�3

Time t, T, �t, tBB, T0 �6��C0�
�1=2 9.3 Gyr

Comoving radial coordinate r �6��C0�
�1=2 2857 Mpc

Metric quantity Y�r; t� �6��C0�
�1=2 2857 Mpc

Expansion rate H�r; t� �6��C0�
1=2 3

2H0;Obs

Spatial curvature term W�r� 1 —
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 Y�r; t� � ra�t� � r
�t� 1�2=3

��t� 1�2=3
; (4)

where the scale factor is normalized so that at the begin-
ning of the LTB evolution it is a��t� � 1.

For the EdS model, T0 � 1. We also note that the
comoving distance traveled by a photon since the big
bang is rBB � 3=a0.

B. The holes

The holes are chosen to have an LTB metric [2–4]. The
model is based on the assumptions that the system is
spherically symmetric with purely radial motion and the
motion is geodesic without shell crossing (otherwise we
could not neglect the pressure).

It is useful to define a ‘‘Euclidean’’ mass M�r� and an
‘‘average’’ mass density ���r; t�, defined as

 M�r� � 4�
Z r

0
��r; t�Y2Y0dr �

4�
3
Y3�r; t� ���r; t�: (5)

In spherically symmetric models, in general there are
two expansion rates: an angular expansion rate, H? �
_Y�r; t�=Y�r; t�, and a radial expansion rate, Hr �
_Y0�r; t�=Y0�r; t�. (Of course in the FRW model Hr � H?.)

The angular expansion rate is given by

 H2
?�r; t� �

4

9
���r; t� �

W2�r� � 1

Y2�r; t�
: (6)

Unless specified otherwise, we will identify H? � H.
To specify the model we have to specify initial condi-

tions, i.e., the position Y�r; �t�, the velocity _Y�r; �t�, and the
density ���t� of each shell r at time �t. In the absence of shell
crossing it is possible to give the initial conditions at
different times for different shells r: let us call this time
�t�r�. The initial conditions fix the arbitrary curvature func-
tion W�r�:

 W2�r� � 1 � 2E�r� �
�

_Y2 �
1

3�
M
Y

���������r;�t
; (7)

where we can choose Y�r; �t� � r so that M�r� �
4�

R
r
0 �� �r; �t��r

2d �r.
In a general LTB model there are therefore three arbi-

trary functions: ��r; �t�, W�r�, and �t�r�. Their values for the
particular LTB model we study are specified in the follow-
ing subsection.

In Appendix A we provide a discussion about the num-
ber of independent arbitrary functions in a LTB model.

Our LTB model

First of all, for simplicity we choose �t�r� � �t; i.e., we
specify the initial conditions for each shell at the same
moment of time.

We now choose ��r; �t� and W�r� in order to match the
flat FRW model at the boundary of the hole: i.e., at the

boundary of the hole �� has to match the FRW density and
W�r� has to go to unity. A physical picture is that, given a
FRW sphere, all the matter in the inner region is pushed to
the border of the sphere while the quantity of matter inside
the sphere does not change. With the density chosen in this
way, an observer outside the hole will not feel the presence
of the hole as far as local physics is concerned (this does
not apply to global quantities, such the luminosity-dis-
tance-redshift relation, for example). So the cheese is
evolving as a FRW universe while the holes evolve differ-
ently. In this way we can imagine putting in the cheese as
many holes as we want, even with different sizes and
density profiles, and still have an exact solution of the
Einstein equations (as long as there is no superposition
among the holes and the correct matching is achieved). The
limiting picture of this procedure is the Apollonian Gasket
of Fig. 1, where all the possible holes are placed, and
therefore the model has the strange property that it is
FRW nowhere, but it behaves as a FRW model on the
average. This idea was first proposed by Einstein and
Straus [5].

To be specific, we choose ��r; �t� to be

 ��r; �t� � A exp���r� rM�
2=2�2	 � � �r < rh�;

��r; �t� � �FRW��t� �r > rh�;
(8)

where � � 0:0025, rh � 0:42, � � rh=10, rM � 0:037,
A � 50:59, and �FRW��t� � 25. In Fig. 2 we plot this chosen
Gaussian density profile. The hole ends at rh � 0:042
which is [6] 350 Mpc and roughly 25 times smaller than
rBB. Note that this is not a very big bubble. But it is an
almost empty region: in the interior the matter density is
roughly 104 times smaller than in the cheese. Our model
consists of a sequence of up to five holes and the observer
is looking through them. The idea, however, is that the

FIG. 1. The Apollonian gasket.
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universe is completely filled with these holes, which form a
sort of lattice as shown in Fig. 3. In this way an observer at
rest with respect to a comoving cheese-FRW observer will
see an isotropic CMB along the two directions of sight
shown in Fig. 3.

It is useful to consider the velocity of a shell relative to
the FRW background. We define

 �vsh�r; t� � _aLTB�r; t� � _aFRW�t�; (9)

where aLTB�r; t� � Y�r; t�=r. To have a realistic evolution,
we demand that there are no initial peculiar velocities at
time �t, that is, to have an initial expansion H independent
of r: �vsh�r; �t� � 0. From Eq. (7) this implies

 E�r� �
1

2
H2

FRW��t�r
2 �

1

6�
M�r�
r

: (10)

The graph of E�r� chosen in this way is shown in Fig. 4. As
seen from the figure, the curvature E�r� is small compared
with unity. Indeed, in many formulae W � �1� 2E�1=2 ’
1� E appears, therefore one should compare E with 1. In
spite of its smallness, the curvature will play a crucial role
to allow a realistic evolution of structures, as we will see in
the next section.

Also in Fig. 4 we graph k�r� � �2E�r�=r2, which is the
generalization of the factor k in the usual FRW models. (It
is not normalized to unity.) As one can see, k�r� is very
nearly constant in the empty region inside the hole. This is
another way to see the reason for our choice of the curva-
ture function: we want to have in the center an empty
bubble dominated by negative curvature.

It is important to note that the dynamics of the hole is
scale independent: small holes will evolve in the same way
as big holes. To show this, we just have to express Eq. (6)
with respect to a generic variable ~r � r=gwhere g fixes the
scale. If we change g, i.e., scale the density profile, we will
find the same scaled shape for k�r� and the same time
evolution. This property is again due to spherical symme-
try which frees the inner shells from the influence of the
outer ones: We can think of a shell as an infinitesimal FRW
solution and its behavior is scale independent because it is
a homogeneous and isotropic solution.

III. THE DYNAMICS

Now we explore the dynamics of this Swiss-cheese
model. As we have said, the cheese evolves as in the
standard FRW model. Of course, inside the holes the

FIG. 3 (color online). Sketch of our Swiss-cheese model. An
observer at rest with respect to a comoving cheese-FRW observer
will see an isotropic CMB along the two directions of sight
marked with dotted red lines. Three possible positions for an
observer are shown.

FIG. 4 (color online). Curvature E�r� and k�r� necessary for
the initial conditions of no peculiar velocities.FIG. 2 (color online). The densities ��r; �t� (solid curve) and

���r; �t� (dashed curve). Here, �t � �0:8 (recall tBB � �1). The
hole ends at rh � 0:042. The matching to the FRW solution is
achieved as one can see from the plot of ���r; �t�.
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evolution is different. This will become clear from the plots
given below.

We will discuss two illustrative cases: a flat case where
E�r� � 0, and a curved case where E�r� is given by
Eq. (10). We are really interested only in the second case
because the first will turn out to be unrealistic. But the flat
case is useful to understand the dynamics.

A. The flat case

In Fig. 5 we show the evolution of Y�r; t� for the flat case,
E�r� � 0. In the figure Y�r; t� is plotted for 3 times: t �
�t � �0:8 (recall tBB � �1), t � �0:4, and t � 0 (corre-
sponding to today).

From Fig. 5 it is clear that outside the hole, i.e., for r 

rh, Y�r; t� evolves as a FRW solution, Y�r; t� / r. However,
deep inside the hole where it is almost empty, there is no
time evolution to Y�r; t�: it is Minkowski space. Indeed,
thanks to spherical symmetry, the outer shells do not
influence the interior. If we place additional matter inside
the empty space, it will start expanding as a FRW universe,
but at a lower rate because of the lower density. It is
interesting to point out that a photon passing the empty

region will undergo no redshift; again, it is just Minkowski
space.

This counterintuitive behavior (empty regions expand-
ing slowly) is due to the fact that the spatial curvature
vanishes. This corresponds to an unrealistic choice of
initial peculiar velocities. To see this we plot the peculiar
velocity that an observer following a shell r has with
respect to a FRW observer passing through that same
spatial point. The result is also shown in Fig. 5 where it
is seen that matter is escaping from the high-density re-
gions. This causes the evolution to be reversed as one can
see in Fig. 5 from the density profile at different times:
structures are not forming, but spreading out.

Remember that r is only a label for the shell whose
Euclidean position at time t is Y�r; t�. In the plots of the
energy density we have normalized Y�r; t� using rFRW �
Y�r; t�=a�t�.

B. The curved case

Now we move to a more interesting and relevant case.
We are going to use the E�r� given by Eq. (10); the other
parameters will stay the same. Comparison with the flat

FIG. 6 (color online). Behavior of Y�r; t� with respect to r, the
peculiar velocities v�r; t� with respect to r, and the density
profiles ��r; t� with respect to rFRW � Y�r; t�=a�t�, for the curved
case at times t � �t � �0:8, t � �0:4, and t � t0 � 0. The
straight lines for Y�r; t� are the FRW solutions while the dashed
lines are the LTB solutions. For the peculiar velocities, the
matter gradually starts to move toward high-density regions.
The solid vertical line marks the position of the peak in the
density with respect to r. For the densities, note that the curve for
��r; 0� has been divided by 10. Finally, the values of ��1; t� are
1, 2.8, and 25, for t � 0, �0:4, �0:8, respectively.

FIG. 5 (color online). Behavior of Y�r; t� with respect to r, the
peculiar velocities v�r; t� with respect to r, and the density
profiles ��r; t� with respect to rFRW � Y�r; t�=a�t�, for the flat
case at times t � �t � �0:8, t � �0:4, and t � t0 � 0. The
straight lines for Y�r; t� are the FRW solutions while the dashed
lines are the LTB solutions. For the peculiar velocities, matter is
escaping from high-density regions. The center has no peculiar
velocity because of spherical symmetry, and the maximum of
negative peculiar velocity is before the peak in density. Finally,
the values of ��1; t� are 1, 2.8, and 25, for t � 0, �0:4, �0:8,
respectively.
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case is useful to understand how the model behaves, and, in
particular, the role of the curvature.

In Fig. 6 the results for Y�r; t� in the curved case are
plotted. Again time goes from t � �t � �0:8 to t � 0 (re-
call that tBB � �1 and t � 0 is today).

As one can see, now the inner almost empty region is
expanding faster than the outer (cheese) region. This is
shown clearly in Fig. 7, where also the evolution of the
inner and outer sizes is shown. Now the density ratio
between the cheese and the interior region of the hole
increases by a factor of 2 between t � �t and t � 0.
Initially the density ratio was 104, but the model is not
sensitive to this number since the evolution in the interior
region is dominated by the curvature (k�r� is much larger
than the matter density).

The peculiar velocities are now natural: as can be seen
from Fig. 6, matter is falling towards the peak in the
density. The evolution is now realistic, as one can see
from Fig. 6, which shows the density profile at different
times. Overdense regions start contracting and they be-
come thin shells (mimicking structures), while underdense

regions become larger (mimicking voids), and eventually
they occupy most of the volume.

Let us explain why the high-density shell forms and the
nature of the shell crossing. Because of the distribution of
matter, the inner part of the hole is expanding faster than
the cheese; between these two regions there is the initial
overdensity. It is because of this that there is less matter in
the interior part. (Remember that we matched the FRW
density at the end of the hole.) Now we clearly see what is
happening: the overdense region is squeezed by the interior
and exterior regions which act as a clamp. Shell crossing
eventually happens when more shells—each labeled by its
own r—are so squeezed that they occupy the same physi-
cal position Y, that is when Y0 � 0. Nothing happens to the
photons other than passing through more shells at the same
time: this is the meaning of the grr metric coefficient going
to zero.

A remark is in order here: In the inner part of the hole
there is almost no matter, it is empty. Therefore it has only
negative curvature, which is largely dominant over the
matter: it is close to a Milne universe.

IV. PHOTONS

We are mostly interested in observables associated with
the propagation of photons in our Swiss-cheese model:
indeed, our aim is to calculate the luminosity-distance-
redshift relation dL�z� in order to understand the effects
of inhomogeneities on observables. Our setup is illustrated
in Fig. 8, where there is a sketch of the model with only 3
holes for the sake of clarity. Notice that photons are prop-
agating through the centers.

We will discuss two categories of cases: (1) when the
observer is just outside the last hole as in Fig. 8, and
(2) when the observer is inside the hole. The observer in
the hole will have two subcases: (a) the observer located on
a high-density shell, and (b) the observer in the center of
the hole. We are mostly interested in the first case: the
observer is still a usual FRW observer, but looking through
the holes in the Swiss cheese.

−rh rh 3rh 5rh

FIG. 8 (color online). Sketch of our model in comoving coordinates. The shading mimics the initial-density profile: darker shading
implies larger denser. The uniform gray is the FRW cheese. The photons pass through the holes as shown by the arrow.

FIG. 7 (color online). Evolution of the expansion rate and the
size for the inner and outer regions. Here ‘‘inner’’ refers to a
point deep inside the hole, and ‘‘outer’’ refers to a point in the
cheese.
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A. Finding the photon path: an observer in the cheese

We will discuss now the equations we will use to find the
path of a photon through the Swiss cheese. The geodesic
equations can be reduced to a set of four first-order differ-
ential equations (we are in the plane � � �=2):
 

dz
d�
��

_Y0

Y0

�
�z� 1�2�

c2
�

Y2

�
� c2

�

_Y
Y3

z�0� � 0;

dt
d�
� z� 1 t�0� � t0 � 0;

dr
d�
�
W
Y0

�����������������������������
�z� 1�2�

c2
�

Y2

vuut r�0� � rh;

d�
d�
�
c�
Y2

��0� ��; (11)

where � is an affine parameter that grows with time. The
third equation is actually the null condition for the geode-
sic. Thanks to the initial conditions chosen we have z�0� �
0. These equations describe the general path of a photon.
To solve the equations we need to specify the constant c�,
a sort of angular momentum density. A first observation is
that setting c� � 0 allows us to recover the equations that
describe a photon passing radially through the centers:
dt=dr � Y0=W.

We are interested in photons that hit the observer at an
angle � and are passing through all the holes as shown in
Fig. 8. To do this we must compute the inner product of xi

and yi, which are the normalized spatial vectors tangent to
the radial axis and the geodesic as shown in Fig. 9. A
similar approach was used in Ref. [7].

The inner product of xi and yi is expressed through

 xi � �
W
Y0
�1; 0; 0�j��0; (12)

 yi �
1

dt=d�

�
d
d�

; 0;
d�
d�

�����������0
�

�
dr
d�

; 0;
d�
d�

�����������0
; (13)

 xiyigij �
Y0

W
dr
d�

����������0
� cos�; (14)

 c� � Y sin�j��0: (15)

The vectors are anchored to the shell labeled by the value
of the affine parameter � � 0, that is, to the border of the
hole. Therefore, they are relative to the comoving observer
located there. In the second equation we have used the
initial conditions given in the previous set of equations,
while to find the last equation we have used the null
condition evaluated at � � 0.

The above calculations use coordinates relative to the
center. However, the angle � is a scalar in the hypersurface
we have chosen: we are using the synchronous and comov-
ing gauge. Therefore, � is the same angle measured by a
comoving observer of Fig. 9 located on the shell r � �rh:
it is a coordinate transformation within the same
hypersurface.

Given an angle �we can solve the equations. We have to
change the sign in Eq. (11) when the photon is approaching
the center with respect to the previous case where it is
moving away. Also, we have to sew together the solutions
between one hole and another, giving not only the right
initial conditions, but also the appropriate constants c� (see
Appendix B).

Eventually we end up with the solution t���, r���, ����,
and z��� from which we can calculate the observables of
interest.

B. Finding the photon path: an observer in the hole

Finding the solution in this case is the same as in the
previous case with the only difference that in Eq. (11) the
initial condition is now r�0� � robs. But this observer has a
peculiar velocity with respect to a FRW observer passing
by. This, for example, will make the observer see an
anisotropic cosmic microwave background as it is clear
from Fig. 3. This Doppler effect, however, is already
corrected in the solution we are going to find since we
have chosen z�0� � 0 as initial condition.

There is, however, also the effect of light aberration
which changes the angle � seen by the comoving observer
with respect to the angle �FRW seen by a FRW observer.
The photon can be thought as coming from a source very
close to the comoving observer: therefore there is no
peculiar motion between them. The FRW observer is in-
stead moving with respect to this reference frame as pic-
tured in Fig. 10. The relation between � and �FRW is given
by the relativistic aberration formula:

 cos�FRW �
cos�� v=c

1� v=c cos�
: (16)

The angle changes because the hypersurface has been
changed. The velocity will be taken from the calculation
(see Fig. 6 for the magnitude of the effect).

O

rH

y i

x i

FIG. 9 (color online). A photon hitting the observer at an angle
�.

COSMOLOGICAL OBSERVABLES IN A SWISS-CHEESE . . . PHYSICAL REVIEW D 76, 123004 (2007)

123004-7



C. Distances

The angular-diameter distance is defined as

 dA �
D

�FRW
; (17)

where D is the proper diameter of the source and � is the
angle at which the source is seen by the observer. Using
this definition to find dA we have

 dA �
2Y�r���; t���� sin����

2�FRW
: (18)

The luminosity distance will then be

 dL � �1� z�
2dA: (19)

The formula we are going to use for dA is exact in the limit
of zero curvature. However in our model E�r� is on average
less than 0.3% and never more than 0.4%, as it can be
seen from Fig. 4: therefore the approximation is good.
Moreover, we are interested mainly in the case when the
source is out of the last hole as pictured in Fig. 8, and in this
case the curvature is exactly zero and the result is exact.

We have checked that the computation of dA is indepen-
dent of� for small angles and that the result using the usual
FRW equation coincides with theoretical prediction for dA.
We also checked that dA reduces to Y�r; t� when the ob-
server is in the center.

Finally we checked our procedure in comparison with
the formula (E.31) of Ref. [8]: this is a rather different way
to find the angular distance and therefore this agreement
serves as a consistency check. We placed the observer in
the same way and we found the same results provided that
we use the angle � uncorrected for the light-aberration
effect.

V. RESULTS: OBSERVER IN THE CHEESE

Now we will look through the Swiss cheese comparing
the results with respect to a FRW-EdS universe and a
�CDM case.

We will first analyze in detail the model with five holes,
which is the one which we are most interested in. For
comparison, we will study models with one big hole and
one small hole. In the model with one big hole, the hole
will be five times bigger in size than in the model with five
holes: i.e., they will cover the same piece of the universe.

The observables on which we will focus are the changes
in redshift z���, angular-diameter distance dA�z�, luminos-
ity distance dL�z�, and the corresponding distance modulus
�m�z�.

A. Redshift histories

Now we will first compare the redshift undergone by
photons that travel through the model with either five holes
or one hole to the FRW solution of the cheese. In Fig. 11
the results are shown for a photon passing through the
center with respect to the coordinate radius. As one can
see, the effects of the inhomogeneities on the redshift are
smaller in the five-hole case.

It is natural to expect a compensation, due to the spheri-
cal symmetry, between the ingoing path and the outgoing
one inside the same hole. This compensation is evident in
Fig. 11.

However, there is a compensation already on the scale of
half a hole as it is clear from the plots. This mechanism is
due to the density profile chosen, that is one whose average
matches the FRW density of the cheese: roughly speaking
we know that z0 � H / � � �FRW � 	�. We chose the

FIG. 11 (color online). Redshift histories for a photon that
travels from one side of the one-hole chain (left) and five-hole
chain (right) to the other where the observer will detect it at
present time. The ‘‘regular’’ curve is for the FRW model. The
vertical lines mark the edges of the holes. The plots are with
respect to the coordinate radius r. Notice also that along the
voids the redshift is increasing faster: indeed z0�r� � H�z� and
the voids are expanding faster.

O

rH

vFRW

FIG. 10 (color online). A comoving observer and a FRW
observer live in different frames, this results in a relative velocity
vFRW between observers.
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density profile in order to have h	�i � 0, and therefore in
its journey from the center to the border of the hole the
photon will see a hHi �HFRW and therefore there will be
compensation for z0.

Let us see this analytically. We are interested in comput-
ing a line average of the expansion along the photon path in
order to track what is going on. Therefore, we shall not use
the complete expansion scalar:

 � � �k0k � 2
_Y
Y
�

_Y0

Y0
; (20)

but, instead, only the part of it pertinent to a radial line
average:

 �r � �1
01 �

_Y0

Y0
� Hr; (21)

where �k0k are the Christoffel symbols and � is the trace of
the extrinsic curvature.

Using Hr, we obtain:

 hHri �

Rrh
0 drHrY

0=WRrh
0 drY

0=W
’

_Y
Y

��������r�rh

� HFRW; (22)

where the approximation comes from neglecting the
(small) curvature and the last equality holds thanks to the
density profile chosen. This is exactly the result we wanted
to find. However, we have performed an average at con-
stant time and therefore we did not let the hole and its
structures evolve while the photon is passing: this effect
will partially break the compensation. This sheds light on
the fact that photon physics seems to be affected by the
evolution of the inhomogeneities more than by the inho-
mogeneities themselves. We can argue that there should be
perfect compensation if the hole will have a static metric
such as the Schwarzschild one. In the end, this is a limita-
tion of our assumption of spherical symmetry.

This compensation is almost perfect in the five-hole
case, while it is not in the one-hole case: in the latter
case the evolution has more time to change the hole while
the photon is passing. Summarizing, the compensation is
working on the scale rh of half a hole. These results are in
agreement with Ref. [9].

From the plot of the redshift one can see that the function
z�r� is not monotonic. This happens at recent times when
the high-density thin shell forms. This blueshift is due to
the peculiar movement of the matter that is forming the
shell. This feature is shown in Fig. 12 where the distance
between the observer located just out of the hole at r � rh
and two different shells is plotted. In the solid curve one
can see the behavior with respect to a normal redshifted
shell, while in the dashed curve one can see the behavior
with respect to a shell that will be blueshifted: initially the
distance increases following the Hubble flow, but when the
shell starts forming, the peculiar motion prevails on the
Hubble flow and the distance decreases during the
collapse.

It is finally interesting to interpret the redshift that a
photon undergoes passing the inner void. The small
amount of matter is subdominant with respect to the cur-
vature which is governing the evolution, but still it is
important to define the space: in the limit of zero matter
in the interior of the hole, we recover a Milne universe,
which is just (half of) Minkowski space in unusual coor-
dinates. Before this limit the redshift was conceptually due
to the expansion of the spacetime, after this limit it is
instead due to the peculiar motion of the shells which
now carry no matter: it is a Doppler effect.

B. Luminosity and angular-diameter distances

1. The five-hole model

In Fig. 13 the results for the luminosity distance and
angular distance are shown. The solution is compared to
the one of the �CDM model with �M � 0:6 and �DE �
0:4. Therefore, we have an effective q0 � �M=2��DE �
�0:1. In all the plots we will compare this �CDM solution
to our Swiss-cheese solution. The strange features which
appear near the contact region of the holes at recent times
are due to the nonmonotonic behavior of z�r�, which was
explained in the previous section.

The distance modulus is plotted in the top panel of
Fig. 13. The solution shows an oscillating behavior which
is due to the simplification of this toy model in which all
the voids are concentrated inside the holes and all the
structures are in thin spherical shells. For this reason a
fitting curve was plotted: it is passing through the points of
the photon path that are in the cheese between the holes.
Indeed, they are points of average behavior and represent
well the coarse graining of this oscillating curve. The
simplification of this model tells us also that the most
interesting part of the plot is farthest from the observer,

FIG. 12 (color online). Distance between the observer and two
different shells. In the solid curve r � 0:55rh will be redshifted,
while in the dashed curve, r � 0:8rh will be blueshifted. The
latter indeed will start to collapse toward the observer. Time goes
from t � �0:8 to t � 0. The observer is located just outside of
the hole at r � rh.
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let us say at z > 1. In this region we can see the effect of the
holes clearly: they move the curve from the EdS solution
(in purple) to the �CDM one with �M � 0:6 and �DE �
0:4 (in blue). Of course, the model is not realistic enough to
reach the ‘‘concordance’’ solution.

Here we discuss a comparison of our results with those
of Ref. [9]. In that paper they do not find the large differ-
ence from FRW results that we do. First of all, we note that
we are able to reproduce their results using our techniques.
The difference between their results and ours is that our
model has very strong nonlinear evolution, in particular,
close to shell crossing where we have to stop the calcu-
lation. The authors of Ref. [9] also used smaller holes with
a different density/initial-velocity profile. This demon-
strated that a large change in observables may require
either nonspherical inhomogeneities, or evolution very
close to shell crossing. (We remind the reader that caustics
are certainly expected to form in cold dark matter models.)

Let us return now to the reason for our results. As we
have seen previously, due to spherical symmetry there are
no significant redshift effects in the five-hole case.
Therefore, these effects must be due to changes in the
angular-diameter distance. Figure 14 is useful to under-

FIG. 14 (color online). The angle from the observer is plotted.
The dashed vertical lines near the empty region mark the shell of
maximum peculiar velocities of Fig. 6. The shaded regions
represent the inner FRW solution. The solid vertical lines
mark the peak in density. The angle at which the photon hits
the observer is 2.7� on the left.

FIG. 13 (color online). On the bottom the luminosity distance
dL�z� in the five-hole model (jagged curve) and the �CDM
solution with �M � 0:6 and �DE � 0:4 (regular curve) are
shown. In the middle is the change in the angular-diameter
distance, �dA�z�, compared to a �CDM model with �M �
0:6 and �DE � 0:4. The top panel shows the distance modulus
in various cosmological models. The jagged line is for the five-
hole LTB model. The regular curves, from top to bottom, are a
�CDM model with �M � 0:3 and �DE � 0:7, a �CDM model
with �M � 0:6 and �DE � 0:4, the best smooth fit to the LTB
model, and the EdS model. The vertical lines mark the edges of
the five holes.

FIG. 15 (color online). On the bottom is shown the luminosity
distance dL�z� in the one-hole model (jagged curve) and the
�CDM solution with �M � 0:6 and �DE � 0:4 (regular curve).
In the middle is the change in the angular-diameter distance,
�dA�z�, compared to a �CDM model with �M � 0:6 and
�DE � 0:4. On the top is shown the distance modulus in various
cosmological models. The jagged line is for the one-hole LTB
model. The regular curves, from top to bottom are a �CDM
model with �M � 0:3 and �DE � 0:7, a �CDM model with
�M � 0:6 and �DE � 0:4, and the EdS model. The vertical lines
mark the edges of the hole.
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stand what is going on: the angle from the observer is
plotted. Through the inner void and the cheese the photon
is going straight: they are both FRW solutions even if with
different parameters. This is shown in the plot by con-
stancy of the slope. The bending occurs near the peak in the
density where the grr coefficient of the metric goes toward
zero. Indeed the coordinate velocity of the photon can be
split in an angular part: v� � d�=dt � 1= ���������g��

p and a
radial part vr � dr=dt � 1=

�������
grr
p

. While v� behaves well
near the peak, vr goes to infinity in the limit where shell
crossing is reached: the photons are passing more and more
matter shells in a short interval of time as the evolution
approaches the shell-crossing point. Although in our model
we do not reach shell crossing, this is the reason for the
bending. We therefore see that all the effects in this model,
redshift and angular effects, are due to the evolution of the
inhomogeneities.

2. The one-hole model: The big hole case

Let us see now how the results change if instead of the
five-hole model we use the one-hole model. We have
already shown the redshift results in the previous section.
As one can see from Fig. 15 the results are more dramatic:
for high redshifts the Sswiss-cheese curve can be fit by a
�CDM model with less dark energy than �DE � 0:6 as in
the five-hole model. Nonetheless, the results have not
changed so much compared to the change in the redshift
effects discussed in the previous section. Indeed the com-
pensation scale for angular effects is 2rh while the one for
redshift effects is rh.

3. The one-hole model: The small hole case

Finally if we remove four holes from the five-hole
model, we lose almost all the effects. This is shown in
Fig. 16: now the model can be compared to a �CDM
model with �M � 0:95 and �DE � 0:05.

VI. RESULTS: OBSERVER IN THE HOLE

Now we will examine the case in which the observer is
inside the last hole in the five-hole model. We will first put
the observer on the high-density shell and then place the
observer in the center.

A. Observer on the high-density shell

In the section we show the results for the observer on the
high-density shell. As one can see from Fig. 17, now the
compensation in the redshift effect is lost: the photon is not
completing the entire last half of the last hole. The results
for the luminosity distance and the angular distance do not
change much as shown in Fig. 18.

Remember that in this case the observer has a peculiar
velocity compared to the FRW observer passing through
the same point. We correct the results taking into account
both the Doppler effect and the light-aberration effect.

FIG. 16 (color online). On the bottom is shown the luminosity
distance dL�z� in the one-hole model (jagged curve) and the
�CDM solution with �M � 0:95 and �DE � 0:05 (regular
curve). In the middle is the change in the angular-diameter
distance, �dA�z�, compared to a �CDM model with �M �
0:95 and �DE � 0:05. On the top is shown the distance modulus
in various cosmological models. The jagged line is for the one-
hole LTB model. The regular curves, from top to bottom are a
�CDM model with �M � 0:3 and �DE � 0:7, a �CDM model
with �M � 0:95 and �DE � 0:05, and the EdS model. The
vertical lines mark the edges of the hole.

FIG. 17 (color online). Redshift histories for a photon that
travels through the five-hole chain to the observer placed on
the high-density shell. The regular line is for the FRW model. �
is the affine parameter and it grows with the time which goes
from the left to the right. The vertical lines mark the end and the
beginning of the holes.
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B. Observer in the center

In this section we show the results for the observer in the
center. As confirmed by Fig. 19, the compensation in the
redshift effect is good: the photon is passing through an
integer number of half holes.

The results for the luminosity distance and the angular
distance look worse as shown in Fig. 20, but this is mainly
due to the fact that now the photon crosses half a hole less
than in the previous cases and therefore it undergoes less
bending.

In this case the observer has no peculiar velocity com-
pared to the FRW one: this is a result of spherical
symmetry.

VII. CONCLUSIONS

The aim of this paper was to understand the role of large-
scale nonlinear cosmic inhomogeneities in the interpreta-
tion of observational data. This problem can be studied
perturbatively; see, for example, Ref. [10]. Here, instead,
we focused on an exact (even if toy) solution, based on the
LTB model. This solution has been studied extensively in

FIG. 19 (color online). Redshift histories for a photon that
travels through the five-hole chain to the observer placed in
the center. The regular line is for the FRW model. � is the affine
parameter and it grows with the time which goes from the left to
the right. The vertical lines mark the end and the beginning of the
holes.

FIG. 20 (color online). The bottom panel shows the luminosity
distance dL�z� in the five-hole model (jagged curve) and the
�CDM solution with �M � 0:6 and �DE � 0:4 (regular curve).
In the middle is the change in the angular-diameter distance,
�dA�z�, compared to a �CDM model with �M � 0:6 and
�DE � 0:4. On the top panel the distance modulus in various
cosmological models is shown. The jagged line is for the five-
hole LTB model. The regular curves, from top to bottom are a
�CDM model with �M � 0:3 and �DE � 0:7, a �CDM model
with �M � 0:6 and �DE � 0:4, the best smooth fit to the LTB
model, and the EdS model. The vertical lines mark the edges of
the five holes.

FIG. 18 (color online). On the bottom is shown the luminosity
distance dL�z� in the five-hole model (jagged curve) and the
�CDM solution with �M � 0:6 and �DE � 0:4 (regular curve).
In the middle is the change in the angular-diameter distance,
�dA�z�, compared to a �CDM model with �M � 0:6 and
�DE � 0:4. On the top is shown the distance modulus in various
cosmological models. The jagged line is for the five-hole LTB
model. The regular curves, from top to bottom are a �CDM
model with �M � 0:3 and �DE � 0:7, a �CDM model with
�M � 0:6 and �DE � 0:4, the best smooth fit to the LTB model,
and the EdS model. The vertical lines mark the edges of the five
holes.
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the literature [7,8,11–18]. It has been shown that it can be
used to fit the observed dL�z� without the need of dark
energy (for example in [11]). To achieve this result, how-
ever, it is necessary to place the observer at the center of a
rather big underdensity. To overcome this fine-tuning prob-
lem we built a Swiss-cheese model, placing the observer in
the cheese and having the observer look through the Swiss-
cheese holes as pictured in Fig. 8. A similar idea was at the
basis of Refs. [9,19].

Summarizing, we first defined the model in Sec. II: it is a
Swiss-cheese model where the cheese is made of the usual
FRW solution and the holes are made of a LTB solution.
We defined carefully the free functions of the LTB model
in order to have a realistic (even if still toy) model and we
showed its dynamics in Sec. III.

Then, as anticipated in the introduction, we focused on
the effects of inhomogeneities on photons. The observables
on which we focused are the change in redshift �z��� in
angular-diameter distance �dA�z�, in the luminosity-
distance-redshift relation dL�z�, and in the distance modu-
lus �m�z�.

We found that redshift effects are suppressed when the
hole is small because of a compensation effect acting on
the scale of half a hole, due to spherical symmetry: it is
roughly due to the fact that z0 � H / � � �FRW � 	� and
we chose the density profile in order to have h	�i � 0. It is
somewhat similar to the screening among positive and
negative charges.

However, we found interesting effects in the calculation
of the angular distance: the evolution of the inhomogene-
ities bends the photon path compared to the FRW case.
Therefore, inhomogeneities will be able (at least partly) to
mimic the effects of dark energy. We were mainly inter-
ested in making the observer look through the Swiss cheese
from the cheese. However, for a better understanding, we
examined also the case where the observer is inside the
hole. We found bigger effects than those found in
Refs. [9,19]: this could be due to the different model.
Indeed, Refs. [9,19] used smaller holes with a different
initial-density/initial-velocity profile.
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APPENDIX A: ABOUT THE ARBITRARY
FUNCTIONS IN A LTB MODEL

Here we illustrate, by means of an example, the choice
of the arbitrary functions in LTB models. We are going to
analyze the flat case. Indeed we have an analytical solution
for it and this will help in understanding the issues.

We said previously that there are three arbitrary func-
tions in the LTB model: ��r�, W�r�, and �t�r�. They specify

the position and velocities of the shells at a chosen time. In
general, �t depends on r; because of the absence of shell
crossing it is possible to give the initial conditions at
different times for different shells labeled by r.

We start, therefore, by choosing the curvature E�r� �
�W2�r� � 1�=2 to vanish, which can be thought as a choice
of initial velocities _Y at the time �t�r�:

 2E�r� � _Y2 �
1

3�
M
Y

��������r;�t�r�
: (A1)

For E�r� � 0, the model becomes

 ds2 � �dt2 � dY2 � Y2d�2; (A2)

with solution

 Y�r; t� �
�
3M�r�

4�

�
1=3
�t� t̂�r�	2=3;

���r; t� � �t� t̂�r�	�2;

(A3)

where
 

t̂�r� � �t�r� � ���1=2�r; �t�r��;

���r; �t�r�� �
3M�r�

4�
1

Y3

��������r;�t�r�
:

(A4)

The next step is to choose the position of the shells, that is,
to choose the density profile. As far as �t�r� is concerned,
only the combination t̂�r� matters. This, however, is not
true for M�r�, which appears also by itself in Eq. (A3).

Looking at Eq. (A4) we see that to achieve an inhomo-
geneous profile we can either assign a homogeneous profile
at an inhomogeneous initial time, or an inhomogeneous
density profile at a homogeneous initial time, or both.
Moreover, if we assign the function M�r�, then we can
use our freedom to relabel r in order to obtain all the
possible �t�r�. So we see that one of the three arbitrary
functions expresses the gauge freedom.

In this paper we fixed this freedom by choosing �t�r� � �t
and Y�r; �t� � r in order to have a better intuitive under-
standing of the initial conditions.

FIG. 21 (color online). Illustration of the procedure to calcu-
late the transition between two holes. The dashed line is a
segment of the geodesic. O1 and O2 represent the two coordinate
systems.
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APPENDIX B: SEWING THE PHOTON PATH

In the appendix we will demonstrate how to sew together
the photon path between two holes. We will always use
center-of-symmetry coordinates, and therefore we will
move from the coordinates of O1 to the ones of O2 illus-
trated in Fig. 21. The geodesic near the contact point G is
represented by the dashed line segment in Fig. 21.

First, we want to find the value �� of the affine parameter
for which the photon is at G. This is found solving
 

G2 � �r1��� cos�1��� � 2rh; r1��� sin�1����;

r2
h � x2

2G � y
2
2G:

(B1)

These equations imply

 r2
1��� � 3r2

h � 4r1���rh cos�1��� � 0: (B2)

Then we can give the initial conditions for the second hole:

 

q2� ��� � q1� ���; t2� ��� � t1� ���;

r2� ��� � rh; �2� ��� � arccos�x2G=rh�:
(B3)

Finally, we need the constant c�, a sort of constant angular
momentum density. Repeating the procedure of Sec. IVA
for the first hole we find

 c2� � sin�2q1� ���Y2j ��: (B4)

Only �2 is missing. One way to find it is to calculate the
inner product in O1 coordinates of the geodesic with the
normalized spatial vector parallel to O2G (see Fig. 21).
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