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Università di Padova

via Trieste 63, 35121 Padova (Italy)

e-mail: acesar@math.unipd.it, marchi@math.unipd.it

Received in revised form 11 May 2010

Communicated by Craig Evans

Abstract

This paper is devoted to studying the behavior as ε→ 0 of the equations

uε + H(x, x/ε,Duε, εγD2uε) = 0

with γ > 0. It is known that, under some periodicity and ellipticity or coercivity assump-

tions, the solution uε converges to the solution u of an effective equation u + H(x,Du) = 0,

with an effective Hamiltonian H dependent on the value of γ. The main purpose of this pa-

per is to estimate the rate of convergence of uε to u. Moreover we discuss some examples

and model problems.
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1 Introduction
This paper is devoted to studying the behavior as ε → 0 of the fully nonlinear elliptic equations of

Hamilton-Jacobi-Bellman type

uε + H
(
x,

x
ε
,Duε, εγD2uε

)
= 0 in RN , (1.1)

where γ > 0 is a fixed parameter, under the basic structural assumption that the Hamiltonian H is

periodic in the second variable (see assumption (H1) in Section 2). It is clear that the limit is affected

by two different effects: the homogenization and the vanishing viscosity which are due respectively

to the oscillation term x/ε and to the coefficient εγ of the Hessian matrix.

The simultaneous effect of vanishing viscosity and homogenization has been studied in [8] for

linear problem, in [16] by means of probabilistic methods and [12] for parabolic scalar conservation

laws. For periodic fully nonlinear equations, [13] considered the case γ = 1 for uniformly elliptic

Hamiltonians; afterwards, [15] analyzed the different limit behaviour according to the parameter γ.
Finally in [19] the almost-periodic setting is considered under different assumptions (in particular H
is just degenerate elliptic, but satisfies an appropriate coercivity condition).

The solution uε to (1.1) converges to the solution of a first order Hamilton-Jacobi equation

u + H(x,Du) = 0 (1.2)

where the effective Hamiltonian H is identified by means of an appropriate additive eigenvalue

problem, also called cell problem, which is different according to the value of γ. For γ > 1, the

vanishing viscosity term is too ’fast’ and it does not give any contribution to the cell problem which

amounts to a first order equation: for x and p fixed, find the unique value H(x, p) such that there

exists a periodic solution to

H(x, y, p + Dχ(y), 0) = H(x, p).

For γ < 1, the vanishing viscosity term dominates and the cell problem involves only the Hessian

matrix of the corrector χ:
H(x, y, p,D2χ(y)) = H(x, p).

This equation is a particular case of cell problems arising in the homogenization of second order

equations, i.e. γ = 0 in (1.1) (see [13], [9]). Finally in the critical case γ = 1, an intermediate

situation appears with an interaction between the vanishing viscosity effect and homogenization one

giving the presence of a first and a second order term in the cell problem:

H(x, y, p + Dχ(y),D2χ(y)) = H(x, p).

The previous equation can be interpreted as a particular case of cell problems for singular pertur-

bation of second order equations ( see [3]-[4]). We recall that a very heuristic motivation for these

constructions of H is obtained by plugging the usual formal asymptotic expansion of uε

uε(x) = u(x) + εmax(1,2−γ)χ(x/ε) + . . . (1.3)

in the initial equation (1.1) and identifying the terms in front of powers of ε.
The aim of this paper is to estimate the rate of convergence of uε solutions to (1.1) to u solution

to (1.2), namely ‖uε − u‖∞. Let us emphasize that the class of problems we consider encompasses,
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among others, many of the ones studied by Horie and Ishii [15] and by Lions and Souganidis [19];

hence, for these cases, this paper provides the rate of convergence.

Let us recall that, in presence of the only vanishing viscosity term, the rate of convergence is

typically of order εγ/2 (see [6]). For the homogenization of first order coercive equations, a rate

of convergence of order ε1/3 was obtained in [10], while for the homogenization of second order

convex, uniformly elliptic equations, a rate of order εα was proved in [9] (with α depending on

the regularity of the solution of the limit problem). In the present paper, we establish a rate of

convergence which depends on γ and the regularity of the solution of (1.2). For γ = 1 we extend the

result of [10] for the homogenization of first order equations. Indeed, we have

‖uε − u‖∞ ≤ Cε
α
3

where α is the Hölder exponent of u. For γ < 1, we obtain the estimate

‖uε − u‖∞ ≤ Cεαmin{ γ
2
,(1−γ)};

finally, for γ > 1, we show that

‖uε − u‖∞ ≤ Cεmin{ 1
3
,
γ−1

2
}.

We also prove that these three estimates can be improved under appropriate structural conditions on

the Hamiltonian. As an interesting byproduct we shall ascertain that uε converges uniformly to u in

the whole space RN .

Let us now stress some features of our arguments. To prove an estimate on ‖uε − u‖∞ it is

not possible to invoke standard regular perturbation results in viscosity solution theory since they

are based on a priori estimate of the quantity ‖H − H‖, not available in this case. We will follow

the same approach as in [10] and we use the technique of doubling variables to compare uε with

u perturbed with an approximated corrector, i.e. the solution of the ergodic approximation to the

appropriate cell problem. For γ ≤ 1, since the corresponding cell problem is of 2nd order, to insure

the appropriate regularity of the approximate corrector we need to assume the uniform ellipticity of

H. For γ > 1, since the cell problem is of 1st order, the regularity of the approximate corrector is

insured by the coercitivity of H.

The paper is organized as follows. Section 2 contains the main assumptions and some prelimi-

nary properties. Sections 3, 4, 5 are devoted, respectively, to the case γ = 1, γ < 1 and γ > 1. Since

some of the arguments are the same in the three cases, we will detail them only in Section 3. Section

6 contains some examples and model problems.

2 Standing assumptions
For every ε > 0 and γ > 0, we consider the problem

uε + H
(
x,

x
ε
,Duε, εγD2uε

)
= 0 x ∈ RN (2.1)

where uε is a real-valued function, Duε and D2uε stand respectively for its gradient and its Hessian

matrix.

The following hypotheses will be required in this paper:
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(H1) H is 1-periodic in y for all x, p, X ∈ RN × RN × S N , i.e.

H(x, y + z, p, X) = H(x, y, p, X) for all z ∈ ZN ;

(H2) there exists C > 0 such that, for all x, y, z,w, p, q ∈ RN , X,Z ∈ S N

|H(x, y, 0, 0)| ≤ C,

|H(x, y, p, X) − H(x, y, q,Z)| ≤ C (|p − q| + ‖X − Z‖) ,
|H(x, y, p, X) − H(z,w, p, X)| ≤ C(|x − z| + |y − w|)(1 + |p| + ‖X‖).

For γ ≤ 1, we shall assume that the operator H is convex and uniformly elliptic:

(H3) H(x, y, p, ·) is convex for any x, y ∈ RN , p ∈ RN , and H is uniformly elliptic, i.e. there exists

θ > 0 such that

H(x, y, p, X) − H(x, y, p, X + Y) ≥ θ(Y)

for any X,Y ∈ S N , Y ≥ 0, x, y, p ∈ RN .

For γ > 1, we will replace (H3) with a coercivity assumption:

(H4) H is coercive in p, i.e. it fulfills

lim
r→∞

inf{H(x, y, p, 0) : (x, y) ∈ RN × RN , |p| > r} = +∞.

In the next propositions we state regularity results for the solutions of the second order problem

(1.1) (see [14], [22]) and of the corresponding limit problems (see [6], [17]).

Proposition 2.1 Consider the elliptic problem

u + F(x,Du,D2u) = 0

where F satisfies (H2) and (H3). Then this problem admits a unique bounded continuous viscosity
solution u. Moreover there exist C > 0 and ᾱ ∈ (0, 1) such that

‖u‖∞, ‖Du‖∞ ≤ C and ‖u‖C2,ᾱ(B(x,1)) ≤ C.

Proposition 2.2 Consider the Hamilton-Jacobi equation

u + F(x,Du) = 0 x ∈ RN

where F satisfies

|F(x1, p) − F(x2, p)| ≤ C|x1 − x2|(1 + |p|), |F(x, p1) − F(x, p2)| ≤ C|p1 − p2| (2.2)

for any xi, pi ∈ RN (i = 1, 2). Then this problem admits a unique bounded continuous viscosity
solution u. Moreover

a) u ∈ W1,∞(RN) if C ≤ 1;

b) u ∈ C0,α(RN) for any α ∈ (0, 1) if C = 1;

c) u ∈ C0,α(RN) with α = 1
C if C > 1.

Finally if F is coercive in p, i.e. limr→∞ inf{F(x, p) : x ∈ RN , |p| > r} = +∞, then u ∈ W1,∞(RN) for
every C > 0.
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3 Rate of convergence, case γ = 1

This section is devoted to the analysis of the most interesting case, i.e. γ = 1, in which vanishing

viscosity term and fast oscillation one have a strong interaction. Throughout this section we will

assume (H1), (H2) and (H3). The main result in this section is Theorem 3.1.

3.1 Properties of the effective Hamiltonian and of the approximate correctors
In this subsection, for the sake of completeness, we recall well known properties of the effective

Hamiltonian and of the correctors.

For each (x, p) fixed, we introduce the following ergodic problem: find the unique value H1(x, p)

such that there exists a periodic solution to

H(x, y, p + Dχ(y),D2χ(y)) = H1(x, p), y ∈ RN . (3.1)

We will denote by χ1(·; x, p) a viscosity solution to (3.1) in order to recall the dependence on the

fixed parameters x, p. A solution to (3.1) can be obtained as the limit as λ→ 0 of the solution of the

approximated cell problem

λwλ(y) + H(x, y, p + Dwλ(y),D2wλ(y)) = 0 y ∈ RN . (3.2)

Lemma 3.1 Let wλ be a periodic solution of the approximated cell problem (3.2). Then there exists
C > 0, independent of λ, such that

(i) ‖λwλ(·; x, p)‖∞ ≤ C(1 + |p|);

(ii) for some α ∈ (0, 1], ‖wλ(·; x, p) − wλ(0; x, p)‖C2,α(RN ) ≤ C(1 + |p|);

(iii) λ|Dpwλ| ≤ C and λ|Dxwλ| ≤ C(1 + |p|) (in the viscosity sense);

(iv) ‖λwλ(·; x, p) + H1(x, p)‖∞ ≤ λC(1 + |p|) where H1 is the effective Hamiltonian given by the
ergodic problem (3.1).

Proof. For the proof, we refer the reader to [22] and [4, Theorem 4.1 and following Remark] (see

also [9, Lemma 2.1] and [5, Theorem II.2]).

Lemma 3.2 (i) wλ(·; x, p) − wλ(0; x, p) converge uniformly, as λ → 0, to a periodic solution
χ1(·; x, p) of (3.1). Moreover the solution of (3.1) is unique up to an additive constant.

(ii) Let χ1 be a solution of (3.1). Then for some C > 0 and α ∈ (0, 1],

‖χ1(·; x, p)‖C2,α(RN ) ≤ C(1 + |p|)

(iii) H1 satisfies (2.2). Moreover if H is coercive (see (H4)), then also H1 is coercive.

Proof. The proof of (i), (ii) can be found in [5, Theorem II.2], (see also [4]), while for (iii) we refer

to [9, Lemma 2.2].
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3.2 The rate of convergence for γ = 1

Let u be the unique bounded solution to

u + H1(x,Du) = 0 (3.3)

with H1 given by the cell problem (3.1). Then, by Lemma 3.2.(iii) and Proposition 2.2, u is Hölder

continuous with exponent α ∈ (0, 1].

Theorem 3.1 Let uε and u be the unique bounded solutions resp. to (2.1) with γ = 1 and to (3.3).

i) If H is independent of x (namely, H(x, y, p,M) = H(y, p,M)), then there exists a constant
M > 0 such that

‖uε − u‖∞ ≤ Mε. (3.4)

ii) In the general case, there exists a constant M > 0 such that

‖uε − u‖∞ ≤ Mε
α
3 (3.5)

where α ∈ (0, 1] is the Hölder exponent of u .

The proof of this theorem is postponed until the next two subsections.

Remark 3.1 In particular, we deduce that, as ε→ 0, uε converges uniformly to u in RN .

Remark 3.2 Observe that if H satisfies also (H4), then, by Proposition 2.2 and Lemma 3.2.(iii), u
is Lipschitz continuous. Therefore the convergence rate is 1/3, as for homogenization of first order

equations (see [10]).

3.3 Proof of Theorem 3.1.i)
The function u is the unique bounded solution to u + H1(Du) = 0. Hence, obviously, u ≡ −H1(0).

Define

v±ε (x) := u + εχ1
( x
ε

)
± εK

where K > 0 is a positive constant to be fixed later and χ1 is the solution of (3.1) with p = 0 such

that χ1(0) = 0. Then, for K sufficiently large, v+ε and v−ε are respectively a supersolution and a

subsolution to (1.1). Indeed, by (3.1), we infer

v+ε + H
( x
ε
,Dv+ε , εD

2v+ε
)
= −H1(0) + εχ1 + εK + H

(
x
ε
,Dχ1,D2χ1

)
≥ −ε‖χ1‖∞ + εK.

We get an analogous result for v−ε . Then by standard comparison principles between bounded sub

and supersolutions of uniformly elliptic PDEs (see[11]) we get that

v−ε (x) ≤ uε(x) ≤ v+ε (x) ∀x ∈ RN

and in particular

−2Kε ≤ ε
(
χ1

( x
ε

)
− K

)
≤ uε(x) + H1(0) ≤ ε

(
χ1

( x
ε

)
+ K

)
≤ 2Kε.
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3.4 Proof of Theorem 3.1.ii)

We will use some arguments introduced in [10, Thm 3.1] (see also [20],[9]). Fix ε, δ, β, τ ∈ (0, 1),

λ = εδ (δ and β will be chosen later). Define the auxiliary function

Φ(x, ξ, z) := uε(x) − u(ξ) − εwλ
( x
ε

; z,
z − ξ
εβ

)
− |x − ξ|

2

2εβ
− |x − z|2

2εβ
− τ

2
|ξ|2, (3.6)

where the functions uε, u and wλ, are respectively solutions to (1.1) with γ = 1, (3.3) and (3.2).

Recall that, by Proposition 2.2, u is bounded and Hölder continuous with exponent α. Moreover

uε are C2 functions by Proposition 2.1 and are uniformly bounded in ε by assumption (H2) and

a standard comparison principle (see [11]), i.e. there exists C > 0 independent of ε such that

‖uε‖∞ ≤ C, ∀ε. Moreover Lemma 3.1 ensures that wλ ∈ C2 and ‖wλ(·; , x, p)‖∞ ≤ Kλ−1(1 + |p|).
Hence, the function Φ attains its maximum in some point (x̂, ξ̂, ẑ). Observe that we may assume that

this maximum is strict (if necessary, adding to Φ a smooth function vanishing together with its first

and second derivatives at (x̂, ξ̂, ẑ)).

In the following lemma, we collect some estimates concerning (x̂, ξ̂, ẑ).

Lemma 3.3 Let (x̂, ξ̂, ẑ) be a maximum point of the functionΦ defined in (3.6) with u ∈ C0,α. Assume
δ + β < 1 and τ < 2εβ. Then there exists a constant K, which does not depend on ε, β, τ, λ = εδ, α
such that

τ

2
|ξ̂|2 ≤ K (3.7)

|x̂ − ξ̂| ≤ Kεβ/(2−α) (3.8)

|x̂ − ẑ| ≤ Kε1−δ. (3.9)

Moreover |ẑ − ξ̂| ≤ Kεβ/(2−α) since β/(2 − α) ≤ β ≤ 1 − δ.

For clarity we proceed with the proof of Theorem 3.1 and postpone the proof of the Lemma to

paragraph 3.4.1.

Since we shall need several constants, for simplicity the same letter (usually, C1) may denote

different constants from line to line; however, it will always denote constants depending only on the

Hamiltonian H (i.e., independent of ε, δ, β, τ).

Observe that by the definition of Φ, the function

uε(x) −
[
εwλ

(
x
ε

; ẑ,
ẑ − ξ̂
εβ

)
+
|x − ξ̂|2

2εβ
+
|x − ẑ|2

2εβ

]

has a maximum at x̂. Then, using the fact that uε is a subsolution to (2.1) we get

uε(x̂) + H
(
x̂,

x̂
ε
,Dwλ +

x̂ − ξ̂
εβ
+

x̂ − ẑ
εβ
,D2wλ + 2ε1−βI

)
≤ 0. (3.10)

By assumption (H3), the estimates (3.9), (3.8) and the properties of wλ stated in Lemma 3.1.(ii),
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there exist a constant C1 such that

H
(
x̂,

x̂
ε
,Dwλ +

x̂ − ξ̂
εβ
+

x̂ − ẑ
εβ
,D2wλ + 2ε1−βI

)

≥ H
(
ẑ,

x̂
ε
,Dwλ +

ẑ − ξ̂
εβ
,D2wλ

)
−C1

(
2
|x̂ − ẑ|
εβ
+ ε1−β

)

−C1|x̂ − ẑ|
(
1 +

|ẑ − ξ̂|
εβ

)

≥ H
(
ẑ,

x̂
ε
,Dwλ +

ẑ − ξ̂
εβ
,D2wλ

)
−C1ε

1−β−δ.

Substituting this estimate in (3.10), using the fact that wλ solves equation (3.2) centered in (ẑ, (ẑ −
ξ̂)/εβ) and Lemma 3.1, we deduce

uε(x̂) + H1

(
ẑ,

ẑ − ξ̂
εβ

)
≤ C1(ε1−δ−β + εδ−β(1−α)/(2−α)). (3.11)

Observe that, by the definition of Φ, the function

ψ(ξ) := u(ξ) −
[
−εwλ

(
x̂
ε

; ẑ,
ẑ − ξ
εβ

)
− |x̂ − ξ|

2

2εβ
− τ

2
|ξ|2

]
(3.12)

attains a strict minimum at ξ̂. Since the function between square brackets is not sufficiently regular

to be used as a test function, we use again the standard argument of doubling variables. For σ > 0,

we introduce the function

Ψ(ξ, y) := u(ξ) + εwλ

(
x̂
ε

; ẑ,
ẑ − y
εβ

)
+
|x̂ − ξ|2

2εβ
+
τ

2
|ξ|2 + |ξ − y|2

2σ
(3.13)

and we denote by (ξσ, yσ) a minimum point of Ψ in B(ξ̂, 1) × B(ξ̂, 1). The following lemma gives

useful estimates.

Lemma 3.4 Let (ξσ, yσ) be a minimum point of Ψ as defined in (3.13) in B(ξ̂, 1) × B(ξ̂, 1). There
exists K > 0, independent of all the parameters ε, β, τ, λ = εδ, σ, such that

|ξσ − yσ|
σ

≤ Kε1−β−δ. (3.14)

Moreover
|ξσ − ξ̂| + |yσ − ξ̂| → 0 as σ→ 0 (3.15)

As above, we postpone the proof of this lemma to paragraph 3.4.2. By the definition of Ψ, the

function

u(ξ) −
[
−|x̂ − ξ|

2

2εβ
− τ

2
|ξ|2 − |ξ − yσ|2

2σ

]
has a minimum at ξσ. Then, by equation (3.3), we get

u(ξσ) + H1

(
ξσ,

x̂ − ξσ
εβ

− τξσ +
yσ − ξσ
σ

)
≥ 0.
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By the properties of H1 proved in Lemma 3.2 , we obtain

u(ξσ) + H1

(
ξσ,

x̂ − ξσ
εβ

− τξσ +
yσ − ξσ
σ

)

≤ u(ξσ) + H1

(
ξ̂σ,

ẑ − ξσ
εβ

)
+C1

[
|x̂ − ẑ|
εβ
+ τ|ξσ| +

|yσ − ξσ|
σ

]
.

By the estimates (3.14), (3.7), (3.9) and letting σ→ 0 in the previous inequality, we get

u(ξ̂) + H1

(
ξ̂,

ẑ − ξ̂
εβ

)
≥ −C1

(√
τ + ε1−β−δ

)
.

Using (3.8), (3.9) and the properties of H1 in Lemma 3.2, we obtain

u(ξ̂) + H1

(
ẑ,

ẑ − ξ̂
εβ

)
≥ −C1

(
ε1−β−δ +

√
τ
)
−C1|ẑ − ξ̂|

(
1 +

|ẑ − ξ̂|
εβ

)
≥ −C1

(
ε1−β−δ + εαβ/(2−α) +

√
τ
)
. (3.16)

Comparing (3.11) with (3.16) we infer

uε(x̂) − u(ξ̂) ≤ C1(ε1−δ−β + εδ−β(1−α)/(2−α) + εαβ/(2−α)) +C1

√
τ. (3.17)

Finally, the relation Φ(x, x, x) ≤ Φ(x̂, ξ̂, ẑ) entails

uε(x) − u(x) ≤ uε(x̂) − u(ξ̂) + ε

(
wλ

( x
ε

; x, 0
)
− wλ

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
+
τ

2
|x|2 ∀x ∈ RN .

Taking into account (3.17), Lemma 3.1.(i) and the estimates in Lemma 3.3, we obtain

uε(x) − u(x) ≤ C1(ε1−δ−β + εδ−β(1−α)/(2−α) + εαβ/(2−α) + ε1−δ−β(1−α)/(2−α))

+C1

√
τ +
τ

2
|x|2.

Letting τ→ 0 we obtain that for every x ∈ RN

uε(x) − u(x) ≤ C1(ε1−δ−β + εδ−β(1−α)/(2−α) + εαβ/(2−α)) ≤ C1ε
α/3,

provided that we choose β = (2 − α)/3 and δ = 1/3. The other inequality in (3.5) can be obtained in

an analogous way and we omit its proof.

3.4.1 Proof of Lemma 3.3

As in the proof of Theorem 3.1, the same letter K1 may denote different constants from line to line;

however, all these constants are independent of ε, β, δ, τ.
Let us prove inequality (3.7). The relation Φ(x̂, ξ̂, ẑ) ≥ Φ(0, 0, 0) gives

τ

2
|ξ̂|2 ≤ 2‖uε‖∞ + 2‖u‖∞ + ε

(
wλ(0; 0, 0) − wλ

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
− |x̂ − ξ̂|

2

2εβ
− |x̂ − ẑ|2

2εβ
. (3.18)
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By Lemma 3.1.(i) and using Young inequality, we get

ε

(
wλ(0; 0, 0) − wλ

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
≤ 2ε1−δC +Cε1−δ |x̂ − ξ̂|

εβ
+Cε1−δ |x̂ − ẑ|

εβ

≤ 2ε1−δC +C2ε2(1−δ−β/2) +
|x̂ − ξ̂|2

2εβ
+
|x̂ − ẑ|2

2εβ
.

Substituting this relation in (3.18), we get the desired estimate (3.7).

We now pass to prove estimate (3.8); inequality Φ(x̂, ξ̂, ẑ) ≥ Φ(x̂, x̂, ẑ) gives

|x̂ − ξ̂|2
2εβ

≤ u(x̂) − u(ξ̂) + ε

(
wλ

(
x̂
ε

; ẑ,
ẑ − x̂
εβ

)
− wλ

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
− τ

2
|ξ̂|2 + τ

2
|x̂|2. (3.19)

Taking into account estimate (3.7), we infer

−τ
2
|ξ̂|2 + τ

2
|x̂|2 ≤ τ

2
|x̂ − ξ̂|2 + τ|x̂ − ξ̂||ξ̂| ≤ τ

2
|x̂ − ξ̂|2 +

√
2τK|x̂ − ξ̂|.

Using again Lemma 3.1.(iii), for some constant K1 we have

ε

(
wλ

(
x̂
ε

; ẑ,
ẑ − x̂
εβ

)
− wλ

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
≤ ε1−δ−βK1|x̂ − ξ̂|.

Substituting the last two inequalities in (3.19) with τ ≤ 2εβ (recall: u ∈ C0,α), we obtain

|x̂ − ξ̂|2−α
4εβ

≤ K1 + (ε1−δ−βK1 +
√

2τK)|x̂ − ξ̂|1−α.

We apply now Young inequality with p = 2−α
1−α and q = 2− α to the last term of the previous formula

and get

|x̂ − ξ̂|2−α
8εβ

≤ K1 +
1

2 − α

(
8εβ

1 − α
2 − α

)1−α (
ε1−δ−βK1 +

√
2τK

)2−α ≤ K1

8
.

Finally we prove (3.9); by Lemma 3.1.(iii), for some constant K1, the inequality Φ(x̂, ξ̂, ẑ) ≥
Φ(x̂, ξ̂, x̂) ensures

|x̂ − ẑ|2
2εβ

≤ ε

(
wλ

(
x̂
ε

; x̂,
x̂ − ξ̂
εβ

)
− wλ

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
≤ ε1−δ−βK1|x̂ − ẑ| + ε1−δ−βK1|x̂ − ẑ|(εβ + |x̂ − ξ̂|).

Therefore, if necessary increasing the constant K1, we obtain

|x̂ − ẑ| ≤ ε1−δK1 + K1ε
1−δ+β/(2−α) ≤ K1ε

1−δ.

3.4.2 Proof of Lemma 3.4.

Let us recall that (ξσ, yσ) is a maximum point of Ψ. Lemma 3.1.(iii) and inequality Ψ(ξσ, yσ) ≤
Ψ(ξσ, ξσ) entail

|ξσ − yσ|2
2σ

≤ ε
[
wλ

(
x̂
ε

; ẑ,
ẑ − yσ
εβ

)
− wλ

(
x̂
ε

; ẑ,
ẑ − ξσ
εβ

)]
≤ Cε1−δ−β|ξσ − yσ|.
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Whence, estimate (3.14) easily follows.

Let us now pass to prove formula (3.15). By Lemma 3.1.(iii) and (3.14), we get

Ψ(ξσ, yσ) = u(ξσ) + εwλ

(
x̂
ε

; ẑ,
ẑ − ξσ
εβ

)
+
|x̂ − ξσ|2

2εβ
+
τ

2
|ξσ|2 +

+ ε

(
wλ

(
x̂
ε

; ẑ,
ẑ − yσ
εβ

)
− wλ

(
x̂
ε

; ẑ,
ẑ − ξσ
εβ

))
≥ ψ(ξσ) −Cσε1−2β−δ,

where ψ is defined in (3.12). Therefore

ψ(ξσ) −Cε1−2β−δσ ≤ Ψ(ξσ, yσ) ≤ Ψ(ξ̂, ξ̂) = ψ(ξ̂) = minψ(ξ).

We fix ε, β, λ, τ and we let σ→ 0 in the previous inequality. So, eventually passing to a subsequence

and recalling that ψ attains a strict minimum at ξ̂, we get ξσ → ξ̂, which gives the desired conclusion.

4 Rate of convergence, case γ < 1

This section is devoted to the case γ < 1. Throughout this section we will assume (H1), (H2) and

(H3). The main result in this section is Theorem 4.1.

4.1 Properties of the effective Hamiltonian and of the correctors
For (x, p) ∈ RN × RN fixed, we introduce the following ergodic problem: find a periodic solution to

H(x, y, p,D2χ(y)) = H−(x, p), y ∈ RN . (4.1)

We also consider the approximate cell problems

λwλ(y) + H(x, y, p,D2wλ) = 0. (4.2)

Remark 4.1 The cell problems (4.1) and their approximations (4.2) are independent of γ ∈ (0, 1).

In particular, the effective Hamiltonian will be the same for every γ ∈ (0, 1) and we will denote it by

H−(x, p).

Remark 4.2 Lemma 3.1 and Lemma 3.2 still hold in this case. In particular the solution of (4.1) is

unique up to an additive constant.

In the following lemma, we establish some properties of χ− under a structural assumption on H.

Lemma 4.1 Assume that the Hamiltonian H, besides the standing assumptions, satisfies the follow-
ing structural assumption

H(x, y, p, X) = max
ζ∈Z

{
−tr[aζ(y)X] + Fζ(x, y, p)

}
, (4.3)

where Z is a compact metric space while aζ , Fζ are continuous functions, uniformly bounded with
respect to ζ, and moreover there exists C > 0 such that, for every x, z, y,w, p, q ∈ RN and ζ ∈ Z,

|Fζ(x, y, p) − Fζ(z,w, q)| ≤ C|p − q| +C(|x − z| + |y − w|)(1 + |p| ∨ |q|). (4.4)
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Fix the solution χ− to (4.1) such that χ−(0) = 0. Then, there exists C > 0 independent of γ such that

|Dpχ
−| ≤ C and |Dxχ

−| ≤ C(1 + |p|) (in viscosity sense).

Proof. By Remark 4.2, it suffices to prove that the estimates in Lemma 3.1.(iii) are independent of

λ, that is there exists C > 0 such that |Dpw−λ | ≤ C and |Dxw−λ | ≤ C(1 + |p|) (in the viscosity sense).

We fix (x1, p1) and (x2, p2) and consider w1 = w−λ (·; x1, p1) and w2 = w−λ (·; x2, p2). Define

wλ = w1 − w2. To get the result it is sufficient to prove that

‖wλ − wλ(0)‖∞ ≤ C(1 + |p1| ∨ |p2|)|x1 − x2| +C|p1 − p2|. (4.5)

In order to prove (4.5), let us first observe that, using assumption (4.4), the functions v± =
w1 ±Cλ−1[(1+ |p1| ∨ |p2|)|x1 − x2|+ |p1 − p2|] are respectively a super and a subsolution to equation

(4.2) centered at (x2, p2). Then standard comparison principle yields

‖λwλ‖∞ ≤ C(1 + |p1| ∨ |p2|)|x1 − x2| +C|p1 − p2|. (4.6)

We now proceed by contradiction, assuming that there exists λk → 0, xk
1
, xk

2
, pk

1
, pk

2
∈ RN such

that

ck := ‖wk − wk(0)‖∞ ≥ k(1 + |pk
1| ∨ |pk

2|)|xk
1 − xk

2| + k|pk
1 − pk

2| (4.7)

where wk(·) := w−λk
(·; xk

1
, pk

1
) − w−λk

(·; xk
2
, pk

2
). Define vk := (wk − wk(0))/ck. Then observe that

‖vk‖∞ = 1 and vk(0) = 0 for every k. Moreover vk is a supersolution to

λkvk +max
ζ∈Z

⎧⎪⎪⎨⎪⎪⎩−tr
[
aζ(y)D2vk

]
+

Fζ(xk
1
, y, pk

1
) − Fζ(xk

2
, y, pk

2
)

ck

⎫⎪⎪⎬⎪⎪⎭ + λkwk(0)

ck
≥ 0,

and a subsolution to

λkvk +min
ζ∈Z

⎧⎪⎪⎨⎪⎪⎩−tr
[
aζ(y)D2vk

]
+

Fζ(xk
1
, y, pk

1
) − Fζ(xk

2
, y, pk

2
)

ck

⎫⎪⎪⎬⎪⎪⎭ + λkwk(0)

ck
≤ 0.

Let us observe that relations (4.4), (4.6) and (4.7) entail: |Fζ(xk
1
, y, pk

1
) − Fζ(xk

2
, y, pk

2
)|/ck ≤

C/k and |λkwk(0)|/ck ≤ C/k for every (y, ζ), k. By the same argument as in [2, Prop 12] (see

also [4, Thm 4.1] and [23, Thm 5.1]) we obtain that vk are equi-continuous; by Ascoli-Arzelá’s

theorem, if necessary passing to a subsequence, vk converges to v locally uniformly and v is a

bounded supersolution to

max
ζ∈Z

{
−tr

[
aζ(y)D2v

]}
≥ 0 in RN .

The Strong Minimum Principle ([23]) entails that v is constant, in contradiction with the fact that

‖v‖∞ = 1 and v(0) = 0.

4.2 The rate of convergence for γ < 1

Let u− be the unique bounded solution to

u + H−(x,Du) = 0 (4.8)

with H− given by the cell problem (4.1). Then, by Remark 4.2 and Proposition 2.2, u is Hölder

continuous with exponent α ∈ (0, 1].
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Theorem 4.1 Let uε and u− be resp. the unique bounded solutions to (2.1) with γ < 1 and to (4.8).

i) If H(x, y, p, X) = −tr[a(y)X] + F(y, p), there exists M > 0 independent of γ such that

‖uε − u−‖∞ ≤ Mε1−γ; (4.9)

ii) If H satisfies (4.3), there exists M > 0 independent of γ such that

‖uε − u−‖∞ ≤ Mεmin(
αγ
2
,1−γ). (4.10)

iii) In the general case, there exists M > 0 independent of γ such that

‖uε − u−‖∞ ≤ Mεαmin(
γ
2
,1−γ). (4.11)

Remark 4.3 The previous theorem says that uε converge uniformly in RN as ε→ 0 for every γ < 1

to the same function u−. Moreover, the best rate of convergence that can be obtained is, when H
satisfies (4.3), α

α+2
(for γ = 2

2+α
) and, in the general case α

3
(for γ = 2

3
).

4.3 Proof of Theorem 4.1.i)
We shall argue as in the proof of Theorem 3.1.(i). The solution u− is given by −H−(0). Define

v±ε (x) := u− + ε2−γχ− (x/ε) ± ε1−γK, where χ− is the solution of (4.1) with p = 0 such that χ−(0) =

0. We show that, for K > 0 sufficiently large, v+ε and v−ε are respectively a supersolution and a

subsolution to (1.1). In fact

v+ε − εγtr
[
a
(

x
ε

)
D2v+ε

]
+ F

(
x
ε
,Dv+ε

)
= −H−(0) + ε2−γχ−

(
x
ε

)
+ ε1−γK − tr

[
a
(

x
ε

)
D2χ−

(
x
ε

)]
+ F

(
x
ε
, ε1−γDχ−

(
x
ε

))
≥ ε2−γχ−

(
x
ε

)
+ ε1−γK + F

(
x
ε
, ε1−γDχ−

(
x
ε

))
− F

(
x
ε
, 0
)

≥ ε2−γ‖χ−‖∞ + ε1−γK − ε1−γ‖Dχ−‖ ≥ 0.

The proof for v−ε is similar and we shall omit it. By the comparison principles (see[11]), we get that

v−ε (x) ≤ uε(x) ≤ v+ε (x) ∀x ∈ RN

and then in particular

−2Kε1−γ ≤ uε(x) − u− ≤ 2Kε1−γ.

4.4 Proof of Theorem 4.1.ii)
The argument of the proof is similar to that in the proof of Theorem 3.1.ii) and therefore we just

sketch it. For τ, β ∈ (0, 1) (to be fixed later), define the auxiliary function

Φ(x, ξ, z) := uε(x) − u−(ξ) − ε2−γχ−
( x
ε

; z,
z − ξ
εβ

)
− |x − ξ|

2

2εβ
− |x − z|2

2εβ
− τ

2
|ξ|2, (4.12)

where χ− is a solution to (4.1). By Lemma 3.2.(ii), the function Φ attains a strict maximum in some

point (x̂, ξ̂, ẑ). The following lemma gives some useful estimates.
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Lemma 4.2 Let (x̂, ξ̂, ẑ) be a maximum point of Φ as defined in (4.12) and α ∈ (0, 1] the Hölder
exponent of u−. Assume τ < 2εβ. Then there exists a constant K, which does not depend on ε, β, τ, α
such that

τ

2
|ξ̂|2 ≤ K (4.13)

|x̂ − ξ̂| ≤ Kεβ/(2−α) (4.14)

|x̂ − ẑ| ≤ Kε2−γ. (4.15)

Moreover |ẑ − ξ̂| ≤ Kεβ/(2−α).

The proof of this lemma follows by repeating the same argument of the proof of Lemma 3.3 (Lemma

3.1 on the properties of wλ is replaced by Lemma 4.1 on the properties of χ−); hence, we shall omit

it.

Let us come back to the proof of the Theorem. As before, the letter C1 may denote different

constants from line to line; however, it will always denotes constants independent of ε, β, τ. By the

definition of Φ, the function

uε(x) −
[
ε2−γχ−

(
x
ε

; ẑ,
ẑ − ξ̂
εβ

)
+
|x − ξ̂|2

2εβ
+
|x − ẑ|2

2εβ

]

has a maximum at x̂. Then, since uε is a subsolution to (1.1), we deduce

uε(x̂) +max
ζ∈Z

{
−tr

[
aζ
(

x̂
ε

)
(D2χ− + 2εγ−βI)

]
+ Fζ

(
x̂,

x̂
ε
, ε1−γDχ− +

x̂ − ξ̂
εβ
+

x̂ − ẑ
εβ

)}
≤ 0. (4.16)

By assumption (4.4), Remark 4.2 and the estimates (4.15) and (4.14) we get that there exists a

constant C1 such that, for every ζ ∈ Z,

Fζ
(
x̂,

x̂
ε
, ε1−γDχ− +

x̂ − ξ̂
εβ
+

x̂ − ẑ
εβ

)

≥ Fζ
(
x̂,

x̂
ε
,

ẑ − ξ̂
εβ

)
−C1

(
ε1−γ +

|x̂ − ẑ|
εβ

)

≥ Fζ
(
ẑ,

x̂
ε
,

ẑ − ξ̂
εβ

)
−C1ε

1−γ −C1|x̂ − ẑ|
(
1 +

|ẑ − ξ̂|
εβ

)

≥ Fζ
(
ẑ,

x̂
ε
,

ẑ − ξ̂
εβ

)
−C1ε

1−γ.

Substituting last inequality in (4.16) and using the fact that χ− is a classical solution to (4.1) for

(x, p) = (ẑ, (ẑ − ξ̂)/εβ) we obtain

uε(x̂) + H−

(
ẑ,

ẑ − ξ̂
εβ

)
≤ C1(ε1−γ + εγ−β). (4.17)

Observe now that, by the definition of Φ, the function

ψ(ξ) := u−(ξ) −
[
−ε2−γχ−

(
x̂
ε

; ẑ,
ẑ − ξ
εβ

)
− |x̂ − ξ|

2

2εβ
− τ

2
|ξ|2

]
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has a strict minimum at ξ̂. Since the function between square brackets is not sufficiently regular, we

perform again the argument of doubling variables and we introduce the function

Ψ(ξ, y) := u−(ξ) + ε2−γχ−
(

x̂
ε

; ẑ,
ẑ − y
εβ

)
+
|x̂ − ξ|2

2εβ
+
τ

2
|ξ|2 + |ξ − y|2

2σ
, (4.18)

where σ > 0 is a given parameter. Let (ξσ, yσ) be a minimum point of Ψ in B(ξ̂, 1) × B(ξ̂, 1).

Lemma 4.3 Let (ξσ, yσ) be a minimum point of Ψ as defined in (4.18) in B(ξ̂, 1) × B(ξ̂, 1). There
exists K > 0, independent of all the parameters ε, β, τ, γ, σ, such that

|ξσ − yσ|
σ

≤ Kε2−γ−β. (4.19)

Moreover there holds: |ξσ − ξ̂| + |yσ − ξ̂| → 0 as σ→ 0.

Its proof is analogous to that of Lemma 3.4; actually, it suffices to substitute wλ with χ− and Lemma

3.1 with Lemma 4.1. Hence, we shall omit it.

Observe that the function u−(ξ)−
[
− |x̂−ξ|

2

2εβ
− τ

2
|ξ|2 − |ξ−yσ |2

2σ

]
has a minimum at ξσ. By equation (4.8)

and the properties of H−, we infer

0 ≤ u−(ξσ) + H−

(
ξσ,

x̂ − ξσ
εβ

+ τξσ +
ξσ − yσ
σ

)

≤ u−(ξσ) + H−

(
ẑ,

ẑ − ξσ
εβ

)
+C

[
τ|ξσ| +

|ξσ − yσ|
σ

+ |ẑ − ξσ|
(
1 +

|ẑ − ξσ|
εβ

)]
.

Letting σ→ 0, owing to estimate (4.19), we infer that

u−(ξ̂) + H−

(
ẑ,

ẑ − ξ̂
εβ

)
≥ −C1(ε2−γ−β +

√
τ + εαβ/(2−α)). (4.20)

By estimates (4.17) and (4.20) and inequality 2 − γ − β ≥ γ − β, we obtain

uε(x̂) − u−(ξ̂) ≤ C1(εγ−β + ε1−γ + εαβ/(2−α)) +C1

√
τ. (4.21)

Finally the relation Φ(x, x, x) ≤ Φ(x̂, ξ̂, ẑ) entails

uε(x) − u−(x) ≤ uε(x̂) − u−(ξ̂) + ε2−γ
(
χ−

( x
ε

; x, 0
)
− χ−

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
+
τ

2
|x|2.

Estimates (4.21) and Lemma 4.2 ensure

uε(x) − u−(x) ≤ C1(εγ−β + 2εαβ/(2−α) + ε1−γ) +C1

√
τ +
τ

2
|x|2.

Letting τ→ 0 we obtain that for every x ∈ RN

uε(x) − u(x) ≤ C1(εγ−β + εαβ/(2−α) + ε1−γ) ≤ C1ε
min(

αγ
2
,1−γ),

choosing β = γ(2 − α)/2.
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4.5 Proof of Theorem 4.1.iii)
We shall follow the same arguments of the proof of Theorem 3.1.ii); hence, we shall only emphasize

the main differences. For each δ, β, τ ∈ (0, 1), λ = εδ, introduce the function

Φ(x, ξ, z) := uε(x) − u−(ξ) − ε2−γwλ
( x
ε

; z,
z − ξ
εβ

)
− |x − ξ|

2

2εβ
− |x − z|2

2εβ
− τ

2
|ξ|2

where the functions uε, u− and wλ are solutions respectively to (1.1), (4.8) and (4.2). We denote by

(x̂, ξ̂, ẑ) the maximum point of Φ. Arguing as before, we have

uε(x̂) + H−

(
ẑ,

ẑ − ξ̂
εβ

)
≤ C1(ε1−γ−β(1−α)/(2−α) + ε2−γ−β−δ + εγ−β + εδ−β(1−α)/(2−α)). (4.22)

In order to have an inequality similar to (3.16), for every σ ∈ (0, 1), we introduce the function

Ψ(ξ, y) := u−(ξ) + ε2−γwλ

(
x̂
ε

; ẑ,
ẑ − y
εβ

)
+
|x̂ − ξ|2

2εβ
+
τ

2
|ξ|2 + |ξ − y|2

2σ
,

and we denote by (ξσ, yσ) its minimum point in B(ξ̂, 1)×B(ξ̂, 1). Arguing as in the proof of Theorem

3.1.ii), we infer

u−(ξ̂) + H−

(
ẑ,

ẑ − ξ̂
εβ

)
≥ C1(τ1/2 + ε2−γ−β−δ + εαβ/(2−α)). (4.23)

Finally, we compare (4.22) with (4.23), we use relation Φ(x, x, x) ≤ Φ(x̂, ξ̂, ẑ), Remark 4.2 and we

let τ→ 0. So we obtain that, for every x ∈ RN ,

uε(x) − u(x) ≤ C1

(
ε1−γ−β(1−α)/(2−α) + ε2−γ−β−δ + εγ−β + εδ−β(1−α)/(2−α) + εαβ/(2−α)

)
≤ C1ε

αmin{ γ
2
,1−γ},

choosing , for γ ≤ 2
3
, β = 2−α

2
γ and δ = 1 − 3

4
γ and, for γ > 2

3
, β = (2 − α)(1 − γ) and δ = 1

2
.

5 Rate of convergence for γ > 1

This section is devoted to the analysis of the case γ > 1. In this case the vanishing viscosity term is

faster than the oscillation term, so the convergence behavior is similar to the one in homogenization

of first order Hamilton-Jacobi equations.

Throughout this section we will assume assumptions (H1), (H2) and (H4). Let us emphasize

that, in this case, the ellipticity and the convexity of the operator (i.e. assumptions (H3)) are not

required and they are replaced by the coercivity assumption (H4). The main result in this section is

Theorem 5.1.

5.1 Properties of the effective Hamiltonian, of the approximate correctors
and of their inf and sup-convolutions

For each (x, p) ∈ RN × RN , consider the following ergodic equation

H(x, y, p + Dχ, 0) = H+(x, p), χ periodic (5.1)
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and its approximations

λwλ(y) + H(x, y, p + Dwλ, 0) = 0. (5.2)

We will denote by χ+(·; x, p) a periodic viscosity solution to (5.1) to recall the dependence on the

fixed parameters x, p.

Remark 5.1 As for γ < 1, the cell problems, their ergodic approximations and the effective Hamil-

tonian H−(x, p) are independent of γ > 1.

We collect in a lemma the main properties of wλ, χ+ and H+.

Lemma 5.1 Assume that H satisfies (H1), (H2) and (H4). Let wλ and χ+ be respectively the solution
to (5.2) and to (5.1) with χ+(0) = 0. Denote by H+ the effective Hamiltonian. Then

(i) there exists C > 0 independent of γ, λ such that

‖λwλ(·; x, p)‖∞ ≤ C(1 + |p|);
|Dywλ(·; x, p)| ≤ C(1 + |p|) (in the viscosity sense);

λ|Dpwλ| ≤ C and λ|Dxwλ| ≤ C(1 + |p|) (in the viscosity sense);

‖λwλ(·; x, p) + H+(x, p)‖ ≤ λC(1 + |p|).

(ii ) χ+ is Lipschitz continuous.

(iii) H+ satisfies (H4) (the coercivity assumption) and (2.2) where C is given in (i).

Proof. The proof of this lemma can be found [10, Lemma 2.3].

Let wλ be a solution to the approximate cell problem (5.2) centered at (x, p). We define its η- inf

convolution as

(wλ)η(z; x, p) := inf
y

{
wλ(y; x, p) +

|z − y|2
2η

}
. (5.3)

We refer the reader for the definition of inf-convolution to [7, Lemma II.4.11, Lemma II.4.12]. In

the following lemma we collect some useful properties of the function (wλ)η.

Lemma 5.2 The function (wλ)η fullfils the following properties, for some constant C > 0:

i) y → (wλ)η(y; x, p) − |y|2/η is a concave function. In particular (wλ)η is semiconcave;

ii) ‖λ(wλ)η(·; x, p)‖∞ ≤ C(1 + |p|);

iii) |Dy(wλ)η(·; x, p)| ≤ C(1 + |p|) (in the viscosity sense);

iv) λ|Dp(wλ)η| ≤ C and λ|Dx(wλ)η| ≤ C(1 + |p|) (in the viscosity sense)

v) (wλ)η(y; x, p) is a viscosity supersolution to

λ(wλ)η + H(x, y, p + D(wλ)η) ≥ −Cη(1 + |p|). (5.4)

Proof. Property i) is well known. Items ii), iii), iv) come directly from the definition of (wλ)η and

from the properties of wλ stated in Lemma 5.1. The proof of item (v) can be obtained as in [7,

Proposition II.4.13], recalling that wλ is Lipschitz.

We conclude recalling also a lemma on semiconcave functions.
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Lemma 5.3 Fix u, φ ∈ C2(RN), a semiconcave function v : RN → R and L > 0 such that v(x)−L|x|2
is concave. Assume that x̂ is a strict maximum point for u − φ − v, then

p̂ := Du(x̂) − Dφ(x̂) ∈ D−v(x̂).

Moreover, since v is semiconcave,

p̂ ∈ D+v(x̂) and (p̂, LI) ∈ J2,+v(x̂).

Proof. The proof of the first part is in Lemma 2.4 in [10]. The second part is based on properties of

semiconcave functions (see [7], [11]).

5.2 The convergence rate for γ > 1

Let u+ be the unique bounded solution to

u + H+(x,Du) = 0. (5.5)

with H+ given by the cell problem (5.1). Then, by Lemma 3.2.(iii) and Prop. 2.2, u is Lipschitz

continuous.

Theorem 5.1 Let uε and u be the unique bounded solutions resp. to (2.1) with γ > 1 and (5.5).

i) If H(x, y, p, X) = H(y, p, X), there exists a constant M > 0 independent of γ such that

‖uε − u+‖∞ ≤ Mεmin(1,
γ−1

2
). (5.6)

ii) In general, there exists a constant M > 0 independent of γ such that

‖uε − u+‖∞ ≤ Mεmin
(

1
3
,
γ−1

2

)
. (5.7)

Remark 5.2 In particular uε converge uniformly in RN as ε → 0 for every γ > 1 to the same

function u+.

5.3 Proof of Theorem 5.1.i)
The solution u+ is given by −H+(0). Let χ be a solution of (5.1) with p = 0. Let χη and χη be the

sup and the inf convolution of χ (see [7]). Set η = εh with h > 0 to be fixed later. It is well known

(e.g., see Lemma II.4.11 and Proposition II.4.3 in [7]) that χη satisfies

H(y,Dχη, εγ−1D2χη) − H+(0) ≤ C1(εγ−1−h + εh) = C1ε
(γ−1)/2

for C1 sufficiently large, provided that we set h = (γ − 1)/2. Similarly χη satisfies

H(y,Dχη, εγ−1D2χη) − H+(0) ≥ C1(εγ−1−h + εh) = C1ε
(γ−1)/2.

We define

v±ε (x) := u+ + εχη
( x
ε

)
± Kεmin(1,(γ−1)/2)

By the same arguments of proof of Theorem 4.1.i), one can easily check that, for K sufficiently

large, v+ε and v−ε are respectively a super and a subsolution to (1.1). By the comparison principle we

obtain

−C1ε
min(1,(γ−1)/2) ≤ uε(x) − u+ ≤ C1ε

min(1,(γ−1)/2).
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5.4 Proof of Theorem 5.1.ii)
The arguments of this proof are analogous to that in the proof of Theorem 3.1.ii). Then we will just

sketch them. We define the auxiliary function

Φ(x, ξ, z) := uε(x) − u+(ξ) − ε(wλ)η
( x
ε

; z,
z − ξ
εβ

)
− |x − ξ|

2

2εβ
− |x − z|2

2εβ
− τ

2
|ξ|2, (5.8)

where 0 < τ < 1, 0 < β < 1 and η > 0 are parameters to be fixed later. We denote by (x̂, ξ̂, ẑ) the

maximum point of Φ. Arguing as before, by Lemma 5.2, items (ii)-(iv), we get the same estimates

of Lemma 3.3.

By Lemma 5.3, with u(x) = uε(x), φ(x) = |x−ξ̂|2/(2εβ)+|x−ẑ|2/(2εβ) and v(x̂) = ε(wλ)η(x̂/ε; ẑ, (ẑ−
ξ̂)/εβ), we get that

p̂ := Duε(x̂) − x̂ − ξ̂
εβ

− x̂ − ẑ
εβ

∈ D−(wλ)η

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

)

and moreover (
p̂ +

x̂ − ξ̂
εβ
+

x̂ − ẑ
εβ
,

1

ηε
I +

2

εβ
I
)
∈ J2,+uε(x̂).

Then, since uε is a subsolution to (2.1), we infer

0 ≥ uε(x̂) + H
(
x̂,

x̂
ε
,D(wλ)η

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ
,

(
2εγ−β +

εγ−1

η

)
I
)
+

x̂ − ξ̂
εβ
+

x̂ − ẑ
εβ

)
. (5.9)

Moreover, by Lemma 3.3 and Lemma 5.2-(iii), let us observe that

H
(
x̂,

x̂
ε
, p̂ +

x̂ − ξ̂
εβ
+

x̂ − ẑ
εβ

)
≥ H

(
ẑ,

x̂
ε
, p̂ +

ẑ − ξ̂
εβ

)
− Kε1−δ−β.

Taking into account equation (5.4), we deduce

H
(
ẑ,

x̂
ε
, p̂ +

ẑ − ξ̂
εβ

)
≥ −λ(wλ)η

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

)
−Cη

(
1 +

|ẑ − ξ̂|
εβ

)

≥ −λwλ
(

x̂
ε

; ẑ,
ẑ − ξ̂
εβ

)
−Cη

(
1 +

|ẑ − ξ̂|
εβ

)

≥ H
(
ẑ,

ẑ − ξ̂
εβ

)
−C(εδ + η)

where in the last inequality Lemma 3.3 and Lemma 5.1.(iii) have been used.

Substituting the last two inequalities in relation (5.9) and recalling assumption (H2), we obtain

uε(x̂) + H
(
ẑ,

ẑ − ξ̂
εβ

)
≤ C1

(
εγ−β +

εγ−1

η
+ ε1−β−δ + εδ + η

)
.

On the other hand, by the same argument of Theorem 3.1 (with α = 1), we infer

u+(ξ̂) + H
(
ẑ,

ẑ − ξ̂
εβ

)
≥ −C1(ε1−β−δ +

√
τ + εβ).



424 F. Camilli, A. Cesaroni, C. Marchi

The last two inequalities entail that there holds

uε(x̂) − u+(ξ̂) ≤ C1

(
ε1−δ−β + εδ + εβ + εγ−β +

εγ−1

η
+ η

)
+C1

√
τ. (5.10)

Finally, by the definition of Φ in (5.8), for every x ∈ RN the following relation holds

uε(x) − u+(x) ≤ uε(x̂) − u+(ξ̂) + ε

(
(wλ)η

( x
ε

; x, 0
)
− (wλ)η

(
x̂
ε

; ẑ,
ẑ − ξ̂
εβ

))
+
τ

2
|x|2.

Taking into account relation (5.10), Lemma 3.3 and Lemma 5.2.(ii), we deduce

uε(x) − u+(x) ≤ C1

(
ε1−δ−β + εδ + εβ + εγ−β +

εγ−1

η
+ η

)
+C1

√
τ +
τ

2
|x|2.

Letting τ→ 0 we obtain that for every x ∈ RN

uε(x) − u+(x) ≤ C1

(
ε1−δ−β + εδ + εβ + εγ−β +

εγ−1

η
+ η

)
.

Choosing by symmetry, β = δ = 1/3 and η = ε(γ−1)/2, we accomplish the first inequality of the

statement. Being similar, the proof of other inequality is omitted.

6 Examples
In this section we describe some examples of problems satisfying our structural assumptions (H1)-

(H4). The typical example is an Hamiltonian of Isaacs type

H
(
x,

x
ε
,Du, εγD2u

)
= min
θ∈Θ

max
ζ∈Z

{
Lθ,ζ

(
x,

x
ε
,Du,D2u

)}
(6.1)

H
(
x,

x
ε
,Du, εγD2u

)
= max
ζ∈Z

min
θ∈Θ

{
Lθ,ζ

(
x,

x
ε
,Du,D2u

)}
(6.2)

where

Lθ,ζ
(
x,

x
ε
, p, X

)
= −tr

(
εγaθ,ζ

(
x,

x
ε

)
X
)
− f θ,ζ

(
x,

x
ε

)
· p − lθ,ζ

(
x,

x
ε

)
. (6.3)

Note that Lθ,ζ is the generator of a diffusion process satisfying

dXs = f θs,ζs

(
Xs,

Xs

ε

)
ds + εγ/2σθs,ζs

(
Xs,

Xs

ε

)
dWs

with aθ,ζ = σθ,ζ(σθ,ζ)T /2. Assumptions (H1), (H2) are in this case satisfied if

(A1) aθ,ζ , f θ,ζ and lθ,ζ are 1-periodic in y for any x ∈ RN ;

(A2) Θ, Z are compact metric space; aθ,ζ , f θ,ζ and lθ,ζ are bounded continuous functions, Lipschitz

in (x, y) uniformly in θ, ζ with Lipschitz constant C.
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For assumption (H3) we need

(A3) Θ reduces to a singleton; aθ,z(x, y) ≥ νI, ∀(x, y, θ, z) ∈ RN × RN × Θ × Z.

Finally the coercitivity (H4) for the Hamiltonian (6.1) is implied by

(A4) There exists ν > 0 such that B(0, ν) ⊂ co{ f θ,ζ(x, y) : z ∈ Z} for any θ ∈ Θ, where co indicates

the closed convex hull.

An interesting collateral problem to that of convergence of (1.1) is the characterization of the effec-

tive Hamiltonian, the Hamiltonian of the limit problem. In general explicit formulas are not available

and the problem must be treated numerically (see [1], [9], [21]). Nevertheless in some special cases

it is possible to give representation formulas of the effective Hamiltonian.

Example 6.1 We consider γ < 1 and F as in Lemma 4.1, i.e. the problem

uε − εγtr
(
a
(
x,

x
ε

)
D2uε

)
+ F

(
x,

x
ε
,Duε

)
= 0. (6.4)

We observe that the effective equation (4.1) coincides with the one arising in homogenization of

second order equations (i.e. γ = 0 in (6.4)). By the results in [4, 9], H− is given by

H− (x, p) :=

∫
[0,1)N

F (x, y, p) dμx(y).

where for x̄ fixed the measure μx̄ is the unique invariant measure for the diffusion associated to the

matrix a(x̄, y) and it is characterized by the adjoint equation

N∑
i, j=1

∂2

∂yi ∂y j

(
ai j(x̄, y)μx̄

)
= 0, μx̄ periodic,

∫
(0,1)N

dμx(y) = 1.

In this case, by Theorem 4.1.(ii), we have the estimate

‖uε − u−‖∞ ≤ Mεmin(
αγ
2
,1−γ) ∀γ < 1.

If we assume that the diffusion coefficient a(x, y) is also independent of x, then for every x̄, the

unique invariant measure μx̄ coincides with the Lebesgue one and therefore for any x

H− (x, p) :=

∫
[0,1)N

F (x, y, p) dy. (6.5)

In this case by Theorem 4.1.(i) we have the estimate

‖uε − u−‖∞ ≤ Mε1−γ ∀γ < 1.

Example 6.2 For γ = 1 we consider the classical case of a linear problem, i.e.

uε − εtr
(
a
(
x,

x
ε

)
D2uε

)
+ F

(
x,

x
ε
,Duε

)
= 0 (6.6)
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where F(x, y, p) = − f (x, y) · p − l(x, y) with f , l smooth. The invariant measure μx(y) associated to

the process generated by a(x, y) and f (x, y) is the unique solution of the adjoint equation

N∑
i, j=1

∂2

∂yi ∂y j
(ai j(x, y)μx) +

N∑
i=1

∂

∂yi
( fi(x, y)μx) = 0, μx̄ periodic,

such that
∫

(0,1)N dμx(y) = 1. Then the effective Hamiltonian is given by

H1(x, p) =

∫
(0,1)N

F(x, y, p)dμx(y) = −
∫

(0,1)N
f (x, y) · p dμx(y) −

∫
(0,1)N

l(x, y) dμx(y).

Example 6.3 Consider for γ > 1 the semilinear problem

uε − εγtr
(
a
(
x,

x
ε

)
D2uε

)
+ F

(
x,

x
ε
,Duε

)
= 0 (6.7)

with

F(x, y, p) = max
ζ∈Z

{− f (x, y, ζ) · p − l(x, y, ζ)} .

Following [2], we give an explicit representation formula for H+ in terms of relaxed controls. Let

M be the set of the probability measures on [0, 1]N × Z and define a relaxed control problem by

introducing for φ = f , l the relaxed function

φr : RN ×M → RN φr(x, μ) :=

∫
[0,1]N×Z

φ(x, y, ζ)dμ.

A measure μ ∈ M is a limiting relaxed control if there exists a control law ζs such that

μn :=
1

tn

∫ tn

0

δYs,ζs ds −→ μ weak-∗

where Ẏs = f (x,Ys, ζs), Y0 = x and δY,ζ is the Dirac’s mass at (y, ζ) ∈ [0, 1]N × Z. We denote by

Ml(x) the set of the limiting relaxed controls for the initial condition Y0 = x. By [2, Thm 7], we

have

H+(x, p) = sup
μ∈Ml(x)

{− f r(x, μ) · p − lr(x, μ)} .
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