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Abstract

The Paige and Tarjan algorithm (PT) for computing the coarsest refinement of a state partition which is a bisimulation
on some Kripke structure is well known. It is also well known in model checking that bisimulation is equivalent to strong
preservation of CTL or, equivalently, of Hennessy—Milner logic. Drawing on these observations, we analyze the basic steps of
the PT algorithm from an abstract interpretation perspective, which allows us to reason on strong preservation in the context
of arbitrary (temporal) languages and of generic abstract models, possibly different from standard state partitions, specified
by abstract interpretation. This leads us to design a generalized Paige-Tarjan algorithm, called GPT, for computing the
minimal refinement of an abstract interpretation-based model that strongly preserves some given language. It turns out that
PT is a straight instance of GPT on the domain of state partitions for the case of strong preservation of Hennessy—Milner
logic. We provide a number of examples showing that GPT is of general use. We first show how a well-known efficient
algorithm for computing stuttering equivalence can be viewed as a simple instance of GPT. We then instantiate GPT in
order to design a new efficient algorithm for computing simulation equivalence that is competitive with the best available
algorithms. Finally, we show how GPT allows to deal with strong preservation of new languages by providing an efficient
algorithm that computes the coarsest refinement of a given partition that strongly preserves a language generated by the
reachability operator.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Motivations

The Paige and Tarjan [26] algorithm—in the paper denoted by PT—for efficiently computing the coarsest
refinement of a given partition which is stable for a given state transition relation is well known. Its importance
stems from the fact that PT actually computes bisimulation equivalence, because a partition P of a state space
3 is stable for a transition relation — on ¥ if and only if P is a bisimulation equivalence on the transition
system (X, —). In particular, PT is used in model checking for reducing the state space of a Kripke structure
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K because the quotient of I with respect to bisimulation equivalence strongly preserves temporal languages
like CTL", CTL and the whole p-calculus [2,4]. This means that logical specifications can be checked on the
abstract quotient model of I with no loss of precision. Paige and Tarjan first present the basic O(]— || Z|)-time
PT algorithm. Then, they exploit a computational logarithmic improvement—inspired by Hopcroft’s “process
the smaller half” strategy [22] to minimize the number of states of deterministic finite automata—in order to
design a O(]—| log(]X|))-time algorithm, which is usually referred to as Paige-Tarjan algorithm. It is important
to remark that the logarithmic Paige-Tarjan algorithm is derived as an algorithmic refinement of PT that does
not affect the correctness of the procedure which is instead proved for the basic PT algorithm. As shown in [28], it
turns out that state partitions can be viewed as domains in abstract interpretation and strong preservation can be
cast as completeness in abstract interpretation. Thus, our first aim was to make use of an “abstract interpretation
eye” to understand why PT is a correct procedure for computing strongly preserving partitions.

1.2. The PT algorithm

Let us recall how PT works. Let pre_, (X) = {s € X | Ix € X. s—x} denote the usual predecessor transformer
on p(X). A partition P € Part(X) is PT stable when for any block B € P, if B’ € P then either B C pre_, (B') or
Bnypre_ (B") = &. For a given subset S C X, PTsplit(S, P) denotes the partition obtained from P by replacing
each block B € P with the blocks B N pre_, (S) and B\ pre_, (S), where we also allow no actual splitting, that
is, PTsplit(S, P) = P. When P #+ PTsplit(S, P) the subset S is called a splitter for P. Splitters(P) denotes the set
of splitters of P, while PTrefiners(P) o {S € Splitters(P) | 3{B;} C P. S = U;B;}. Then, the PT algorithm goes as
follows.

ALGorITHM: PT

Input: partition P € Part(X)

while (P is not PT-stable) do
choose S € PTrefiners(P);
P := PTsplit(S, P);

Output: P

The time complexity of PT is O(]— || X|) because the number of iterations of the while loop is bounded by |X|
and, by storing pre_, ({s}) for each s € %, finding a PT refiner and performing a splitting step takes O(|]—|) time.

1.3. An abstract interpretation perspective of PT

This work originated from a number of observations on the above PT algorithm. First, we may view the
output PT(P) as the coarsest refinement of a partition P that strongly preserves CTL. For partitions of the state
space X, namely standard abstract models in model checking, it is known that strong preservation of CTL is
equivalent to strong preservation of (finitary) Hennessy—Milner logic HML [19], i.e., the language:

pi=plorAne |~ | EXe.

The interpretation of HML is standard: p ranges over atomic propositions in AP, the semantic interpretation
of the existential next operator EX is the predecessor transformer pre_, : (%) — (). The initial partition P
is induced by the interpretation of atoms, namely two states are in the same block of P iff they satisfy the same
atoms. We observe that PT(P) indeed computes the coarsest partition Py that refines P and strongly preserves
HML. Moreover, the partition Pyyy corresponds to the state equivalence =y induced by the semantics of
HML: s =y 8" iff Vo € HML. s € [¢]l & s’ € [¢]. We also observe that Py is an abstraction belonging to
the domain Part(X) of partitions of ¥ of the standard state semantics of HML. Thus, our starting point was
that PT can be viewed as an algorithm for computing the most abstract object of a particular abstract domain,
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1.e., Part(X), that strongly preserves a particular language, i.c., HML. We make this view precise within Cousot
and Cousot’s abstract interpretation framework [5, 6].

Previous work [28] introduced an abstract interpretation-based framework for reasoning on strong preserva-
tion of abstract models with respect to generic inductively defined languages. We showed that the lattice Part(X)
of partitions of the state space X can be viewed as an abstraction, through some abstraction and concretization
maps « and y, of the lattice Abs(gp(X)) of abstract interpretations of g(X). Thus, a partition P € Part(X) is here
viewed as a particular abstract domain y(P) € Abs(g(X)). This leads to a precise correspondence between for-
ward complete abstract interpretations and strongly preserving abstract models. Let us recall that completeness
in abstract interpretation [5,6,14] encodes an ideal situation where no loss of precision occurs by approximating
concrete computations on abstract domains. The problem of minimally refining an abstract model in order to
get strong preservation of some language £ can be cast as the problem of making an abstract interpretation
A forward complete for the semantic operators of £ through a minimal refinement of the abstract domain .A.
It turns out that this latter completeness problem always admits a fixpoint solution. Hence, in our abstract
interpretation framework, it turns out that for any P € Part(X), the output PT(P) is the partition abstraction in
Part(XZ) through « of the minimal refinement of the abstract domain y(P) € Abs(gp(X)) that is complete for the
set Op yme of semantic operators of the language HML, that is Op v = {0, C, pre_, } consists of intersection,
complementation and precedessor operators. In particular, a partition P is PT stable iff the abstract domain
y(P) is complete for the operators in Op yyy . Also, the following observation is crucial in our approach. The
splitting operation PTsplit(S, P) can be viewed as the best correct approximation on Part(X) of a refinement
operation refine op(S, -) of abstract domains: given a semantic operator op, the operation refine Op(S,A) refines an
abstract domain 4 through a “op-refiner” S € 4 to the most abstract domain that contains both 4 and the image
op(S). In particular, P results to be PT stable iff the abstract domain y(P) cannot be refined with respect to
the predecessor operator pre_, . Thus, if re:ﬁnep‘rt denotes the best correct approximation in Part(X) of reﬁne
then the PT algorithm can be reformulated as Sfollows.

Input: partition P € Part(XZ)

while (the set of pre_, -refiners of P # &) do
choose some pre_, -refiner S € y(P);
P := refine® (S, P);

pre_,

Output: P

1.4. Main results
This abstract interpretation-based view of the PT algorithm leads us to generalize PT to:

(1) a generic domain A of abstract models that generalizes the role played in PT by the domain of state
partitions Part(X);
(2) a generic set Op of operators on (%) that provides the semantics of some language £0p and generalizes

the role played in PT by the set Op . of operators of HML.

We design a generalized Paige—Tarjan refinement algorithm, called GPT, that, for any input abstract model
A € A, computes the most abstract refinement of 4 in A which is strongly preserving for the language llop. The
correctness of GPT is guaranteed by some completeness conditions on A and Op. We provide a number of
applications showing that GPT is an algorithmic scheme of general use.

We first show how GPT can be instantiated in order to get the well-known Groote—Vaandrager algorithm [17]
that computes divergence blind stuttering equivalence in Kripke structures in O(|— || Z|)-time (this is the best
known time bound). Divergence blind stuttering equivalence corresponds to branching bisimulation equivalence
in process algebras that preserves the branching structure of processes by taking into account invisible events
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[2,8,16]. It turns out that the Groote—Vaandrager algorithm corresponds to an instance of GPT where the
abstract domain A is the lattice of partitions Part(X) and the set of operators is Op = {n,C, EU}, where EU
denotes the standard semantic interpretation of the existential until.

We then show how GPT allows to design a new simple and efficient algorithm for computing simulation
equivalence in a Kripke structure. This algorithm is obtained as a consequence of the fact that simulation
equivalence corresponds to strong preservation of the language:

pu=ploAe | EXe.

Therefore, in this instance of GPT the set of operators is Op = {N,pre_, } and the abstract domain A is the
lattice of disjunctive (i.e., precise for least upper bounds [6]) abstract domains of gp(X). It turns out that this
algorithm can be implemented with time and space complexities that are comparable with those of the best
available algorithms for computing simulation equivalence.

Finally, we demonstrate how GPT can solve novel strong preservation problems by considering strong
preservation with respect to the language inductively generated by propositional logic and the reachability
operator EF. Here, we obtain a partition refinement algorithm, namely the abstract domain A is the lattice of
partitions Part(X), while the set of operatorsis Op = {N, C,EF }. We describe an implementation for this instance
of GPT that leads to a O(]— || X|)-time algorithm. This instance of GPT is also experimentally evaluated.

This paper is an extended and revised version of [27].

2. Background
2.1. Notation and preliminaries

Notations. Let X be any set. Fun(X) denotes the set of functions f : X" — X, foranyn = #(f) > 0, called arity
of f. Following a standard convention, when n = 0, f is meant to be a specific object of X. If f : X — Y then
the image of f is also denoted by img(f) = {f(x) € ¥ | x € X}. When writing a set S of subsets of a given set, like
a partition, S is often written in a compact form like {1,12,13} or {[1], [12], [13]} that stands for {{1}, {1, 2}, {1, 3}}.
The complement operator for the universe set X is C: PX) — pX), where Cs) = x~.5.

Orders. Let (P, <) be a poset. Posets are often denoted by P<. We use the symbol (C) E to denote (strict)
pointwise ordering between functions: if X is any set and f,g : X — P then f C gifforallx € X, f(x) < g(x).
A mapping f : P — Q on posets is continuous when f preserves least upper bounds (lub’s) of countable chains
in P, while, dually, it is co-continuous when f preserves greatest lower bounds (glb’s) of countable chains in P.
A complete lattice C¢ is also denoted by (C, <, Vv, A, T, L) where v, A, T and L denote, respectively, lub, glb,
greatest element and least element in C. A function f : C — D between complete lattices is additive (co-additive)
when f preserves least upper (greatest lower) bounds. We denote by Ifp(f) and gfp(f), respectively, the least
and greatest fixpoint, when they exist, of an operator f on a poset.

Partitions. A partition P of a set X is a set of nonempty subsets of X, called blocks, that are pairwise disjoint and
whose union gives . Part(X) denotes the set of partitions of X. Part(X) is endowed with the following standard
partial order <: P| < P»,i.e., P, iscoarser than P (or P refines P»)iff VB € P.3B’ € P,. B C B'.Itiswell known that
(Part(2), <, A, Y, {Z}, {{s}}sex) 1s a complete lattice, where AP, = {BiN By | By € P, By € P,, BN By #+ J}.

Kripke structures. A transition system 7 = (X, —) consists of a (possibly infinite) set X of states and a
transition relation — € ¥ x X. As usual [4], we assume that the relation — is total, i.e., for any s € X there
exists some ¢ € X such that s—¢, so that any maximal path in 7 is necessarily infinite. The pre/post transformers
on p(X) are defined as usual:

—pre_, €AY{ae X |Ibe Y a>bl,
—pre_ ¥ Copre, oL =AY{a e X |Vbe =.(a—b= b e D),
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def

—post, =AY.{be X |3JacY a—>b}
— post_, ‘E‘Bopost% ol=AY{beX|Vae Z.(a>b=ac D).

Let us remark that pre_, and post_, are additive operators on gp(X)c while pre_, and post_, are co-additive.
When clear from the context, subscripts in pre/post transformers are sometimes omitted.

Given a set A P of atomic propositions (of some language), a Kripke structure X = (X, —, £) over A P consists
of a transition system (3, —) together with a state labeling function ¢ : ¥ — (A P). We use the following nota-
tion: for any s € X, [s]¢ & {s' € T | £(s) = £(s")}, while P, o {[s]le | s € X} € Part(X) denotes the state partition
that is induced by £.

The notation si="¢ means that a state s € £ satisfies in K a state formula ¢ of some language £, where
the specific definition of the satisfaction relation =" depends on the language £ (interpretations of standard
logical/temporal operators like next, until, finally, etc. can be found in [4]).

2.2. Abstract interpretation and completeness

2.2.1. Abstract domains

In standard Cousot and Cousot’s abstract interpretation, abstract domains can be equivalently specified
either by Galois connections, i.e., adjunctions, or by upper closure operators (uco’s) [5,6]. Let us recall these
standard notions.

Galois connections and insertions. If A and C are posetsand« : C — Aand y : 4 — C are monotone functions
such that Ve € C. ¢ <¢ p(a(c)) and a(y(a)) <4 a then the quadruple (o, C, 4, y) is called a Galois connection
(GC for short) between C and 4. If in addition @ o y = Ax.x then («, C, 4, ) is a Galois insertion (GI for short) of
Ain C.Ina GI, y is 1-1 and « is onto. Let us also recall that the notion of GC is equivalent to that of adjunction:
ife:C—>Adandy:4 — Cthen (o,C,4,y)isa GCiff Ve € CVa € A. a(c) <4 a & ¢ <¢ y(a). The map « (y)
is called the left- (right-) adjoint to y («). It turns out that one adjoint map «/y uniquely determines the other
adjoint map y/« as follows. On the one hand, a map « : C — 4 admits a necessarily unique right-adjoint map
y : A — Ciff a preserves arbitrary lub’s; in this case, we have that y & a. Ve {c € C | alc) <4 a}. On the other
hand,amap y : 4 — C admits a necessarily unique left-adjoint map « : C — A iff y preserves arbitrary glb’s; in
this case, o L re. A 4{a € d]|c<c (@)} In particular, in any GC («, C, 4, y) between complete lattices it turns
out that « is additive and y is co-additive.

We assume the standard abstract interpretation framework, where concrete and abstract domains, C and
A, are complete lattices related by abstraction and concretization maps « and y forming a GC («, C,4,y). 4 is
called an abstraction of C and C a concretization of 4. The ordering relations on concrete and abstract domains
describe the relative precision of domain values: x < y means that y is an approximation of x or, equivalently,
x is more precise than y. Galois connections relate the concrete and abstract notions of relative precision: an
abstract value a € 4 approximates a concrete value ¢ € C when «(c) <4 a, or, equivalently (by adjunction),
¢ < Y(a). As a key consequence of requiring a Galois connection, it turns out that «(c) is the best possible
approximation in 4 of ¢, thatis a(c) = A{a € A | ¢ <¢ y(a)} holds. If (o, C, 4, p) is a GI then each value of the
abstract domain 4 is useful in representing C, because all the values in 4 represent distinct members of C, being
y 1-1. Any GC can be lifted to a GI by identifying in an equivalence class those values of the abstract domain
with the same concretization. Abs(C) denotes the set of abstract domains of C and we write 4 € Abs(C) to mean
that the abstract domain 4 is related to C through a GI («, C, 4, y).

An abstract domain 4 € Abs(C) is disjunctive when the corresponding concretization map y is additive or,
equivalently, when the image y(4) C C is closed under arbitrary lub’s of C. We denote by dAbs(C) the subset
of disjunctive abstract domains.

Closure operators. An (upper) closure operator, or simply a closure, on a poset P< is an operator u : P — P
thatis monotone, idempotent and extensive, i.e.,Vx € P. x < w(x). Dually, lower closure operators are monotone,
idempotent, and restrictive, i.e., Vx € P. u(x) < x. uco(P) denotes the set of closure operators on P. Let (C, <,
V,A, T, 1) be a complete lattice. A closure u € uco(C) is uniquely determined by its image img(u), which
coincides with its set of fixpoints, as follows: u = Ay. A {x € img(u) | y < x}. Also, X € C'is gge image of some

closure operator uy on C iff X is a Moore-family of C (or Moore-closed), i.e, X = MX) ={AS | S C X}—
where A = Te M(X). In other terms, X is a Moore-family of C when X is meet-closed. In this case, uy =
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Ay. A {x € X | y < x}is the corresponding closure operator on C. For any X C C, M(X) is called the Moore-
closure of X in C, i.e., M(X) is the least (with respect to set inclusion) subset of C which contains X and is a
Moore-family of C. Moreover, it turns out that for any u € uco(C) and any Moore-family X C C, timg(,) = 1
and img(px) = X. Thus, closure operators on C are in bijection with Moore-families of C. This allows us to
consider a closure operator i € uco(C) both as a function i : C — C and as a Moore-family img(u) € C. This
is particularly useful and does not give rise to ambiguity since one can distinguish the use of a closure u as
function or set according to the context.

If C is a complete lattice then uco(C) endowed with the pointwise ordering C is a complete lattice denoted
by (uco(C),C, U, M, Ax. T, Ax.x), where for every u,n € uco(C), {u;}icsr € uco(C) and x € C:

—wEniff vy e C. u(y) < n(y) iff img(n) < img(u);

— (Mierpi) (x) = Aierpi(x) and img(Mies i) = M(Uierimg(i));
— img(User i) = Nierimg(u:);

— Ax.T is the greatest element, whereas Ax.x is the least element.

A closure u € uco(C) is disjunctive when p preserves arbitrary lub’s or, equivalently, when img(u) is join-
closed, that is {VX | X € img(u)} = img(r). Hence, a subset X C C is the image of a disjunctive closure on C
iff X is both meet- and join-closed. If C is completely distributive—this is the case, for example, of a lattice
(p(X), C) for some set X—then the greatest (with respect to C) disriunctive closure D(S) that contains a set
S C C is obtained by closing S under meets and joins, namely D(S) € (VX | X C M(S)}[6].

Closures are equivalent to Galois insertions. It is well known since [6] that abstract domains can be equivalently
specified either as Galois insertions or as closures. These two approaches are completely equivalent. On the one
hand, if 4 € uco(C) and 4 is a complete lattice which is isomorphic to img(u), where ¢ : img(u) — 4 and
=1 4 — img(u) provide the isomorphism, then (1 o 1, C,4,:~") is a GI. On the other hand, if («, C,4,y) is
a GI then uy o y o« € uco(C) is the closure associated with 4 such that (img(uy), <) is a complete lattice
which is isomorphic to (4, <,). Furthermore, these two constructions are inverse of each other. Let us also
remark that an abstract domain 4 is disjunctive iff the uco w4 is disjunctive. Given an abstract domain A4
specified by a GI («, C, 4, ), its associated closure y o @ on C can be thought of as the “logical meaning” of 4
in C, since this is shared by any other abstract representation for the objects of 4. Thus, the closure operator
approach is particularly convenient when reasoning about properties of abstract domains independently from
the representation of their objects.

The lattice of abstract domains. Abstract domains specified by GIs can be pre-ordered with respect to precision
as follows: if 41,4, € Abs(C) then 41 is more precise (or concrete) than A, (or A3 is an abstraction of 41) when
t4; E ua,. The pointwise ordering C between uco’s corresponds therefore to the standard ordering used to
compare abstract domains with respect to their precision. Also, 4] and 43 are equivalent, denoted by 4] >~ A4,
when their associated closures coincide, i.e., w4, = p4,. Hence, the quotient Abs(C)/~ gives rise to a poset that,
by a slight abuse of notation, is simply denoted by (Abs(C), C). Thus, when we write 4 € Abs(C) we mean that
A is any representative of an equivalence class in Abs(C),~ and is specified by a Galois insertion (a, C, 4, ). It
turns out that (Abs(C),C) is a complete lattice, called the lattice of abstract domains of C [5,6], because it is
isomorphic to the complete lattice (uco(C),C). Lub’s and glb’s in Abs(C) have therefore the following reading
as operators on domains. Let {4;};c; € Abs(C): (i) U;e;4; is the most concrete among the domains which are
abstractions of all the 4;’s; (ii) M;e;A4; is the most abstract among the domains which are more concrete than
every A;—this latter domain is also known as reduced product [6] of all the 4;’s.

2.2.2. Completeness in abstract interpretation

Correct abstract interpretations. Let C be a concrete domain, f : C — C be a concrete semantic function'
and f%:4 — A be a corresponding abstract function on an abstract domain 4 € Abs(C) specified by a GI

1 For simplicity of notation we consider here unary functions since the extension to generic n-ary functions is straightforward.
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(o, C, A4, ). Then, (4, f*) is a sound (or correct) abstract interpretation when a o f £ f* o o holds. The abstract
function f* is called a correct approximation on 4 of f. This means that a concrete computatlon f(c) can be
correctly approxnnated in 4 by f t (a(c)), namely a( f(c)) <4 f*(a(c)). An abstract function f : A — Aismore
premse than f2 A — Awhen f1 C fz Sincea o f C f?oaholdsiffa o f oy E f%holds, the abstract function
Vé 1840 foy:A4— Aiscalled the best correct approximation of f in A.

Complete abstract interpretations. Completeness in abstract interpretation corresponds to requiring that, in
addition to soundness, no loss of precision occurs when f(c) isapproximated in 4 by f*(a(c)). Thus, completeness
of f% for f is encoded by the equation a o f = f* o a. This is also called backward completeness because a
dual form of forward completeness may be considered. As a very simple example, let us consider the abstract
domain Sign representing the sign of an integer variable, namely Sign = {1,7.,,0,Z.,, T} € Abs(p(Z)c) Let
us consider the binary concrete operation of integer addition on sets of integers, that is X + Y = - x+ylxe
X, y € Y}, and the square operator on sets of integers, that is X 24 {x | x € X}. It turns out that the best correct
approximation +59" of integer addition in Sign is sound but not complete—because a({—1} + {I}) = 0 < Sign | =
a({—1})+59"a({1})—while it is easy to check that the best correct approximation of the square operation in Sign
is instead complete. Let us also recall that backward completeness implies fixpoint completeness, meaning that
ifao f = f%oathen a(fp(f) = Ifp(f?).

A dual form of completeness can be considered. The soundness condition @ o f = f* o @ can be equiva-
lently formulated as f o y £ y o f¥. Forward completeness for /¥ corresponds to requiring that the equation
f oy =yo f*holds, and therefore means that no loss of precision occurs when a concrete computation f(y(a)),
for some abstract value a € 4, is approximated in 4 by f%(a). Let us notice that backward and forward com-
pleteness are orthogonal concepts. In fact: (1) we observed above that +59” is not backward complete while it
is forward complete because for any aj,ay € Sign, y(ar) + y(az) = y(a1+59"a»): for instance, Y(Z.y) + Y(Z.y) =
Z.o = Y(Z.0+59"Z); (2) the best correct approximation (-)%in of the square operator on Sign is not forward
complete because y(Z>0)2§y(Z>0) = Y((Z.o)*sism), while, as observed above, it is instead backward complete.

Completeness is an abstract domain property. Giacobazzi et al. [14] observed that completeness uniquely
depends upon the abstraction map, i.e., upon the abstract domain. This means that if f* is backward complete
for f then the best correct approximation 1 of f in 4 is backward complete as well, and, in this case, /¥ indeed
coincides with /. Hence, for any abstract domain 4, one can define a backward complete abstract operation f*
on 4 if and only if /4 is backward complete. An abstract domain 4 € Abs(C) is therefore defined to be backward
complete for f iff the equation @ o f = f4 o & holds. This simple observation makes backward completeness
an abstract domain property, namely an intrinsic characteristic of the abstract domain. Let us observe that
aof=f1oaholdsiff yoao f=yo0 floa=yoao foyoaholds, so that 4 is backward complete for
f when ugo f =puq0 fopuy Thus, a closure u € uco(C), that defines some abstract domain, is backward
complete for f when o f = o f o i holds. Analogous observations apply to forward completeness, which
is also an abstract domain property: A € Abs(C) is forward complete for f (or forward f-complete) when
foug=py 0 fopuy, whilea closure u € uco(C) is forward complete for f when f o u = o f o u holds.

2.3. Shells

Refinements of abstract domains have been studied from the beginning of abstract interpretation [5,6] and
led to the notion of shell of abstract domains [10,13,14]. Given a generic poset P< of semantic objects—where
x < y intuitively means that x is a “refinement” of y—and a property P C P of these objects, the generic notion
of shell is as follows: the P-shell of an object x € P is defined to be an object s, € P such that:

(1) sy satisfies the property P,
(i1) sy is a refinement of x, and
(ii1) s, is the greatest among the objects in P satisfying (i) and (i1).

Note that if a P-shell exists then it is unique. Moreover, if the P-shell exists for any object in P then it turns out
that the operator that maps anyx € P toits P-shell is a lower closure operator on P, being monotone, idempotent
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and reductive: this is called the P-shell refinement operator. We will be interested in shells of abstract domains
and partitions, namely shells in the complete lattices of abstract domains and partitions. Given a state space
¥ and a partition property P C Part(X), the P-shell of P € Part(X) is the coarsest refinement of P satisfying P,
when this exists. Also, given a concrete domain C and a domain property P € Abs(C), the P-shell of 4 € Abs(C),
when this exists, is the most abstract domain that satisfies P and refines 4. As an important example, Giacobazzi
et al. [14] constructively showed that backward complete shells always exist when the concrete functions are
continuous.

Disjunctive shells. Consider the abstract domain property of being disjunctive, namely dAbs(C) € Abs(C).
As already observed in [6], if C is a completely d1str1but1ve lattice’ then any abstract domain 4 € Abs(C) can
be refined to its disjunctive completion dc(A) {VCS | S € y(4)}. This means that dc(4) is the most abstract
domain that refines 4 and is disjunctive, namely it is the disjunctive shell of 4. Hence, the disjunctive shell
operator Sgjs : Abs(C) — Abs(C) is defined as follows:

def

Fais(4) = U{X € Abs(C) | X C 4, X is disjunctive}.

Forward complete shells. Let F C Fun(C) (thus functlons in F may have any arity) and S € p(C). We denote
by F(S) € p(C) the image of F on S, ie., F(S) {f( )| f € F,s €8}, and we say that § is F-closed when
F(S) € S. An abstract domain 4 € Abs(C) is forward F-complete when A4 is forward complete for any f € F.
Let us observe that F-completeness for an abstract domain 4 means that the image y(4) is closed under the
image of functions in F, namely F(y(4)) C y(4). Also note that when % : C% > C,ie., k € C is a constant, 4
is forward k-complete iff & is precisely represented in A4, i.e., y(a(k)) = k. Let us finally note that any abstract
domain is always forward meet-complete because any uco is Moore-closed.
The (forward) F-complete shell operator & : Abs(C) — Abs(C) is defined as follows:

def

FrA) = u{X € Abs(C) | X C 4, X is forward F-complete}.

As observed in [12,28], it turns out that for any abstract domain 4, ¥ (4) is forward F-complete, namely forward
complete shells always exist. When C is finite, note that for the meet operator A : C2 — C we have that, for any
F, YF = SFuia), because uco’s (that is, abstract domains) are meet-closed.

A forward complete shell ¥ (A) is a more concrete abstraction than 4. How to characterize &z (A4)? As shown
in [28], forward complete shells admit a constructive fixpoint characterization. Let F™ : Abs(C) — Abs(C) be
defined as follows: FM (X) <M (F(y(X))), namely F™(X) is the most abstract domain that contains the image of
F on y(X) Given 4 € Abs(C), we consider the operator Fy : Abs(C) — Abs(C) defined by the reduced product
Fy (X) AN FM (X). Let us observe that F4(X) = M(y(4) U F(y(X))) and that F4 is monotone and therefore
admits the greatest fixpoint. This greatest fixpoint provides the forward F-complete shell of 4:

S rA) = gfp(Fy). 21

Example 2.1. Let ¥ = {1,2,3,4} and R C ¥ x X be the relation {(1,2), (2, 3), (3,4), (4,4)}. Let us consider the
post transformer postp : p(X) — »(X). Consider the abstract domain 4 = {1, 2,1234} € Abs(p(X)c). We have
that S post, (4) = {F,2,3,4,34,234,1234} because by (2.1):

Xo = {1234} (most abstract domain),

X1 = M(AUpostp(Xo)) = M(A4U{234}) = {@,2,234,1234},

Xo = M(AUpostp(X)) = M(AU{@,3,34,234}) = {9, 2,3,34,234,1234},

X3 = M(AUpostp(X2)) = M(AU{@,3,4,34,234}) = {2, 2,3,4,34,234,1234},
Xy = M(AUpostp(X3)) = M(AU{D,3,4,34,234}) = X3 (greatest fixpoint).

2 This means that in C arbitrary glb’s distribute over arbitrary lub’s—any powerset, ordered with respect to super-/sub-set relation, is
completely distributive.
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Fig. 1. Partitions as abstract domains.

3. Generalized strong preservation

Let us recall from [28] how partitions, i.e., standard abstract models, can be viewed as particular abstract
domains and how strong preservation in standard abstract model checking can be cast as forward completeness
of abstract interpretations.

3.1. Partitions as abstract domains

Let X be any (possibly infinite) set of system states. As shown in [28], it turns out that the lattice of state
partitions Part(X) can be viewed as an abstraction of the lattice of abstract domains Abs(g(X)). Thisis important
for our goal of performing an abstract fixpoint computation on the abstract lattice Part(XZ) of a forward complete
shell in Abs(p(X)).

A partition P € Part(X) can be viewed as an abstraction of p(X)c asfollows: any S € X is over-approximated
by the unique minimal cover of S in P, namely by the union of all the blocks B € P such that BNS # &. A
graphical example is depicted in Fig. 1. This abstraction is formalized by a GI (ap, p(2)c, 9(P)c, yp) Where:

ap(S)S{BeP|BNS+3), yp(B)E Upep B.

We can therefore define a function pad : Part(Z) — Abs(gp(X)) that maps any partition P to an abstract domain
pad(P) which is called partitioning. In general, an abstract domain 4 € Abs(p(X)) is called partitioning when 4 is
equivalent to an abstract domain pad(P) for some partition P € Part(X). Accordingly, a closure € uco(p(X))
that coincides with yp o ap, for some partition P, is called partitioning. It can be shown that an abstract domain
A is partitioning iff its image y(4) is closed under complements, that is, VS € y(4). C©s) e y(4). We denote by
AbsP (p(X)) and ucoP (p(X)) the sets of, respectively, partitioning abstract domains and closures on p(X).

Partitions can thus be viewed as representations of particular abstract domains. On the other hand, it turns
out that abstract domains can be abstracted to partitions. An abstract domain 4 € Abs(p(X)c) induces a state
equivalence =4 on X by identifying those states that cannot be distinguished by 4:

s=45 If  a(s) =a(s)).
Foranys € X, [s]y ] {s" € T | a({s}) = a({s'})} is a block of the state partition par(4) induced by 4:
par(4) = {[sl4 | s € T},

Thus, par : Abs(p(Z)) — Part(Z) is a mapping from abstract domains to partitions.

Example 3.1. Let ¥ = {1,2,3,4} and let us specify abstract domains as uco’s on gp(X). The abstract domains
A1 =1{9,12,3,4,1234}, Ar = {2,12,3,4,34,1234}, A3 = {,12,3,4,34,123,124,1234}, A4 ={12,123,124,1234} and
As = {2,12,123,124,1234} all induce the same partition P = par(4;) = {12,3,4} € Part(X). Forexample, a4 ({1})
=a4,({2) = (1,2}, g5 ({3}) = {1,2,3} and a4, ({4}) = {1, 2, 3,4} so that par(4s) = P. Observe that 43 is the only
partitioning abstract domain because pad(P) = A43.
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Abstract domains of p(X) carry additional information other than the underlying state partition and this
additional information distinguishes them. As shown in [28], it turns out that this can be precisely stated by
abstract interpretation since the above mappings par and pad allow us to view the whole lattice of partitions of
3 as a (“higher-order”) abstraction of the lattice of abstract domains of p(X):

(par, Abs(p(X)) o, Part(¥)», pad) is a GL.

As a consequence, the mappings par and pad give rise to an order isomorphism between state partitions and
partitioning abstract domains: Part(X)< = AbsP* (p(X))c.

3.2. Abstract semantics and generalized strong preservation

Concrete semantics. We consider temporal specification languages £ whose state formulae ¢ are inductively
defined by:

£9§0:p|f(¢1,a¢n)

where p ranges over a (typically finite) set of atomic propositions 4B, while f ranges over a finite set Op of
operators. APand Op are also denoted, respectively, by 4P, and Op .. Each operator f € Op has an arity?
8() > 0.

Formulae in £ are interpreted on a semantic structure S = (X,I) where X is any (possibly infinite) set of
states and / is an interpretation function / : AP U Op — Fun(gp(X)) that maps p € AP to some set I(p) € p(X)
and f € Op to some function /() : @(z)ﬁ(ﬂ — (). The 1nterpretat10ns I(p) and I(f) are also denoted by,
respectively, p and f. Moreover, AP 2 {p € p(X) | p AP} and Op £ {f : p(2)*V — (T) | f € Op}. The
concrete state semantic function [-]s : L — g(X) evaluates a formula ¢ € £ to the set of states making ¢ true
with respect to the semantic structure S:

[pls =p and [fle1,...0)lls = fleils,-- . lels).

Semantic structures generalize the role of Kripke structures. In fact, in standard model checking a semantic
structure is usually defined through a Kripke structure X so that the interpretation of logical/temporal operators
is defined in terms of paths in I and standard logical operators. In the following, we freely use standard logical
and temporal operators together with their usual interpretations: for example, I(A) =N, I(V) = U, I(—) = C,
and if — denotes a transition relation in K then I/(EX) = pre_, , [(AX) = pre_, , etc.

If gisany operator with arity (g) = n > 0, whoseinterpretationis givenby g : p(X)" — p(X),and S = (Z,1)
is a semantic structure then we say that a language L is closed under g for S when for any ¢y, . . .,¢, € L there
exists some ¥ € L such that g([[¢1lls, ..., [¢.]ls) = [¥]s. In particular, a language £ is closed under (finite)
infinite logical conjunction for § iff for any (finite) ® C L, there exists some ¢ € L such that|) veollels = [¥ls.
In particular, let us note that if £ is closed under infinite logical conjunction then it must exist some ¥ € £ such
that NG = ¥ = [[¥]ls, namely L is able to express the tautology true. Let us also remark that if the state space
3 is finite and £ is closed under logical conjunction then we also mean that there exists some v € £ such that
NG = ¥ = [¢¥]s. Finally, note that if £ is closed under negation and (infinite) logical conjunction then L is
closed under (infinite) logical disjunction as well.

Abstract semantics. Abstract interpretation allows to define abstract semantics. Let £ be a language and

= (%,]) beasemantic structure for £. An abstract semantic structure S* = (4,1%) is given by an abstract domain

A € Abs(p(X)c) and by an abstract interpretation function I* : AP U Op — Fun(4). An abstract semantic
structure S* therefore induces an abstract semantic function [-] st - L — A that evaluates formulae in £ to
abstract values in 4. In particular, the abstract domain 4 systematically induces an abstract semantic structure

3 1t would be possible to consider generic operators whose arity is any possibly infinite ordinal, thus allowing, for example, infinite
conjunctions or disjunctions.
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S4 = (4,1") where I is the best correct approximation of / on 4, i.e., I interprets atoms p and operators f as
best correct approximations on 4 of, respectively, p and f: for any p e AP and f € Op,

FpEa(p) and HMNHE fA=aofoly,...p).

Thus, the abstract domain 4 always induces an abstract semantic function [-] g« : £ — 4, also denoted by [-14,
which is therefore defined by:

[pls =a(p) and  [flgn,....o0l5 = AT, .. (eald).

Standard strong preservation. A state semantics [[-]s, for a semantic/Kripke structure S, induces a state logical
equivalence E‘Z C ¥ x ¥ as usual:

s=2s iff VoeL.selpls & 5 €lgls.

Let P, € Part(X) be the partition induced by E‘Z (the index S denoting the semantic/Kripke structure is
omitted). For a number of well-known temporal languages like CTL*, ACTL*, CTL*-X, it turns out that if
a partition is more refined than P, then it induces a standard strongly preserving (s.p.) abstract model. This
means that if £ is interpreted on a Kripke structure K = (X, —, ¢) and P < P, then one can define an abstract
Kripke structure A = (P, —%, ¢%), having the partition P as abstract state space, that strongly preserves £: for
anyg € £,s € ¥ and B € P such that s € B, we have that B =4 ¢ (that is, B € [[¢] 4) if and only if s EX ¢ (that
is, s € [¢llx). Let us recall a couple of well-known examples (see e.g., [4,7]):

(i) Let Pyctr+ € Part(X) be the partition induced by ACTL on some Kripke structure K = (%, —, £). If
P < Pycrr+ then the abstract Kripke structure A = (P, — "7, £p) strongly preserves ACTL¥, where £p(B) =
U{€(s) | s € By and -3 C P x Pis defined as: By —>"* By < Vsi € By. 35y € By. s1—5o.

(ii) Let Porp+ € Part(X) be the partition induced by CTL on K. If P < Popy» then the abstract Kripke structure
A = (P,—™, tp) strongly preserves CTL¥, where By =3B, <« 3s1 € Bl,s2 € By. 51—>5).

Following Dams [7, Section 6.1] and Henzinger et al. [21, Section 2.2], the notion of strong preservation can be
given with respect to a mere state partition rather than with respect to an abstract Kripke structure. A partition
P € Part(X) is strongly preserving* for £ (when interpreted on a semantic/Kripke structure S) if P < Pr. In
this sense, P, is the coarsest partition that is strongly preserving for £. For a number of well known temporal
languages, like ACTL", CTL® (see, respectively, the above points (i) and (ii)), CTL*-X and the fragments of the
wu-calculus described by Henzinger et al. [21], it turns out that if P is strongly preserving for £ then the abstract
Kripke structure (P,—, £p) is strongly preserving for £. In particular, (Pz,—¥,€p,) is strongly preserving
for £ and, additionally, P, is the smallest possible abstract state space, namely if A = (4, —*, £%) is an abstract
Kripke structure that strongly preserves £ then |Pg| < |4].

Generalized strong preservation. Intuitively, the partition P is an abstraction of the state semantics [[-]|s. Let us
make this intuition precise. Following [28], an abstract domain 4 € Abs(gp(X)) is defined to be strongly preserving
for £ (with respect to §) when forany S € p(X) and ¢ € L: a(S) < |[<p]]f§ < S C [¢lls. This generalizes strong
preservation from partitions to abstract domains because, by exploiting the isomorphism in Section 3.1 between
partitions and partitioning abstract domains, it turns out that P is a s.p. partition for £ with respect to S iff
pad(P) is a s.p. abstract domain for £ with respect to S.

4 Dams [7] uses the term “fine” instead of “strongly preserving”.
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Fig. 2. A Kripke structure.

Forward complete shells and strong preservation. Partition refinement algorithms for computing behavioural
equivalences like bisimulation [26], simulation equivalence [3,11,20,29,30] and (divergence blind) stuttering
equivalence [17] are used in abstract model checking to compute the coarsest strongly preserving partition for
temporal languages like CTL" or the u-calculus for the case of bisimulation equivalence, ACTL" for simulation
equivalence and CTL*-X for stuttering equivalence. Let us recall from [28] how the input/output behaviour of
these partition refinement algorithms can be generalized through abstract interpretation. Given a language £
and a concrete state space X, partition refinement algorithms work by iteratively refining an initial partition P
within the lattice of partitions Part(X) until the fixpoint P, is reached. The input partition P determines a set4 P
of atoms and a corresponding interpretation /p as follows: 4P o {ps | B € P} and Ip(pp) & B. More in general,
any X C (%) determines a set {px}yex of atoms with interpretation /y(py) = X. In particular, this can be
done for an abstract domain 4 € Abs(gp(X)) by considering its concretization y(4) C X, namely 4 is viewed as
a set of atoms a € 4 with interpretation /4(a) = y(a). Thus, an abstract domain 4 € Abs(p(X)) together with
a set of functions F' € Fun(gp(X)) determine a language £, r, with atoms in 4, operations in ' and endowed
with a semantic structure Sy r = (X,14 U Ir) such that for any a € 4,14(a) = y(a) and forany f € F,Ir(f) = f.
When L4 F is closed under infinite logical conjunction (for finite state spaces this boils down to closure under
finite conjunction) it turns out that the forward complete shell of 4 for F' provides exactly the most abstract
domain in Abs(p(X)) that refines 4 and is strongly preserving for £4 r (with respect to Sy r):

SFr(A) =X € Abs(p(X)) | X E 4, X iss.p. for L4 r}. (3.)

In other terms, forward complete shells coincide with strongly preserving shells.

On the other hand, let P, denote the state partition induced by the state labeling of a semantic/Kripke
structure and let £ be closed under logical conjunction and negation. Then, the coarsest s.p. partition P, can be
characterized as a forward complete shell as follows:

Pr = par(S o, (pad(P))). (32)

Example 3.2. Consider the following language L:

pu=plorAe | EXe

and the Kripke structure K depicted in Fig. 2, where superscripts determine the labeling function ¢ and the
interpretation of EX in C is the predecessor operator pre. The labeling function ¢ determines the partition
P, = {p =1235,q = 4} € Part(X), so that pad(Py) = {T,1235,4,12345} € Abs(gp(X)). Abstract domains are
Moore-closed so that %, . = ¥ pre. Let us compute pre(pad(F)).

Xo = pad(Py) = {@,1235,4,12345)

X1 = Xo 1 M(pre(Xp)) = M(Xp U pre(Xp))
= M({2,1235,4,12345} U{ pre({4}) = 135)) = {2, 135,1235, 4, 12345}

X = X1 1 M(pre(X1)) = M(X U pre(Xp))
= M({2,135,1235,4,12345} U{ pre({135}) = 1245})
= (@, 15,125,135, 1235, 4, 1245, 12345)

X3 =X> (fixpoint).
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By (3.1), X, is the most abstract domain that strongly preserves £. Moreover, by (3.2), P = par(X3) = {15, 2, 3,4}
is the coarsest partition that strongly preserves £. Observe that the abstract domain X3 is not partitioning so
that pad(Pz)C S pre(pad(Py)).

4. GPT: a generalized Paige—Tarjan refinement algorithm

In order to emphasize the ideas leading to our generalized Paige-Tarjan algorithm, let us first describe how
some features of the Paige-Tarjan algorithm can be viewed and generalized from an abstract interpretation
perspective.

4.1. A new perspective of PT

Consider a finite Kripke structure (X, —,£) over a set AP of atoms. In the following, Part(X) and pre_,
will be simply denoted by, respectively, Part and pre. As a direct consequence of (3.1), it turns out [28] that the
output PT(P) of the Paige-Tarjan algorithm on an input partition P € Part is the partitioning abstraction of
the forward {pre, E}-complete shell of pad(P), i.c.,

PT(P) = par (S pre ) (Pad(P))).

Hennessy—Milner logic HML is inductively generated by the logical/temporal operators of conjunction, negation
and existential next, so that Op,, = {N, C, pre}. Moreover, as noted in Section 2.3, %(n ¢ prey = (0 pre}- Hence,
by (3.2), we observe that PT(P) computes the coarsest partition Pyyy that is strongly preserving for HML.

On the other hand, equation (2.1) provides a constructive characterization of forward complete shells, meaning
that it provides a naive fixpoint algorithm for computing a complete shell ¥r(4) = gfp(F4): begin with X =
{2} = T abs(p(x)) and iteratively, at each step, compute F4(X) until a fixpoint is reached. This scheme could be in
particular applied for computing 1, ¢ (pad(P)). Note, however, that this naive fixpoint algorithm is far from
being efficient since at each step F(X) always re-computes the images f(x) that have already been computed at
the previous step (cf. Example 2.1).

In our abstract interpretation view, PT is therefore an algorithm that computes

a particular abstraction of a particular forward complete shell.

Our goal is to analyze the basic steps of the PT algorithm in order to investigate whether it can be generalized
from an abstract interpretation perspective to an algorithm that computes

a generic abstraction of a generic forward complete shell.

Let us first isolate in our framework the following key points concerning the PT algorithm.

Lemma 4.1. Let P € Part and S C X.

(1) PTsplit(S, P) = par(M(pad(P) U {pre(S)})) = par(pad(P) N M({pre($)})).
(i) PTrefiners(P) = {S € pad(P) | par(M (pad(P) U {pre(S)})) < P}.
(ii1) P is PT stable iff {S € pad(P) | par(M(pad(P) U {pre(S)})) < P} = @.

Proof. (i) By definition, PTsplit(S, P) = P A{pre(S), C(pre(S))}.Note that par(M ({pre(S)})) = par({pre(S), T}) =
{pre(S), C(pre(s))}. Finally, observe that M(pad(P) U {pre(S)}) = pad(P) 1 M({pre(S)}). Also, since the map
par : Absp(X))o — Part(X)» is a left-adjoint and therefore it is additive, it turns out that

par(M(pad(P) U {pre(S)})) = [by the equation above]
par(pad(P) N M({pre(S)})) = [by additivity of par]
par(pad(P)) Apar(M({pre(S)})) = [since par o pad = id]

P i{pre(S),C(pre(S))}.

Points (ii) and (iii) follow immediately from (i). [l
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Given any set § C X, consider a domain refinement operation refinep(S,-) : Abs(p(%)) — Abs(p(X))
defined as
refinepre (S, 4) = L AN M({pre(S)}) = M(p(4) U {pre($))).

Observe that the best correct approximation of refinepr(S,-) on the abstract domain Part is reﬁnegﬁ‘ert(S, ):
Part — Part defined as

refinefid" (S, P) < par(pad(P) N M({pre(S))).

Thus, Lemma 4.1 (i) provides a characterization of the PT splitting step as best correct approximation of refinepe
on Part. In turn, Lemma 4.1 (ii) and (iii) yield a characterization of PTrefiners and PT stability based on this

best correct approximation reﬁnegﬁe”. As a consequence, PT may be reformulated as follows.

while({7 € pad(P) | refine}" (T, P) < P} # &) do
L choose S € {T € pad(P) | refinefar (T, P) < P};

P := refinef¥(S, P);

pre

In the following, this view of PT is generalized to a generic abstract domain in Abs(gp(X)) in place of the
partition P and to a generic set of operations on g(X) in place of the predecessor pre.

4.2. Generalizing PT

Lemma 4.1 can be generalized as follows. Let F C Fun(p(Z)). We define a family of domain refinement oper-
ators refine s : ()" — (Abs(p(X)) — Abs(e(X))) indexed on functions f € F and tuples of sets S € p(X)*:

(i) Refine (S, 4) £ 41 M{f(5)}).
Atuple Sis called a F-refiner for an abstract domain 4 € Abs(p(X)) when thereexists / € F such that Se Y(A)*

and indeed S may contribute to refine 4 with respect to f, i.e., refine f(S A)[CA. We thus define refiners of an
abstract domain as follows:

(i1) ReﬁnerSf(A) {S € Y(A)" | refine s (S A)C A},
Refinersp (A) <Ny rerRefiners 1 (4),

and in turn abstract domain stability as follows:
(iii) 4 is F-stable < Refinersg(4) =
Concrete PT. The above observations lead us to design the following PT-like algorithm called CPTg (Concrete

PT), parameterized by F, which takes as input an abstract domain 4 € Abs(p(X)) and computes the forward
F-complete shell of A.

ArLGoriTHM: CPTf

Input: abstract domain 4 € Abs(p(X))
while(Refinersp (4) # &) do _
choose for some f € F, S € Refiners s (4);

A= reﬁnef(.g‘,A);
Output: 4
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Lemma 4.2. Let A € Abs(gp(X)).

(1) A is forward F-complete iff Refinersg(4) =
(ii) Let X be finite. Then, CPTg always terminates and CPTg(4) = S r(4).

Proof. (i) leen f € F, notice that 4 = refine f(S A) iff f(S) € y(4). Hence, Refinerss(4) = & iff for any S e
YAD, £(S) € Y(A), namely, iff f(y(4)) € p(4) iff 4 is forward f-complete. Thus, Refinersy(4) = & iff A is
forward F-complete. ~

(ii) We denote by X; € uco(p(X)), f; € F and S; € Refiners; (u;) the sequences of, respectively, uco’s, functions
in F' and refiners that are iteratively computed in some run of CPTr(4), where Xy = A. Observe that {X;} is a
decreasing chain in uco(p(X))c, hence, since X is assumed to be finite, it turns out that {X;} is finite. We denote by
Xy the last uco in the sequence {X;}, i.e., CPTr(4) = X Since ReﬁnersF( ) = &, by point (i), X is forward
F complete and therefore, fromXﬁ E 4, we obtain that X, C % (4).

Let us show, by induction on i, that X; O % (4).

(i =0): Clearly, Xo =4 3 ¥Fr(4).

(i +1): By inductive hypothesis and monotonicity of refiney, it turns out that X;i| = refiney (S,,X )3
refine 7, (S,,yF(A)) Moreover, by point (i), since <r(4) is forward f-complete, we have that
refine ; (S,,Q”F(A)) = Lr(A).

Thus, we obtain that Xy = SF(A). O

Example 4.3. Let us illustrate CPT on the abstract domain 4 = {&,2,1234} of Example 2.1.

Xo =4 =1{,2,1234} So = {2} € Refinerspost, (Xo)
= M(Xp U {postg(So)})
= MXy U{3}) ={9,2,3,1234} S1 = {3} € Refinerspost, (X1)
X2 = M(X1 U {postr(SD})
= MMXiU{4}) ={9,2,3,4,1234} S» = {1234} € Refinerspost, (X2)

X3 = M(X2 U {postg(S2)})
= MX> U {234}) ={D,2,3,4,234,1234} Sy = {234} € ReﬁnerspostR X3)

= M3 U {34})) = {@,2,3,4,34,234,1234} = Refinerspost, (X4) = I

Let us note that while in Example 2.1 each step consists in computing the images of post, for the sets belonging
to the whole domain at the previous step and this gives rise to re-computations, here instead an image f(S;) is
never computed twice because at each step we nondeterministically choose a refiner S and apply posty to S.

Abstract PT. Our goal is to design an abstract version of CPTg that works on a generic abstraction A of
the lattice of abstract domains Abs(gp(X)). As recalled in Section 3.1, partitions can be viewed as a “higher-
order” abstraction of abstract domains through the Galois insertion (par, Abs(g(%)) o, Part(X),, pad). This is
a dual GI since both order relations in Abs(g(X)) and Part(X) are reversed. This depends on the fact that we
want to obtain a complete approximation of a forward complete shell, which, by (2.1), is a greatest fixpoint
so that we need to approximate a greatest fixpoint computation “from above” instead of “from below” as it
happens for a least fixpoint computation. We thus consider a Galois insertion («, Abs(p(X))a,As,y) of an
abstract domain A into the dual lattice of abstract domains Abs(g(X))z. The order relation of the abstract
domain A is denoted by > because this makes concrete and abstract ordering notations uniform. It is worth
remarking that since we require a Galois insertion of A into the complete lattice Abs(g(X)), by standard results
on Galois insertions [6], A must necessarily be a complete lattice. For any f € F, the best correct approximation
reﬁne}f‘ : p(2)*) — (A— A) of refines on A is therefore defined as usual by:
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. A S def 3
(1) Reﬁnef (S, a) = a(refine /1 (S, y(a))).
Accordingly, abstract refiners and stability are defined as follows:
(i1) ReﬁnersA(a) {S € y(a)*” | reﬁnef (S, a) < al,
Reﬁnersjé‘(a) U feFReﬁnersA(a)

(iii) an abstract object a € A is F- stable & ReﬁnerSF (a) =

We may now define the following abstract version of the above algorithm CPTF, called GPij4 (Generalized
PT), that is parameterized on the abstraction A.

ALGORITHM: GPTA

Input: abstract object ae A
while (Reﬁners 7 (a) # ) do

L choose for some f € F, Se Reﬁners?‘(a);

a:= reﬁne*}‘-‘(g', a);

Output: a

GPTA(a) computes a sequence of abstract obJects {ai}ien Which is a decreasing chain in A, namely a;41 < a;.
Thus, in order to ensure termination of GPTA % itis enough to consider an abstraction .4 such that (A, <) satisfies
the descending chain condition (DCC), i.e., every descending chain is eventually stationary. Furthermore, let
us remark that correctness for GPT;-4 means that for any input object a € A, GPT,’;‘(a) computes exactly the
abstraction in A of the forward F-complete shell of the abstract domain y(a), that is

GPT# (@) = a(SF(y(a))).

Note that, by (2.1), a(Fr(y(a))) = a(gfp(Fy(s))). It should be clear that correctness for GPT is somehow related
to backward completeness in abstract interpretation. In fact, if the abstraction A is backward complete for
Fya) = AX.y(a) N FM(X) then it is also fixpoint complete (cf. Section 2.2.2), so that a(gfp(Fy))) = gfp(F, (a)),
where F. “21 ) is the best correct approximation of the operator Fy(4) on the abstraction .A. The intuition is 'that
GPTA(a) is an algorithm for computing the greatest fixpoint gfp(F), A ))- Indeed, the following result shows that
GPT#A 7+ is correct when A is backward complete for F*, because thls 1mp11es that A is backward complete for FA,
for any abstract domain 4. Moreover, we also isolate the following condition ensuring the correctness of GPT# yas
the forward F-complete shell operator &F maps domains in .4 into domains in A, namely the higher-order
abstraction A is forward complete for the forward F-complete shell .

Theorem 4.4. Let A< be DCC and assume that one of the following conditions holds:

(1) A is backward complete for F™,
(1) A is forward complete for Sr.

Then, GPij4 always terminates and for any a € A, GPT,’?‘(a) = a(Lr(Y(a))).

Proof. Let us first show the following two facts. For any a € A:

(A) Refinersg(y(a)) = ReﬁnersF (a);
(B) y(a) i1s forward F-complete iff Refinersy 7 (a) =
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(A) Let f € F. Note that reﬁne 7 (S y(a)) = y(a) I‘IM({ f(S)}) and therefore reﬁneA(S a) = a(y(a) N
M({f(S)})) = a(¥(@) A a(MAAS)) = a A4 a(M({f(S)})) Consequently, € Refiners s (V(a)) iffS € y(a)*”
and M({ f(S)}) Z y(a). Likewise, we have that S e Reﬁners (a) iff S e y(a)W) and a(M({ f(S)})) % a. These
are equivalent properties, because, by Galois insertion, we have that a(M({ f(S)})) = aiff M({ f(S) ) 2 y(a).

(B) y(a) is forward F-complete iff Refinersz(y(a)) = & iff Reﬁnersjé‘(a) = &, by point (A).

Let us now prove the main result. We denote by a; € A, f; € F and S, € Refiners? 7 (a;) the sequences of, respec-
tively, abstract ojects, functions in F and refiners that are iteratively computed in some run of GPT#A % (a), where
ap = a. Since {a;} is a decreasing chain in the abstract domain A¢ which is assumed to be DCC, 1t turns out
that these sequences are finite. We denote by a ;, the last element in the sequence of a;’s, ie., GPTF (@) = ajip.

Moreover, we also consider the following sequence of abstract domains: X = y(a,) nFM(a;)) = M((y(a;) U
F(y(a,))) Let us notice that, since ;4] < a;, by monotonicity, we have that X;;; C X;. Moreover, since
ReﬁnersF (a ) = &, by point (B), y(a ) is forward F-complete, hence y(a ) EF M(y(a ), so that Xﬁ =
y(aﬁ ). We show that O!(X ) = oz(yp(y(a))), so that ag, = a(y(a ) = O{(X ) = oz(yp(y(a))) follows.

By point (A), ReﬁnersF(y(a )) = ReﬁnersF (ag,) =2, thus, by Lemma 4 2 (1), y(a ) is forward F-complete.

Moreover, y(aﬁn) C y(ag) = y(a) dndconsequently y(aﬁn) C “%r(y(a)). Hence, oz( ) a(y(aﬁn)) La(FLr(y(a))).
Let us now show, by induction on i, that a(X;) = a(¥r(y(a))).

(i = 0): Xo = y(ag) N FM(y(ao)) = y(a) N FM(y(a)), hence, since S (y(a)) E y(a), F(y(a)), we have that
S F(y(a)) E Xo, and therefore a(Sr(y(a))) < a(Xp).

(i 4:1): Sincea;11 = a(M(y(a;) U {fi(§i)})),where§i € y(a;),wehave thatﬁ(§i) e FM (y(aig).Hence,M(y(ai)
U{fi(SH}) S M(p(ai) U FM(y(@))) = y(a;) M FM(p(a;)) = Xi, namely X; © M(y(a;) U {fi(S)}), so that a(X;)
< a1 and y(a(X;)) © y(air1). Moreover:

aXiy1) =
a(Y(aiy) NFM(Waiy))) = [since « is co-additive]
a(Y(air) Na(FY (Y(aiy)) = [since Y(aj+1) 2 Y(a(X)))]
a(y(a(X;)) Na(F* (Y (aX)))) > [by induction]
a(Ya(LF((@))) NaFM (YL F((@))) = [sincexoyoa =]

(L (@) Na(Y(aF (YL (@)
Now, both conditions (i) and (ii) imply that
a(Ya(F* (YL F (@) = a(UaF (S F(p(@)))).

Thus, we may proceed as follows:

a(Lr (@) Na((a(F* (ps(LF (@) = [by either condition (i) or (ii)]
a(LFY(@) Na(aF (L (@) = [sinceaoyoa=q]
(L r(y(@)) Na(FM(Lr((a))) = [as FF(y(a)) is forward F-complete]
(L F (@) Na(SLF(Y(@)) =
(S F(¥(a))).

Thus, this closes the proof. [
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Corollary 4.5. Under the hypotheses of Theorem 4.4, for any a € A, GPTA(a) is the F-stable shell of a.

Proof. By Theorem 4.4, GPTA(a) <a and is F-stable. Let us show that GPTA(a) is indeed the F-stable shell of
a.Let b € A such that b < a and ReﬁnerSF (b) = @. Since b < a, we have that y(b) C y(a). Moreover, by point
(A) in the proof of Theorem 4.4, Refinersg (y(b)) = Reﬁnersjﬁ‘(b) = o, so that y(b) is forward F-complete by
Lemma 4.2 (i). Hence, y(b) C & Fr(y(a)) and thus, by Theorem 4.4, 5 = a(y(b)) < a(Lr(y(a))) = GPij4 (. O

Example 4.6. Let us consider again Examples 2.1 and 4.3. Recall from Section 2.3 that the disjunctive shell % ;s :
Abs(p(X)) — dAbs(p(X)) maps any abstract domain A to its disjunctive completion & 4js(4) = {US | S C
y(4)}. It turns out that the disjunctive shell .7 g;s allows to view dAbs(g(X)) 5 as an abstraction of Abs(p(X)) o,
namely (< gis, Abs((X)) 3, dAbs($(X)) o, id) is a GI. This is a consequence of the fact that disjunctive abstract
domains are closed under lub’s in Abs(p(%)) and therefore dAbs(g(X)) is a Moore-family of Abs(p(X))a.
It turns out that condition (i) of Theorem 4.4 is satisfied for this GI. In fact, by exploiting the fact that posty, :
() — ©(X) is additive, it is not hard to verify that #4;s o posty' o Lgis = L dis o postz”. Thus, let us apply

GPTgostS to the disjunctive abstract domain Xy = {&, 2,1234} = Y4is({2,1234}) € dAbs(p(X)).

= {2,2,1234} So = {2} € RefinersdA% (x)

postp

X1 = S dis(MXo U {postp(So)}))
= Y4is({2,2,3,1234})
={2,2,3,23,1234} S ={3le ReﬁnersdAb; X)

post

Xa = S ais(M(X1 U {postg(S)}))
= Y4is({9,2,3,23,4,1234})
= (9,2,3,4,23,24,34,234,1234) = Refinersth% () = &

From Example 4.3 we know that % post, (X0) = {9, 2,3,4,34,234,1234}. Thus, as expected from Theorem 4.4,
GPTgOAS?; (Xo) coincides with & 4is (S post, (X0)) = {F,2,3,4,23,24,34,234,1234}. Note that the abstract fixpoint
has been reached in two iterations, whereas in Example 4.3 the concrete computation by CPTpost, needed four

iterations. [J
4.3. An optimization of GPT

As pointed out by Paige and Tarjan [26], the PT algorithm works even if splitters are chosen among blocks in-
stead of unions of blocks, ie., if PTrefiners(P) is replaced with the subset of “block refiners”
PTblockreﬁners(P) PTreﬁners(P) N P. This can be easily generalized as follows. Given g € F, for any a € A,
let subReﬁners (a) C Reﬁners (a) be any subset of refiners. We denote by IGPTA (which stands for Im-
proved GPT) the version of GPTA where Reﬁnersq is replaced with subReﬁners If stability for subrefiners
is equivalent to stability for reﬁners then IGPT results to be correct.

Corollary 4.7. Let g € F be such that, for any a € A, subReﬁnersA(a) g & ReﬁnersgA(a) = . Then, for any
a € A, GPTA(a) = IGPTH ().

Proof. Let subReﬁnersF (a) = subReﬁnersA(a) U (Ups f#,Reﬁners % (a)). By hypothesis, we have that
subReﬁnersF (a) + & iff ReﬁnersF (a) 7& . Let {a;} be the finite decreasing chain of abstract objects com-
puted by IGPT (a). Since subReﬁnersF (IGPT (a)) = I we have that Reﬁners (IGPTA(a)) = . Moreover,
since, for any i, subReﬁnersq (a;) C Reﬁners (a;), there exists a run of GPTF (a) which exactly computes the
sequence {a;}, so that, by Theorem 4.4, IGPTA(a) GPT'A(a) U
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4.4. Instantiating GPT with partitions

Let us now show how the above GPT algorithm can be instantiated to the lattice of partitions. Assume that
the state space X is finite. Recall from Section 3 that the lattice of partitions can be viewed as an approximation
of the lattice of abstract domains through the GI (par, Abs(e(X))o, Part(X)-, pad). The following properties
(1) and (2) are consequences of the fact that a partitioning abstract domain pad(P) is closed under complements,
1e., X € pad(P) iff Cw e pad(P).

(1) Refinersf™ (P) = @.
(2) Forany f and § € p(2), refine’?" (3. P) = PA{(S).,C(3))).

Thus, by Point (1), for any F € Fun(p(X)), a partition P € Part(X) is F-stable iff P is (F U {C})-stable, that is
complements can be left out. Hence, if F denotes F~.{C} then GPTE may be simplified as follows.

ALGORITHM: GPT};alrt

Input: partition P € Part(X)
while (ReﬁnersPa”t (P) + ) do

L choose for some f € FC, Se Reﬁnersf;?m(ﬂ;
P:=PA{fS).Cirdny
Output: P

Note that the number of iterations of GPT%1rt is bounded by the height of the lattice Part(X), namely by the
number of states |X|. Thus, if each refinement step involving some f € F takes O(cost(f))-time then the time
complexity of GPTP"1rt is bounded by O(|X| max({cost(f) | f € F})).

Let us now cons1der alanguage £ and a semantic structure (X, /) for L. If £ is closed under logical conjunction
and negation then, forany 4 € Abs(p(X)), %o, . (4) isclosed under complements and thereforeitis a partitioning
abstract domain. Thus, condition (ii) of Theorem 4.4 is satisfied since .%o, . maps partitioning abstract domains
into partitioning abstract domains. The following characterization is thus obtained as a consequence of (3.2).

Corollary 4.8. If L is closed under conjunction and negation then GPTgirg (Py)=Pr.

This provides an algorithm parameterized on a language £ that includes propositional logic for computing the
coarsest strongly preserving partition Pr.

PT as an instance of GPT. It is now immediate to obtain PT as an instance of GPT. We know that GPTE?;,;E} =
GPTPa". Moreover, by Lemma 4.1 (i) and (ii):

pre

P{pre(S),C(pre(S))} = PTsplit(S, P) and Refiners’®(P) = PTrefiners(P).

pre

Hence, by Lemma 4.1 (iii), it turns out that P € Part(X) is PT stable if and only if Reﬁnersgﬁ‘ert (P) = &. Thus,
the instance GPTP;1rt provides exactly the PT algorithm. Also, correctness follows from Corollaries 4.5 and 4.8:

GPTgf,‘ert (P is both the coarsest PT stable refinement of P and the coarsest strongly preserving partition Py .

5. Applications
5.1. Stuttering equivalence and Groote—Vaandrager algorithm

Lamport’s criticism [24] of the next-time operator X in CTL/CTL" is well known. This motivated the study of
temporal logics like CTL-X/CTL*-X obtained from CTL/CTL" by removing the next-time operator and led to
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study a notion of stuttering-based equivalence in Kripke structures [2,8,17]. We are interested here in divergence
blind stuttering (dbs for short) equivalence. Let I = (X, —, £) be a Kripke structure over a set AP of atoms. A
relation R € ¥ x X is a divergence blind stuttering relation on K if for any s,s" € ¥ such that sRs’:

() £(s) = £(s');

(2) If s—t then there exist 1y, . .., # € X, with k£ > 0, such that: (i) 7o = s’; (ii) for all i € [0,k — 1], t;—>#;1 and
sRt;; (ii1) tRty;

(3) §'Rs, i.e., R is symmetric.

Observe that condition (2) allows the case k£ = 0 and this simply boils down to requiring that ¢Rs’. It turns out
that the empty relation is a dbs relation and that dbs relations are closed under union. Hence, the largest dbs
relation exists and is an equivalence relation called dbs equivalence, whose corresponding partition is denoted
by Pyps € Part(X).

It turns out [8] that Py (see also [28, Corollary 7.4]) can be characterized as the coarsest strongly preserving
partition P, for the following language L:

pu=pleiAga| —¢ | EUlgr, ¢2),
where the semantics EU : p(£)2 — ©(X) of the existential until operator EU is as usual:

EU(S;,$) =S U s € Sy | Iso,....s, € X, with n = 0, such that (i) so = s,
(1) Vi € [0,n).s; € S1, si—>si+1, (1) s, € Sa}.

Therefore, as a straight instance of Corollary 4.8, it turns out that GPTE‘Et (Pr) = Pr = Pyps.

Groote and Vaandrager [17] designed a partition refinement algorithm, here denoted by GV, for computing
the partition Pyps. This algorithm uses the following definitions of split and refiner:> For any P € Part(X) and
BBy € P,

dif

GVsplit((B1,B2),P) = PA{EU(B1, B),C(EU(BY, B2))),
GVrefiners(P) = {(B1,B2) € P x P | GVsplit({By,B3),P) < P}.

The algorithm GV is as follows. Groote and Vaandrager show how GV can be efficiently implemented in
O(|— || XZ])-time.

ALGorITHM: GV

Input: partition P € Part(X)

while (GVrefiners(P) # &) do
choose (B1,B>) € GVrefiners(P);
P := GVsplit({By,B3),P);

Output: P

It turns out that GV exactly coincides with the optimized instance IGPTE‘Et that considers block refiners.
This is obtained as a straight consequence of the following facts.

Lemma 5.1

(1) GVrefiners(P) = & iff ReﬁnersE"I‘th(P) =0.
(2) GVsplit((B1,B2), P) = refine} 2" ((B1, B2), P).

5 In [17), pos(By, B) denotes EUBy, By) N By.
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Proof. (1) It is sufficient to show that if for any By, By € P, EU(B1, B») € pad(P), then for any S, S; € pad(P),
EU(S1, $2) € pad(P). Thus, we have to prove that for any {B;}ies, {B}}jes € P, EU(U;B;,U;B;) = U By, for some
{Bi}rex C P.EUis an additive operator in its second argument, thus we only need to show that, for any B € P,
EU(U;B;,B) = U;By,ie.,ifs € EU(U;B;,B) and s € B, for some B’ € P,then B’ C EU(U;B;, B).If s € EU(U;B;, B),
for some B € P, then there exist n 2> 0 and sy, ...,s, € ¥ such that so = s, for all j € [0,n — 1], 5; € U;B; and
sj—s;4+1,and s, € B. Let us prove by induction on # that if s’ € B” then s" € EU(U;B;, B).

— n=0:Inthiscases € U;B; and s € B = B'. Hence, for some k, s € By = B = B’ and therefore s € EU(B, B)
= B. Moreover, EU is monotone on its first argument and therefore B* = B = EU(B, B) € EU(U;B;, B).

— n+ 1: Suppose that there exist so, ...,s,41 € X such that so = s, Vj € [0,n].s; € U;B; and s;—s;11, and
Spt1 € B. Let s, € By, for some By € {B;}ic;. Then, s € EU(U;B;, Br) and s = s9—s1—...—s,. Since this
trace has length n, by inductive hypothesis, s’ € EU(U;B;, Br). Hence, there exist r, ..., 7, € X, withm > 0,
suchthats’ = ro,Vj € [0,m — 1].r; € U;B;and rj—r;j41,and r,, € Br. Moreover,since s,— 5,41, we have that
sp € EU(By, B). By hypothesis, EU(By, B) 2 By, and therefore r,,, € EU(By, B). Thus, there exist qo, ...,q; €
%, with [ > 0, such that r,, = qo, Vj € [0,/ —1].q; € By and g;—>g;41, and q; € B. We have thus found the
following trace: s’ = ro—>r1—...—>ry = qo—>q1—...—q, where all the states in the sequence but the last
one g; belong to U;B;, while ¢; € B. This means that s’ € EU(U;B;, B).

(2) By Point (2) in Section 4.4, reﬁnegit((Bl,Bg),P) = P)\{EU(Bl,Bg),B(EU(Bl,Bz))} = GVsplit((B1,B,),P). [

Hence, by Corollary 4.7, we have that Lemma 5.1 (1) allows us to exploit the IGPT}E;‘Jrt algorithm in order to

choose refiners for EU among the pairs of blocks of the current partition, so that by Lemma 5.1 (2) we obtain
that IGPTE‘}t exactly coincides with the GV algorithm.

5.2. A new simulation equivalence algorithm

It is well known that simulation equivalence is an appropriate state equivalence to be used in abstract model
checking because it strongly preserves ACTL" and provides a better state-space reduction than bisimulation
equivalence. However, computing simulation equivalence is harder than bisimulation [23]. A number of algo-
rithms for computing simulation equivalence exist: Henzinger, Henzinger and Kopke [20], Bloom and Paige [1],
Bustan and Grumberg [3], Tan and Cleaveland [30], Gentilini, Piazza and Policriti [11] and Ranzato and Tap-
paro [29]. Let Py, denote the partition corresponding to simulation equivalence so that |Pyjy, | is the number of
simulation equivalence classes. The algorithms by Henzinger, Henzinger and Kopke [20] and Bloom and Paige
[1] run in O(]—||X|)-time and have the drawback of a quadratic space complexity that is limited from below
by O(|Z|?). A better space complexity is obtained by Gentilini, Piazza and Policriti’s algorithm [11] that runs
in O(|Pym|* + | =] log(|Psim))-space and O(|— || Psm|%)-time. On the other hand, the algorithm by Ranzato and
Tapparo [29] runs in O(]—> || Psim |)-time and O(] Z||Psim|))-space. As far as time-complexity is concerned, this lat-
ter is the best available algorithm and it still retains a space complexity which is comparable to that of Gentilini
et al.’s algorithm. It is worth remarking that all these algorithms are quite sofisticated and may use complex
data structures. We show how GPT can be instantiated in order to design a new simple and efficient simulation
equivalence algorithm with competitive space and time complexities of, respectively, O(|Psim | + || 10g(|Psim|))
and O(|Psm* - (1Psim|* + |=1))-

Consider a finite Kripke structure = (¥, —, £). Arelation R € ¥ x X isasimulation on Kifforanys,s’ € X
such that sRs":

(1) £(s") S L(s);
(2) Forany ¢ € T such that s—¢, there exists ¢ € ¥ such that s'—¢ and tR¢’.

Simulation equivalence ~g, € ¥ x X is defined as follows: s ~jy, s iff there exist two simulation relations R;
and R such that sRys’ and s'Rjs. Py, € Part(X) denotes the partition corresponding to ~gjm.
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It is known (see e.g., [15, Section §8]) that simulation equivalence on I can be characterized as the state
equivalence induced by the following language L:

pi=ploAer | EXep

namely, Psm = P, where the interpretation of EX in K is the standard predecessor operator. Let us consider the
GI (Y 4is, Abs((2)) 1, dAbs((X))a,1d) of disjunctive abstract domains into the lattice of abstract domains
that we defined in Example 4.6. As observed in Example 4.6, it turns out that % g;s o pre™ o Fgis = Lis © pre’™,
namely the abstraction dAbs(gp(X)) is backward complete for pre*. Thus, by applying Theorem 4.4 (i) we obtain

GPTIAYS(Py) = P gis (S pre(Pad ().
In turn, by applying the partitioning abstraction par we obtain
par(GPTIR™ (P)) = par( dis(L pre(pad (P)))) = par(¥pre(pad(Pr)))

because par o #gj; = par. Also, by (3.2), we know that par(¥pre(pad(P))) = Pz = Pim. We have therefore
shown that

par(GPTR™ (P)) = Pyim

dAbs

namely the following instance GPT};¢

allows to compute simulation equivalence.

. dAb
ALGORITHM: GPTpie™

Input: disjunctive abstract domain 4 := ¥ 4is({[sl¢}sex) € dAbs(p(X))

while (Refinersda®s (4) + @) do

choose S € Reﬁnersg'ﬁebs(/l);
A= reﬁneg‘ébs(S,A);

Output: 4

GPTgf\ebs works by iteratively refining a disjunctive abstract domain 4 € dAbs(g(X)), which is first initialized
to the disjunctive shell of the abstract domain that is determined by the labeling of atoms. Then, GPTI‘;’%"S itera-
tively finds a refiner S for 4, namely a set S' € y(4) such that pre_, (S) does not belong to y(4) and therefore may
contribute to refine 4, i.e., reﬁneg‘febs(S,A) = D(y(4) U pre_, (S)) C 4. Simulation equivalence is then computed
from the output disjunctive abstract domain A4 as Py, = par(4).

It turns out that refiners of a disjunctive abstract domain A4 can be chosen among the images of blocks in

par(4), namely in

subRefinersd?? (4) & RefinersdAP(4) N {y(x(B)) | B € par(4)}.

pre pre

In fact, since both y o @ and pre_, are additive functions, it turns out that VS € y(4). pre_, (S) € y(4) if and only
if VB € par(4). pre_, (y(a(B))) € y(4), so that subReﬁnersg‘rAebs(A) = g iff Reﬁnersg‘r'tbs(A) = &, and therefore
Corollary 4.7 can be applied.
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5.2.1. A data structure for disjunctive abstract domains
It turns out that a disjunctive abstract domain 4< € dAbs(g(X)) can be represented through the partition
par(d4) € Part(X) induced by 4 and the following relation <, on par(4):

VB, B; € par(4), BB, iff y(a(By)) C y(a(B2)).

It is clear that this gives rise to a partial order relation because if By, By € par(4) and y(«x(B1)) = y(«(B2)) then
we can pick up s1 € By and 52 € By so that y(a({s1})) = y(x(B1)) = y(a(B3z)) = y(x({s2})), namely s; and s, are
equivalent according to par(4) and therefore By = B;. The poset (par(4), J,) is denoted by poset(4). It turns
out that a disjunctive abstract domain can always be represented by this poset, namely the closure operator
induced by 4 can be defined in terms of poset(4) as follows.

Lemma 5.2. Let A € dAbs(p(X)). Forany S C X, y4(a4(S)) = U{B € par(4) | C € par(4). CNS + &, BL,C}.

Proof. (C) Consideranyx € y4(@4(S)) = Usesya(a@4({s})). Then, thereexistssomes € Ssuchthatx € y4(ays({s})).
We consider By, By € par(4) such that x € B, and s € By. Then, By N S # & and B, <J,B; because y(o4(By)) =
valag({x}) € va(asa({s})) = va(aq(By)).

(2) Let B,C € par(4) such that se CNS and BJ,4C. Then, B C y4(as(B)) C y4(a4(C)) = ya(as({s}))
C yaleq(s). O

Example 5.3. Some examples of posets that represent disjunctive abstract domains are depicted in Fig. 3.

() The disjunctive abstract domain 4] = {&, [45], [12345]} is such that par(4;) = {[123], [45]}.

(2) The disjunctive domain 4; = {&,[45],[123],[12345]} induces the same partition {[123],[45]}, while
poset(4>) is discrete.

(3) The disjunctive abstract domain A3 = {&, [4], [5], [45], [12345]} induces the partition par(43) = {[123], [4],
(51}

(4) The disjunctive abstract domain A4 = {&, [45], [145], [245], [1245], [12345]} induces the partition par(44) =
{11, [2], [3], [45]}.

A disjunctive abstract domain 4 € dAbs(p(X)) is thus represented by poset(4). This means that our imple-
mentation of GPTgrAebS maintains and refines a partition par(4) and an order relation on par(4). Let us describe
how this can be done.

5.2.2. Implementation

Any state s € X is represented by a record State that contains a pointer field block that points to the block
of the current partition par(4) that includes s and a field pre that represents pre_, ({s}) as a list of pointers to
the states in pre_, ({s}). The whole state space X is represented as a doubly linked list states of State so
that insertion/removal can be done in O(1). The ordering in the list states matters and may change during
computation.

Any block B of the partition par(4) € Part(X) is represented by a record Block that contains the following
fields:

3]
= 123 1 Da
45 29 w5 |y | g

poset(A;) poset(Ay) poset(A3) poset(Ay)

Fig. 3. Disjunctive abstract domains as posets.



F. Ranzato, F. Tapparo | Information and Computation 206 (2008) 620-651 643

— first and last are pointers to State such that the block B consists of all the states in the interval
[first,last] of the list states. When a state is either added to or removed from a block, the ordering
in the list states changes accordingly and this can be done in O(1).

— less s a linked list of pointers to Block. At the end of any refinement step, the list 1Less for some block
B contains all the blocks C € par(4) which are less than or equal to B, i.e., such that C<,B. In particular,
the list 1ess is always nonempty because less always includes B itself.

— intersectionisa pointer to Block which s set by the procedure split that splits the current partition
with respect to a set.

— changedImage is a boolean flag which is set by the procedure orderUpdate.

The blocks of the current partition par(4) are represented as a doubly linked list P of Block.

Let us face the problem of refining a disjunctive abstract domain 4 to 4’ = D(y(4) U {S}) for some S C X.
If P, P’ € Part(X), P' < P and B € P’ then let parentp(B) € P (when clear from the context the subscript P is
omitted) denote the unique block in P (possibly B itself) that includes B. The following key result provides the
basis for designing an algorithm that updates poset(4) to poset(4’).

Lemma 5.4. Let A € dAbs(p(X)), S € T and A’ = D(y(4) U {S}) € dAbs(p(X)). Let P = par(4) € Part(X) and
P’ = PTsplit(S, P) € Part(X). Then, poset(4d’) = (P’, <y, where for any B',C' € P’ :

(1) ifBNS = then C'yB & C' C yy(ay(parent(B)));
(ii) if B NS #+ @ then C'<yB & C' C y4(ay(parent(B'))) N S.

Proof. Let u = y4 o oy and u' = y4 o ay. We first observe that if x € S then u/({x}) = u({x}) N S, while if x ¢ S
then 1/ ({x}) = u({x}). We then show the following statement: for any x, y € %,

w{xh S W {hiff uxh) S uyh & (yeS =xe9). ()

(=) Since p' E u, we have that po u' = p so that p({x}) = u(u'(x})) € ww' {»¥})) = n({y}). Moreover, if
yeSthenx e p'({x}) € w'({y}) € u/'(S) =S.

(<) If y € S then x € S so that u/({x}) = u(xh NS C u{yH NS =/ {»}). If instead y ¢ S then u'({x}) C
n(x}) € n({yh = w'(oh.

It is then simple to show that P’ = PTsplit(S, P) = par(4’). In fact,x =4 y iff ' ({x}) = 1/ ({y}) and, by (*), this
happens iff u({x}) = u({y}) andx € S & y € S, namely iff x and y belong to the same block of PTsplit(S, P).
It is simple to derive from (x) the following statement: for any B',C’ € P/,

W(C) S W B u(C) S uB) & (B NS+2 = C'NS+9). &)

Let us now show points (i) and (ii). Let us observe that for any B’ € P/, since P’ < P = par(4), we have that
p(B') = p(parent(B")).

(i) Assume that B NS = @. If 'y B, ie., u'(C") C 1/ (B), then, by (1), u(C’) € u(B') so that C' € u(C") C
w(B") = u(parent(B’)). On the otherhand,if ' C u(parent(B’)) = w(B') then u(C") C u(BYandB' NS + & =
C' NS # I so that, by (}), u/(C") C u'(B),ie., C'IyB.

(ii) Assume that B NS #+ @.If C'y B ie., 1/ (C') C u'(B),then, by (1), u(C") C u(B)and C’' NS # &, namely
C' C 8. Also, C' € u(C") € u(B") = u(parent(B)) so that C’ C u(parent(B’)) NS. On the other hand, if ' C
w(parent(B)) NS = w(BH) NS then C' NS # . Also, from C’ C u(B’) we obtain u(C’) € w(B'). Thus, by (1),
we obtain u/(C) C u/'(B),ie,C'<yB'. O

dAbs
pre

A refinement step refine (S,4) = A’ is thus implemented through the following two main steps:
(A) Update the partition par(4) to PTsplit(S, par(4));
(B) Update the order relation <, on par(4) to < on PTsplit(S, par(4)) by using Lemma 5.4.

The procedure split (S) in Fig. 4 splits the current partition P € Part(X) with respect to a splitter S € X.
Initially, each block B € P has the field intersection set to NULL. At the end of split (S), the partition P
is updated to its refinement P’ = PTsplit(S, P) where for any B € P:
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/* P is the current partition, S is a list of pointers to State x*/

1
2 split(S) {

3 forall state in S do {

4 Block* B = state->block;

5 if (B—>intersection==NULL) then {

6 B->intersection = new Block;

7 P.append (B->intersection);

8 B->intersection->intersection = B->intersection;

9 B->intersection->less = copy (B->less);

10 B->intersection->changedImage = false;

11 }

12 move (state,B,B->intersection);

13 if (B = @) then { /* case: B C S %/

14 B->first = B->intersection->first; B->last = B->intersection->last;
15 P.remove (B->intersection) ;

16 delete B->intersection

17 B->intersection = B;

18 }

19 }

20 }

1 /* P is the current partition after a call to split(S) =/

2 orderUpdate () {

3 forall B in P do

4 if (BNS = &) then

5 forall C in B->less

6 if (C # parent(C)) then (B->less).append (parent(C)NSs);
7 else /x case: BNS # &, i.e. B C S */

8 forall C in B->less {

9 if (CCS) then continue;

10 /* case: CNS = T */

11 (B->1less) .remove (C) ;

12 if (parent(C)NS # @) (B->less) .append (parent(C)NS) ;
13 B->changedImage = true;

14 }

Fig. 4. The procedures split (S) and orderUpdate ().

—If @CBNSCB then B is modified to B\.S by repeating the move statement at line 12 and the newly
allocated block B N S at line 6 is appended at line 7 to the end of the current list of blocks;
—IfBNS = Bor BNS = & then B is not modified.

Moreover, the field intersection of any B’ € P’ = PTsplit(S, P) is set as follows:

() If e PNP and B NS = & then B'->intersection = NULL because split (S) does not modify
the record B'.

Q) IfB ePNP and B NS + I (ie,B C S)then B'->intersection = B’ (line 17).

(3) If B € P’\Pand B'NS = I (ie.,, B = parent(B’)\.S) then B'->intersection = parent(B’) N S (line
6).

4 If B € PP\Pand B'NS + & (ie, B = parent(B’) N S) then B'->intersection = B’ (line 8).

Note that for the “old” blocks in P, split (S) does not modify the corresponding list of pointers 1ess, while
the list 1ess for a newly allocated block B N S is a copy of the list 1ess of B (line 9). Also observe that blocks
that are referenced by pointers in some less field may well be modified.
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/* The list Atoms represents the set {[pjx C X |p€ AP} =/

1

2 /x P is initialized to the single block partition */
3  Partition P = (X); X->less = {X};

4

5 forall S in Atoms do {

6 split (S); orderUpdate();

7 split (0S); orderUpdate();

8}

9 forall B in P do {

10 Statex X = image (B);

11 Statex S = NULL;

12 forall s in X do S.append(s->pre);

13 split (S);

14 orderUpdate () ;

15 forall B in P do {

16 B->intersection = NULL;

17 if (B->changedImage) {B->changedImage = false; P.moveAtTheEnd(B);}

Fig. 5. Implementation of GPTgrAebs.

The procedure orderUpdate () in Fig. 4 is called after split (S) to update the less fields in order to
represent the refined poset (P’, <) defined in Lemma 5.4. By exploiting the above points (1)—(4), let us observe the
following points about the procedure orderUpdate () whose current partition represents P’ = PTsplit(S, P).

(5) For all blocks B’ € P/, the test B’ NS = & at line 4 is coded as B'->intersection # B

(6) The test C # parent(C) atline 6is coded as C->intersection # NULLand C->intersection # C.
(7) The block parent(C) N S at lines 6 and 10 is C->intersection.

(8) The test C C S at line 9 is equivalent to C NS # & and is thus coded as C->intersection = C.

(9) Lines 4-6 implement the case (i) of Lemma 5.4.
(10) Lines 7-14 implement the case (ii) of Lemma 5.4.

Moreover, if for some blocks B, C € P’ we have that B C § and C belongs to the list B->1less and CNS =
@—namely, we are in the case of line 10—then, by Lemma 5.4, 4 (aq (B)) S ya(cq(B)), that is the image of B
changed. For these blocks B, the flag B->changedImage is set to true.

Finally, let us notice that the sequence of disjunctive abstract domains computed by some run of GPTgﬁ:bS is
decreasing, namely if 4 and 4’ are, respectively, the current and next disjunctive abstract domains then 4’ C 4.
As a consequence, if an image y4(a4(B)), for some B € par(4), is not a refiner for 4 and B remains a block in
the next refined partition par(4’) then y, (ay (B)) cannot be a refiner for 4’. Thus, a correct strategy for finding
refiners consists in scanning the list of blocks of the current partition P while in any refinement step from 4 to
A, after calling split (S), all the blocks B € par(4’) whose image changed are moved to the tail of P. This
leads to the implementation of GPTYAPS described in Fig. 5.

pre

Theorem 5.5. The algorithm in Fig. 5 computes simulation equivalence Py, on K in O(|Psiml|? - ([Psim|? + |— |))-time
and O(|Z|10g(|Psim|) + [Psim|*)-space.

Proof. We have shown above that the algorithm in Fig. 5 is a correct implementation of GPTg?ebs. Let us observe
the following points.

(1) For any block B € P, by Lemma 5.2, image (B) at line 10 can be computed in the worst case by scanning
each edge of the order relation <4 on P = par(4), namely in O(|P|?) time. Since any current partition is
coarser than Py, it turns out that image (B) can be computed in O(| Py |*)-time.

(2) Thelist of pointers S at lines 11-12 representing pre_, (y4(B)) can be computed in the worst case by traversing
the whole transition relation, namely in O(|— |)-time.
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(3) Forany S C X, split (S) atline 13 is computed in O(]S])-time.

(4) orderUpdate () atline 14 is computed in the worst case by scanning each edge of the order relation <,
on P = par(4), namely in O(|P|?) time, and therefore in O(| Py |?)-time.

(5) The for loop at line 15 is computed in O(|P|)-time and therefore in O(|Pyjp, |)-time.

Thus, an iteration of the for-loop takes O(2|Psim|? + |— | + S| + |Psim|)-time, namely, since |S| < |— |, O(|Psim |*
+ |—|)-time.

In order to prove that the time complexity is O(|Psm|% - (|Psm|> + |— 1)), let us show that the number of iterations
of the for-loop is in O(|Pysml?). Let {Ai}ienx) € dAbs(p(X)) be the sequence of different disjunctive abstract
domains computed in some run of the algorithm and let {u;}icq14) € uco(e(X)) be the corresponding sequence
of disjunctive uco’s. Thus, foranyi € [1, k), u;+1C i and Py, = par(ug). Hence, foranyi € [1, k], Pym < par(u;),
so that for any B € P, u;(B) = UjesB; for some set of blocks {B}}jc; € Psim. We know that for any i € [1,k)
there exists some block B € par(u;) whose image changes, namely p;4+1(B)Cpi(B). Note that p;41(B)C i (B)
holds for some B € par(y;) if and only if p;41(B) i (B) holds for some B € Py, Clearly, for any block B € Py,
this latter fact can happen at most | Py, | times. Consequently, the overall number of blocks that in some iteration
of the for-loop change image is bounded by ) 5. Py, |Psim| = |Psim|?. Hence, the overall number of blocks that
are scanned by the for-loop is bounded by |par(jt1)| + |Psim|*> and therefore the overall number of iterations of
the for-loop is in O(|Pysjm|?).

The input of the algorithm is the Kripke structure /C, that is the list states and for each state the list pre of
its predecessors. In each iteration of the for loop we keep in memory all the fields of the records State, that
need O(|Z| log(|Psim|))-space, the current partition, that needs O(| Py |)-space, and the order relation <, that
needs O(|Pyim|?)-space. Thus, the overall space complexity is O(| Z|102(|Psim|) + |Psim|?). O

5.3. A language expressing reachability

Let us consider the following language £ which is generated by the existential “finally” operator EF together
with propositional logic:

pi=plorAe2| = | EFo.

Given a Kripke structure K = (X, —, £), the interpretation EF : p(X) — g(X) of the reachability operator EF
is as usual: EF(S) « EU(Z, S). It turns out that the coarsest strongly preserving partition Py coincides with
Milner’s weak bisimulation equivalence on unlabeled transition systems. Weak bisimulation [25] is a weakening
of bisimulation on labeled transition systems which allows any finite number of invisible t-labeled actions before
or after a simulation step. On unlabeled Kripke structures, weak bisimulation simply allows to simulate one
transition step through any finite number of transition steps. Hence, a relation R C X x X is a weak bisimulation
on a Kripke structure K = (2, —, £) when R is a bisimulation on the Kripke structure £* = (X, —*, £) where
—* is the reflexive-transitive closure of —. Analogously to bisimulation, the largest weak bisimulation relation
exists and is an equivalence relation called weak bisimulation equivalence, whose corresponding partition is
denoted by Pypis € Part(X). Then, it turns out that Pypis = Pr. It would not be too difficult to demonstrate this
latter equivalence, for example by adapting the proof given in [28, Corollary 7.4] for stuttering equivalence.

To the best of our knowledge, no specific algorithm for computing weak bisimulation equivalence on unla-
beled Kripke structures exists. One naive algorithm simply consists in first computing the reflexive-transitive
closure of the transition relation and successively computing bisimulation equivalence through PT. However,
this approach would require to store the reflexive-transitive closure of the transition relation and in general
this would be a space bottleneck. We provide here a specific algorithm for computing P, which is obtained as
an instantiation of GPT. Since £ includes propositional logic, by Corollary 4.8, it turns out that the instance
GPT]F;art allows to compute the coarsest strongly preserving partition Pz, namely GPTE";,” (Py) = Pr.

It turns out that block refiners are enough, namely

BlockReﬁnersE;rt(P) = {B € P | PA{EF(B),C(EF(B))} < P}.

In fact, note that BlockRefinersP2t (P) = @ iff RefinersP¥(P) = @, so that, by exploiting Corollary 4.7, we have
that IGPTE*;rt (P;) = Pr. The optimized algorithm IGPEIEE‘Trt is as follows.
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ALGoriTHM: IGPTFart
EF

Input: partition P € Part(X)
while (BlockReﬁnersE‘;rt(P) + @) do

choose B ¢ BlockReﬁnersEi‘:rt (P);
P := P){EF(B),C(EF®B))};
Output: P

5.3.1. Implementation

The key point in implementing IGPTIl;e;rt is the following property of “stability under refinement”: for any
P,Q € Part(%),

if 0 < P and B € PN Q then PA{EF(B),C(EF(B))} = P implies O A {EF(B),C(EF(B))} = O.

As a consequence of this property, if some block B of the current partition Pey, 1s not a EF-refiner for Pey,r and
B remains a block of the next partition Pyext then B cannot be a EF-refiner for Pyext.
This suggests an implementation of IGPT}];";rt based on the following points:

() The current partition P is represented as a doubly linked list of blocks (so that a block removal can be
done in O(1)-time).

(2) This list of blocks P is scanned from the beginning in order to find block refiners.

(3) When a block B of the current partition P is split into two new blocks By and B, then B is removed from
the list P and By and B; are appended to the end of P.

These ideas lead to the implementation IGPTE";,rt described in Fig. 6. As a preprocessing step we compute the

DAG of the strongly connected components (s.c.c.’s) of the directed graph (X, —), denoted by (Picc, —>scc)-
This is done by the depth-first Tarjan’s algorithm [31] in O(|—|)-time. This preprocessing step is done because
if x € EF(S), for some x € ¥ and S C X, then the whole block B, in the partition Py that contains x—i.e.,
the strongly connected component containing x—is contained in EF(S); moreover, let us also observe that
EF({x}) = EF(B,). The algorithm then proceeds by scanning the list of blocks P and by performing the following
three steps: (1) for the current block B of the current partition P, we first compute the set By of s.c.c.’s that
contain some state in B; (2) we then compute EF(Bg) in the DAG (Pycc, —>sec) because EF(B) = | EF(Bg.);
(3) finally, we split the current partition P with respect to the splitter EF(B). The computation of EF(By.) is
performed by the simple procedure computeEF(Bg..) in Fig. 6 in O(|— g |)-time while splitting P with respect
to S is done by the procedure split(S, P) in Fig. 6 in O(|S|)-time. It turns out that this implementation runs in
O(|—|1XZ])-time.

Theorem 5.6. The implementation of IGPTI];";rt in Fig. 6 is correct and runs in O(|— || Z|)-time.

Proof. Let us show the following points.

(1) Each iteration of the scan loop takes O(]—|)-time.
(2) The number of iterations of the scan loop is in O(|X|).

(1) Let B be the current block while scanning the current partition P. The set Bsec = {C € Psec | BN C # T} is
determined in O(|B|)-time simply by scanning the states in B. The computation of EF(Bg) in the DAG of s.c.c.’s
(Psces = sec) takes O(]—sec|)-time, the union S = | J EF(By) takes O(|S|)-time, while splitting P with respect
to S takes O(|S])-time. Thus, each iteration is done in O(|B| 4+ |—scc| + 2IS|) = O(]—| + |Z|) = O(]— ), since
1Z] < |—1.
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ALGORITHM: IGPTEY!

Input: Transition System (X, —), List(Blocks) P
(Pscm _>scc) = SCC(E7 _>);
scan B in P do
List(BlocksOfBlocks) Bsee := {C € Psec | BNC # &},
List(States) S := |J computeEF (Bs);
S := |J computeEF(Bg..);
split(S, P);
Output: P

List(States) computeEF (List(States) S) {
List(States) result;
scan s in .S do {result.append(s); mark(s); }
scan s in result do

forall r € pre({s}) do
| if (r isNotMarked) then {result.append(r); mark(r);}

return result;

}

split(List(States) .S, List(Blocks) P) {
scan s in .S do
Block B := s.block;
if (B.intersection = false) then
B.intersection := true; B.split := true;
Block B N S := new Block;
| P.append(BNS);
moveFromTo(s, B, BN S);
if (B = @) then
B.split := false;
B:=BnNS;
| P.remove(BNS);

scan B in P do
| if (B.split = true) then P.moveAtTheEnd(B);

Fig. 6. Implementation of IGPTE:”.

(2) Let B be the current block of the current partition Pey.r. Then, the next partition Ppext < Peyrr 1S Obtained by
splitting through EF(B) a number k£ > 0 of blocks of Py so that |Pyext| = |Peurr| + &, where we also consider
the case that EF(B) is not a splitter for P, namely the case £ = 0. Recall that any partition P has a certain
height A(P) = |Z| —| P| in the lattice Part(X) which is bounded by |X| — 1. Thus, after splitting k& blocks we
have that A(Pyext) = A(Peurr) — k. The overall number of blocks that are split in some run of the algorithm is
therefore bounded by |X|. As a consequence, if {F;}]”, is the sequence of partitions computed in some run of the
algorithm and {k,‘}l'.”;o] is the corresponding sequence of the number of splitting steps for each P;, where k; > 0,
then Zl’.”:_ol ki < |X|. Also, at each iteration i the number of new blocks is 2k;, so that the overall number of
new blocks in some run of the algorithm is Z;":_Ol 2k; < 2|Z|. Summing up, the total number of blocks that are
scanned by the scan loop is |Py| + Z;":_Ol 2k; < |Py| + 2|2| < 3|X| and therefore the number of iterations is in
O(1Z)).

Since the computation of the DAG of s.c.c.’s that precedes the scan loop takes O(|—|)-time, the overall time
complexity of the algorithm is O(|—||Z]). O
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Model States  Transitions Initial Final BisimEq Time
Blocks Blocks Blocks

cwil.2 4339 4774 27 27 2959 0.04s
cwi3_14 18548 29104 3 123 123 0.54s
vasy_0_1 1513 2448 3 12 152 0.01s
vasy_10.56 67005 112312 13 18 67005 0.49s
vasy_1.4 5647 8928 7 51 3372 0.10s
vasy_18.73 91789 146086 18 161 70209 3.65s
vasy 2525 50433 50433 25217 50433 50433 365.01s
vasy_40.60 100013 120014 4 4 100013 0.43s
vasy_5_9 15162 19352 32 2528 13269 2.33s
vasy_8.24 33290 48822 12 6295 30991 18.80s
vasy_8.38 47345 76848 82 13246 47345 5.11s

Fig. 7. Results of the experimental evaluation.

5.3.2. Experimental evaluation
A prototype of the above partition refinement algorithm IGPTE";rt has been developed in C++. We considered

the standard VLTS (Very Large Transition Systems) benchmark suite for our experimental evaluation [32]. The
VLTS suite consists of transition systems encoded in the BCG (Binary-Coded Graphs) format where labels are
attached to arcs. Since our algorithm needs as input a Kripke structure, namely a transition system where labels
are attached to states, we exploited a procedure designed by Dovier et al. [9] that transforms an edge-labeled
graph G into a node-labeled graph G’ in a way such that bisimulation equivalences on G and G’ coincide. This

conversion acts as follows: any transition s KN s7 is replaced by two transitions s; — nand n — s, where nis a
new node that is labeled with /. Hence, this transformation grows the size of the graph: the number of transitions
is doubled and the number of nodes grows proportionally to the average branching factor of G.

Our experimental evaluation of IGPTE;” was carried out on an Intel Core 2 Duo 1.86 GHz PC, with 2

GB RAM, running Linux 2.6.20 and GNU g++ 4.1.2. The results are summarised in Fig. 7, where we list,
respectively, the name of the original transition system in the VLTS suite, the number of states and transitions
of the transformed transition system, the number of blocks of the initial partition, the number of blocks of the
final refined partition, the number of bisimulation equivalence classes and the execution time in seconds. In
each experiment, the memory used never exceeded 32 MB. The goal of our experiments was simply to assess
whether the algorithm can be practically used for Kripke structures of medium size (the sizes here are comparable
with those of the experiments reported in [11]). The experiments show that in these cases P, can be practically
computed with a small time cost.

6. Related work

Dams [7, Chapter 5] presents a generic splitting algorithm that, for a given language £ € ACTL, computes
an abstract model 4 € Abs(gp(X)) that strongly preserves £. This technique is inherently different from ours,
in particular because it is guided by a splitting operation of an abstract state that depends on a given formula
of ACTL. Additionally, Dams’ methodology does not guarantee optimality of the resulting strongly preserving
abstract model, as instead we do, because his algorithm may provide strongly preserving models that are too
concrete. Dams [7, Chapter 6] also presents a generic partition refinement algorithm that computes a given
(behavioural) state equivalence and generalizes PT (i.e., bisimulation equivalence) and Groote and Vaandrager
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(i.e., stuttering equivalence) algorithms. This algorithm is parameterized on a notion of splitter corresponding
to some state equivalence, while our algorithm is directly parameterized on a given language: the example
language given in [7] (a “flat” version of CTL-X) seems to indicate that finding the right definition of splitter for
a given language may be a hard task. Gentilini et al. [11] provide an algorithm that solves a so-called generalized
coarsest partition problem, meaning that they generalized PT stability to partitions endowed with an acyclic
relation (so-called partition pairs). They show that this technique can be instantiated to obtain a logarithmic
algorithm for PT stability and an efficient algorithm for simulation equivalence. This approach is very different
from ours since the partition refinement algorithm is not driven by strong preservation with respect to some
language. Finally, it is also worth citing that Habib et al. [18] show that the technique of iteratively refining a
partition by splitting blocks with respect to some pivot set, as it is done in PT, may be generally applied for
solving problems in various contexts, ranging from strings to graphs. In fact, they show that a generic skeleton
of partition refinement algorithm, based on a partition splitting step with respect to a generic pivot, can be
instantiated in a number of relevant cases where the context allows an appropriate choice for the set of pivots.

7. Conclusion and future work

In model checking, the well-known Paige-Tarjan algorithm is used for minimally refining a given state
partition in order to obtain a standard abstract model that strongly preserves the branching-time language
CTL on some Kripke structure. We designed a generalized Paige-Tarjan algorithm, called GPT, that minimally
refines generic abstract interpretation-based models in order to obtain strong preservation for a generic inductive
language. Abstract interpretation has been the key tool for accomplishing this task. GPT may be systematically
instantiated to classes of abstract models and inductive languages that satisfy some conditions. We showed that
some existing partition refinement algorithms can be viewed as an instance of GPT and that GPT may yield
new efficient algorithms for computing strongly preserving abstract models, like simulation equivalence.

GPT is parameteric on a domain of abstract models which is an abstraction of the lattice of abstract domains
Abs(p(X)). GPT has been instantiated to the lattice Part(X) of partitions and to the lattice dAbs(gp(X)) of
disjunctive abstract domains. It is definitely interesting to investigate whether the GPT scheme can be applied
to new domains of abstract models. In particular, models that are abstractions of Part(X) could be useful for
computing approximations of strongly preserving partitions. As an example, if one is interested in reducing
only a portion § C ¥ of the state space X then we may consider the domain Part(S) of partitions of S as an
abstraction of Part(X) in order to get strong preservation only on the portion S.
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