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Monodromy of logarithmic Barsotti-Tate groups
attached to 1-motives

By Alessandra Bertapelle1), Maurizio Candilera, and Valentino Cristante at Padova

Abstract. Let K be a complete discrete valuation field with residue field of positive
characteristic. We study the Barsotti-Tate group of a K-1-motive and we give a condition
to extend it to a logarithmic BT-group over the valuation ring. We compare two notions of
monodromy appearing in the literature.

Introduction

Let R be a complete discrete valuation ring with residue field k of positive charac-
teristic p and field of fractions K. In this paper we consider a K-1-motive MK as in [15] and
its associated Barsotti-Tate group. This last does not in general extend to a Barsotti-Tate
group over R. However, with some assumptions, it extends to a logarithmic Barsotti-Tate
group over R. This follows from [15] and Kato’s results on finite logarithmic group schemes.
Once chosen a uniformizing parameter p of R, any logarithmic Barsotti-Tate group over
R is described by two data ðG;NÞ where G is a classical Barsotti-Tate group over R and
N is a homomorphism of classical Barsotti-Tate groups. Moreover, if k is perfect and
R ¼W ðkÞ, N induces a W ðkÞ-homomorphism N : MðGkÞ !MðGkÞ on Dieudonné mod-
ules such that FN V ¼N and N 2 ¼ 0. In the first part of the paper we recall these con-
structions and we show how to relate N with the ‘‘geometric monodromy’’ introduced by
Raynaud. In the second part of the paper we give an explicit description of N in terms of
additive extensions and integrals. In the last part of the paper we describe how to recover
the logarithmic Barsotti-Tate group attached to a 1-motive from concrete schemes en-
dowed with a suitable logarithmic structure.

1. 1-motives

Definition 1. Let S be a scheme. An S-1-motive M ¼ ½u : Y ! G � is a two term
complex (in degree �1, 0) of commutative group schemes over S such that:
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1. Y is an S-group scheme that locally for the étale topology on S is isomorphic to a
constant group of type Zr.

2. G is an S-group scheme extension of an abelian scheme A over S by a torus T .

3. u is an S-homomorphism Y ! G.

Morphisms of S-1-motives are usual morphisms of complexes.

Definition 2. Let MK be a K-1-motive. One says that MK

1. has good reduction if MK extends to a 1-motive over R, i.e. if

. YK is not ramified over R,

. TK has good reduction over R,

. AK has good reduction over R,

. uK extends to a homomorphism u : Y ! G.

(Hence GK extends to a semi-abelian R-group scheme G.)

2. has semistable reduction if

. YK is not ramified over R,

. TK has good reduction over R,

. AK has semistable reduction over R.

(Hence GK extends to a smooth R-group scheme with semi-abelian special fibre.2))

3. has potentially semistable (resp. good ) reduction if it acquires semistable (resp.
good) reduction after a finite extension of K .

4. is strict if GK has potentially good reduction.

Observe that any K-1-motive has potentially semistable reduction. However, even if
we allow base change, the morphism uK does not in general extend over R. A simple ex-
ample is the Tate curve uK : Z! Gm;K with uKð1Þ ¼ p a uniformizing element. It has
semistable reduction but no good reduction.

In the following we will consider only K-1-motives or R-1-motives. For more details
see Raynaud’s paper [15]. We recall now a definition from [11], 4.6.1.

2) Cf. [15], §4.
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Definition 3. A log 1-motive over R is a triple ðY ;G; uKÞ where Y ;G are commuta-
tive group schemes over R with Y (resp. G) satisfying condition 1 (resp. 2) in Definition 1
for S ¼ SpecðRÞ and uK : YK ! GK is a homomorphism on generic fibres.

Observe that if ðY ;G; uKÞ is a log 1-motive then ½uK : YK ! GK � is a strict K-1-
motive.

1.1. The Barsotti-Tate group attached to a K-1-motive. Let n be any positive in-
teger and denote by nH the kernel of n-multiplication on a group H. For any K-1-motive
MK ¼ ½uK : YK ! GK � one can construct an exact sequence of finite n-torsion group
schemes over K:

hðn; uKÞ : 0! nGK ! nMK ! YK=nYK ! 0ð1Þ

where nMK is the cokernel of the homomorphism

YK �����!ð�n;�uK Þ
YK �GK

GK ;

here the fibre product is taken with respect to uK on YK and the n-multiplication on GK .
As explained in [15], 3.1, nMK is the H�1

�
CðM; nÞ

�
with CðM; nÞ the cone of the n-

multiplication on the 1-motive MK , i.e.

CðM; nÞ : YK ! YK lGK ! GK ;

y 7!
�
�nx;�uKðyÞ

�
;

ðy; gÞ 7! uKðyÞ � ng;

in degree �2, �1, 0.

Definition 4. The p-divisible group or Barsotti-Tate group of the K-1-motive MK is
lim�! ðpmMKÞ.

In the previous notations we have then an exact sequence of BT-groups:

0! lim�!ðpmGKÞ ! lim�!ðpmMKÞ ! lim�!ðYK=pmYKÞ ! 0:

It is clear that if MK has good reduction then lim�! ðpr MKÞ extends to a BT-group over R. We
want to understand what happens in the general case. We state now a result that we will
need later.

Lemma 5. Let notations be as above.

1. Consider the following diagram obtained via push-out by uK :

0 ���! YK ���!�n
YK ���! YK=nYK ���! 0???yuK

???y
???y

0 ���! GK ���! YK qYK
GK ���! YK=nYK ���! 0:

Bertapelle, Candilera and Cristante, Barsotti-Tate groups 213

Brought to you by | Degli studi di Padova (Degli studi di Padova)
Authenticated | 172.16.1.226

Download Date | 2/1/12 9:56 AM



The short exact sequence hðn; uKÞ in (1) is isomorphic to the sequence of kernels for the

n-multiplication of the lower sequence.

2. Consider the following diagram obtained via pull-back by uK :

0 ���! nGK ���! YK �GK
GK ���! YK ���! 0???y

???y
???yuK

0 ���! nGK ���! GK ���!n GK ���! 0:

The short exact sequence hðn; uKÞ in (1) is isomorphic to the sequence of cokernels for

the n-multiplication of the upper sequence.

Raynaud shows in [15] that to any K-1-motive MK it is possible to associate in a ca-
nonical way a strict K-1-motive M 0

K having the same BT-group of MK . His construction
makes use of rigid analytic methods. As a consequence, working with BT-groups attached
to K-1-motives, one can always assume the K-1-motives to be strict. We will do so in the
sequel.

1.2. Geometric monodromy. Given a strict K-1-motive, the failure of good reduc-
tion is controlled by a pairing, the so-called geometric monodromy. To define it we need to
recall some facts on the Poincaré bundle.

Remark 6. Let MK ¼ ½uK : YK ! GK � be a K-1-motive and Y �K be the group of
characters of the torus part TK of GK and AK the abelian variety GK=TK . It is known3)
that to give a 1-motive as above is equivalent to giving morphisms hK : YK ! AK ,
h�K : Y �K ! A�K (with A�K the dual variety of AK ) and a trivialization sK : YK � Y �K ! PY

K

with PY
K the pull-back via hK � h�K of the biextension PK . Suppose that GK has good re-

duction. Then both AK and the dual abelian variety A�K have good reduction and the

Poincaré bundle PK extends to a biextension P in Biext1ðA;A�;Gm;RÞ on Néron models.
Also hK ; h

�
K extend to morphisms h; h� over R and the pull-back of P via h� h� provides a

biextension PY in Biext1ðY ;Y �;Gm;RÞ, whose generic fibre is PY
K .

Definition 7 ([15], §4.3). Let MK ¼ ½uK : YK ! GK � be a strict K-1-motive and Y �K
the group of characters of TK . The geometric monodromy of MK is a morphism

m : YK nY �K ! Qð2Þ

defined as follows:

1. Suppose that GK has good reduction. Then there exists a trivialization sK of
PY A Biext1ðY ;Y �;Gm;RÞ on generic fibres (see Remark 6) and hence a trivialization s

of the image of PY
K in Biext1ðY ;Y �;GÞ.4) Therefore the biextension PY is the pull-back of

0! Gm;R ! G! i�Z! 0

3) See for example [3], 10.2.14 and [1], II, 2.3.3.

4) Notations are those in [6], VIII; we use that Biext1ðY ;Y �;GÞGBiext1ðYK ;Y
�

K ;Gm;K Þ.
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via a unique m0 A HomðYK nY �K ;ZÞ ¼ HomðY nY �; i�ZÞ ¼ Biext0ðY ;Y �; i�ZÞ that fac-
tors through s. One sets m ¼ m0.

2. In the general situation, GK reaches good reduction after a Galois extension K 0 of
K . Now the monodromy on K 0 is compatible with Galois action and can be descended to a
m as in (2).

Observe that Q has to be thought of as the group of values of the valuation of the
algebraic closure of K with Z the group of values assumed on K.

Let K un be the maximal unramified extension of K ; v : ðK unÞ� ! Z the valuation and
Run its valuation ring. Observe that in the hypothesis of Definition 7/1 there is a valuation
vP on PKðK unÞ and that m0 ¼ vP � sK holds. Moreover if the abelian part is trivial, then
PK ¼ Gm;K , hK and h�K are the structure morphisms and sK : YK nY �K ! Gm;K is the usual
pairing ðy; y�Þ 7! y�ðyÞ. Hence m0ðy; y�Þ ¼ v

�
y�ðyÞ

�
. These results can be generalized. See

also 4.6/6 in [15].

Lemma 8. Let notations be as above. Suppose that GK has good reduction over a finite

field extension L of K. Then the geometric monodromy pairing m coincides with the pairing

YK nY �K ! Q; ðy; y�Þ 7! 1

e
vL

�
y�ðtÞ

�

where e is the index of ramification of L=K, vL is the extension of the valuation of L to Lun,
t A TKðLunÞ is any point whose image in the component group Zd of TLun (as well as of GLun )
coincides with the image of uKðyÞ and y�ðtÞ A ðLunÞ� for any y� : TLun ! Gm;Lun .

Proof. We may reduce to the case L ¼ K . As explained above m0ðy; y�Þ is obtained
via the valuation on PKðK unÞ. Consider the push-out

0 ���! TK ���! GK ���! AK ���! 0???yy�

???ygy�

����
0 ���! Gm;K ���! Gy� ���! AK ���! 0

ð3Þ

where Gy� GPK jAK�h�ðy�Þ. The valuation vP on PKðK unÞ restricts to a vy� on Gy� ðK unÞ and
m0ðy; y�Þ ¼ vy�

�
gy� � uKðyÞ

�
holds. Let now t A TKðK unÞ be a point having the same image

as uKðyÞ in the component group Zd . Then one has vy�
�
gy� � uKðyÞ

�
¼ v

�
y�ðtÞ

�
for any

character y� and uKðyÞ � t A GðRunÞ. To conclude it is now su‰cient to observe that
vy� � gy� is zero on GðRunÞ and that v

�
y�ðtÞ

�
¼ vy�ðgy�tÞ. r

1.3. Devissage. Once having realized that the defect of good reduction is controlled
by the geometric monodromy, Raynaud explains, under the hypothesis that the geometric
monodromy takes integer values, how to decompose a strict 1-motive into the sum of two
1-motives, the first having potentially good reduction and the second codifying the mono-
dromy.

Theorem 9. Let MK ¼ ½uK : YK ! GK � be a strict K-1-motive such that the geometric
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monodromy m factors through Z. Then for any choice of a uniformizing parameter p of R

there is a canonical decomposition

uK ¼ u1
K;p þ u2

K;pð4Þ

where u2
K ;p factors through the torus part TK and is given by the formula

u2
K ;p : YK ! TK ¼ HomðY �K ;Gm;KÞ !

i
GK ;ð5Þ

y 7! ðy� 7! pmðy;y�ÞÞ

while u1
K ;p has potentially good reduction.

Proof. [15], 4.5.1. r

Remark 10. If both GK and YK have good reduction (i.e. if MK comes from a log
1-motive), the geometric monodromy factors through Z and the 1-motive u1

K;p in the pre-
vious decomposition has good reduction.

Remark 11. Let notations be as above and r : GK ! AK be the morphism of GK in
its abelian quotient. It is clear that r � uK ¼ r � u1

K;p has potentially good reduction. More-
over the push-out of hðn; uKÞ with respect to rn : nGK ! nAK (the restriction of r to the
kernels of n-multiplication) is hðn; r � uKÞ. More precisely we have:

nTK nTK???yw

???yt

hðn; uKÞ : 0 ���! nGK ���! nMK ���!h YK=nYK ���! 0???yrn

???yg

����
hðn; r � uKÞ : 0 ���! nAK ���! nM A

K ���!f YK=nYK ���! 0:

ð6Þ

Suppose that the hypothesis of Theorem 9 holds. We wish to compare the sequence of
finite n-torsion group schemes hðn; uKÞ in (1) associated to uK with the sequences associated
to u1

K;p and u2
K ;p.

Lemma 12. Let MK : ½uK : YK ! GK � be a strict K-1-motive such that the geometric

monodromy factors through Z. Let uK ¼ u1
K;p þ u2

K;p be the decomposition of Theorem 9.
Then hðn; uKÞ is isomorphic to hðn; u1

K;pÞ þ hðn; u2
K;pÞ where þ denotes Baer’s sum.

Proof. Consider the homomorphism

HomðYK ;GKÞ !
q

Ext1ðYK ; nGKÞGExt1
Z=nZðYK=nYK ; nGKÞ

that associates to a 1-motive uK the pull-back of 0! nGK ! GK !
n

GK ! 0 by uK , resp.
the sequence of cokernels of such pull-back. Here the subscript Z=nZ stands for extensions
in the category of Z=nZ-modules. We have already seen in Lemma 5/2 that the isomorphism
class of hðn; uKÞ is qðuKÞ. The result follows from the fact that q is a homomorphism. r
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Lemma 13. Given a K-1-motive uK : Zr ! Gd
m;K , (the isomorphism class of ) the se-

quence hðn; uKÞ extends over R if and only if u2
K;p is divisible by n, i.e. if and only if hðn; u2

K;pÞ
is isomorphic to the trivial sequence.

Proof. Recall the following diagram:

HomðZr;Gd
m;RÞ ���!n HomðZr;Gd

m;RÞ ���!q Ext1ðZr; md
n;RÞ ���! 0???y

???y
???y

HomðZr;Gd
m;KÞ ���!n HomðZr;Gd

m;KÞ ���!q Ext1ðZr; md
n;KÞ ���! 0???y

???y
Zrd ������������!n

Zrd

where as above q is obtained by pull-back. Suppose now that hðn; uKÞ ¼ qðuKÞ extends over
R. The same is true for hðn; u1

K;pÞ because u1
K;p has good reduction and hence also hðn; u2

K ;pÞ
extends over R. Let wK be a 1-motive with good reduction such that hðn;wKÞ ¼ hðn; u2

K ;pÞ.
Define w 0K :¼ wK � u2

K ;p; observe that this is also the Raynaud decomposition of w 0K and that

qðw 0KÞ ¼ 0. Hence there exists a 1-motive w 00K such that n � w 00K ¼ w 0K . Let w 00K ¼ w1
K;p þ w2

K ;p

be Raynaud’s decomposition. It is clear that the n-multiplication preserves Raynaud’s de-
compositions and hence n � w1

K ;p ¼ wK while n � w2
K;p ¼ �u2

K;p. Hence u2
K;p is divisible by

n. r

1.3.1. Geometric monodromy à la Kato. In the following we will work with group
schemes as sheaves of Z-modules on the flat site. We wish to understand better the K-1-
motive u2

K ;p in (4) in order to compare Kato’s monodromy and Raynaud’s monodromy.

Given an étale group scheme NK isomorphic to some Zr over an algebraic closure of K,
denote by N4

K the étale group scheme HomðNK ;ZÞ and by N4D
K its Cartier dual. We have

Z4D ¼ Gm;K and N4D
K ¼ NK nZ Gm;K . The geometric monodromy m : YK nZ Y �K ! Z of

uK , provides a morphism

n : YK ! HomðY �K ;ZÞ ¼: ðY �KÞ
4;ð7Þ

y 7! mðy;�Þ;

and hence a morphism of tori

nn id : YK nZ Gm;K ! ðY �KÞ
4nZ Gm;K ¼ ðY �KÞ

D ¼ TK :ð8Þ

Let HKð1Þ denote the Cartier dual of the Pontrjagin dual5) for any finite étale K-group
scheme HK . Then mn ¼ Z=nZð1Þ and if n kills HK one has HKð1Þ ¼ HK nZ=nZ mn. Hence we
can introduce a ‘‘monodromy’’ homomorphism of level n

nn : YK=nYKð1Þ ¼ YK nZ mn ! ðY �KÞ
4nZ mn ¼ nTK ð,! nGKÞð9Þ

as the restriction of nn id to the n-torsion subgroups. It was defined in [15], 4.6.

5) The Pontrjagin dual of HK is HomðHK ;Q=ZÞ.
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Consider now the 1-motive (Tate’s curve)

p : Z! Gm;K ; 1 7! p:

It is clear from (5) that u2
K ;p has the following factorization:

ð10Þ YK ������!pY :¼idYK
np

YK nZ Gm;K ������!nnid ðY �KÞ
4nZ Gm;K ¼ TK ������!i

GK ;

y
c
������! yn p

c
������! mðy;�Þn p ¼ pmðy;�Þ;

where n was defined in (7).

Lemma 14. Let ðY ;G; uKÞ be a log 1-motive and denote by i : TK ! GK the torus

part. Then the homomorphism

HomðY ;GÞ �HomðYK nGm;K ;TKÞ ! HomðYK ;GKÞ;

ðu1;wKÞ 7! u1
K þ i � wK � pY

ð11Þ

is an isomorphism.

The homomorphism pY was defined in (10).

Proof. The surjectivity is clear because any homomorphism uK on the right hand side
represents a K-1-motive and we have just seen how to decompose uK as sum of a 1-motive
u1

K ;p and a 1-motive u2
K ;p ¼ i � ðnn idÞ � pYK

with n the monodromy homomorphism. In our
hypothesis u1

K ;p extends to an R-1-motive u1
p. Hence uK is the image of the pair ðu1

p; nn idÞ.
For the injectivity: the first group on the left injects into HomðYK ;GKÞ, so we are reduced
to showing that given a wK A HomðYK nGm;K ;TKÞ the K-1-motive i � wK � pY has good
reduction if and only if wK is trivial. Denote by mðwKÞ the pairing corresponding to wK via
the canonical isomorphisms

HomðYK nGm;K ;TKÞ ¼ HomðY �K ;Y4
K Þ ¼ HomðYK nY �K ;ZÞ:

The image of ð0;wKÞ via the map in (11) is a K-1-motive; let mðwKÞ denote its geometric
monodromy. Such K-1-motive has good reduction if and only if mðwKÞ ¼ 0 and this last
occurs if and only if wK ¼ 0. r

We restrict again to the consideration of the 1-motive p : Z! Gm;K , 1 7! p. Observe
that it satisfies the hypothesis of Remark 10 and that in this case u1

K;p is trivial. Let us
denote by

yp
n;K : 0! mn ! nEK ! Z=nZ! 0ð12Þ

the short exact sequence hðn; pÞ. The following results will be used in Theorem 19 to com-
pare Raynaud’s monodromy and Kato’s monodromy.

Theorem 15. Let n be a positive integer and yp
n;K the short exact sequence just defined.

Suppose that uK is a strict K-1-motive as in Theorem 9 with uK ¼ u1
K ;p þ u2

K;p its Raynaud

decomposition.
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1. The geometric monodromy of uK and the one of u2
K;p coincide.

2. The short exact sequence hðn; u2
K;pÞ associated to M 2

K ¼ ½u2
K ;p : YK ! TK � is iso-

morphic to the push-out via nn of the sequence

yp
n;K nZ=nZ YK=nYK : 0! mn nZ=nZ YK=nYK ! nEK nZ=nZ YK=nYK ! YK=nYK ! 0:

Proof. The first fact follows immediately from the definition of u2
K ;p. For the second

assertion, consider the factorization of u2
K;p described in (10). It says that there is a com-

mutative diagram

hðn; pY Þ : 0 ���! nðY4
K Þ

D ���! nM p
K ���! YK=nYK ���! 0???ynn

???y
����

hðn; u2
K;pÞ : 0 ���! nTK ���! nM 2

K ���! YK=nYK ���! 0

where M p
K ¼ ½pY : YK ! YK nGm;K �. It is clear that hðn; pY Þ ¼ yp

n;K nYK=nYK by defi-
nition of pY . Hence hðn; u2

K ;pÞ is isomorphic to nn�ðyp
n;K nYK=nYKÞ, i.e. to the push-out via

nn of the sequence yp
n;K nZ=nZ YK=nYK . r

Corollary 16. Suppose furthermore that YK and GK have good reduction and consider

the following homomorphism:

C : Ext1
Z=nZ

Y

nY
; nG

� �
�Hom

YK

nYK

ð1Þ; nGK

� �
! Ext1

Z=nZ

YK

nYK

; nGK

� �
;

ðh1; hÞ 7! h1
K þ h� yp

n;K nZ=nZ

YK

nYK

� �
ð13Þ

where h1
K means the restriction of h1 to generic fibres.

1. If uK : YK ! GK is a K-1-motive with Raynaud’s decomposition uK ¼ u1
K;p þ u2

K;p,
then the class of hðn; uKÞ lies in the image of C. More precisely it corresponds to the pair�
hðn; u1

pÞ; nn

�
where nn is the ‘‘monodromy’’ homomorphism of level n as in (9) and u1

p is the

R-1-motive that extends u1
K;p.

2. If YK GZr and GK GGd
m;K , then C is an isomorphism.

Proof. The first assertion is an immediate consequence of the previous theorem,
part 1. We restrict then to the case nGK ¼ md

n and YK=nYK ¼ Zr=nZr. For the surjectivity it
is su‰cient to remark that any extension class on the right is represented by an hðn; uKÞ for

a strict K-1-motive uK because of the vanishing of H1ðK;Gd
m;KÞ ¼ Ext1ðZ;Gd

m;KÞ. For
the injectivity: the group of extensions on the left injects in the group of extensions on the
right. It remains to check that h�ðyp

n;K nZr=nZrÞ extends over R if and only if h ¼ 0.
Now, h : mr

n ! md
n extends to many homomorphisms ~hhK : Gr

m;K ! Gd
m;K . Choose one of

them and let uK : Zr ! Gd
m;K be ~hhK � pZ r with pZ r as in (10). It is clear that h coincides

with the monodromy homomorphism of level n of the K-1-motive uK . By hypothesis
hðn; uKÞG h�ðyp

n;K nZr=nZrÞ extends over R. Hence uK ¼ u1
K ;p þ u2

K;p with u2
K;p divisible

by n (see Lemma 13). This implies that the monodromy of uK that equals the monodromy
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of u2
K ;p is a multiple of n and hence its monodromy homomorphism of level n is trivial, i.e.

h ¼ 0. r

Theorem 15/2 and its corollary are the only original results of the first part of this
paper. They become interesting once one realizes that Kato proves an analogous result for
extensions of finite logarithmic group schemes (cf. Theorem 17). The comparison of these
two results makes it possible to extend nMK to a finite logarithmic group scheme over R.

We close this section by giving an example that should clarify all the previous con-
structions.

1.3.2. Tate’s curve. Let n be a positive integer and

uK : Z! Gm;K ; 1 7! q ¼ epnrþs; 0e se n� 1; 0e r; e A R�

an elliptic curve with split multiplicative reduction. The canonical decomposition of Theo-
rem 9 provides u2

K;p : Z! Gm;K , 1 7! pnrþs and u1
K ;p : Z! Gm;K , 1 7! e. The geometric

monodromy m : ZnZ! Z depends only on u2
K;p and it sends 1n 1 to rnþ s. The ‘‘mon-

odromy’’ homomorphism of level n, nn : Z=nZn mn ¼ mn ! mn, is the s-multiplication. It is
also clear that hðn; u2

K;pÞ is isomorphic to s � yp
n;K .

2. Finite logarithmic group objects

For the theory of logarithmic spaces we refer to [7] and [10]. We need also some
definitions and results in [8], [9].

Let p be a fixed uniformizing element of R and T the spectrum of R with the standard
log structure given by the chart N! R, 1 7! p. Denote by T

log
fl the logarithmic flat site

over T . A finite (representable) logarithmic group G over R is a sheaf of abelian groups
over T

log
fl that is represented by a fine saturated log-scheme over R, log flat and of Kummer

type over R so that its underlying scheme is finite over R. For an example, consider Tate’s
elliptic curve EK defined via p : Z! Gm;K , 1 7! p. Kato shows how to extend EK to a
group object E p in the category of valuative logarithmic spaces over R. This is explained by
Illusie in [7], 3.1. The kernel of n-multiplication on E p, denoted by nðE pÞ, is obtained via
log blow-ups from a logarithmic space having

nE ¼ Spec

�Ln�1

i¼0

R½xi�
ðxn

i � p iÞ

�
ð14Þ

as underlying scheme. Moreover there is a short exact sequence of finite logarithmic groups
given by

yp
n : 0! Z=nZð1Þ ! nðE pÞ ! Z=nZ! 0ð15Þ

(cf. [7], 3.2.1.4) whose restriction to generic fibres is the short exact sequence yp
n;K that we

used in Theorem 15 (cf. [7], 3.2.1.4).

Let now F (resp. H) be an n-torsion finite (resp. a finite étale) group scheme over R
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endowed with the inverse image log structure. A result of Kato (cf. [8], p. 84) says that ex-
tensions (of sheaves in T

log
fl )

h log : 0! F ! G log ! H ! 0

correspond bijectively (up to isomorphisms) to pairs ðG cl;NÞ where

hcl : 0! F ! G cl ! H ! 0

is a classical extension of group schemes over R and N : Hð1Þ ! F is a morphism of R-
group schemes where Hð1Þ ¼ H nZ=nZ mn. Moreover h log is the Baer sum of hcl and the
push-out by N of the extension yp

n nZ=nZ H.

Theorem 17 (Kato). Let notations be as above. There is an isomorphism

Ext1
RflðH;FÞ �Hom

�
Hð1Þ;F

�
!@ ExtT logðH;FÞ;

ðhcl;NÞ 7! hcl þN�ðyp
n nHÞ:

Proof. Cf. [8]. r

Observe that the statement of this theorem is similar to that of Corollary 16. We will
explain in Theorem 19 that they are deeply related. Before proceeding we need the follow-
ing result.

Lemma 18. Let MK ¼ ½uK : YK ! GK � be a K-1-motive and suppose that it comes

from a log 1-motive ðY ;G; uKÞ. Having fixed a uniformizing parameter p of R, let

uK ¼ u1
K ;p þ u2

K;p be Raynaud’s decomposition of Theorem 9. Then:

1. u1
K ;p extends to an R-1-motive u1

p.

2. The monodromy homomorphism of level n of uK , i.e. nn : YK=nYKð1Þ ! nGK , ex-

tends to a homomorphism nn;R : Y=nYð1Þ ! nG.

Proof. Both assertions are evident because it follows from the hypothesis that the
torus part TK of GK extends to a torus over R; hence also its group of characters Y �K ex-
tends to an étale group over R, say Y �. This implies that the geometric monodromy takes
values in Z and it extends to a biadditive map Y nY � ! Z over R. This last provides the
homomorphism nn;R we are looking for. r

We can now state the relation between Raynaud’s geometric monodromy of a K-1-
motive and Kato’s monodromy of its logarithmic BT-group.

Theorem 19. Let MK ¼ ½uK : YK ! GK � be a K-1-motive coming from a log 1-motive

ðY ;G; uKÞ. Let nn;R be the homomorphism in Lemma 18 with u1
p : Y ! G the R-1-motive

that extends the u1
K;p of Raynaud’s decomposition.

The sequence hðn; uKÞ in (1) extends (up to isomorphisms) to a sequence of finite loga-

rithmic group schemes and precisely, in the notations of Theorem 17, to the one associated to�
hðn; u1

pÞ; nn;R

�
.
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In particular, nn (i.e. Raynaud’s monodromy homomorphism of level n associated to uK )
is Kato’s monodromy homomorphism N restricted to generic fibres.

Proof. We know from Lemma 12 and Theorem 15 that hðn; uKÞ is isomorphic to

hðn; u1
K ;pÞ þ ðnnÞ�ðy

p
n;K nYK=nYKÞ:

Moreover, as u1
K ;p extends to an R-1-motive u1

p (cf. Lemma 18) also hðn; u1
K;pÞ extends to a

sequence of classical group schemes hðn; u1
pÞ; on the other hand the sequence yp

n;K in (12)
extends to the sequence of logarithmic groups that we denoted by yp

n in (15). Hence the
sequence of logarithmic groups hðn; u1

pÞ þ ðnn;RÞ�ðy
p
n nY=nYÞ restricted to generic fibres is

(up to isomorphisms) hðn; uKÞ. r

As all constructions above behave well with respect to inclusion homomorphisms

pmMK ! pmþ1MK we can conclude that:

Corollary 20. With hypothesis as above, let M 1
p denote the R-1-motive ½u1

p : Y ! G �.
The BT-group of uK ; lim�!ðpmMKÞ, extends to a logarithmic BT-group lim�!ðpmM 1

p ; npm;RÞ where

lim�! pmM 1
p is the BT-group of M 1

p .

Remark 21. As suggested in [11], 4.7 in the case of equal characteristic p one could
use the previous corollary for giving an alternative construction of the functor Dlog in loc.
cit. that associate to a log 1-motive over R a Dieudonné crystal.

Remark 22. Let F ¼ ðZ=nZÞr and H ¼ md
n . The decomposition in Theorem 17 re-

stricted to generic fibres coincides with the isomorphism of Corollary 16. In particular this
is true working with the K-1-motive EK ¼ ½uK : Z! Gm;K � given by 1 7! q ¼ epnrþs,
0e se n� 1, e A R�. The kernel of n-multiplication nEK extends (up to isomorphism) to a
finite logarithmic group ðnE cl;NÞ where N is the s-multiplication on mn and nE cl is the finite
group scheme that lies in the middle of hðn; u1

pÞ for u1
p : Z! Gm;R, 1 7! e.

3. Monodromy on Dieudonné modules

Throughout this section R ¼W ðkÞ, with k perfect, and MK ¼ ½uK : YK ! GK � will be
a fixed K-1-motive with YK GZr. We will suppose that GK has good reduction and its ex-
tension over R;G, has split torus part of rank d > 0. We have seen in Corollary 20 that
under these hypotheses the BT-group MKðpÞ :¼ lim�! ðpmMKÞ associated to uK extends to a
logarithmic BT-group, say MðpÞ log ¼

�
MðpÞ;N

�
where MðpÞ ¼ lim�! ðpmM 1

p Þ is a classical
BT-group over R and

N : Y nZ mpy ! Y �4n mpy ! lim�! ðpmGÞ

is the monodromy homomorphism: the first morphism is nR n id where nR is the extension
of n : YK ! Y �4K in (7) over R, which exists since YK ;Y

�
K are unramified.

3.1. The identification of Dieudonné modules of Qp/Zp and mpy . For the theory of
Dieudonné modules we refer to [5]: If G is a BT-group over k, its Dieudonné module is
MðGÞ ¼ HomðG; dCWCWkÞ, where Hom means homomorphisms of k-formal groups. In par-
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ticular, M
�
ðQp=ZpÞk

�
¼ zW ðkÞ is a free WðkÞ-module of rank 1 whose canonical generator

z is the natural embedding of ðQp=ZpÞk in dCWCWk once Qp=Zp is identified with CWðFpÞ;
more precisely, z corresponds to the covector y ¼ ð. . . ; y�2; y�1Þ A dCWCWkðkQp=ZpÞ defined by
y�i ¼

P
a AQp=Zp

a�i fa, where faðbÞ ¼ dab is the Kronecker delta.

Let us recall that elements of MðGÞ can also be described as isomorphism classes of
rigidified extensions of G by Ga;k (as fppf sheaves, cf. [12], §5.2 or [13], §15). Given a
j A MðGÞ, the corresponding additive extension is obtained as the pull-back via j of the
extension

0! Ga;k ! dCWCWk !
V dCWCWk ! 0

where V is the Verschiebung of dCWCWk; it will be denoted by jadd
py . In particular, one can

prove that the extension

zadd
py : 0! Ga;k ! F ! ðQp=ZpÞk ! 0;

is isomorphic to the push-out of

zpy : 0! Z! Z½1=p� !f Qp=Zp ! 0ð16Þ

via the canonical homomorphism Z! Ga;k. Let s : Qp=Zp ! Z½1=p� be the section of f

such that 0e sðaÞ < 1, for a A Qp=Zp. The factor set of zpy (and hence of zadd
py ) corre-

sponding to the section s is then

g : ðQp=ZpÞ � ðQp=ZpÞ ! Z ð! Ga;RÞ; ða; bÞ 7! ½sðaÞ þ sðbÞ�ð17Þ

where square brackets mean integral part. The extension zadd
py has a canonical lifting ðzadd

py ÞR
to R obtained as the push-out of zpy in (16) (now as a sequence over R) via the morphism

Z! Ga;R. The restriction of ðzadd
py ÞR on generic fibres splits, and the map

h : lim�! Z=piZ ¼ Qp=Zp ! Ga;K ; a 7! sðaÞ

is the trivialisation. Let K½X � be the a‰ne algebra of Ga;K and let h�i : K ½X � ! KZ=piZ,
i > 0, be the corresponding K-homomorphisms; one gains an element

h�ðX Þ ¼
P

a AQp=Zp

sðaÞ fa A KQp=Zp ¼ lim � KZ=piZ:ð18Þ

If P denotes the coproduct of KQp=Zp , then

Ph�ðXÞ � 1 n̂n h�ðXÞ � h�ðXÞ n̂n 1 ¼
P

a;b AQp=Zp

½sðaÞ þ sðbÞ� fa n̂n fb A RQp=Zp n̂nRQp=Zp ;

this tells us that h�ðXÞ is an integral of second kind6) of RQp=Zp .

6) We recall that given the algebra A of a formal group over R, an integral of the second kind of A

is an element f A A n̂nR K such that df A WRðAÞ and Pf � f n̂n 1� 1 n̂n f A A n̂nA, where P denotes the

coproduct in A; we will denote by I2ðAÞ the R-module of integrals of the second kind. Moreover if

Pf � f n̂n 1� 1 n̂n f ¼ 0, f is called an integral of the first kind.
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Moreover, the covector y, and hence z, can be recovered from h�ðX Þ. In fact by a

direct computation one can check that h�ðX Þ ¼
Py
i¼0

p�iŷy
pi

�i, where ŷy�i A RQp=Zp is a lifting of
y�i A kQp=Zp .

Also the Dieudonné module of mpy is a free WðkÞ-module of rank 1. Let R½½Y �� be the
a‰ne algebra of mpy;R, where Y is the canonical parameter and let lðY Þ A ZðpÞ½½Y �� be the

Artin-Hasse logarithm of 1þ Y , i.e.

exp
�
�lðY Þ � p�1lðYÞp � p�2lðY Þp

2

� � � �
�
¼ 1þ Y ;

then, M
�
ðmpyÞk

�
¼ dWðkÞ, where d ¼

�
. . . ; l0ðY0Þ; l0ðY0Þ

�
, and l0ðY0Þ is the image of lðY Þ

in the a‰ne algebra of mpy;k.

Let us remark that �logð1þ YÞ ¼ lðYÞ þ p�1lðYÞp þ p�2lðYÞp
2

þ � � � is the integral
of first kind of ðmpyÞR obtained by lifting d.

Let ðQp=ZpÞ4k ¼ lim�! ðZ=pnZÞ4k be the Pontrjagin dual of ðQp=ZpÞk; then mpy;k is the

Cartier dual of ðQp=ZpÞ4k; as a consequence there exist two perfect pairings of WðkÞ-
modules:

h�;�iC : Mðmpy;kÞ �M
�
ðQp=ZpÞ4k

�
!W ðkÞ;

h�;�iP : M
�
ðQp=ZpÞk

�
�M

�
ðQp=ZpÞ4k

�
!WðkÞ:

We will denote by

idð1Þ : Mðmpy;kÞ !M
�
ðQp=ZpÞk

�
ð19Þ

the WðkÞ-isomorphism such that

hm; niC ¼ hidð1ÞðmÞ; niP

for every m A Mðmpy;kÞ and n A M
�
ðQp=ZpÞ4k

�
. One can check that idð1ÞðdÞ ¼ z, so that

F � idð1Þ � V ¼ idð1Þ:

3.2. Monodromy and additive extensions. We want to define a WðkÞ-endomorphism
of the Dieudonné module M

�
MðpÞk

�
depending on the monodromy N. (See also [8],

5.2.2.) We proceed as follows:

MðY �4n mpy;kÞ ���!MðNkÞ
MðY nZ mpy;kÞ ���!idY ð1Þ

MðY nZ Qp=ZpÞkx???
???y

M
�
MðpÞk

�
���������������������������������������������������������������;

N
M
�
MðpÞk

�
where the vertical map on the left comes from the obvious inclusion
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Y �4n mpn;k ¼ lim�! ðpmTkÞ ! lim�!ðpmM 1
p;kÞ

and the vertical map on the right is obtained from the projection

lim�!ðpmM 1
p;kÞ ! Y nZ ðQp=ZpÞk:

Recall now that both Y and Y � are constant groups and hence

MðY �4n mpy;kÞ ¼ Y �nMðmpy;kÞ; MðY n mpy;kÞ ¼ Y4nZ Mðmpy;kÞ:ð20Þ

The morphism MðNkÞ is then

MðNkÞ ¼ n4n id;

where n4 : Y � ! Y4 comes from the geometric monodromy m and is the transpose of n in
(7) (on special fibres). Using decompositions as in (20) we can define

idY ð1Þ :¼ idn idð1Þ : Y4nMðmpy;kÞ ! Y4nM
�
ðQp=ZpÞk

�
ð21Þ

where idð1Þ is the canonical identification explained in (19). The map idY ð1Þ is an iso-
morphism of W ðkÞ-modules such that F � idY ð1Þ � V ¼ idY ð1Þ and the dotted arrow N
turns out to be a WðkÞ-homomorphism such that N 2 ¼ 0 and FN V ¼N .

We want now to describe how the composition idY ð1Þ �MðNkÞ works: Given an ele-
ment wn d A Y �nMðmpy;kÞ, with d the canonical generator of Mðmpy;kÞ,�

idY ð1Þ �MðNkÞ
�
ðwn dÞ ¼ idY ð1Þ

�
n4ðwÞn d

�
¼ n4ðwÞn z:

Remark 23. The construction above could also be done restricting to kernels of pn-
multiplication pn M and hence working with the monodromy homomorphism of level pn,

npn : Y nZ=pnZ! Y �n mpn :

This is what Kato does in [8], 5.2.2. Hence the construction above is simply a way to
summarize Kato’s construction for all pn.

The element n4ðwÞn z A Y4nM
�
ðQp=ZpÞk

�
¼M

�
Y n ðQp=ZpÞk

�
can be described

in di¤erent ways; we give here some examples without proofs:

1. If we interpret it as extension of Y n ðQp=ZpÞk by the additive group Ga;k,
n4ðwÞn z is represented by the pull-back of the sequence zadd

py with respect to

�
n4ðwÞ; id

�
: Y nZ Qp=Zp ! Qp=Zp:

2. Given an extension of Qp=Zp by Ga;k, the push-out with respect to the m-
multiplication and the pull-back with respect to the m-multiplication provide isomorphic

sequences. In a similar way one proves that the sequence
�
n4ðwÞ; id

��
zadd

py is also isomorphic

to the push-out with respect to
�
n4ðwÞ; id

�
of the sequence Y n zadd

py .
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3. Starting with the 1-motive p : Z! Gm;K , consider the sequence

0! Gm;K ! FK ! Qp=Zp ! 0

obtained by first applying push-out mpn ! Gm;K to the sequence hðpn; pÞ as in (1) and then
passing to limit on Z=pnZ. The sequence extends over R (passing to Néron models) and
then provides a sequence on component groups

0! Z! fF ! Qp=Zp ! 0

over k that coincides with the opposite of the sequence zpy in (16). The minus sign depends
on Lemma 5.

More generally, given the 1-motive u2
p;K : YK ! TK and a character w A Y �, the

sequence n4ðwÞn z is obtained as follows: first consider the push-out pnTK ! TK in
hðpn; u2

p;KÞ and then pass to limit on YK=pnYK . At this point we have a sequence

0! TK ! FK ! YK nQp=Zp ! 0:ð22Þ

Passing to Néron models and taking the induced sequence on component groups we get a
sequence

0! Y �4! fF ! Y nQp=Zp ! 0:ð23Þ

This sequence is nothing else than the opposite of push-out with respect to n : Y ! Y �4 of
the sequence Y n zpy . Once fixed a character w A Y �, we can consider the induced homo-
morphism w4 : Y �4! Z (evaluation at w). Now the additive extension turns out to be op-
posite of the push-out of (23) via the composition of w4 with the canonical homomorphism
Z! Ga;k.

4. We can also describe n4ðwÞn z in terms of integrals of the second kind generaliz-
ing what was done in (17) and (18).

Once fixed an isomorphism Y G
L

i

Zei, the factor set g in (17) provides a factor set
of Y n zadd

py

Y n g : Y n ðQp=ZpÞ � Y n ðQp=ZpÞ ! Y nZ Z;�P
i

ei n ai;
P

i

ei n bi

�
7!

P
i

ei n ½sðaiÞ þ sðbiÞ�

and hence a factor set

Y n ðQp=ZpÞ � Y n ðQp=ZpÞ ! Ga;R;ð24Þ �P
i

ei n ai;
P

i

ei n bi

�
7!

P
i

½sðaiÞ þ sðbiÞ�mðei; wÞ

of
�
n4ðwÞ; id

�
�ðY n zadd

py Þ. This factor set becomes trivial on generic fibres and a trivializa-
tion is given by
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h : YK nQp=Zp ! Ga;K ;
P

i

ei n ai 7! mðei; wÞsðaiÞ:

If we read this trivialization in terms of formal groups and then pass to the a‰ne algebras,
h corresponds to a K-homomorphism

h� : K ½X � ! K
l

i
Qp=Zpei

; X 7!
P

a Al
i
Qp=Zpei

P
i

mðei; wÞsðaiÞ fa

where fa :
L

i

Qp=Zpei ! K is 1 in a and 0 otherwise. Also in this case h�ðX Þ is an integral

of the second kind in K
l

i
Qp=Zpei

that is sent to the class of
�
n4ðwÞ; id

�
�ðY n zadd

py Þ via the
map

I2ðY nQp=ZpÞ !MðY nQp=ZpÞ:

Remark 24. The above constructions involve the part u2
K;p in Raynaud’s decompo-

sition of the 1-motive uK . In particular, the multiplicative factor set

YK n ðQp=ZpÞ � YK n ðQp=ZpÞ ! Gm;K ;ð25Þ �P
i

ei n ai;
P

i

ei n bi

�
7! p

�T
i

½sðaiÞþsðbiÞ�mðei;wÞ
;

whose valuation is the opposite of the additive factor set in (24), gives the extension obtained
by taking the push-out with respect to w of the sequence (22). If we think of the valuation as
a sort of logarithm killing elements in R�, something similar in form, even if quite di¤erent
in nature, happens when working with 1-motives of the type u1

K ;p : YK ! TK , and u2
K;p ¼ 0:

Also in the present situation we have a multiplicative factor set, it may be chosen as fol-
lows: �P

i

ei n ai;
P

i

ei n bi

�
7!

Q
i

uðei; wÞ�½sðaiÞþsðbiÞ�;ð26Þ

where the uðei; wÞ are principal units in R, so that the corresponding sequence extends to R.
Now, we can obtain from this an additive factor set by just taking the p-adic logarithm. As
before, the additive factor set we get,�P

i

ei n ai;
P

i

ei n bi

�
7!

P
i

� ½sðaiÞ þ sðbiÞ� logðuiÞ

is trivial on generic fibres and its trivialisation provides an integral of the second kind
hðwÞ A KQp=Zp and the BT-group of u1

K ;p is completely determined by the W ðkÞ-module
generated by the hðwÞ, as w varies in the group of the characters of TR (cf. [5], IV).
Finally, let us observe that if one is just interested in computing the monodromy, then the
use of the valuation is quite appropriate, but if one needs to consider the integrals of
uK ;p ¼ u1

K;p þ u2
K ;p, i.e. one needs to integrate logarithmic di¤erentials (in the style of [2]),

one is forced to extend the p-adic logarithm defining log p in a way allowing one to distin-
guish the integrals of u1

K;p from those of u2
K;p.
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4. The finite logarithmic group that extends nMK

Throughout this section we work with a strict K-1-motive uK : Zr ! GK where GK is
a semiabelian scheme with split torus part Gd

m;K and with abelian quotient AK having good
reduction. Given the n-torsion nMK of such a 1-motive, we know from Theorem 19 that it
extends to a finite logarithmic group over R; nM log, but we still know little concerning the
scheme nM underlying nM log. In this section we are going to describe the logarithmic group
scheme nM log for any n and precisely we will show that nM log is the valuative space asso-
ciated to

�
SpecðnAÞ;MA

�
where nA is an algebra over R, constructed in a somewhat

canonical way, and MA is a logarithmic structure on SpecðnAÞ such that the structure
morphism over R induces a morphism of log schemes

�
SpecðnAÞ;MA

�
! T .

We have seen that nMK is an extension of YK=nYK by nG, hence a nGK -torsor over
YK=nYK . If nGK ¼ md

n , it is easy to describe the algebra of nMK ; cf. [14], [4]. For example
for the Tate curve p : Z! Gm;K we denoted nMK by

nEK ¼ Spec
�
KZ=nZ½x�=ðxn � bp;nÞ

�
ð27Þ

with bp;n :¼
Pn�1

j¼0

p jvj, where fv0; . . . ; vn�1g is the canonical basis of KZ=nZ. See also (14).

For the general case, we read from (6) that nMK is indeed a md
n -torsor over the finite

K-group scheme nM A
K . Recalling that PicðnM A

K Þ ¼ 0, nMK can easily be described via [14],
III, §4.

Lemma 25. Let BK be the algebra of nM A
K . Then

nMK ¼ Spec
�
BK ½T1; . . . ;Td �=ðT n

1 � b1; . . . ;T
n
d � bdÞ

�
for suitable bi A B�K , i ¼ 1; . . . ; d.

We need now to describe how the bi above depend on Raynaud’s decomposition of
the 1-motive uK .

4.1. The 1-motive pC1. Before proceeding with the description of nMK we need to
know what happens when working with the 1-motive p�1 : Z! Gm;K , 1 7! p�1. Its n-
torsion group scheme is

nE
1
p

K ¼ Spec
KZ=nZ½x��

xn �
Pn�1

i¼0

p�ivi

�
0
BBB@

1
CCCAð28Þ

with fv0; . . . ; vn�1g the canonical base of KZ=nZ over K . It is clear that we can not extend its

algebra over R via the equation xn �
Pn�1

i¼0

p�ivi. However, nE
1
p is isomorphic to the group

scheme obtained from (15) by push-out with respect to �1 or by pull-back with respect to
�1. Hence it is also
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nE
1
p

K G Spec
KZ=nZ½y��

yn � v0 �
Pn�1

i¼1

pn�ivi

�
0
BBB@

1
CCCAð29Þ

because �1 : Z! Z sends v0 7! v0, vi 7! vn�i for i > 0. Moreover this scheme extends over
R to

nE
1
p ¼ Spec

RZ=nZ½y��
yn � v0 �

Pn�1

i¼1

pn�ivi

�
0
BBB@

1
CCCA:ð30Þ

We can endow nE
1
p with the logarithmic structure coming from the special fibre and it

becomes a logarithmic group scheme over R. Denote by nðE
1
pÞ its valuative logarithmic

space; this lies in the middle of �yp
n for yp

n as in (15).

Another decomposition of a 1-motive that will be useful later is the following:

Lemma 26. Let uK be a 1-motive as in Theorem 9. Suppose furthermore that YK is

split and also the torus part TK of GK is split. Once fixed a uniformizing parameter p A R, a

basis ðejÞj of YK GZr and a basis ðe�i Þi of Y �K there are decompositions

uK ¼ u1
K;p þ u2

K ;p ¼ u1
K;p þ uþK;p þ u�K;p

where the first one is the decomposition in Theorem 9. The second decomposition is uniquely

determined by the following conditions:

. uGK;p : YK ! GK factor through the torus part.

. If mþ (resp. m�) denotes the geometric monodromy of uþK ;p (resp. of u�K;p), then one

has mþðej; e
�
i Þf 0 (resp. m�ðej; e

�
i Þe 0).

. u2
K;p ¼ uþK ;p þ u�K;p and m ¼ mþ þ m�.

Proof. We are reduced to working with u2
K;p. We define

mþ : YK nY �K ! Z; ðej; e
�
i Þ !

mðej; e
�
i Þ if this is positive;

0 otherwise.

	

Similar for m�. Moreover uGK;p is defined as done for u2
K;p in (10) with mG in place of m. r

Remark 27. Recall the decomposition in Lemma 26 and the factorization
u2

K ;p ¼ ðnn idÞpY . Let us construct nG : YK ! ðY �KÞ
4 from the geometric monodromy mG

as in (7). Then we have factorizations uþK ;p ¼ ðnþn idÞpY (resp. u�K ;p ¼ ðn�n idÞp�1
Y ) with

p�1
Y : YK ! YK nZ Gm;K ; y 7! yn p�1:
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4.2. A general result on short exact sequences. Looking at the diagram (6) where

nTK ¼ md
n we realize that we should move our attention from the horizontal sequence in the

middle hðn; uKÞ to the vertical sequence in the middle, because, as we have already observed
mn-torsors can easily be described. Moreover we need to know how such a ‘‘vertical se-
quence’’ depends on the analogous sequences for u1

p;K and u2
p;K . For this we need a general

result.

Let c : 0! I !w L!k P! 0 be an exact sequence of group schemes over a base
scheme S. Let N be another group scheme over S and consider two extensions
h i : 0! L!M i ! N ! 0, i ¼ 1; 2. Let h : 0! L!M ! N ! 0 be a sequence iso-
morphic to the Baer sum h1 þ h2. Consider then the following diagrams:

I I???yVw

???yVt i

h i : 0 ���! L ���! M i ���!hi

N ���! 0;???y
???yk

???y
???ygi

����
0 ���! P ���! Qi ���!f i

N ���! 0

I I???yVw

???yVt

h : 0 ���! L ���! M ���!h N ���! 0???y
???yk

???y
???yg

����
0 ���! P ���! Q ���!f N ���! 0

where the vertical sequence on the left is c and the upper horizontal sequence is h i for
i ¼ 1; 2 (resp. h). Call c i for i ¼ 1; 2 (resp. c) the vertical sequence in the middle. Suppose
now that there is a sequence

~hh2 : 0! I ! ~MM 2 ! N ! 0

such that h2 ¼ w�~hh
2. Summarizing we have

hG h1 þ w�~hh
2:

We are going to see that a similar relation holds also for the vertical sequences c;c1.

Now k�w�~hh
2 is isomorphic to the trivial extension and we choose a section s of f 2.

Moreover k�hG k�h
1 and there is then an isomorphism is : Q! Q1 depending on s. It is

also not di‰cult to check that

cG ðisÞ�c1 þ ðsf Þ�c2:ð31Þ

Consider also the following push-out diagram:

~hh2 : 0 ���! I ���! ~MM 2 ���!~hh2

N ���! 0???yw

???yd

����
w�~hh

2 ¼ h2 : 0 ���! L ���! M 2 ���!h2

N ���! 0???yk

???yg2

����
k�h

2 : 0 ���! P ���! Q2 ���!f 2

N ���! 0

 

t2
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where the lower sequence is isomorphic to the trivial one. We denoted by c2 the exact se-
quence involving g2 and t2. There exists then a canonical homomorphism sc : N ! Q2

such that

sc~hh2 ¼ g2d;

it is not di‰cult to check that sc is a section of f 2. Moreover by construction it satisfies

ðscÞ�c2 G ~hh2:

Taking now s ¼ sc in (31) and setting i :¼ is
c

we get that

cG i�c1 þ f �~hh2:ð32Þ

4.3. nMK as torsor under md
n . Let uK be a 1-motive as in Theorem 9. We

have then a decomposition uK ¼ u1
K;p þ u2

K ;p and an isomorphism of sequences
hðn; uKÞG hðn; u1

K ;pÞ þ hðn; u2
K;pÞ for hðn;�Þ the sequence introduced in (1).

The n-torsion pnMK of uK lies in the middle of hðn; uKÞ and we have already seen
what it looks like in Lemma 25. Moreover hðn; u2

K;pÞ ¼ w�hðn; ~uu2
KÞ, where the 1-motive

~uu2
K : YK ! TK is obtained from u2

K;p by forgetting the inclusion TK ! GK and w is this
inclusion restricted to kernels of n-multiplication. Hence we are in the situation of the
subsection 4.2.

Considering diagram (6) for hðn; u1
K ;pÞ in place of hðn; uK ;pÞ we get

nTK nTK???yw

???yt1

hðn; u1
K;pÞ : 0 ���! nGK ���! nM 1

K ���!h1

YK=nYK ���! 0???yrn

???yg1

����
hðn; ru1

K;pÞ : 0 ���! nAK ���! Q1
K ���!f 1

YK=nYK ���! 0:

ð33Þ

Let cðn; u1
K;pÞ be the vertical sequence in the middle of this diagram and cðn; uK ;pÞ the

corresponding vertical sequence in the middle of (6). By (32) we have

cðn; uKÞG i�cðn; u1
K ;pÞ þ f �hðn; ~uu2

KÞð34Þ

for i the isomorphism nM A
K ! Q1

K constructed as in §4.2. By abuse of notations, we denote
by nM 1

K also the group scheme in the middle of i�cðn; u1
K;pÞ; indeed it is isomorphic to the

one in the middle of hðn; u1
K;pÞ. The scheme nM 1

K is a md
n -torsor over nM A

K and hence

nM 1
K G Spec

�
BK ½T1; . . . ;Td �=ðT n

1 � b
ð1Þ
1 ; . . . ;T n

d � b
ð1Þ
d Þ

�
:

On the other hand, call n
~MM 2

K the group in the middle of hðn; ~uu2
KÞ. It is a md

n -torsor over
Zr=nZr and hence it has the form
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n
~MM 2

K G Spec
�
KZ r=nZ r ½T1; . . . ;Td �=ðT n

1 � b
ð2Þ
1 ; . . . ;T n

d � b
ð2Þ
d Þ

�
:

Hence the group in the middle of f �hðn; ~uu2
K ;pÞ will be

Spec
�
BK ½T1; . . . ;Td �=ðT n

1 � b
ð2Þ
1 ; . . . ;T n

d � b
ð2Þ
d Þ

�
:

Recall now that ~uu2
K;p ¼ uþK;p þ u�K ;p by Lemma 26 and hence

hðn; u2
K;pÞG hðn; uþK ;pÞ þ hðn; u�K;pÞ:

Let

Spec
�
KZ r=nZ r ½T1; . . . ;Td �=ðT n

1 � bþ1 ; . . . ;T
n
d � bþd Þ

�
be the group scheme in the middle of the sequence hðn; uþK;pÞ and analogously for u�K;p with
elements b�i A KZ r=nZ r

in place of bþi . Using the sequence

0! md
n ðXÞ ! GðX ;OX Þd� !

n
GðX ;OX Þd� ! HðX ; md

n Þ ! 0ð35Þ

we may assume that b
ð2Þ
i ¼ bþi b�i and

bi ¼ b
ð1Þ
i bþi b�i for all 1e ie d:

Recall now that the vertical sequence on the left in (6) or (33) extends over R because
GK has good reduction and that also nM A

K extends to a finite group scheme over R, say

nM A ¼ SpecðBÞ, because the K-1-motive

ruK : Zr ! GK ! AK

has good reduction. Finally also hðn; u1
K ;pÞ extends over R and hence the same is true for

the vertical sequence cðn; u1
K;pÞ and so we may assume b

ð1Þ
i A B�. This implies that if we

want to extend nMK over R we have to understand better n
~MM 2

K and hence b
ð2Þ
i ¼ bþi b�i .

Recall the description of u2
K ;p in (10) where now YK ¼ Zr and TK ¼ Gd

m;K . It is an easy
exercise to check that

bþi ¼ ðbp;nÞ
T
r

j¼1

mþðej ; e
�
i Þ

with bp;n :¼
Pn�1

j¼0

p jvj A RZ r=nZ r

;

with v0; . . . ; vn�1 the standard basis of KZ=nZ (resp. of RZ=nZ), e1; . . . ; er the usual basis of Zr

and e�i the character in Y �K such that e�i ðThÞ ¼ dih, mþ the geometric monodromy of uþK;p.
Moreover mþðej; e

�
i Þf 0 by definition of uþK;p; hence bþi A B for all i. In a similar way

b�i ¼ ðbp�1;nÞ
T
r

j¼1

�m�ðej ; e
�
i Þ

with bp�1;n :¼ v0 þ
Pn�1

i¼1

pn�ivi A RZ=nZ:

Hence also b�i A B for all i because m�ðej; e
�
i Þe 0 by definition of u�K ;p. Summarizing,

bi ¼ b
ð1Þ
i b

ð2Þ
i ¼ b

ð1Þ
i bþi b�i A B for all i. Hence nMK extends to a finite scheme over SpecðBÞ
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nM ¼ Spec
�
B½T1; . . . ;Td �=ðT n

1 � b1; . . . ;T n
d � bdÞ

�
:ð36Þ

The following lemma says that nM is indeed a ‘‘nice’’ model.

Lemma 28. Let notations be as above and endow nM A ¼ SpecðBÞ with the inverse

image log structure of the base T . Let ðnM;M
nMÞ be the scheme (36) with the logarithmic

structure induced by the special fibre. Then the canonical morphism nMK ! nM A
K extends to

a unique morphism of logarithmic groups over R. Moreover the following universal property

holds: For any fine saturated logarithmic scheme ðS;MSÞ over ðnM A;M
nM AÞ there is a bi-

jection between the scheme theoretic morphisms SK ! nMK over nM A
K and the logarithmic

morphisms ðS;MSÞ ! ðnM;M
nMÞ over ðnM A;M

nM AÞ.

Proof. We may assume S ¼ SpecðCÞ a‰ne. Any nM A
K -morphism SK ! nMK is de-

scribed as a homomorphism of BK -algebras jK : BK ½T1; . . . ;Tn�=ðT n
i � biÞ ! CK . The

only problem for the extension is to prove that the images of all Ti lie in C and more pre-

cisely in GðS;MSÞ. However bi ¼ b
ð1Þ
i b

ð2Þ
i with b

ð1Þ
i A B� and b

ð2Þ
i A GðY ;MY Þ for any loga-

rithmic space over the group Z=nZ endowed with the inverse image log structure because of
the description of b

ð2Þ
i in terms of bp;n and bp�1;n. Moreover jKðT n

i Þ ¼ jKðbiÞ A GðS;MSÞ. It
is now su‰cient to recall that S is saturated to conclude that also jKðTiÞ A GðS;MSÞ. r

Proposition 29. Let notations be as above. The finite group scheme nMK over nM A
K

extends (up to isomorphisms) to a finite logarithmic group nM log that is the valuative loga-

rithmic space associated to a logarithmic scheme whose underlying scheme is

nM ¼ Spec
�
B½T1; . . . ;Td �=ðT n

1 � b1; . . . ;T n
d � bdÞ

�
:ð37Þ

Moreover the diagram (6) extends to a diagram of finite logarithmic groups with nM log in the

middle.

Proof. It remains only to prove that nM with the logarithmic structure induced by
the special fibre induces a group functor on the category of fine saturated logarithmic
schemes over R, i.e. it is in T

log
fl . However this is immediate consequence of the previous

lemma.

Also the assertion on the diagram follows applying the previous lemma. r

Observe that we had already proved in Theorem 18 that nMK extends to a loga-
rithmic group over T , however, in the hypothesis of this section, it is possible to describe it
in terms of algebras and not only as a ‘‘sum’’ of two extensions.
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[10] K. Kato, Logarithmic structures of Fontaine-Illusie; Algebraic analysis, geometry and number theory, John

Hopkins Univ. Press (1989), 191–224.

[11] K. Kato, F. Trihan, On the conjecture of Birch and Swinnerton-Dyer in characteristic p > 0, Invent. math.

153 (2003), 537–592.
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