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to that of bulk Pt (Fig. 4D). Energy-dispersive
spectroscopy (EDS) on the CCM-Pt-6 metal-C
nanocomposites (Fig. 4B) showed a composition
of 74wt %Pt, 18 wt % C, 7wt % O, and 1 wt % S.
In contrast, after the plasma treatment, EDS re-
vealed that >98 wt % of the sample was Pt, with
only trace contributions from C and O (Fig. 4C).
C removal was further confirmed by TGA. Pyro-
lized samples retained 80% of the original mass
when heated to 550°C in air, whereas C-etched
samples retained 97% of their original mass. TEM
confirmed that the samples were still mesostruc-
tured and that the grainy texture indicative of C
had disappeared.

Because of the easier accessibility of large
quantities, we measured the electrical conductiv-
ity only of CCM-Pt-6 Pt-C nanocomposites. We
chose two-point measurements, which slightly
underestimate the true conductivity, because the
pyrolized Pt-C composites were too fragile for a
four-point measurement, even when pressed as
a pellet (32). The NP-polymer hybrid had a
conductivity of 2.5 mS/cm, which increased to
400 S/cm upon pyrolysis. Despite the presence of
C, to the best of our knowledge this value rep-
resents the highest electrical conductivity yet
measured for ordered mesoporous materials
derived from block copolymers.

Because polymer-NP interactions are largely
mediated via the nanoparticle ligands, it may be
possible to extend the present approach to other
metals for which similarly sized ligand-stabilized
NPs can be synthesized. Thus, it may be possible
to prepare ordered mesoporous metals of other
clements, disordered alloys, or even ordered in-
termetallics. Furthermore, this discovery also cre-

ates a potential pathway to a new class of ordered
mesoporous metals made from nanoparticles of
distinct compositions. Such nanoheterogeneous
mesoporous metals may have a range of excep-
tional electrical, optical, and catalytic properties.
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Very-High-Energy Gamma Rays from a
Distant Quasar: How Transparent Is

the Universe?

The MAGIC Collaboration*

The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has
detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source
(in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No
quasar has been observed previously in very-high-energy gamma radiation, and this is also the most
distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma
rays may be stopped by interacting with the diffuse background light in the universe, the observations
by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

round-based gamma-ray telescopes are
sensitive to the Cherenkov light emitted
by the electromagnetic showers that are
produced by gamma rays interacting in the atmo-
sphere. These telescopes have discovered, since
the first detection (in 1989) of gamma rays in this
energy range (from 100 GeV to several TeV),
more than 20 blazars, which are thought to be
powered by accretion of matter onto super-

massive black holes residing in the centers of
galaxies, and ejecting relativistic jets at small
angles to the line of sight (/). Most of these
objects are of the BL Lac type, with weak or no
optical emission lines. Quasar 3C 279 shows
optical emission lines that allow a good red-
shift determination. Satellite observations with
the Energetic Gamma Ray Experiment Telescope
(EGRET) aboard the Compton Gamma Ray

Observatory (CGRO) had measured gamma rays
from 3C 279 (2) and other quasars, but only up to
energies of a few GeV, the limit of the detector’s
sensitivity. An upper limit for the flux of very-
high-energy (VHE) gamma rays was derived in
3.

Using MAGIC, the world’s largest single-
dish gamma-ray telescope (4) on the Canary
island of La Palma (2200 m above sea level,
28.4°N, 17.54°W), we detected gamma rays at
energies from 80 to >300 GeV, emanating from
3C 279 at a redshift of 0.536, which corresponds
to a light-travel time of 5.3 billion years. No ob-
ject has been seen before in this range of VHE
gamma-ray energies at such a distance [the high-
est redshift previously observed was 0.212 (5)],
and no quasar has been previously identified in
this range of gamma-ray energies.

The detection of 3C 279 is important, be-
cause gamma rays at very high energies from
distant sources are expected to be strongly at-
tenuated in intergalactic space by the possible
interaction with low-energy photons (y + y—
e' + ¢). These photons [extragalactic back-

*The complete list of authors and their affiliations appears
at the end of this paper.
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ground light (EBL) (6)] have been radiated by
stars and galaxies in the course of cosmic his-
tory. Their collective spectrum has evolved over
time and is a function of distance. For 3C 279,
the range of newly probed EBL wavelengths
lies between 0.2 and 0.8 um (ultraviolet/optical).
Existing instruments that are sensitive only to
higher gamma-ray energies have so far been un-
able to probe this domain; by contrast, MAGIC is

specifically designed to reach the lowest-energy
threshold among ground-based detectors.

In observations of 3C 279 over 10 nights
between late January and April 2006 (total of
9.7 hours), the gamma-ray source was clearly
detected (at >6 SDs) on the night of 23
February, and may also have been detected the
night before (Fig. 1). As determined by the %>
test, the probability that the gamma-ray flux on
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Fig. 2. Spectrum of 3C 279 measured by MAGIC. The gray area includes the combined statistical (15)
and systematic errors, and underlines the marginal significance of detections at high energy. The dotted
line shows compatibility of the measured spectrum with a power law of photon index o = 4.1. The blue
and red triangles are measurements corrected on the basis of the two models for EBL density, discussed

in the text.
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all 10 nights was zero is 2.3 x 107, correspond-
ing to 5.04c in a Gaussian distribution [see (7)].
Simultaneous optical R-band observations, by
the Tuorla Observatory Blazar Monitoring Pro-
gram with the 1.03-m telescope at the Tuorla
Observatory, Finland, and by the 35-cm Kungliga
Vetenskapsakademien (Royal Swedish Acad-
emy of Sciences) telescope on La Palma, re-
vealed that during the MAGIC observations,
the gamma-ray source was in a generally high
optical state, a factor of 2 above the long-term
baseline flux, but with no indication of short
time-scale variability at visible wavelengths.
The observed VHE spectrum (Fig. 2) can be
described by a power law with a differential
photon spectral index of o= 4.1 £ 0.7 £ 0.2y
The measured integrated flux above 100 GeV on
23 February is (5.15 % 0.82y % 1.55,5) x 107
photons cm 25"

The EBL influences the observed spectrum
and flux, resulting in an exponential decrease
with energy and a cutoff in the gamma-ray spec-
trum. Several models have been proposed for the
EBL (6). All have limited predictive power for
the EBL density, particularly as a function of
time, because many details of star and galaxy
evolution remain uncertain. We illustrate the un-
certainty in the EBL by using two extreme mod-
els: a model by Primack ez al. (8), close to the
lowest possible attenuation consistent with the
lower EBL limit from galaxy counts (9, /0); and a
“fast-evolution” model by Stecker et al. (11), cor-
responding to the highest attenuation of all the
models. We refer to these models as “low” and
“high,” respectively. The measured spectra of 3C
279, corrected for absorption according to these
two models, are shown in Fig. 2. They represent
the range for the possible intrinsic gamma-ray
flux of the source.

A power-law fit to the EBL-corrected points
(12) results in an intrinsic photon index of o* =
2.9 £0. 955 £ 0.5y (low) and 0* = 0.5 £ 1. 24
0.54y5 (high). The systematic error is determined
by shifting the absolute energy scale by the
estimated energy error of 20% and recalculating
the intrinsic spectrum. Further discussion of the
intrinsic spectrum and the spectral energy density
can be found in (7).

The measured spectrum of 3C 279 permits
a test of the transparency of the universe to
gamma rays. The distance at which the flux of
photons of a given energy is attenuated by a
factor e (i.e., the path corresponding to an optical
depth t= 1) is called the gamma-ray horizon and
is commonly expressed as a function of the
redshift parameter (/3); we show this energy/
redshift relation in Fig. 3. In the context of Fig.
3, we make use of a model based on (/4) with
parameters adapted to the limits given by (/5)
and fine-tuned such that for 3C 279, the intrinsic
photon index is o* = 1.5. The tuning allows for
the statistical and systematic errors (1 SD,
added linearly). Although the intrinsic spec-
trum emitted by 3C 279 is unknown, o* = 1.5 is
the lowest value given for EGRET sources (not

www.sciencemag.org SCIENCE VOL 320 27 JUNE 2008

Downloaded from www.sciencemag.org on March 30, 2012

1753


http://www.sciencemag.org/

REPORTS

1754

Fig. 3. The gamma-ray
horizon. The redshift
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region over which the
gamma-ray horizon can
be constrained by obser-
vations has been extended
up to z = 0.536. The
prediction range of EBL
models is illustrated by
(8) (thick solid black line)
and (11) (dashed-dotted
blue line). The tuned mod-
el of (14) (dashed blue
line) represents an upper
EBL limit based on our
3C 279 data, obtained =
on the assumption that 3
the intrinsic photon index »
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rows, most of which lie very close to the model (4). The narrow blue band is the region allowed between this
model and a maximum possible transparency (i.e,, minimum EBL level) given by (8), which is nearly
coincident with galaxy counts. The gray area indicates an optical depth t > 1, i.e., the flux of gamma rays is
strongly suppressed. To illustrate the strength of the attenuation in this area, we also show energies for t = 2

and t = 5 (thin black lines), again with (8) as model.

affected by the EBL) and all spectra measured by
gamma-ray telescopes so far (/6), so we assume
this to be the hardest acceptable spectrum. The
region allowed between the maximum EBL de-
termined by the above procedure and that from
galaxy counts (8) is very small.

The results support, at higher redshift, the
conclusion drawn from earlier measurements
(15) that the observations of the Hubble Space
Telescope and Spitzer correctly estimate most of
the light sources in the universe. The derived
limits are consistent with the EBL evolution
corresponding to a maximum star-formation rate
at redshift z > 1, as suggested by (8) and similar
models.

The emission mechanism responsible for the
observed VHE radiation remains uncertain. Lep-
tonic emission models (assuming relativistic elec-
trons in the jet as the source of the gamma rays),
generally successful in describing blazar data
[e.g., (17)], can, with some assumptions, also
accommodate the MAGIC spectrum. Hadron-
ic models [involving relativistic protons, e.g.
(18)] provide a possible alternative. However,
a genuine test of the models can be obtained
only with simultaneous observations at differ-
ent wavelengths, which are not available for
the observations described here. Future tests
of these models should use observations from
sources at all wavelengths from radio to VHE
gamma rays. In the domain of VHE gamma
rays, we can expect important new insights by
simultaneous observations with the Large Area
Telescope (LAT), the high-energy gamma-ray
instrument on the Gamma Ray Large Area
Space Telescope [GLAST (/9)]. Our observa-
tions of this distant source in VHE gamma rays
demonstrate that a large fraction of the universe
is accessible to VHE astronomy.
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