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We present a simple physical model that demonstrates that the
native-state folds of proteins can emerge on the basis of consid-
erations of geometry and symmetry. We show that the inherent
anisotropy of a chain molecule, the geometrical and energetic
constraints placed by the hydrogen bonds and sterics, and hydro-
phobicity are sufficient to yield a free-energy landscape with broad
minima even for a homopolymer. These minima correspond to
marginally compact structures comprising the menu of folds that
proteins choose from to house their native states in. Our results
provide a general framework for understanding the common
characteristics of globular proteins.

Protein folding (1–5) is complex because of the sheer size of
protein molecules, the twenty types of constituent amino

acids with distinct side chains, and the essential role played by the
environment. Nevertheless, proteins fold into a limited number
(6, 7) of evolutionarily conserved structures (8, 9). It is a familiar,
yet remarkable, consequence of symmetry and geometry that
ordinary matter crystallizes in a limited number of distinct forms.
Indeed, crystalline structures transcend the specifics of the
various entities housed in them. Here, we ask the analogous
question (10): is the menu of protein folds also determined by
geometry and symmetry?

We show that a simple model that encapsulates a few general
attributes common to all polypeptide chains, such as steric
constraints (11–13), hydrogen bonding (14–16), and hydropho-
bicity (17), gives rise to the emergent free-energy landscape of
globular proteins. The relatively few minima in the resulting
landscape correspond to putative marginally compact native-
state structures of proteins, which are assemblies of helices,
hairpins, and planar sheets. A superior fit (18, 19) of a given
protein or sequence of amino acids to one of these predeter-
mined folds dictates the choice of the topology of its native-state
structure. Instead of each sequence shaping its own free energy
landscape, we find that the overarching principles of geometry
and symmetry determine the menu of possible folds that the
sequence can choose from.

Following Bernal (20), the protein problem can be divided
into two distinct steps: first, analogous to the elucidation of
crystal structures, one must identify the essential features that
account for the common characteristics of all proteins; second,
one must understand what makes one protein different from
another. Guided by recent work (21, 22) that has shown that a
faithful description of a chain molecule is a tube and using
information from known protein native-state structures, our
focus, in this paper, is on the first step: we demonstrate that the
native-state folds of proteins emerge from considerations of
symmetry and geometry within the context of a simple model.

We model a protein as a chain of identical amino acids,
represented by their C� atoms, lying along the axis of a self-
avoiding flexible tube. The preferential parallel placement of
nearby tube segments approximately mimics the effects of the
anisotropic interaction of hydrogen bonds whereas the space
needed for the clash-free packing of side chains is approximately
captured by the non-zero tube thickness (21, 22). Here, we

carefully incorporate these key geometrical features by means of
an extensive statistical analysis of experimentally determined
native-state structures in the Protein Data Bank (PDB).

A tube description places constraints on the radii of circles
drawn through both local and nonlocal triplets of C� positions of
a protein native structure (22, 23). Furthermore, when one deals
with a chain molecule, the tube picture underscores the crucial
importance of knowing the context that an amino acid is in
within the chain. The standard coarse-grained approach con-
siders the locations of interacting amino acid pairs. Here,
instead, we incorporate the strongly directional hydrogen bond-
ing between a pair of amino acids, through an analysis of the
PDB to determine the constraints on the mutual orientation of
the local coordinate systems defined from a knowledge of the
locations of the C� atoms (see Methods and Fig. 1). The
geometrical constraints associated with the tube and hydrogen
bonds that we consider here are representative of the typical
aspecific behavior of the interacting amino acids.

There are two other ingredients in the model: a local bending
penalty, which is related to the steric hindrance of the amino acid
side chains, and a pair-wise interaction of the standard type
mediated by the water (17). Even though these two properties
clearly depend on the specific amino acids involved in the
interaction, here, we choose to study the phase diagram of a
homo-peptide chain by varying its overall hydrophobicity and
local bending penalty, while keeping them constant along the
chain. This is the simplest and most general way to assess their
relevance in shaping the free-energy landscape.

Methods
Tube Geometry. The protein backbone is modeled as a chain of C�

atoms (Fig. 2a) with a fixed distance of 3.8 Å between successive
atoms along the chain, an excellent assumption for all but non-cis
proline amino acids (24). The geometry imposed by chemistry
dictates that the bond angle associated with three consecutive C�

atoms is between 82° and 148°.
Self-avoiding conformations of the tube whose axis is the

protein backbone are identified by considering all triplets of C�

atoms and drawing circles through them and ensuring that none
of their radii is smaller than the tube radius (25) (Fig. 2a). At the
local level, the three-body constraint ensures that a flexible tube
cannot have a radius of curvature any smaller than the tube
thickness, to prevent sharp corners, whereas, at the nonlocal
level, it does not permit any self-intersections. There is an
inherent local anisotropy due to the special direction singled out
by consecutive atoms along the chain, which enforces a prefer-
ence for parallel alignment of neighboring tube segments in a
compact conformation.

The backbone of C� atoms is treated as a flexible tube of
radius 2.5 Å, a constraint imposed on all (local and nonlocal)
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three-body radii, an assumption validated for protein native
structures (23). It is interesting to note that recent observations
of residual dipolar couplings in short peptides (26) in the
denatured state have demonstrated their stiffness and their
anisotropic deformability; the building blocks of proteins are
relatively stiff segments with strong directional preferences.

Sterics. Steric constraints require that no two nonadjacent C�

atoms are allowed to be at a distance closer than 4 Å. Ram-
achandran and Sasisekharan (11) showed that steric consider-
ations based on a hard sphere model lead to clustering of the
backbone dihedral angles in two distinct � and � regions for
non-glycyl and non-prolyl residues. The two backbone geome-
tries that allow for systematic and extensive hydrogen bonding

(14–16) are the �-helix and the �-sheet, obtained by a repetition
of the backbone dihedral angles from the two regions, respec-
tively (13). Short chains rich in alanine residues, which are a good
approximation to a stretch of the backbone, can adopt a helical
conformation in water (see refs. 27–32 for a detailed discussion
of experimental conditions that would lead to a helical confor-
mation). However, when one has more heterogeneous side
chains, the helix backbone could sterically clash with some side
chain conformers, resulting in a loss of conformational entropy
(33). When the price in side chain entropy is too large, an
extended backbone conformation results, pushing the segment
toward a �-strand structure (13). These steric constraints are
approximately imposed through an energy penalty (denoted by
eR) when the local radius of curvature is between 2.5 Å and 3.2
Å. (The magnitude of the penalty does not depend on the
specific value of the radius of curvature, provided it is between
these values.) There is no cost when the local radius exceeds 3.2
Å. Note that the tube constraint does not permit any local radius
of curvature to take on a value less than the tube radius, 2.5 Å.

Hydrogen Bonds. We do not allow more than two hydrogen bonds
to form at a given C� location. In our representation of the protein
backbone, local hydrogen bonds form between C� atoms separated
by two residues along the sequence with an energy defined to be �1
unit whereas nonlocal hydrogen bonds are those that form between
C� atoms separated by more than three residues along the sequence
with an energy of �0.7. This energy difference is based on
experimental findings that the local bonds provide more stability to
a protein than do the nonlocal hydrogen bonds (34). Cooperativity
effects (35, 36) are taken into account by adding an energy of �0.3
units when consecutive hydrogen bonds along the sequence are
formed. There is some latitude in the choice of the values of these

Fig. 1. Sketch of the local coordinate system. For each C� atom i (except the
first and the last one), the axes of a right-handed local coordinate system are
defined as follows. The tangent vector t̂i is parallel to the segment joining i �
1 with i � i. The normal vector n̂i joins i to the center of the circle passing
through i � 1, i, and i � 1, and it is perpendicular to t̂i. t̂i and n̂i along with the
three contiguous C� atoms lie in a plane shown in the figure. The binormal
vector b̂i is perpendicular to this plane. The vectors t̂i, n̂i, and b̂i are normalized
to unit length.

Fig. 2. Sketch of a portion of a protein chain. (a) The black spheres represent the C� atoms of the amino acids. The local radius of curvature r is defined as the
radius of the circle passing through three consecutive atoms and is constrained to lie between 2.5 Å and 7.9 Å (rmax). A penalty eR is imposed when 2.5 � r � 3.2
(see b). The hydrophobic interaction, eW, is operative when two atoms separated by more than two along the sequence are within 7.5 Å of each other (see c).
Note that two nonadjacent atoms cannot be closer than 4 Å. A flexible tube is characterized by the constraint that none of the three-body radii is less than the
tube thickness, chosen here to be 2.5 Å (see b and d).
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energy parameters. The results that we present are robust to
changes (at least of the order of 20%) in these parameters.

Geometrical Constraints Due to Hydrogen Bonding. Three noncol-
linear consecutive atoms (i � 1, i, and i � 1) of the chain define
a plane. At atom i (special care is needed to adapt these rules to
atoms at the C and N termini), one may define a tangent vector
(along the direction joining the i � 1 and i � 1 atoms) and a
normal vector (along the direction joining the ith atom and the
center of the circle passing through the three atoms), which
together define a plane. One then defines a binormal vector b� i
perpendicular to the plane with the tangent, normal, and binor-
mal forming a right-handed local coordinate system (Fig. 1). This
coordinate system defines the context of an amino acid within a
chain, a feature that plays a crucial role in the tube picture. For
hydrogen bond formation between atom i and j, the distance
between these atoms ought to be between 4.7 Å and 5.6 Å (4.1
Å and 5.3 Å) for the local (nonlocal) case. A study of protein
native state structures reveals an overall nearly parallel align-
ment of the axes defined by three vectors: the binormal vectors
at i and j and the vector r�ij joining the i and j atoms. A hydrogen
bond is allowed to form only when the binormal axes are
constrained to be within 37° of each other whereas the angle
between the binormal axes and that defined by r�ij ought to be
�20°. Additionally, for the cooperative formation of nonlocal
hydrogen bonds, one requires that the corresponding binormal
vectors of successive C� atoms make an angle �90°. The first and
the last residues of the chain are special cases because their
binormal vectors are not defined. In order for such residues to
form a hydrogen bond (with each other or with other internal
residues in the chain), it is required that the angle between
the associated ending peptide link and the connecting vector
to the other residue participating in the hydrogen bond is
between 70° and 110°. As in real protein structures, when helices
are formed, they are constrained to be right-handed. This
constraint is enforced by requiring that the backbone chirality
associated with each local hydrogen bond is positive. The
chirality is defined as the sign of (r�i,i�1 � r�i�1,i�2)�r�i�2,i�3.

Our approach for the derivation of the geometrical constraints
imposed by hydrogen bonds is similar to that carried out at the
level of an all-atom description of the protein chain (37). For the
simpler C� atom-based description, hydrogen bond energy func-
tions have been introduced previously (38, 39) but without any
input from a statistical analysis of protein structures.

Hydrophobic Interactions. The hydrophobic (hydrophilic) effects
mediated by the water are captured through a relatively weak
interaction eW (either attractive or repulsive) between C� atoms
that are within 7.5 Å of each other (Fig. 2c). Note that hydrogen
bonds can easily be formed between the amino acid residues in
an extended conformation and the water molecules. Within our
model, the intra-chain hydrogen bond interaction introduces an
effective attraction, because water molecules are not explicitly
present. The hydrophobicity scale is thus renormalized (e.g.,
even when eW is weakly positive, there could be an effective
attraction resulting in structured conformations such as a single
helix or a planar sheet). A negative eW is, in any case, crucial for
promoting the assembly of secondary motifs in native tertiary
arrangements. The properties of the model are summarized in
Table 1.

Results and Discussion
Fig. 3 shows the ground state phase diagram obtained from
Monte-Carlo computer simulations using the simulated anneal-
ing technique (40). [The solvent-mediated energy, eW, and the
local radius of curvature energy penalty, eR, (see Methods for a
description of the energy parameters) are measured in units of
the local hydrogen bond energy.] When eW is sufficiently repul-

sive (hydrophilic) (and eR � 0.3 in the phase diagram), one
obtains a swollen phase with very few contacts between the C�

atoms. When eW is sufficiently attractive, one finds a very
compact, globular phase with featureless ground states with a
high number of contacts.

Between these two phases (and in the vicinity of the swollen
phase), a marginally compact phase emerges (the interactions
barely stabilize the ordered phase) with distinct structures
including a single helix, a bundle of two helices, a helix formed
by �-strands, a �-hairpin, three-stranded �-sheets with two
distinct topologies, and a �-barrel-like conformation. Strikingly,
these structures are the stable ground states in different parts of
the phase diagram. Furthermore, other conformations, closely
resembling distinct supersecondary arrangements observed in
proteins (6), such as the �-�-� motif, are found to be competitive
local minima whose stability can be enhanced by sequence design
(for example, nonuniform values of curvature energy penalties
for single amino acids and hydrophobic interactions for amino
acid pairs). Fig. 4 shows a compendium of various structures

Table 1. Summary of all geometrical and energetical parameters
involved in the model definition

Parameter Constraint

Tube approximation* Rijk � 2.5Å, @i � j � k
Local radius of curvature 2.5Å � Ri�1,i,i�1 � 7.9Å, @1 � i � N†

Self-avoidance rij � 4Å, @i � j � 1
Amino acid specific? No

Local hydrogen bond‡ j � i � 3
C�–C� distance 4.7Å � rij � 5.6Å
Binormal-binormal correlation§ �b� i�b� j� �0.8
Binormal-connecting vector§¶� �b� i�c�ij� � 0.94, �b� j�c�ij� �0.94
Chirality (r�i,i�1 � r�i�1,i�2)�r�i�2,i�3 � 0
Energy �1
Amino acid specific? No

Nonlocal hydrogen bond‡ j � i � 4
C�–C� distance 4.1Å � rij � 5.3Å
Binormal-binormal correlation§ �b� i�b� j� � 0.8
Binormal-connecting vector§¶ �b� i�c�ij� � 0.94, �b� j�c�ij� � 0.94
Energy �0.7
Amino acid specific? No

Cooperative hydrogen bonds between (i, j) and (i � 1, j � 1)
�-sheet zig-zag pattern§** b� i�b� i� 1 � 0, b� j�b� j� 1 � 0
Energy per pair �0.3
Amino acid specific? No

Bending rigidity Ri�1,i,i�1 � 3.2Å
Energy eR

Amino acid specific? Yes (for a heteropolymer)

Hydrophobic contact j � i � 2
C�–C� distance rij � 7.5Å
Energy eW

Amino acid specific? Yes (for a heteropolymer)

All geometrical properties have been derived by means of a thorough
analysis of PDB native structures.
*Rijk is the radius of a circle drawn through the C� positions of i, j, and k.
†N is the number of residues.
‡Each residue is constrained to form no more than two hydrogen bonds
(except the residues located at the chain termini, which form at most one
hydrogen bond).

§Applied only when the corresponding binormal vectors exist.
¶For i � 1 and�or j � N, this is replaced by the constraint that the connecting
vector is making an angle between 70° and 110° with the extremal peptide
links.

�The connecting vector, c�ij � r�ij�rij is a unit vector joining i and j.
**Applied when at least one of the two cooperative hydrogen bonds is

nonlocal.
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obtained in our studies, including for comparison a generic
compact conformation of a conventional polymer chain (with no
tube geometry or hydrogen bonds), which neither is made up of
helices or sheets nor possesses the significant advantages of
protein structures. Although there is a remarkable similarity
between the structures that we obtain and protein folds, our
simplified coarse-grained model is not as accurate as an all-atom
representation of the polypeptide chain in capturing features
such as the packing of amino acid side chains.

The fact that different putative native structures are found to
be competing minima for the same homopolymeric chain clearly
establishes that the free-energy landscape of proteins is pres-
culpted by means of the few ingredients used in our model. At
the same time, relatively small changes in the parameters eW and
eR lead to significant differences in the emergent ground state
structure, underscoring the sensitive role played by chemical
heterogeneity in selecting from the menu of native state folds.

Fig. 5a is a contour plot of the free energy at a temperature
higher than the folding transition temperature (identified by the
specific heat peak) for the parameter values eW � �0.08 and eR
� 0.3 for which the ground state is an �-helix (Fig. 3). The free
energy landscape has just one minimum corresponding to the
denatured phase whose typical conformations are somewhat
compact but featureless. The contour plot at the folding tran-

sition temperature (Fig. 5b) has three local minima correspond-
ing to an �-helix, a three-stranded �-sheet, and the denatured
state. At lower temperatures, the �-helix is increasingly favored
and the �-sheet is never the global free-energy minimum. Many
protein-folding experiments show that, for small globular pro-
teins at the transition temperature, only two states (folded and
unfolded) are populated. The appearance in the present frame-
work of multiple states for a homopolymer chain suggests that
two-state folders might have been evolutionarily selected by
sequence design favoring the native-state conformation over
competing folds in the presculpted landscape.

Such a design is indeed straightforward within our model. For
example, the �-�-� motif shown in Fig. 4d (which is a local
energy minimum for a homopolymer) can be stabilized into a
global energy minimum for the sequence HPHHHPPPPHHP-
PHHPPPPHHHPP, with eW � �0.4 for HH contacts and eW �
0 for other contacts, and eR � 0.3 for all residues.

It is interesting to note that lattice models of compact ho-
mopolymers yield large amounts of secondary structure (41);
local radius of curvature constraints are built into lattice models.
However, an all-atom study of polyalanine has shown that
compactness alone is insufficient to obtain secondary structures
(42). Even a simple tube subject to an attractive self-interaction
favoring compaction has a tendency to form helices, hairpins and
sheets when the ratio of the tube thickness to the range of
attractive interaction is tuned properly (22). Our work here
underscores the importance of hydrogen bonds in stabilizing
both helices and sheets simultaneously (without any need for
adjustment of the tube thickness), allowing the formation of
tertiary arrangements of secondary motifs. Indeed, the fine
tuning of the hydrogen bond and the hydrophobic interaction is
of paramount importance in the selection of the marginally

Fig. 3. Phase diagram of ground state conformations. The ground state
conformations were obtained by using Monte-Carlo simulations of chains of
24 C� atoms. eR and eW denote the local radius of curvature energy penalty and
the solvent-mediated interaction energy, respectively. Over 600 distinct local
minima were obtained in different parts of parameter space, starting from a
random conformation and successively distorting the chain with pivot and
crankshaft moves commonly used in stochastic chain dynamics (43). A Me-
tropolis Monte-Carlo procedure is used with a thermal weight exp(�E�T),
where E is the energy of the conformation and the temperature T is set initially
at a high value and then decreased gradually to zero. In the orange phase, the
ground state is a two-stranded �-hairpin. Two distinct topologies of a three-
stranded �-sheet (dark and light blue phases) are found corresponding to
conformations shown in conformations i and j in Fig. 4, respectively. The helix
bundle shown in conformation b in Fig. 4 is the ground state in the green
phase whereas the ground state conformation in the magenta phase has a
slightly different arrangement of helices. The white region in the left of the
phase diagram has large attractive values of eW, and the ground state con-
formations are compact globular structures with a crystalline order induced by
hard sphere packing considerations (44) and not by hydrogen bonding (con-
formation l in Fig. 4).

Fig. 4. MOLSCRIPT representation of the most common structures obtained in
our simulations. Helices and strands are assigned when local or nonlocal
hydrogen bonds are formed according to the described rules. Conformations
a, b, h, i, j, and k are the stable ground states in different parts of the
parameter space shown in Fig. 3. Conformations c, d, e, f, and g are compet-
itive local minima. Conformation l is that of a generic compact polymer chain,
obtained by switching off hydrogen bonds, the tube constraint, and curvature
energy penalty, and is obtained on maximizing the total number of hydro-
phobic contacts.
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compact region of the phase diagram in which protein native
folds are found. It is also important to note that proteins are
relatively short chain molecules compared with conventional
polymers. These are special features of proteins, which distin-
guishes them from generic compact polymers.

A free-energy landscape with 1,000 or so minima (7) with
correspondingly large basins of attraction leads to stability and
diversity, the dual characteristics needed for evolution to be
successful. Proteins are those sequences that fit well (18) into one
of these minima and are relatively stable. Yet, the fact that the
marginally compact phase lies in the vicinity of a phase transition
to the swollen phase allows for an exquisite sensitivity of protein
structures to the right types of perturbations. Thus, a change in
the external environment (e.g., an ATP molecule binding to the
protein) could reshape the free-energy landscape, allowing for a
different, stable, and easily foldable conformation.

In summary, within a simple, yet realistic, framework, we have
shown that protein native-state structures can arise from con-
siderations of symmetry and geometry associated with the
polypeptide chain. The sculpting of the free-energy landscape
with relatively few broad minima is consistent with the fact that
proteins can be designed to enable rapid folding to their native
states. The limited number of folds arises from the geometrical
constraints imposed by sterics and hydrogen bonds. In the
marginally compact phase, not only does one have a space-filling
conformation (the nearby backbone segments have to be placed
near each other to avail of the attractive potential), which is
effective in expelling water from the hydrophobic core, but also
these segments need to have the right orientation with respect to
each other to respect the geometrical constraints imposed by the
hydrogen bonds.
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Fig. 5. Contour plots of the effective free energy at high temperature (T �
0.22) and at the folding transition temperature Tf � 0.2. The effective free
energy, defined as F(Nl � Nnl,NW) � �lnP(Nl � Nnl,NW), is obtained as a function
of the total number of hydrogen bonds Nl � Nnl and the total number of
hydrophobic contacts NW from the histogram P(Nl � Nnl,NW) collected in
equilibrium Monte-Carlo simulations at constant temperature. The spacing
between consecutive levels in each contour plot is 1 and corresponds to a free
energy difference of kBT̃, where T̃ is the temperature in physical units. The
darker the color, the lower the free-energy value. There is just one free-energy
minimum corresponding to the denatured state at a temperature higher than
the folding transition temperature (a) whereas one can discern the existence
of three distinct minima at the folding transition temperature (b). Typical
conformations from each of the minima are shown in the figure.
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