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Nef is a virulence factor of HIV-1 and other primate lentiviruses that
is crucial for rapid progression to AIDS. In cell culture, Nef increases
the infectivity of HIV-1 progeny virions by an unknown mechanism.
We now show that dynamin 2 (Dyn2), a key regulator of vesicular
trafficking, is a binding partner of Nef that is required for its ability to
increase viral infectivity. Dominant-negative Dyn2 or the depletion of
Dyn2 by small interfering RNA potently inhibited the effect of Nef on
HIV-1 infectivity. Furthermore, in Dyn2-depleted cells, this function of
Nef could be rescued by ectopically expressed Dyn2 but not by Dyn1,
a closely related isoform that does not bind Nef. The infectivity
enhancement by Nef also depended on clathrin, because it was
diminished in clathrin-depleted cells and profoundly inhibited in cells
expressing the clathrin-binding domain of AP180, which blocks clath-
rin-coated pit formation but not clathrin-independent endocytosis.
Together, these findings imply that the infectivity enhancement
activity of Nef depends on Dyn2- and clathrin-mediated membrane
invagination events.

HIV accessory protein � host factor � virion infectivity

Nef is an accessory protein of HIV-1 and other primate
lentiviruses that constitutes a crucial determinant of viral

pathogenicity (1). Nef induces the clathrin-mediated endocytosis
and degradation of cell surface CD4 (2–5), and also triggers the
down-regulation of other cell surface molecules, including MHC
class I antigens (6), which may facilitate the evasion of an
antiviral immune response (7). Nef also modulates T cell func-
tion and apoptosis by engaging components of cellular signaling
pathways, including Vav, Pak2, ASK1, and the DOCK2–ELMO1
complex (8–12).

Although not essential for virus spreading in cultured cells, Nef
significantly enhances virus replication in primary cells, particularly
if these are exposed to HIV-1 before activation with mitogens (13,
14). Nef also enhances the intrinsic infectivity of progeny virions
(15–17). This effect is independent of CD4 down-regulation and
requires the presence of Nef in virus-producing cells (16–18).
Because Nef does not affect virus assembly or maturation, the
precise nature of its effect on viral infectivity has remained elusive.
Nef is N-terminally myristylated and associates with cellular mem-
branes, and small quantities of membrane-bound Nef are taken up
into assembling virions (19, 20). It has also been reported that Nef
delivers cholesterol to assembling virions, thereby increasing viral
infectivity (21). However, a recent study suggests that the uptake of
Nef into virions is not required for its ability to enhance viral
infectivity (22).

The effect of Nef on viral infectivity may depend on the route
of entry, because Nef does not enhance the infectivity of HIV
cores pseudotyped with vesicular stomatitis virus glycoprotein
(VSV-G), which mediates virus entry through an endocytic
compartment rather than directly via the plasma membrane (23).
In the absence of Nef, the synthesis of proviral DNA in newly
infected target cells is impaired, indicating that Nef affects an
early step of the replication cycle (17). Consistent with this

notion, Nef has been shown to increase the cytoplasmic delivery
of viral cores, possibly by facilitating the movement of the core
past the cortical actin network (24).

Because the infectivity of nef-negative HIV-1 can be rescued
by Nef expressed in trans in the producer but not in the target
cells (17), we searched for cellular effectors that mediate this
effect of Nef in producer cells. This led to the identification of
Dyn2 as a novel binding partner of Nef that is crucial for its
infectivity enhancement function.

Results
Nef Specifically Interacts with Dyn2. The infectivity enhancement
activity of Nef can be readily demonstrated in CD4-negative
cells, for instance, in 293T cells (16, 17, 25). To identify effectors
that mediate this activity, a HA-tagged version of HIV-1LAI Nef
or of an irrelevant control protein was transiently expressed in
293T cells, and the cells were lysed in a buffer containing the
mild detergent octyl glucoside. A SDS/PAGE analysis of
anti-HA immunoprecipitates revealed a prominent protein band
of �100 kDa that coprecipitated with Nef-HA but not with the
cyclophilin A (Cyp)-HA control (Fig. 1A). The 100-kDa protein
could be unambiguously identified by liquid chromatography-
coupled tandem mass spectrometry, with 21 tryptic peptides
matching the sequence of human Dyn2, a key player in the
endocytic fission reaction (26).

Dyn2 is a ubiquitously expressed member of a family of large
GTPases that also includes Dyn1 and Dyn3, which are expressed in
a limited number of tissues (26). Interestingly, although 293T cells
express Dyn3 in addition to Dyn2, Western blotting of Nef-HA
immunoprecipiates with isoform-specific antisera revealed that Nef
interacts with endogenous Dyn2 but not with Dyn3 (Fig. 1B).
Endogenous Dyn2 also specifically coprecipitated with Nef-HA
expressed in the T lymphoid Jurkat cell line (Fig. 1C), demonstrat-
ing that Nef and Dyn2 can interact in different cell types. To
determine whether Nef binds to the neuron-specific Dyn1, we
coexpressed FLAG-tagged Dyn1 or Dyn2 along with Nef-HA in
293T cells and found that only FLAG-Dyn2 associated with Nef
(Fig. 1D). We conclude that Nef discriminates between the three
closely related Dyn isoforms.

We also examined whether the ability to interact with Dyn2 is
a conserved property of Nef. As shown in Fig. 1E, FLAG-Dyn2
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bound to the HA-tagged Nef proteins of various HIV-1 subtypes
and of SIVmac239, which belongs to a separate lineage of
primate lentiviruses. Arf6-HA was included as a control to rule
out that FLAG-Dyn2 bound nonspecifically to myristylated
proteins in our assay. We conclude that the ability to interact
with Dyn2 is conserved among different Nef alleles.

Nef-HA immobilized on beads specifically interacted with puri-
fied FLAG-Dyn2 in an in vitro pull-down assay [see supporting
information (SI) Fig. 7]. It is unlikely that the in vitro interaction was
mediated by a cellular protein that contaminated immobilized
Nef-HA, because the Cyp-HA control showed an essentially iden-
tical background pattern, yet only Nef-HA pulled down Dyn2-
FLAG. We thus consider it likely that the interaction between Nef
and Dyn2 is direct. This notion is further supported by the obser-
vation that Nef and Dyn2 interact in a yeast two-hybrid assay (S.
Richter and G.P., unpublished work), which indicates that no
mammalian cofactor is required for the interaction.

The Middle and GTPase Effector Domains (GEDs) of Dyn2 Are Critical
for the Interaction with Nef. The interaction with Nef does not
depend on the C-terminal proline-rich domain (PRD) of Dyn2
but requires an intact GED (Fig. 2A). To map the determinants
that allow Nef to distinguish between different isoforms, we
swapped entire domains between Dyn1 and Dyn2 and observed
that the GTPase and pleckstrin homology domains of Dyn2 do
not contribute to the specificity of the interaction (Fig. 2B). In
contrast, the middle domain and the GED of Dyn2 were both
necessary and together conferred full Nef binding in an other-
wise Dyn1 background (Fig. 2B and data not shown). Interest-
ingly, the middle domain and the GED also interact with each
other and are both thought to be important for dynamin
oligomerization (27).

Nef Mutants Defective for Dyn2 Binding Lack Infectivity Enhancement
Activity. We analyzed a panel of Nef mutants and found that
surface-exposed core domain residues (L112, F121, and D123) pre-
viously implicated in the interaction with a thioesterase (28, 29) are
critical for binding to Dyn2 in vivo (Fig. 3A). Additionally, a
nonmyristylated form of Nef (GG2,3AA) failed to bind Dyn2 in vivo
(Fig. 3B). Moreover, the GG2,3AA mutant did not interact with
purified FLAG-Dyn2 in vitro, confirming that the myristyl moiety
of Nef is critical for the interaction with Dyn2 (SI Fig. 7). In
contrast, mutations known to affect the binding of Nef to Src kinase
SH3 domains (30) (PP72,75AA), to �-Cop (31) (EE155,156QQ), or to
clathrin adaptor proteins (32, 33) (LL164,165AA) did not reduce
binding to Dyn2 (Fig. 3C).

To examine the effects of these mutations on viral infectivity,
each was introduced into the nef gene of the full-length provirus
HXB/nef� without changing any other viral sequences. In the
proviral context, all mutations that impaired binding to Dyn2
markedly reduced the ability of Nef to enhance viral infectivity
(Fig. 3 A and B). Among the Nef mutants that bound Dyn2 with
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wild-type efficiency, only the LL164,165AA mutant exhibited a
severe defect in infectivity enhancement (Fig. 3C). The
PP72,75AA mutation significantly impaired infectivity enhance-
ment by Nef in one study (25), but had only a 2-fold effect in
another study (34), in agreement with our results (Fig. 3C). The
crucial role of the dileucine motif (LL164,165), which was de-
scribed earlier (32), implies that the interaction with Dyn2 is not
sufficient for the enhancement of infectivity by Nef. However, we
note that the dileucine motif has been shown to connect Nef to
the clathrin-mediated endocytic pathway (33, 35), which depends
on dynamin.

Dominant-Negative Dyn2 Specifically Inhibits the Effect of Nef on
HIV-1 Infectivity. The K44A mutants of Dyn1 and Dyn2 inhibit
clathrin-mediated endocytosis (36). Dyn1(K44A) also inhibits the
Nef-induced down-regulation of CD4 but not of MHC class I
molecules (37, 38). To examine whether Dyn2 plays a role in the
infectivity enhancement function of Nef, we produced HIV-1
virions capable of only a single round of replication in transiently
transfected Jurkat TAg cells coexpressing exogenous wild-type
or dominant-negative Dyn2. Although exogenous Dyn2 had no
significant effect, Dyn2(K44A) markedly reduced the infectivity
of the nef-positive NL4-3 virus to a level close to that obtained
in the absence of nef (Fig. 4A). However, Dyn2(K44A) consis-

tently had little or no effect on the residual infectivity of NL4-3
virus lacking nef (Fig. 4A). Similar results were obtained when
we used replication-competent rather than env-deficient HIV-1
proviruses that depended on Env expressed in trans, confirming
that the coexpression of Dyn2(K44A) during virus production
inhibited the transmission of nef-positive but not of nef-negative
HIV-1 to target cells (SI Fig. 8).

Although the Jurkat TAg cells we used for virus production
have negligible levels of surface CD4 (data not shown), we also
examined the effect of Dyn2(K44A) on the single round infec-
tivity of virus produced in COS-7 cells, which lack CD4. This
experiment demonstrated that Dyn2(K44A) can specifically in-
hibit the effect of Nef on virus infectivity in the absence of CD4
(Fig. 4B).

It has been shown that HIV-1 particles pseudotyped with
VSV-G no longer require Nef for optimal infectivity (23). We
therefore tested the effect of Dyn2(K44A) on chimeric viral
particles composed of the HIV-1 core and VSV-G. As reported
previously (23), the infectivity of VSV-G-pseudotyped HIV-1
particles was not enhanced by Nef (Fig. 4C). Importantly,
Dyn2(K44A) had no effect on the infectivity of VSV-G-
pseudotyped HIV-1 particles, independent of the presence or
absence of Nef (Fig. 4C). These results confirm that Dyn2(K44A)
counteracts the effect of Nef and does not inhibit viral infectivity
per se.

Because a small amount of Nef is incorporated into HIV-1
particles (20, 39), we examined whether Dyn2(K44A) affects the
virion-association of Nef. We did not detect any significant differ-
ence in the amount of Nef present in virions produced in cells
expressing Dyn2(K44A) or a control vector (Fig. 4D). Similarly,
Dyn2(K44A) did not affect the levels of virion-associated Env (Fig.
4E). Furthermore, Dyn2(K44A) did not appear to alter the extent
of colocalization of Gag and Env (SI Fig. 9A) or the subcellular
localization of Nef-GFP (SI Fig. 9B), which was predominantly
perinuclear as previously reported (40). These data indicate that
Dyn2(K44A) inhibits the ability of Nef to increase HIV-1 infectivity
without affecting the localization of Nef or Env, or their incorpo-
ration into virions.

Dyn2 Is Required for the Infectivity Enhancement Function of Nef. To
directly determine whether Dyn2 is necessary for the effect of
Nef on HIV-1 infectivity, Jurkat TAg cells were transfected with
siRNA directed against Dyn2 (Dyn2siRNA) or a control siRNA
targeting firefly luciferase, along with env-defective HIV-1
proviruses and expression vectors for HIV-1 Env and GFP.
Immunoblotting of cell lysates from GFP-expressing cells 96 h
after transfection indicated a more than 90% reduction of Dyn2
protein levels by Dyn2siRNA (Fig. 5A). Dyn2siRNA also mark-
edly reduced the single cycle infectivity of nef-positive progeny
virus, but did not further diminish the already low infectivity of
HIV-1 lacking nef (Fig. 5A).

Dyn2 protein levels in cells transfected with Dyn2siRNA could
be restored by a vector encoding wild-type Dyn2 with four silent
mutations at the siRNA target site (denoted Dyn2r), indicating
that the silent mutations conferred resistance to RNA interfer-
ence as expected (Fig. 5B). The reintroduction of Dyn2r also
restored the infectivity of nef-positive progeny virus to near-
normal levels, but had no effect on the infectivity of nef-negative
NL4-3 virus (Fig. 5B). These results formally prove that the
inhibitory effect of Dyn2siRNA on the infectivity enhancement
function of Nef was caused by the depletion of Dyn2.

Because Nef interacts with Dyn2 but not Dyn1, we examined
whether exogenous Dyn1 restores the effect of Nef on viral
infectivity in virus producer cells depleted of endogenous Dyn2.
To facilitate a comparison of the effects of Dyn1 and Dyn2r,
FLAG-tagged versions of both proteins were used in this exper-
iment. As shown in Fig. 5C, the infectivity of nef-positive HIV-1
produced by Dyn2siRNA-transfected cells could be rescued by
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FLAG-tagged Dyn2r, whereas in multiple experiments FLAG-
Dyn1 had only a minimal effect, even at expression levels up to
5-fold higher than the levels at which FLAG-Dyn2r showed
maximal rescue.

As a control for FLAG-Dyn1 activity, we examined the
transferrin receptor (CD71) surface levels, which are reported to
increase 2-fold if clathrin-mediated endocytosis is inhibited by
Dyn1(K44A) (41). Dyn2siRNA induced a nearly 5-fold increase
of CD71 surface levels, and FLAG-Dyn2r and FLAG-Dyn1
counteracted this effect with comparable potency (Fig. 5D),
indicating that both were similarly effective in restoring clathrin-
mediated endocytosis. Taken together, these results indicate that
Nef requires Dyn2 and cannot use Dyn1 for its infectivity
enhancement function.

The Infectivity Enhancement Activity of Nef Depends on Clathrin.
Because Dyn2 functions in endocytosis, we tested whether
clathrin is involved in the infectivity enhancement by Nef. First,
we examined the effect of AP180-C, a dominant-negative version
of the clathrin assembly protein AP180. It has been previously
shown that AP180-C inhibits clathrin-mediated but not clathrin-
independent endocytosis by blocking clathrin-coated pit forma-

tion (42). Both in T lymphoid Jurkat cells and in CD4-negative
COS-7 cells, the presence of AP180-C during virus production
profoundly reduced the infectivity of nef-positive progeny virus
but not of virus lacking nef (Fig. 6A), mimicking the effect of
Dyn2(K44A). To directly determine whether clathrin is required
for the effect of Nef on infectivity, we used a previously described
siRNA that has been shown to effectively deplete the clathrin
heavy chain (43). As shown in Fig. 6B, the siRNA targeting
clathrin led to a comparable reduction in the infectivity of
nef-positive progeny virions as the Dyn2siRNA, but did not
further reduce the low infectivity of the nef-negative virus.
Collectively, these results indicate that clathrin and its ability to
form coated vesicles are required for the activity of Nef on
infectivity.

Dyn2 Is Not Specifically Required for the Down-Regulation of CD4 or
MHC Class I Molecules by Nef. Dominant-negative Dyn1 does not
affect the Nef-mediated down-modulation of MHC class I
molecules (37, 38). In agreement with these reports, we observed
that Dyn2siRNA did not significantly affect the activity of Nef on
MHC class I molecules (SI Fig. 10A). As expected, Dyn2siRNA
blocked the Nef-induced CD4 down-regulation (SI Fig. 10B),
which occurs via clathrin-mediated endocytosis (35). However,
this Nef activity could be rescued with comparable efficiency by
FLAG-Dyn2r and FLAG-Dyn1 (SI Fig. 10B), demonstrating
that Dyn2 is not specifically required.

Discussion
In this study, we have identified Dyn2 as a Nef-associated protein
required for the enhancement of the infectivity of progeny
virions by Nef. Dyn2 is a ubiquitously expressed GTPase that is
essential for clathrin-mediated endocytosis, and is thought to
function as a scission factor that mediates the separation of
coated vesicles from the plasma membrane (26). Interestingly,
Nef has been shown to trigger the de novo formation of clathrin-
coated pits when tethered to the plasma membrane (44), and
may thus act as a connector between cargo such as CD4 and the
endocytic machinery.

The ability to interact with Dyn2 is conserved among different
allelic forms of Nef, suggesting evolutionary pressure to main-
tain the binding site. The interaction depends on a well con-
served surface-exposed hydrophobic patch, reported to form an
interface between Nef molecules in crystals of the Nef core
domain (45). However, myristylated Nef is predominantly mo-
nomeric in solution (46, 47), and the binding site for Dyn2 would
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Fig. 6. Clathrin is required for the infectivity enhancement function of Nef.
(A) The expression of AP180-C in virus-producing Jurkat TAg lymphoid cells or
CD4-negative COS-7 cells selectively decreases the single round infectivity of
nef-positive HIV-1. (B) The siRNA-mediated depletion of clathrin in virus-
producing Jurkat TAg lymphoid cells decreases the infectivity of nef-positive
but not of nef-negative HIV-1NL4-3 progeny virus. Infectivities are the means
plus standard deviation from triplicate determinations.
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thus be expected to be accessible on native Nef. Mutations that
inhibited Dyn2 binding also impaired the infectivity enhance-
ment function of Nef, as did the siRNA-mediated depletion of
Dyn2. Nevertheless, we cannot formally exclude that the effects
of the Nef mutations and of knocking down Dyn2 are unrelated,
and that the involvement of Dyn2 in the function of Nef is
indirect.

In addition to its essential roles in both clathrin-mediated and
clathrin-independent endocytic events, Dyn2 has been implicated in
the regulation of actin dynamics (48, 49), in signaling (50), and in
centrosome cohesion (51). In particular, Dyn2 controls cytoskeletal
remodeling by Rac (52), a small GTPase that has been implicated
in the function of Nef (12, 53). However, the modulation of Rac
function by Dyn2 appears unrelated to clathrin-mediated endocy-
tosis (52), whereas our results imply that Dyn2 and clathrin are both
required for the enhancement of infectivity by Nef, suggesting that
this activity of Nef depends on the function of Dyn2 in the budding
of clathrin-coated vesicles.

Even though dominant-negative Dyn2 did not affect the
incorporation of Env, our results suggest that Env determines the
requirement for Dyn2 and clathrin for optimal infectivity, be-
cause the infectivity of VSV-G-pseudotyped HIV-1 cores was
unaffected by dominant-negative Dyn2. It has been shown that
high surface levels of CD4 interfere with the function of HIV-1
Env, and that the Nef-induced endocytosis of CD4 relieves this
effect (54). Based on this precedent, it is conceivable that Env is
also targeted by another host protein that is subject to down-
regulation by Nef. The role of Dyn2 in the down-regulation of
CD4 is unlikely to explain its requirement for optimal infectivity
in the presence of Nef, because dominant-negative Dyn2 inhib-
ited the effect of Nef on viral infectivity even in CD4-negative
cells. Furthermore, although Dyn1 supports the Nef-induced
endocytosis of CD4, it cannot substitute for Dyn2 in the en-
hancement of infectivity by Nef. Of note, the latter observation
does not exclude that the endocytosis function of Dyn2 is
involved in the infectivity enhancement activity of Nef, because
there is evidence that Dyn1 and Dyn2 preferentially function at
distinct plasma membrane domains (36).

It has been suggested that Nef enhances HIV-1 infectivity by
increasing the cholesterol content of progeny virions, based on
the observation that Nef impaired the efflux of cholesterol from
macrophages by down-regulating the ATP-binding cassette
transporter A1 (55). However, our results argue against the
possibility that Dyn2 is required for a Nef-mediated increase in
virion cholesterol, because Dyn2(K44A) did not counteract the
effect of Nef but rather appeared to moderately increase virion
cholesterol levels (SI Fig. 11). Nevertheless, it remains possible
that the Dyn2-dependent down-regulation of a host factor by Nef
alters the lipid content of the virion envelope. For instance, the
plasma-membrane association of certain P-type ATPases that
generate transbilayer phospholipid asymmetry is regulated via
endocytosis (56). Also, there is evidence that clathrin-dependent
endocytosis preferentially internalizes nonraft membrane (57),
which may provide a mechanism for the enrichment of plasma
membrane microdomains by Nef. Consistent with this scenario,
Nef was shown to increase HIV-1 infectivity by enhancing
budding from specialized lipid domains (58). In conclusion,
although further investigation is needed to determine exactly
how Nef modifies progeny virions in a Dyn2- and clathrin-
dependent manner, the evidence presented here identifies a
cellular pathway exploited by Nef to enhance HIV infectivity.

Materials and Methods
Mammalian Expression Plasmids. The nef genes of SIVmac239 and of
HIV-1 LAI (subtype B), SF2 (subtype B), 97ZA012 (subtype C),
94UG114 (subtype D), 93BR020 (subtype F), and 90CF056 (sub-
type H) were amplified with a C-terminal HA tag and inserted into

pBJ5. A nef-deficient variant called pNefFS of the HIV-1LAI Nef
expression vector (denoted pNefLAI) harbors a frameshift after nef
codon 35. DNAs encoding Dyn2 or Dyn1 with or without an
N-terminal FLAG tag were amplified from a human fetus cDNA
library (Clontech, Mountain View, CA) or from human EST clone
AL538642 (Invitrogen, San Diego, CA) and inserted into pBJ5.
Point mutations were introduced by PCR-based mutagenesis. In the
vectors encoding Dyn2r and FLAG-Dyn2r, silent mutations at the
Dyn2siRNA target site changed the wild-type sequence from
472GACATGATCCTGCAGTTCA489 to 471GATATGATTCTC-
CAGTTTA489 (nucleotides in bold represent positions that were
mutated).

Proviral Constructs. NL4-3/nef� is a nef-deficient variant of HIV-
1NL4-3 with a frameshift at a unique XhoI site in nef. The env-
deficient NL4-3/env� and NL4-3/env�/nef� variants harbor a
frameshift mutation at the unique NheI site of NL4-3. HXB/nef�,
which harbors the HIV-1LAI nef gene, and nef- and env-deficient
variants of HXB/nef� have been described (59). Mutations into the
nef gene of HXB/nef� were introduced by inserting mutant nef
sequences derived from pBJ5-based expression vectors.

Coimmunoprecipitations. 293T and Jurkat TAg cells were trans-
fected with vectors encoding HA- and FLAG-tagged proteins
by using Lipofectamine 2000 (Invitrogen) and lysed after 48 h
in buffer containing 0.5% n-octyl glucoside. The lysates were
centrifuged at 16,000 or alternatively at 100,000 � g to rule out
artifacts caused by incomplete solubilization, and the super-
natants were immunoprecipitated with anti-HA antibody
HA.11 (Covance, Princeton, NJ). Immunoprecipitates were
analyzed by silver staining or immunoblotting with antisera
against the PRD of Dyn2 or Dyn3 (Affinity BioReagents,
Neshanic Station, NJ), anti-FLAG antibody M2 (Sigma, St.
Louis, MO), or anti-HA antibody. Protein identification was
achieved by liquid chromatography coupled-tandem mass
spectrometry of tryptic peptides.

Virus Production and Infectivity. Virions capable of a single round
of replication were produced by transfecting Jurkat TAg cells
with Lipofectamine 2000 or COS-7 cells with calcium phosphate
by using 2 �g of env-deficient HIV proviral DNA, vectors
encoding HIV-1 Env or VSV-G (0.5 �g), and empty pBJ5 or
variants encoding wild-type or mutant Dyn2 (5 �g).

Lipofectamine 2000 was also used to transfect Jurkat TAg and
293T cells with siRNA (80 pmol) along with pEGFP-N1 (Clon-
tech), env-deficient HIV proviral DNA, and a vector providing
HIV-1 Env. siRNAs targeting Dyn2 (GACAUGAUCCUG-
CAGUUCAUU), clathrin heavy chain (AAUGGAUCUCUUU-
GAAUACGG), and a control siRNA (Luciferase GL3 complex)
were purchased from Dharmacon (Lafayette, CO). For siRNA
rescue assays, Jurkat TAg cells were transfected as above, except
that a vector encoding Dyn2r or empty pBJ5 (4 �g) was included.
Alternatively, vectors encoding FLAG-tagged versions of Dyn2r or
Dyn1 were cotransfected in the amounts indicated, and the total
amount of transfected DNA was kept constant with empty pBJ5
vector. At 96 h after transfection, surface CD71 expression levels on
cells gated for GFP expression were determined by two-color flow
cytometry. Additionally, GFP-positive cells were sorted by flow
cytometry and analyzed by immunoblotting with anti-�-actin
(Sigma) and anti-Dyn2 or anti-FLAG antibody.

Virus-containing supernatants were harvested 48 h after trans-
fection, or from 84 to 96 h after transfection if siRNA was
cotransfected. Single-cycle infectivities were determined in tripli-
cate by challenging HeLa P4–2 indicator cells with viruses normal-
ized for reverse transcriptase activity. Infectivities were evaluated
by measuring the HIV-1 Tat-mediated induction of �-galactosidase
activity in the target cell lysates, or by staining infected cells with
X-Gal and by counting blue-stained foci under a light microscope.
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Target cells were stained 48 h after infection with trans-
complemented viruses, or 18 h after infection with env-positive
viruses.
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