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Monodromy of logarithmic Barsotti-Tate groups
attached to 1-motives

By Alessandra Bertapelle®, Maurizio Candilera, and Valentino Cristante at Padova

Abstract. Let K be a complete discrete valuation field with residue field of positive
characteristic. We study the Barsotti-Tate group of a K-1-motive and we give a condition
to extend it to a logarithmic BT-group over the valuation ring. We compare two notions of
monodromy appearing in the literature.

Introduction

Let R be a complete discrete valuation ring with residue field & of positive charac-
teristic p and field of fractions K. In this paper we consider a K-1-motive Mg as in [15] and
its associated Barsotti-Tate group. This last does not in general extend to a Barsotti-Tate
group over R. However, with some assumptions, it extends to a logarithmic Barsotti-Tate
group over R. This follows from [15] and Kato’s results on finite logarithmic group schemes.
Once chosen a uniformizing parameter 7 of R, any logarithmic Barsotti-Tate group over
R is described by two data (G, N) where G is a classical Barsotti-Tate group over R and
N is a homomorphism of classical Barsotti-Tate groups. Moreover, if k is perfect and
R = W(k), N induces a W (k)-homomorphism A" : M(Gy) — M(Gy) on Dieudonné mod-
ules such that FA'V = A" and A% = 0. In the first part of the paper we recall these con-
structions and we show how to relate N with the “geometric monodromy’ introduced by
Raynaud. In the second part of the paper we give an explicit description of A" in terms of
additive extensions and integrals. In the last part of the paper we describe how to recover
the logarithmic Barsotti-Tate group attached to a 1-motive from concrete schemes en-
dowed with a suitable logarithmic structure.

1. 1-motives

Definition 1. Let S be a scheme. An S-1-motive M = [u: Y — G| is a two term
complex (in degree —1, 0) of commutative group schemes over S such that:
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212 Bertapelle, Candilera and Cristante, Barsotti-Tate groups

1. Y is an S-group scheme that locally for the étale topology on S is isomorphic to a
constant group of type Z".

2. G is an S-group scheme extension of an abelian scheme A over S by a torus 7.
3. uis an S-homomorphism Y — G.

Morphisms of S-1-motives are usual morphisms of complexes.

Definition 2. Let Mg be a K-1-motive. One says that Mg

1. has good reduction if Mg extends to a 1-motive over R, i.e. if

Yk is not ramified over R,

Tk has good reduction over R,

Ak has good reduction over R,
® g extends to a homomorphism u : ¥ — G.
(Hence Gk extends to a semi-abelian R-group scheme G.)
2. has semistable reduction if
® Yk is not ramified over R,
® Tx has good reduction over R,
® Ar has semistable reduction over R.
(Hence Gy extends to a smooth R-group scheme with semi-abelian special fibre.?)

3. has potentially semistable (resp. good) reduction if it acquires semistable (resp.
good) reduction after a finite extension of K.

4. is strict if Gk has potentially good reduction.

Observe that any K-1-motive has potentially semistable reduction. However, even if
we allow base change, the morphism ux does not in general extend over R. A simple ex-
ample is the Tate curve ug : Z — G,, ¢ with ug(l) =7 a uniformizing element. It has
semistable reduction but no good reduction.

In the following we will consider only K-1-motives or R-1-motives. For more details
see Raynaud’s paper [15]. We recall now a definition from [11], 4.6.1.

2 Cf. [15], §4.
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Bertapelle, Candilera and Cristante, Barsotti-Tate groups 213
Definition 3. A log 1-motive over R is a triple (Y, G,ux) where Y, G are commuta-
tive group schemes over R with Y (resp. G) satisfying condition 1 (resp. 2) in Definition 1

for S = Spec(R) and ug : Yx — Gk is a homomorphism on generic fibres.

Observe that if (Y, G,uk) is a log 1-motive then [ug : Yx — Gk] is a strict K-1-
motive.

1.1. The Barsotti-Tate group attached to a K-1-motive. Let n be any positive in-
teger and denote by ,H the kernel of n-multiplication on a group H. For any K-1-motive
Mg = [ug : Yk — Gk] one can construct an exact sequence of finite n-torsion group
schemes over K:

(1) H(H,MK>:O—>nGK—>nMK—> YK/HYK—>O
where , Mg is the cokernel of the homomorphism

( ug)
here the fibre product is taken with respect to ux on Yx and the n-multiplication on Gg.
As explained in [15], 3.1, ,Mx is the H'(C(M,n)) with C(M,n) the cone of the n-
multiplication on the 1-motive Mk, i.e.
C(M,l’l): YK — YK@GK — GK,
)y = (_nxa _MK(.V))’
(yag) ’_)MK(y)_ng7

in degree —2, —1, 0.

Definition 4. The p-divisible group or Barsotti-Tate group of the K-1-motive My is
lin(pm MK ) .

In the previous notations we have then an exact sequence of BT-groups:
0 — lim(nG) — lim(,» M) — lim(Yi /p" Yi) — 0.
It is clear that if Mg has good reduction then lim(,r M) extends to a BT-group over R. We
want to understand what happens in the general case. We state now a result that we will
need later.

Lemma 5. Let notations be as above.

1. Consider the following diagram obtained via push-out by ug:

0 —— Yg -, Yk —— Yg/nYx —— 0
| l
0 GK YK HYK GK —_— YK/nYK — 0.
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214 Bertapelle, Candilera and Cristante, Barsotti-Tate groups

The short exact sequence n(n,uk) in (1) is isomorphic to the sequence of kernels for the
n-multiplication of the lower sequence.

2. Consider the following diagram obtained via pull-back by ug:

0 ”GK Y[( X Gg GK YK 0
| | |-
0 nGK GK - GK 0.

The short exact sequence n(n,ug) in (1) is isomorphic to the sequence of cokernels for
the n-multiplication of the upper sequence.

Raynaud shows in [15] that to any K-1-motive M it is possible to associate in a ca-
nonical way a strict K-1-motive M} having the same BT-group of Mg. His construction
makes use of rigid analytic methods. As a consequence, working with BT-groups attached
to K-1-motives, one can always assume the K-1-motives to be strict. We will do so in the
sequel.

1.2. Geometric monodromy. Given a strict K-1-motive, the failure of good reduc-
tion is controlled by a pairing, the so-called geometric monodromy. To define it we need to
recall some facts on the Poincaré bundle.

Remark 6. Let Mg = [ux : Yx — Gk] be a K-1-motive and Y} be the group of
characters of the torus part Tx of Gx and Ak the abelian variety Gg/Tx. It is known?
that to give a l-motive as above is equivalent to giving morphisms hg : Yx — Ak,
hi : Y — A% (with A} the dual variety of Ax) and a trivialization sg : Yx x Yi — 2
with 2 the pull-back via hg x hj of the biextension k. Suppose that G has good re-
duction. Then both Ax and the dual abelian variety A have good reduction and the
Poincaré bundle Zx extends to a biextension Z in Biext' (4,A4*; G, g) on Néron models.
Also hg, hy, extend to morphisms /,7* over R and the pull-back of 2 via h x h* provides a
biextension 27 in Biext! (Y, Y*; Gy, r), Whose generic fibre is #7’KY .

Definition 7 ([15], §4.3). Let Mg = [ugx : Yx — Gk] be a strict K-1-motive and Y}
the group of characters of Tx. The geometric monodromy of Mg is a morphism

(2) p: Yk ® Y —Q
defined as follows:

1. Suppose that Gx has good reduction. Then there exists a trivialization sg of
27 e Biext' (Y, Y*;G,, z) on generic fibres (see Remark 6) and hence a trivialization s
of the image of 2/ in Biext! (Y, Y*;%).® Therefore the biextension 2" is the pull-back of

0—-Gur—%—iZ —0

3 See for example [3], 10.2.14 and [1], IT, 2.3.3.
4 Notations are those in [6], VIII; we use that Biext' (Y, Y*; %) = Biext' (Yk, Y3;; G, k).
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Bertapelle, Candilera and Cristante, Barsotti-Tate groups 215

via a unique u, € Hom(Yx ® Y¢,Z) = Hom(Y ® Y*,i.Z) = BiextO(Y, Y*;i.Z) that fac-
tors through s. One sets u = .

2. In the general situation, Gx reaches good reduction after a Galois extension K’ of
K. Now the monodromy on K’ is compatible with Galois action and can be descended to a
(1 asin (2).

Observe that @ has to be thought of as the group of values of the valuation of the
algebraic closure of K with Z the group of values assumed on K.

Let K" be the maximal unramified extension of K,v : (K"")" — Z the valuation and
R"™ its valuation ring. Observe that in the hypothesis of Definition 7/1 there is a valuation
vy on Px(K"™) and that u, = vy o sx holds. Moreover if the abelian part is trivial, then
Px = Gy, k, hg and hy are the structure morphisms and sx : Yx ® Y; — G,,  is the usual
pairing (y, y*) — y*(»). Hence 1y(y, y*) = v(»*(»)). These results can be generalized. See
also 4.6/6 in [15].

Lemma 8. Let notations be as above. Suppose that G has good reduction over a finite
field extension L of K. Then the geometric monodromy pairing u coincides with the pairing

]
Ye@ Y= Q0 (3,y") = —or (37 (0)

where e is the index of ramification of L/K, vy is the extension of the valuation of L to L™,
te Tx(L™) is any point whose image in the component group Z¢ of Trw (as well as of Gpw)
coincides with the image of ux(y) and y*(t) € (L"™)" for any y* : Tpm — G,y puw.

Proof. We may reduce to the case L = K. As explained above z,(y, y*) is obtained
via the valuation on Zx(K""). Consider the push-out

(3) 0 — Ty —— Gy —— Ax —— 0

e

0—>G’m,K—>Gy*—>AK—>0

where Gy« = P | 4 xh+(y+)- The valuation vy on P (K"") restricts to a vy~ on G,-(K"") and
Uo(y, ¥*) = vy (gy* o uK(y)) holds. Let now ¢t € Tx(K"") be a point having the same image
as ug(y) in the component group Z¢. Then one has vy*(gy* o uK(y)) = v(y*(t)) for any
character y* and ug(y) —te G(R"™). To conclude it is now sufficient to observe that
vy © gy is zero on G(R"™) and that v(y*(1)) = vy+(g,+1). O

1.3. Devissage. Once having realized that the defect of good reduction is controlled
by the geometric monodromy, Raynaud explains, under the hypothesis that the geometric
monodromy takes integer values, how to decompose a strict 1-motive into the sum of two
I-motives, the first having potentially good reduction and the second codifying the mono-
dromy.

Theorem 9. Let Mg = [ux : Yx — Gk]| be a strict K-1-motive such that the geometric
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216 Bertapelle, Candilera and Cristante, Barsotti-Tate groups

monodromy u factors through 7. Then for any choice of a uniformizing parameter © of R
there is a canonical decomposition

(4) Ug = ull(,n+u%(,n
where uén factors through the torus part Tk and is given by the formula
(%) Ux Y& — Tx = Hom(Yg, G k) = Gx,
Y= (y* - n#(y,y*))
while “11<,n has potentially good reduction.
Proof. [15],4.5.1. O

Remark 10. If both Gx and Yk have good reduction (i.e. if Mg comes from a log
1-motive), the geometric monodromy factors through Z and the 1-motive ”}<,7r in the pre-

vious decomposition has good reduction.

Remark 11. Let notations be as above and p : Gx — Ag be the morphism of Gk in
its abelian quotient. It is clear that poug = po ”11<,n has potentially good reduction. More-
over the push-out of #(n,ux) with respect to p, : ,Gxk — ,Ak (the restriction of p to the
kernels of n-multiplication) is #(n, p o ux). More precisely we have:

(6) nTK nTK
n(nyug): 0 2Gx WMy BLEN Yg/nYy —— 0
L
n(n,poug): 0 WAk MY I Yx/nYx —— 0.

Suppose that the hypothesis of Theorem 9 holds. We wish to compare the sequence of
finite n-torsion group schemes #(n, ug) in (1) associated to ux with the sequences associated
to ”}cn and u%( -

Lemma 12. Let M : [ux : Yk — Gk| be a strict K-1-motive such that the geometric
monodromy factors through 7. Let ug = u}(’ﬂ + uén be the decomposition of Theorem 9.

Then n(n,ug) is isomorphic to n(n, ”11<,n) +#5(n, u%(n) where + denotes Baer’s sum.

Proof- Consider the homomorphism
Hom( Yk, Gx) - Ext'(Yk,Gx) = Exth .z (Ya/n Y, xGx)

that associates to a 1-motive ug the pull-back of 0 — ,Gx — Gk N Gx — 0 by ug, resp.

the sequence of cokernels of such pull-back. Here the subscript Z/nZ stands for extensions

in the category of Z/nZ-modules. We have already seen in Lemma 5/2 that the isomorphism

class of n(n,uk) is d(ug). The result follows from the fact that 0 is a homomorphism. []
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Bertapelle, Candilera and Cristante, Barsotti-Tate groups 217
Lemma 13. Given a K-1-motive uy : Zr — Gm x> (the isomorphism class of) the se-
quence n(n, ug) extends over R if and only if uK L 1S divisible by n, i.e. if and only if n(n, uK 2)

is isomorphic to the trivial sequence.

Proof- Recall the following diagram:

Hom(Z",G¢ p) —— Hom(Z",G! ) —— Ext'(Z",uz) — 0

l

Hom(Z",G¢ 1) ——~ Hom(Z",G! 1) —— Ext'(Z',uly) — 0

Zrd Zrd

where as above 0 is obtained by pull-back. Suppose now that n(n, ux) = 0(ug) extends over
R. The same is true for 5(n, uy ) because u , has good reduction and hence also #(n, uf )
extends over R. Let wK be a 1-motive with good reduction such that 5(n, wg) = n(n ug. ﬂ)
Define w}, := wg — uz k> Observe that this is also the Raynaud decomposition of wy K and that
d(wl) = 0. Hence there exists a 1-motive w/. such that n - wj; = w/. Let wj = Wik 2T Wikn
be Raynaud’s decomposition. It is clear that the n- multlphcatlon preserves Raynaud’s de-
compositions and hence n-wk . = wg while n-w% . = —u} .. Hence u} , is divisible by

n. [1]

1.3.1. Geometric monodromy a la Kato. In the following we will work with group

schemes as sheaves of Z-modules on the flat site. We wish to understand better the K-1-

motive ”12<,n in (4) in order to compare Kato’s monodromy and Raynaud’s monodromy.

Given an étale group scheme Nk isomorphic to some Z" over an algebraic closure of K,
denote by Ny the étale group scheme Hom(Ng, Z) and by NP its Cartier dual. We have
7vP = G,k and N%D = Nk ®7 G, k. The geometric monodromy x: Yx ®7 Yi — Z of
ug, provides a morphism

(7) v: Yg — Hom(Y{,2) = (Y3)',
y=u(y,—),
and hence a morphism of tori
(8) v®id: Yk ®7 G — (Y5)' ®z Gk = (Y§)” = Tk.

Let Hk(1) denote the Cartier dual of the Pontrjagin dual® for any finite étale K-group
scheme Hk. Then #, = Z/nZ(1) and if n kills Hx one has Hk(1) = Hx ®z/,7 #,. Hence we
can introduce a ‘“‘monodromy”” homomorphism of level n

) va: Yi/nYg(1) = Yk @z, — (Yg)" ®z s, = n Tk (— 2Gk)
as the restriction of v ® id to the n-torsion subgroups. It was defined in [15], 4.6.

) The Pontrjagin dual of Hy is Hom(Hg, Q/Z).
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218 Bertapelle, Candilera and Cristante, Barsotti-Tate groups
Consider now the 1-motive (Tate’s curve)
n:7— Gk, 1—m
It is clear from (5) that “%(,n has the following factorization:

ny:=idy, ®n y®id

(10) Yk Yk ®7Gpg —— (Y5)' ®2Gpgx = Tx ——— Gk,

yo—  y®n  — u(y,~)@n =",
where v was defined in (7).

Lemma 14. Let (Y, G,uk) be a log 1-motive and denote by 1: Tx — Gk the torus
part. Then the homomorphism

(11) Hom(Y, G) x Hom(Yx ® G, k, Tx) — Hom(Yk, Gk),
(u',wg) — uy +1owgomy

is an isomorphism.
The homomorphism 7y was defined in (10).

Proof. The surjectivity is clear because any homomorphism ux on the right hand side
represents a K-1-motive and we have just seen how to decompose ux as sum of a 1-motive

ug , and a l-motive ug , =10 (v ® id) o my, with v the monodromy homomorphism. In our

hypothesis uj, , extends to an R-1-motive u,. Hence ux is the image of the pair (u},v ® id).
For the injectivity: the first group on the left injects into Hom( Yx, Gk ), so we are reduced
to showing that given a wx € Hom(Yx ® G, k, Tx) the K-1-motive 1 o wg o my has good
reduction if and only if w is trivial. Denote by x(wg) the pairing corresponding to wg via

the canonical isomorphisms
Hom(Yx ® Gk, Tk) = Hom(Yg, Y ) = Hom(Yx ® Y§, Z).

The image of (0,wg) via the map in (11) is a K-1-motive; let u(wg) denote its geometric
monodromy. Such K-1-motive has good reduction if and only if u(wg) = 0 and this last
occurs if and only if wg = 0. [

We restrict again to the consideration of the 1-motive # : Z — G, g, 1 — 7. Observe
that it satisfies the hypothesis of Remark 10 and that in this case u , is trivial. Let us

denote by
(12) Opk:0—p, — nEx — Z/nZ — 0

the short exact sequence #(n, x). The following results will be used in Theorem 19 to com-
pare Raynaud’s monodromy and Kato’s monodromy.

Theorem 15.  Let n be a positive integer and 0, ;. the short exact sequence just defined.
Suppose that ux is a strict K-1-motive as in Theorem 9 with ug = u} . +u% . its Raynaud
decomposition.
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Bertapelle, Candilera and Cristante, Barsotti-Tate groups 219
1. The geometric monodromy of ux and the one of u _ coincide.

2. The short exact sequence n(n,uy ) associated to M} = [ux . : Yx — Tk] is iso-
morphic to the push-out via v, of the sequence

On k ®z/nz Yi/nYk 10 = p, ®7/57 Y /0 Yk — nEx @75z Yi/nYk — Yg/nYx — 0.
Proof.  The first fact follows 1mrned1ately from the definition of uf . For the second
assertion, consider the factorization of uy , described in (10). It says that there is a com-

mutative diagram

nnmy): 0 — (YV)? —— ME —— Yx/nYx —— 0

ool

’7(”’”;(771)5 0 — ,Tx —— nM12< —— Yg/nYx —— 0

where ME = [y : Yx — Yk ® G,y k). It is clear that #(n,zty) = ,’f’K ® Yg/nYk by defi-
nition of 7y. Hence #(n, u ) is isomorphic to V(0 ¢ ® Yk /nYk), ie. to the push-out via
v, of the sequence 0; x ®7/,7 Yx/nYx. O

Corollary 16. Suppose furthermore that Yx and Gg have good reduction and consider
the following homomorphism:

Y Yk Y
(13)  ¥:Exty,, <n—YG> X Hom(m(l),nGK) — Exty),; (m,nGK)

Y
(]717}1) — 77}(-1-}1* <0nK ®z/nz ;)
K

where n} means the restriction of n' to generic fibres.

1. If ug : Yx — Gk is a K-1-motive with Raynaud’s decomposition ux = u}(ln + u%(,n,
then the class of n(n,ux) lies in the image of Y. More precisely it corresponds to the pair
(n(n,u}), vn) where v, is the “monodromy” homomorphism of level n as in (9) and u}, is the
R-1-motive that extends ”}cn'

2. If Y = 7" and Gk = G;‘:’K, then ¥ is an isomorphism.

Proof. The first assertion is an immediate consequence of the previous theorem,
part 1. We restrict then to the case ,Ggx = ,u,j’ and Yx/nYgx = Z"/nZ". For the surjectivity it
is sufficient to remark that any extension class on the right is represented by an #(n,uk) for
a strict K-1-motive ugx because of the vanishing of H'(K, Gm «) = Ext!(z,G? ). For
the injectivity: the group of extensions on the left injects in the group of extensions on the
right. It remams to check that h.(0] x ® Z"/nZ") extends over R if and only if 4 = 0.
Now, h: u}, — u? extends to many homomorphisms hy : Gk — G¢ .. Choose one of
them and let ug : 2" — Gm x be hg omz with @z as in (10). It is clear that / coincides
with the monodromy homornorphlsm of level n of the K-1-motive ug. By hypothesis
n(n,ug) = h.(0; x ® 2" /nZ") extends over R. Hence ux = u , + ug , with uy . divisible
by n (see Lemma 13). This implies that the monodromy of ug that equals the monodromy
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220 Bertapelle, Candilera and Cristante, Barsotti-Tate groups

of u,zg,Z is a multiple of #» and hence its monodromy homomorphism of level # is trivial, i.e.
h=0. O

Theorem 15/2 and its corollary are the only original results of the first part of this
paper. They become interesting once one realizes that Kato proves an analogous result for
extensions of finite logarithmic group schemes (cf. Theorem 17). The comparison of these
two results makes it possible to extend , Mg to a finite logarithmic group scheme over R.

We close this section by giving an example that should clarify all the previous con-
structions.

1.3.2. Tate’s curve. Let n be a positive integer and
ug 27— Gpg;, log=e™ 0<s<n—-1,0=r,¢eR*

an elliptic curve with split multiplicative reduction. The canonical decomposition of Theo-
rem 9 provides uy ,: Z — Gy x, 1 — 2" and uy ,: Z — G, k, 1 — & The geometric
monodromy y: Z ® Z — Z depends only on u% _and it sends 1 ® 1 to rn + s. The “mon-
odromy”” homomorphism of level n, v, : Z/nZ ® n, = u, — u,, is the s-multiplication. It is
also clear that 5(n, ug ) is isomorphic to s - ) .

2. Finite logarithmic group objects

For the theory of logarithmic spaces we refer to [7] and [10]. We need also some
definitions and results in [8], [9].

Let 7 be a fixed uniformizing element of R and T the spectrum of R with the standard
log structure given by the chart N — R, 1 — n. Denote by T, fllog the logarithmic flat site
over T. A finite (representable) logarithmic group G over R is a sheaf of abelian groups
over T, éog that is represented by a fine saturated log-scheme over R, log flat and of Kummer
type over R so that its underlying scheme is finite over R. For an example, consider Tate’s
elliptic curve Ex defined via #: Z — G,, g, 1 — n. Kato shows how to extend Ex to a
group object E” in the category of valuative logarithmic spaces over R. This is explained by
Illusie in [7], 3.1. The kernel of n-multiplication on E”, denoted by ,(E”), is obtained via
log blow-ups from a logarithmic space having

(14) nE = Spec<n@l f[x,])

iz (xj' — ')

as underlying scheme. Moreover there is a short exact sequence of finite logarithmic groups
given by

(15) 0y:0—2Z/nZ(1) — ,(E") — Z/nZ — 0

(cf. [7], 3.2.1.4) whose restriction to generic fibres is the short exact sequence 0, j that we
used in Theorem 15 (cf. [7], 3.2.1.4).

Let now F (resp. H) be an n-torsion finite (resp. a finite étale) group scheme over R
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Bertapelle, Candilera and Cristante, Barsotti-Tate groups 221

endowed with the inverse image log structure. A result of Kato (cf. [8], p. 84) says that ex-
tensions (of sheaves in T,°%)

N0 —-F— G- H—-0
correspond bijectively (up to isomorphisms) to pairs (G, N) where
90> F—>G'— H—-0

is a classical extension of group schemes over R and N : H(1) — F is a morphism of R-
group schemes where H(1) = H ®z/,7 p,- Moreover #'°¢ is the Baer sum of #¢! and the
push-out by N of the extension 0; ®7/,7 H.

Theorem 17 (Kato). Let notations be as above. There is an isomorphism
Extpa(H, F) x Hom(H(1),F) = Extrw(H,F),
(1, N) = 1<+ N.(0; ® H).
Proof. Cf.[8]. O

Observe that the statement of this theorem is similar to that of Corollary 16. We will
explain in Theorem 19 that they are deeply related. Before proceeding we need the follow-
ing result.

Lemma 18. Let Mg = [ugx : Yk — Gk be a K-1-motive and suppose that it comes
from a log 1-motive (Y,G,uk). Having fixed a uniformizing parameter m of R, let
ug = u}(ﬂz + u%(,n be Raynaud’s decomposition of Theorem 9. Then:

1

1. u}( . extends to an R-1-motive u,.
2. The monodromy homomorphism of level n of ug, i.e. v, : Yx/nYx(1) — ,Gxg, ex-
tends to a homomorphism v, g : Y /nY (1) — ,G.

Proof. Both assertions are evident because it follows from the hypothesis that the
torus part Tk of Gk extends to a torus over R; hence also its group of characters Y ex-
tends to an étale group over R, say Y *. This implies that the geometric monodromy takes
values in Z and it extends to a biadditive map Y ® Y* — Z over R. This last provides the
homomorphism v, g we are looking for. []

We can now state the relation between Raynaud’s geometric monodromy of a K-1-
motive and Kato’s monodromy of its logarithmic BT-group.

Theorem 19. Let My = [ug : Yx — Gk] be a K-1-motive coming from a log 1-motive
(Y,G,uk). Let vy g be the homomorphism in Lemma 18 with u}z : Y — G the R-1-motive
that extends the u }(’n of Raynaud’s decomposition.

The sequence n(n,ux) in (1) extends (up to isomorphisms) to a sequence of finite loga-
rithmic group schemes and precisely, in the notations of Theorem 17, to the one associated to
(7/(”7 u}z)a Vn,R) .

Brought to you by | Degli studi di Padova (Degli studi di Padova)
Authenticated | 172.16.1.226
Download Date | 2/1/12 9:56 AM



222 Bertapelle, Candilera and Cristante, Barsotti-Tate groups

In particular, v, (i.e. Raynaud’s monodromy homomorphism of level n associated to uk)
is Kato’s monodromy homomorphism N restricted to generic fibres.

Proof. We know from Lemma 12 and Theorem 15 that #(n, ux) is isomorphic to
’7(”7 ull(,n) + (Vn)*(g;i[( ® Y[(/I’l YK).

Moreover, as u}< . extends to an R-1 motlve u! (cf. Lemma 18) also #(n, uK .) extends to a
sequence of classical group schemes #7(n,ul); on the other hand the sequence 07 , in (12)
extends to the sequence of logarithmic groups that we denoted by ] in (15). Hence the
sequence of logarithmic groups 57(n,ul) + (v, ), (07 ® Y /nY) restricted to generic fibres is
(up to isomorphisms) #(n,ug). [

As all constructions above behave well with respect to inclusion homomorphisms
pm Mg — ,mi1 Mg we can conclude that:

Corollary 20.  With hypothesis as above, let M denote the R-1-motive [ 1Y — G
The BT- group of ug, lim(,m M), extends to a logarzthmlc BT-group lim(,, wML, vym g) where
lim , wM) is the BT-group of M!.

Remark 21. As suggested in [11], 4.7 in the case of equal characteristic p one could
use the previous corollary for giving an alternative construction of the functor Dj, in loc.
cit. that associate to a log 1-motive over R a Dieudonné crystal.

Remark 22. Let F = (Z/nZ)" and H = p¢. The decomposition in Theorem 17 re-
stricted to generic fibres coincides with the isomorphism of Corollary 16. In particular this
is true working with the K-l-motive Ex = [ux : Z — G,, k] given by 1+ g =en™™,
0 <s=<n-—1,¢e R*. The kernel of n-multiplication ,Ex extends (up to isomorphism) to a
finite logarithmic group (,E®, N) where N is the s- multiplication on u, and ,E is the finite
group scheme that lies in the middle of 5(n,ul) forul : Z — G, z, 1 — e.

3. Monodromy on Dieudonné modules

Throughout this section R = W (k), with k perfect, and Mg = [ux : Yx — Gg] will be
a fixed K-1-motive with Yx =~ Z". We will suppose that Gg has good reduction and its ex-
tension over R, G, has split torus part of rank d > 0. We have seen in Corollary 20 that
under these hypotheses the BT- group Mk(p) := lim(,» M) associated to uK extends to a
logarithmic BT-group, say M(p)'°8 = (M(p), ) where M(p) = lim(, wM]) is a classical
BT-group over R and

N:Y®z My — YV ® My — lin(p,,,G)

is the monodromy homomorphism: the first morphism is vg ® id where vy is the extension
of v: Yx — YZ¥ in (7) over R, which exists since Yk, Y& are unramified.

3.1. The identification of Dieudonné modules of Q,/Z, and Hyo- For the theory of
Dieudonné modules we refer to [5]: If G is a BT-group over k, its Dieudonné module is
M(G) = Hom(G, C Wk) where Hom means homomorphisms of k-formal groups. In par-
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Bertapelle, Candilera and Cristante, Barsotti-Tate groups 223

ticular, M ((Q,/Z,),) = (W (k) is a free W (k)-module of rank 1 whose canonical generator
{ is the natural embedding of (Q,/Z,), in CWj once Q,/Z, is identified with CW ([F,);
more precisely, { corresponds to the covector y = (..., y_, y_1) € CW;(k%/%) defined by

y_i= Y, a_ifq, where f,(b) =, is the Kronecker delta.
aeQ,/7,

Let us recall that elements of M(G) can also be described as isomorphism classes of
rigidified extensions of G by G, (as fppf sheaves, cf. [12], §5.2 or [13], §15). Given a
¢ € M(G), the corresponding additive extension is obtained as the pull-back via ¢ of the
extension

0 — Gyi — CWi - CWi — 0

where V is the Verschiebung of CW;; it will be denoted by padd. In particular, one can
prove that the extension

5ot 10— Gus — F — (@y/Z,), — 0,
is isomorphic to the push-out of
/
(16) (e : 0= Z— Z[1/p] = Q,/Z, — 0

via the canonical homomorphism Z — G, . Let ¢: Q,/Z, — Z[1/p] be the section of f
such that 0 £ o(a) < 1, for a€ Q,/Z,. The factor set of {,~ (and hence of C[";‘Sd) corre-
sponding to the section ¢ is then

A7) v (@p/2p) x (Q/Zy) = Z (= Gur), (a,b) = [o(a) +a(b)]

where square brackets mean integral part. The extension { ;‘Sd has a canonical lifting ({ ;‘Sd) R
to R obtained as the push-out of (- in (16) (now as a sequence over R) via the morphism
Z — G, g. The restriction of (C;‘Sd) & on generic fibres splits, and the map

h : lim Z/p'7 =Q,/7, — G, x, aw~ d(a)

is the trivialisation. Let K[X] be the affine algebra of G, x and let &’ : K[X] — K%/7'Z,
i > 0, be the corresponding K-homomorphisms; one gains an element

(18) h*(X) = Z J(a)fa (<] KQI’/ZP — ]gn KZ/PiZ_
aeQy/Z,

If P denotes the coproduct of K%/%r then

PR(X)— 1@ X) - (X)®1= 3 [o(a) +a(b)fy ® fi € R%/Z @ RY/%,
a,beQ,/Z,

this tells us that 42*(X) is an integral of second kind® of R%/%.

% We recall that given the algebra .o/ of a formal group over R, an integral of the second kind of .o/
is an element f €./ ®z K such that df € Qr(/) and Pf — f®1—1® f €./ ® o/, where [P denotes the
coproduct in .o/; we will denote by (/) the R-module of integrals of the second kind. Moreover if
Pf—f®1—1& f =0, fis called an integral of the first kind.
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224 Bertapelle, Candilera and Cristante, Barsotti-Tate groups

Moreover, the covector y, and hence {, can be recovered from /2*(X). In fact by a

s c i
direct computation one can check that #*(X) = > p~'3”,, where j_; € R%/% is a lifting of
y_i€ k!, =0

Also the Dieudonné module of u,.. is a free W (k)-module of rank 1. Let R[Y] be the
affine algebra of p,.. x, where Y is the canonical parameter and let /(Y) € Z(,)[Y] be the

Artin-Hasse logarithm of 1 + Y, i.e.
exp(—I(Y) — p (Y)Y — p2A(Y)" =) =1+7,

then, M ((a,-);) = 0W (k), where 6 = (..., lo(Ys),(Yo)), and lo(Yo) is the image of /(Y)
in the affine algebra of s, ;.

Let us remark that —log(1+ Y) =I(Y) + p~1/(Y)? + p*ZZ(Y)”2 + - - - is the integral
of first kind of (4, ), obtained by lifting 6.

Let (Q,/Z,); =1im(Z/p"Z); be the Pontrjagin dual of (Q,/Z,),; then m,. , is the
Cartier dual of (Q,/Z,);; as a consequence there exist two perfect pairings of W(k)-
modules:

(=, —>c: M(ﬂpwﬁk) X M((@p/zp)m — Wi(k),
(= =Dp: M((@p/zp)k) X M((@p/zp)\lé) — W(k).

We will denote by

(19) id(1) - M(pye ) = M((Qp/Z,),)
the W (k)-isomorphism such that

{m,ny e = <id(1)(m),n>p
for every m € M (. ;) and n € M((Q,/Z,);). One can check that id(1)(d) = ¢, so that
Foid(1)o V =id(1).
3.2. Monodromy and additive extensions. We want to define a I (k)-endomorphism

of the Dieudonné module M(M(p),) depending on the monodromy N. (See also [8],
5.2.2.) We proceed as follows:

oy M(Nk) idy (1)
MY™ ® e i) — M(Y @z e 1) — M(Y ®7Q,/Z,),

where the vertical map on the left comes from the obvious inclusion
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Y™ @ fy i = im(yn Ti)) — im(m M)

and the vertical map on the right is obtained from the projection
liir}(pmM;,k) = Y ®z(Q/Zy)y-
Recall now that both Y and Y* are constant groups and hence
(20) MYV @y 1) =Y @My 1), MY @ pye i) = Y @7 M(pty 1)
The morphism M(N) is then
M(Nk) =V’ ®1id,

where v : Y* — YV comes from the geometric monodromy x and is the transpose of v in
(7) (on special fibres). Using decompositions as in (20) we can define

21)  idy(1):=id®id(1) : YY @ M(#, ;) — YV @ M((Qp/Z,),)

where id(1) is the canonical identification explained in (19). The map idy(1l) is an iso-
morphism of W (k)-modules such that F oidy(1) o V' =1idy(1) and the dotted arrow A~
turns out to be a W (k)-homomorphism such that 4> = 0 and FAV = A",

We want now to describe how the composition idy (1) o M(N,) works: Given an ele-
ment y ®J € Y ® M(a,- ), with J the canonical generator of M (g, ),

(idy(1) o M(Ni)) (x ®9) = idy (1) (v’ (x) ®9) =" (1) ® L.

Remark 23. The construction above could also be done restricting to kernels of p”-
multiplication ,» M and hence working with the monodromy homomorphism of level p”,

vt Y®Z/p"Z — Y @ .

This is what Kato does in [8], 5.2.2. Hence the construction above is simply a way to
summarize Kato’s construction for all p”.

The element v*(3) ® (e Y @ M((Q,/Z,),) = M(Y ® (Q,/Z,),) can be described
in different ways; we give here some examples without proofs:

1. If we interpret it as extension of Y ® (Q,/Z,), by the additive group G,
V() ® ( is represented by the pull-back of the sequence Cjﬂd with respect to

(" (x),id) : Y @, Q,/Z, — Q,/Z,.

2. Given an extension of Q,/Z, by G, the push-out with respect to the m-
multiplication and the pull-back with respect to the m-multiplication provide isomorphic
sequences. In a similar way one proves that the sequence (vv (), id)* ;ﬂd is also isomorphic
to the push-out with respect to (vv (0)s id) of the sequence Y ® { ;‘f,id.
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226 Bertapelle, Candilera and Cristante, Barsotti-Tate groups
3. Starting with the 1-motive n : Z — G, g, consider the sequence
0— Gk — Fx—Q,/Z,—0

obtained by first applying push-out g,, — G,k to the sequence #(p”,x) as in (1) and then
passing to limit on Z/p"Z. The sequence extends over R (passing to Néron models) and
then provides a sequence on component groups

0—-7—¢r—Q,/7,—0

over k that coincides with the opposite of the sequence {,- in (16). The minus sign depends
on Lemma 5.

More generally, given the 1-motive un x : Yk — Tx and a character y e Y*, the
sequence W(x) ®( is obtained as follows: first consider the push-out ,» TK — Tk in
n(p" ,um x) and then pass to limit on Yx/p" Y. At this point we have a sequence

(22) 0—>TKHFK—> YK®@P/ZP_>0

Passing to Néron models and taking the induced sequence on component groups we get a
sequence

(23) 0-YY—¢,—Y®Q,/Z,— 0.

This sequence is nothing else than the opposite of push-out with respect to v: ¥ — Y*v of
the sequence Y ® (,~. Once fixed a character y € Y*, we can consider the induced homo-
morphism y¥ : Y*¥ — Z (evaluation at y). Now the additive extension turns out to be op-
posite of the push-out of (23) via the composition of ¥ with the canonical homomorphism
7 — Gy

4. We can also describe v¥(y) ® { in terms of integrals of the second kind generaliz-
ing what was done in (17) and (18).

Once fixed an isomorphism Y =~ € Ze;, the factor set y in (17) provides a factor set
of ¥ ® {2 ,

Y®7: Y ®(Q,/Z) x Y ®(Q)/Z,) = ¥ ®;Z
(2 “®a,3 6 ® bi) e ® [ola) + o(h)]
and hence a factor set
(24) Y ®(Q,/Z,) x Y ®(Q,/Z,) = G, g,

(Ce®@a S ea®b) — Tlo(a) +o(b)lu(en )

i

of (v(x),id) (Y ® C;Sd). This factor set becomes trivial on generic fibres and a trivializa-
tion is given by
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h:Yg®Qy/Zy — Gak, D ei®ai— plei,x)o(ai)

If we read this trivialization in terms of formal groups and then pass to the affine algebras,
h corresponds to a K-homomorphism

Q,/Zye;
KX = KT X e S S uen p)otanf,
ac®Qy/Zye; i

where f, : €@ Q,/Z,e; — K is 1 in a and 0 otherwise. Also in this case 2*(X) is an integral

! Q Z,(f,' . . P .
of the second kind in K¢ "/“ that is sent to the class of (W (x),id) (Y ® C;gd) via the

map
L(Y ®Q,/Z,) » M(Y ® Q,/Z)).

Remark 24. The above constructions involve the part u}m in Raynaud’s decompo-
sition of the 1-motive ug. In particular, the multiplicative factor set

(25) Yk ®(Qp/Zp) x Y @ (Qy/Zp) — Gk,

— Ylo(an)+a(bi)]ulei,x)

whose valuation is the opposite of the additive factor set in (24), gives the extension obtained
by taking the push-out with respect to y of the sequence (22). If we think of the valuation as
a sort of logarithm killing elements in R*, something similar in form, even if quite different
in nature, happens when working with 1-motives of the type uj , : Yx — Tk, and ug , = 0:
Also in the present situation we have a multiplicative factor set, it may be chosen as fol-
lows:

(26) (Ce@aTe®b) = Tute )77,
where the u(e;, y) are principal units in R, so that the corresponding sequence extends to R.
Now, we can obtain from this an additive factor set by just taking the p-adic logarithm. As
before, the additive factor set we get,

(Ca®@aa®b) - 5~ lola) +olb)] log(u)

is trivial on generic fibres and its trivialisation provides an integral of the second kind
h(y) € K%/ and the BT-group of u) , is completely determined by the W(k)-module
generated by the /(y), as y varies in the group of the characters of Tk (cf. [5], IV).
Finally, let us observe that if one is just interested in computing the monodromy, then the
use of the valuation is quite appropriate, but if one needs to consider the integrals of
Uk = Uy , + Uy ,, i.e. one needs to integrate logarithmic differentials (in the style of [2]),
one is forced to extend the p-adic logarithm defining log z in a way allowing one to distin-
guish the integrals of uj  from those of uf .
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228 Bertapelle, Candilera and Cristante, Barsotti-Tate groups
4. The finite logarithmic group that extends ,M g

Throughout this section we work with a strict K-1-motive ug : Z" — Gg where Gy is
a semiabelian scheme with split torus part G ;i‘ x and with abelian quotient 4x having good
reduction. Given the n-torsion ,Mx of such a 1-motive, we know from Theorem 19 that it
extends to a finite logarithmic group over R, ,M'°¢, but we still know little concerning the
scheme , M underlying ,M'°¢. In this section we are going to describe the logarithmic group
scheme , M'°¢ for any n and precisely we will show that ,M°¢ is the valuative space asso-
ciated to (Spec(nA), /%A) where ,A4 is an algebra over R, constructed in a somewhat
canonical way, and .#4 is a logarithmic structure on Spec(,4) such that the structure
morphism over R induces a morphism of log schemes (Spec(,A4), #4) — T.

We have seen that , Mk is an extension of Yx/nYg by ,G, hence a ,Gg-torsor over
Yk /nYk. If ,Gg = ,uff , it is easy to describe the algebra of ,Mk; cf. [14], [4]. For example
for the Tate curve n : Z — G,, ¢ we denoted ,Mg by

(27) WEx = Spec(KZ/"2[x] /(X" — by n))

n—1
with by , := " n/v;, where {vo,...,v, 1} is the canonical basis of K?/"”. See also (14).
j=0

For the general case, we read from (6) that , M is indeed a u?-torsor over the finite

K-group scheme , M. Recalling that Pic(,M{) = 0, ,M can easily be described via [14],
111, §4.

Lemma 25. Let By be the algebra of M {. Then
nMK = SpeC(@K[Tl,...,Td]/(Tln —bl,...,T[:yZ —bd))
Sor suitable b; € B¢, i=1,...,d.

We need now to describe how the b; above depend on Raynaud’s decomposition of
the 1-motive ug.

4.1. The 1-motive #~!. Before proceeding with the description of ,Myg we need to
know what happens when working with the 1-motive #7! : Z — G, ¢, 1 — n~!. Its n-
torsion group scheme is

1 KZ/nZ x
(28) «E} = Spec nil[ }
(x” - > nivi>
i=0
with {vo,...,v,_1} the canonical base of K*/"Z over K. It is clear that we can not extend its
n—1
algebra over R via the equation x” — ) n~'v;. However, ,,E% is isomorphic to the group
i=0

scheme obtained from (15) by push-out with respect to —1 or by pull-back with respect to
—1. Hence it is also
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K2y
n—1
(y” —vp— Y, n”ivi)

i=1

1
(29) #Ef = Spec

because —1: Z — Z sends vy — vy, v; — v,_; for i > 0. Moreover this scheme extends over
R to

R[]
n—1 )
<yn — vy — Z n-n—zvl)
i=1

We can endow nE% with the logarithmic structure coming fr<l>m the special fibre and it
becomes a logarithmic group scheme over R. Denote by ,(E=%) its valuative logarithmic
space; this lies in the middle of —67 for 6, as in (15).

(30) JEr = Spec

Another decomposition of a 1-motive that will be useful later is the following:

Lemma 26. Let ug be a 1-motive as in Theorem 9. Suppose furthermore that Yi is
split and also the torus part Tk of G is split. Once fixed a uniformizing parameter m € R, a
basis (¢;); of Yx = Z" and a basis (e}); of Y there are decompositions

1 2 1 + —
Ug = uK,n + uK,n - uK,n + uK,n + uK,ﬂ

where the first one is the decomposition in Theorem 9. The second decomposition is uniquely
determined by the following conditions:

® uf Yy — Gg factor through the torus part.

o [f it (resp. u) denotes the geometric monodromy of “},n (resp. of ug ), then one
has u*(ej,ef) = 0 (resp. u (ej,ef) < 0).

1
® up =g A ugand = pt+ .
Proof.  We are reduced to working with uz . We define

WYk ®Yg —Z, (e,ef)— {ﬂ(ej,ei) if this 1.s positive,
0 otherwise.

Similar for x4~ . Moreover u,%rﬂ is defined as done for “%Cn in (10) with x* in place of . [

Remark 27. Recall the decomposition in Lemma 26 and the factorization
ug . = (v®id)my. Let us construct v* : Yx — (¥z)” from the geometric monodromy x*
as in (7). Then we have factorizations uy , = (v" @ id)my (resp. ugx , = (v~ ® id)zy!) with

71';;1 Y — Yg ®ZGm,K7 y'_>y®nil'
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4.2. A general result on short exact sequences. Looking at the diagram (6) where
ZTx = ,u,f we realize that we should move our attention from the horizontal sequence in the
middle #(n, ug) to the vertical sequence in the middle, because, as we have already observed
M,-torsors can easily be described. Moreover we need to know how such a “vertical se-
quence” depends on the analogous sequences for u,, , and u; . For this we need a general
result.

Let y:0—>1-5L X P =0 be an exact sequence of group schemes over a base
scheme S. Let N be another group scheme over S and consider two extensions
n:0—-L—-M —-N-—0,i=12 Let y:0—-L—M — N —0 be a sequence iso-
morphic to the Baer sum 5! + #2. Consider then the following diagrams:

[=— 1 I =—=1
L k|
70 L MM N 0, 7: 0 L M N 0
ol b
;T /
0 P 0 N 0 0 P 0 N 0

where the vertical sequence on the left is  and the upper horizontal sequence is #’ for
i=1,2 (resp. ). Call y' for i = 1,2 (resp. ) the vertical sequence in the middle. Suppose
now that there is a sequence

77:0—-1—- M —N—-0
such that #> = w,#”>. Summarizing we have
n=n'+wi’.

We are going to see that a similar relation holds also for the vertical sequences v, .

Now k,w,7? is isomorphic to the trivial extension and we choose a section o of f2.
Moreover k,n = k.n' and there is then an isomorphism ° : Q — Q! depending on . It is
also not difficult to check that

(31) = ()Y + (af)y?

Consider also the following push-out diagram:

72
iz 0 I M N —— 0
Pl |
wait=n>: 0 L M2 —>N—>0

kol |
ka*: 0 0? —>N—>0
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where the lower sequence is isomorphic to the trivial one. We denoted by y? the exact se-
quence involving g*> and 2. There exists then a canonical homomorphism ¢¢: N — Q2
such that

o‘h* = ¢°6;
it is not difficult to check that ¢ is a section of f2. Moreover by construction it satisfies
(@) ? =7
Taking now ¢ = ¢¢ in (31) and setting 7 := 1°" we get that
(32) A &

4.3. ;Mg as torsor under ,un Let uK be a 1-motive as in Theorem 9. We
have then a decompos1t10n ux = Uy ,+ug, and an isomorphism of sequences
n(n,ug) = n(n, uK 2) +n(n, uK ) for n(n, —) the sequence introduced in (1).

The n-torsion ,» Mg of ug lies in the middle of #(n, ux) and we have already seen
what it looks like in Lemma 25. Moreover n(n,uy ) = w.n(n,uz), where the 1-motive

: Y — Tk 1s obtained from uK . by forgetting the inclusion Tx — Gx and w is this
1nclu51on restricted to kernels of n-multiplication. Hence we are in the situation of the
subsection 4.2.

Considering diagram (6) for #(n, u}(yﬂ) in place of #(n, ug ) we get

(33) nTK nTK
w J/TI
n(n,u}(m): 0 Gk M} SN Yg/nYx —— 0
Pn Jg‘ ‘
1
”(nvpu}(.n): 0 nAK Q}( —>f YK/I’lYK —— 0.

Let w(n,u}(’n) be the vertical sequence in the middle of this diagram and y(n,uk ) the
corresponding vertical sequence in the middle of (6). By (32) we have

(34) W(n,ug) = 1 (n,ug ) + fn(n, i)

for 1 the isomorphism , M7 — Q} constructed as in §4.2. By abuse of notations, we denote
by ,M}; also the group scheme in the middle of 1*y(n, u}(,n); indeed it is isomorphic to the
one in the middle of #(n, uj ). The scheme , My is a ul-torsor over , M} and hence

M}(;Spec(@K[Tl,...,T]/(T" bU’ ~,T£—b£ll))).

On the other hand, call ,M 12< the group in the middle of 5(n,#%). It is a u?-torsor over
Z"/nZ" and hence it has the form
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232 Bertapelle, Candilera and Cristante, Barsotti-Tate groups
WMy = Spec(KZ "2 [Ty, ... T /(T — b7, T} — b))
Hence the group in the middle of f*#(n, ﬁ%(m) will be
Spec(#Bx(Th, ..., T /(T — b7, ..., T} = b7Y).

Recall now that ﬁ}(,n = Uy, + g , by Lemma 26 and hence

n(n,ug ) = n(nug ) +n(nug ).

Let
Spec(KZ /"2 [Ty, ..., TJ) /(T = b} ,..., T} — b))

be the group scheme in the middle of the sequence #(n, u ) and analogously for uy , with
elements b, € KZ'/"*" in place of b;". Using the sequence

(35) 0— u'(X) - DX, 00)" 5 T(X,00)" - HX,p1!) — 0

we may assume that b,(-2> = b} b; and
b =b"bib; foralll <i<d.

Recall now that the vertical sequence on the left in (6) or (33) extends over R because
Gk has good reduction and that also ,M{ extends to a finite group scheme over R, say
2M* = Spec(#), because the K-1-motive

pug : 2" — Gg — Ag

has good reduction. Fmally also #(n, u}( ») extends over R and hence the same is true for
the vertical sequence v (n, uK .) and so we may assume b e #*. This 1rnp11es that if we
want to extend ,Mk over R we have to understand better M2 and hence b =b/b;.

Recall the description of uK,n in (10) where now Yx = Z" and T K = G:m, K- It is an easy
exercise to check that

Z ut(ejer n—1 A
bt = (bpn)™ with b, , := 3 n/v; € RZ/ME,
=0
with vg, ..., v, 1 the standard basis of K?/"” (resp. of R?/"%), ey, ..., e, the usual basis of Z"

and e} the character in Y/ such that e/ (7)) =y, u* the geometric monodromy of uj; .
Moreover u*(ej, ;') Z 0 by definition of uy ; hence b, € % for all i. In a similar way

Zr: —1(ere]) n—1 )
bi = (bg1 )" / with by, == vg + Y. 7" v € R/

i=1

Hence also b; e 93 for all i because 1 (ej,e;) <0 by definition of Ug - Summarizing,
b = bl(.l)b(-z) b b*b € % for all i. Hence M k extends to a finite scheme over Spec(%)

1
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Bertapelle, Candilera and Cristante, Barsotti-Tate groups 233
(36) oM = Spec(B[T,....Td /(T = by,...., T} — ba)).
The following lemma says that , M is indeed a “nice” model.

Lemma 28. Let notations be as above and endow ,M* = Spec(%) with the inverse
image log structure of the base T. Let (,M, M/ ) be the scheme (36) with the logarithmic
structure induced by the special fibre. Then the canonical morphism ,My — , M7 extends to
a unique morphism of logarithmic groups over R. Moreover the following universal property
holds: For any fine saturated logarithmic scheme (S, M) over (,M™, M yp1) there is a bi-
Jection between the scheme theoretic morphisms Sy — , My over ,M ,‘é and the logarithmic
morphisms (S, Ms) — (.M, M) over (M, M pr4).

Proof. We may assume S = Spec(C) affine. Any ,M ,’é—morphism Sk — Mg is de-
scribed as a homomorphism of #g-algebras ¢ : Bk|[T\,...,T,|/(T — b;) — Ck. The
only problem for the extension is to prove that the images of all 7; lie in C and more pre-
cisely in I'(S, .#s). However b; = bl(.l)bl(.z) with bgl) € #* and b;z) e I'(Y, #y) for any loga-
rithmic space over the group Z/nZ endowed with the inverse image log structure because of
the description of bl(.z) in terms of b, , and b,-1 ,. Moreover g (T}") = pg(b;) € I'(S, Ms). It
is now sufficient to recall that S is saturated to conclude that also ¢ (7;) € I'(S, .#s). [

Proposition 29. Let notations be as above. The finite group scheme ,My over ,M§
extends (up to isomorphisms) to a finite logarithmic group ,M'¢ that is the valuative loga-
rithmic space associated to a logarithmic scheme whose underlying scheme is

(37) nM = Spec(%‘[Tl, ceey Td]/(Tln —bl,. cy T; — bd))

Moreover the diagram (6) extends to a diagram of finite logarithmic groups with , M'°% in the
middle.

Proof. It remains only to prove that ,M with the logarithmic structure induced by
the special fibre induces a group functor on the category of fine saturated logarithmic
schemes over R, i.e. it is in T, fllog' However this is immediate consequence of the previous
lemma.

Also the assertion on the diagram follows applying the previous lemma. []

Observe that we had already proved in Theorem 18 that ,Mg extends to a loga-
rithmic group over 7, however, in the hypothesis of this section, it is possible to describe it
in terms of algebras and not only as a “sum’ of two extensions.
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