
A&A 388, 50–67 (2002)
DOI: 10.1051/0004-6361:20020406
c© ESO 2002

Astronomy
&

Astrophysics

Position-velocity diagrams of ionized gas in the inner regions
of disk galaxies?

J. G. Funes, S. J.1, E. M. Corsini2, M. Cappellari3,??, A. Pizzella4, J. C. Vega Beltrán5,
C. Scarlata4,6, and F. Bertola4

1 Vatican Observatory, University of Arizona, Tucson, AZ 85721, USA
2 Osservatorio Astrofisico di Asiago, Dipartimento di Astronomia, Università di Padova, via dell’Osservatorio 8,
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Abstract. We use long-slit spectroscopy along the major axis of a sample of 23 nearby disk galaxies to study
the kinematic properties of the ionized-gas component in their inner regions. For each galaxy, we derive the
position-velocity diagram of the ionized gas from its emission lines. We discuss the variety of shapes observed in
such position-velocity diagrams by comparing the gas velocity gradient, velocity dispersion and integrated flux
measured in the inner (r ' ±1′′) and outer regions (r ' ±4′′). This kind of analysis allows the identification
of galaxies which are good candidates to host a circumnuclear Keplerian gaseous disk rotating around a central
mass concentration, and to follow up with Hubble Space Telescope observations.
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1. Introduction

It is now commonly accepted that supermassive black
holes (SMBHs hereafter) are nearly ubiquitous in elliptical
galaxies and bulges. According to the standard paradigm,
they should constitute the relics of the intense quasar ac-
tivity that occurred in the early phase of galaxy evolu-
tion (see Ho 1999 for a review). The study of SMBHs
has greatly benefited from the high resolution capabilities
of the spectrographs onboard the Hubble Space Telescope
(HST). Nowadays about 40 galaxies, belonging to differ-
ent morphological types are known to harbor a SMBH.
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Their masses, M•, range from 106 to 1010 M� and
have been derived from the analysis of the stellar orbital
structure or from the dynamics of gaseous circumnuclear
Keplerian disks (CNKD), using both optical and radio ob-
servations (see Kormendy & Gebhardt 2001 and Merritt
& Ferrarese 2001b for both the object list and a discussion
of the accuracy of M• determinations).

The census of SMBHs is now large enough to probe
the links between M• and the global properties of the
host galaxies. M• correlates with the luminosity, Lsph,
and velocity dispersion, σ, of the spheroidal component of
the host galaxy (Kormendy & Richstone 1995; Magorrian
et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al.
2000a). A lively debate is ongoing about the slope of the
M• − σ relation (Merritt & Ferrarese 2001a), although
with its neglegible scatter it is a tighter correlation than
theM•−Lsph relation. The consistency ofM• in active and
quiescent galaxies has been discussed by different authors.
Gebhardt et al. (2000b) and Ferrarese et al. (2001) showed
that SMBH masses from reverberation mapping agree
with the M• − σ relation. Similarly, McLure & Dunlop
(2001, 2002) found that the values of M• inferred from
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Lsph for a large sample of quasars and Seyfert galaxies
agree with those inferred from σ measurements. Elliptical
and disk galaxies seem to follow the same M• − Lsph and
M•−σ correlations, suggesting a close connection between
the processes leading to the growth of central SMBHs and
the formation of galaxy spheroids, whether they are ellip-
ticals, classical bulges or pseudobulges (Kormendy 2001).
Morever, M• does not correlate with disks as it does with
spheroids. To date, however, dynamical SMBH detections
are available for only a dozen disk galaxies, and, there-
fore, the addition of new M• determinations for S0’s and
spirals is highly desirable.

Over the course of the last few years, we have under-
taken a vast program aimed at detecting CNKDs in disk
galaxies using ground-based spectroscopic observations.
Our goal is to measure upper limits for SMBH masses
by using HST spectra to constrain them further (Bertola
et al. 1998). Here we present a survey of the ionized-gas
kinematics of the inner regions of 23 disk galaxies. The
study complements the recent results regarding rapidly
rotating gaseous nuclear disks in Rubin et al. (1997) and
Sofue et al. (1998). The paper is organized as follows: in
Sect. 2 we give an overview of the global properties of
the sample galaxies and discuss observations and data re-
duction. In Sect. 3 we derive the position-velocity (PV )
diagrams of the emission lines for each sample galaxy,
suggesting a scheme for their classification. In Sect. 4
we present our conclusions. Relevant properties and the
PV diagram of individual galaxies are discussed in the
appendix.

2. Sample selection, spectroscopic observations
and data reduction

All the observed galaxies are bright (BT ≤ 13.5) and
nearby (V� < 5800 km s−1) with an intermediate-to-high
inclination (45◦ ≤ i ≤ 80◦). The Hubble morphological
types of the sample galaxies range from S0 to Sd and
5 objects are barred or weakly barred (RC3). The galax-
ies have been chosen to have strong emission lines. An
overview of their basic properties is given in Table 1. In
Fig. 1 we show the absolute magnitude distribution for the
galaxies in our sample. The distribution brackets the M∗

value for spiral galaxies taken from Marzke et al. (1998)
for H0 = 75 km s−1 Mpc−1.

The long-slit spectroscopic observations of our sample
galaxies were carried out at the 4.5-m Multiple Mirror
Telescope (MMT) in Arizona (USA), at the 3.6-m ESO
Telescope at La Silla (Chile), and at the 2.5-m Isaac
Newton Telescope (INT) at La Palma (Spain). Details
about the instrumental setup and the seeing of each ob-
serving run are summarized in Table 2.

At the beginning of each exposure, the slit was
centered on the galaxy nucleus and aligned along the
galaxy major axis using the guide TV camera. The
slit orientation and the exposure times are given in
Table 3. A comparison-lamp spectrum was obtained be-
fore and after each object integration to allow an accurate

Fig. 1. Absolute magnitude distribution for the sample galax-
ies. A line marks M0

BT
= −20.05, which corresponds to M∗ for

spiral galaxies as derived by Marzke et al. (1998) and assuming
H0 = 75 km s−1 Mpc−1. The dashed region identifies galaxies
classified barred or weakly barred in RC3.

wavelength calibration. Quartz-lamp and twilight-sky flat-
fields were taken to map pixel-to-pixel sensitivity varia-
tions and large-scale illumination patterns.

Using standard MIDAS1 routines, the spectra were
bias subtracted, flatfield corrected, cleaned for cosmic
rays, and wavelength calibrated. Cosmic rays were identi-
fied by comparing the counts in each pixel with the local
mean and standard deviation (based on the Poisson statis-
tics of the photons are using the gain and readout noise
of the detector). We corrected the data by interpolating a
suitable value.

The instrumental resolution was derived as the mean
of the Gaussian FWHMs measured for a number of un-
blended arc-lamp lines (12 in the MMT and INT spec-
tra and 30 in the ESO spectra), which were distributed
over the whole spectral range of a wavelength-calibrated
comparison spectrum. The mean FWHM of the arc-lamp
lines, as well as the corresponding instrumental veloc-
ity dispersion, are given in Table 2. Finally, the spectra
were aligned and coadded using the centers of their stellar
continua as reference. In the resulting spectra, the con-
tribution from the sky was determined by interpolating
along the outermost 10′′−20′′ at the edges of the slit,
where galaxy light was negligible. The sky level was then
subtracted.

1 MIDAS is developed and maintained by the European
Southern Observatory.
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Table 1. Parameters of the sample galaxies.

Object Morp. Type BT PA i V� D Scale M0
BT

σ? M• θ• Nuc. Type
[name] [RSA] [RC3] [mag] [◦] [◦] [km s−1] [Mpc] [pc/′′] [mag] [km s−1] [M�] [′′]

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

NGC 470 Sbc(s)II.3 .SAT3.. 12.53 155 52 2370 33.8 163.9 −20.66 56 3.2 e+05 0.003 ...
NGC 772 Sb(rs)I .SAS3.. 11.09 130 54 2470 35.6 172.7 −22.21 124 1.4 e+07 0.02 ...
NGC 949 Sc(s)III .SAT3*$ 12.40 145 58 620 11.4 55.2 −18.50 32 2.3 e+04 0.002 ...
NGC 980 ... .L..... 13.16 110 58 5765 80.1 388.2 −22.95 226 2.3 e+08 0.06 ...
NGC 1160 ... .S..6*. 13.50 50 62 2510 36.6 177.4 −21.01 24 5.9 e+04 0.0003 ...
NGC 2179 Sa .SAS0.. 13.22 170 47 2885 36.5 177.0 −19.98 166 5.4 e+07 0.05 ...
NGC 2541 Sc(s)III .SAS6.. 12.26 165 61 565 8.7 42.2 −18.13 53 2.5 e+05 0.01 T2/H:
NGC 2683 Sb(on edge) .SAT3.. 10.64 44 78 400 5.3 25.6 −18.99 83 2.0 e+06 0.06 L2/S2
NGC 2768 S01/2(6) .E.6.*. 10.84 95 59 1331 19.4 94.1 −20.74 205 1.5 e+08 0.2 L2
NGC 2815 Sb(s)I-II .SBR3*. 12.81 10 72 2541 30.5 147.7 −21.00 168 5.7 e+07 0.07 L/S2
NGC 2841 Sb .SAR3*. 10.09 147 65 640 9.6 46.4 −20.33 197 1.2 e+08 0.3 L2
NGC 3031 Sb(r)I-II .SAS2.. 7.89 157 59 −50 1.5 7.2 −18.46 173 6.6 e+07 1.5 S1.5
NGC 3281 Sa .SAS2P* 12.70 140 61 3380 41.1 199.5 −21.25 172 6.4 e+07 0.05 S2
NGC 3368 Sab(s)II .SXT2.. 10.11 5 47 865 9.7 47.1 −20.14 129 1.6 e+07 0.1 L2
NGC 3521 Sb(s)II-III .SXT4.. 9.04 163 63 825 8.5 41.1 −20.35 145 2.8 e+07 0.2 H/L2:
NGC 3705 Sab(r)I-II .SXR2.. 11.86 122 66 1000 11.4 55.2 −19.03 109 7.4 e+06 0.05 T2
NGC 3898 SaI .SAS2.. 11.60 107 54 1184 17.1 82.9 −19.85 223 2.2 e+08 0.3 T2
NGC 4419 SBab: .SBS1./ 12.08 133 71 −210 17.0 82.4 −19.55 98 4.5 e+06 0.03 H
NGC 4698 Sa .SAS2.. 11.46 170 52 992 17.0 82.4 −19.91 174 6.7 e+07 0.1 S2
NGC 5064 Sa PSA.2*. 13.04 38 63 2980 36.0 174.4 −21.11 202 1.4 e+08 0.09 L
NGC 7320 ... .SAS7.. 13.23 132 60 862 15.4 74.7 −18.39 ... ... ... ...
NGC 7331 Sb(rs)I-II .SAS3.. 10.35 171 70 820 14.7 72.0 −21.48 141 2.5 e+07 0.09 T2
NGC 7782 Sb(s)I-II .SAS3.. 13.08 175 58 5430 75.3 364.9 −21.95 193 1.1 e+08 0.04 ...

Notes – Column 2: morphological classification from RSA. Column 3: morphological classification from RC3. Column 4: total observed blue magnitude from RC3 except
for NGC 980 and NGC 5064 (LEDA). Column 4: major-axis position angle taken from RC3. Column 6: inclination derived from cos2 i = (q2 − q2

0)/(1− q2
0). The observed

axial ratio q is taken from RC3 and the intrinsic flattening q0 = 0.11 has been assumed following Guthrie (1992). Column 7: heliocentric velocity of the galaxy derived
from the center of symmetry of the rotation curve of the gas. They are taken from Vega Beltrán et al. (2001) except for NGC 2179, NGC 3281 and NGC 4698 (Corsini
et al. 1999). Column 8: distance obtained as V0/H0 with H0 = 75 km s−1 Mpc−1 and V0 the systemic velocity derived from V� corrected for the motion of the Sun with
respect of the Local Group according to the RSA. For NGC 4419 and NGC 4698, which belong to the Virgo cluster, we assume a distance of 17 Mpc (Freedman et al. 1994).
Column 10: absolute total blue magnitude corrected for inclination and extinction from RC3. Column 11: central velocity dispersion of the stellar component. Data are from
Vega Beltrán et al. (2001) except for NGC 2179, NGC 3281 (Corsini et al. 1999), NGC 2768 (Bertola et al. 1995), NGC 2815 (LEDA), NGC 3521 (Zeilinger et al. 2001),
and NGC 4698 (Bertola et al. 1999). Column 12: expected mass of the central SMBH derived from σ? following Merritt & Ferrarese (2001a). Column 13: angular size of
the radius of influence of the central SMBH derived from θ• ≈ M• σ

−2
? D−1 (de Zeeuw 2001), where M• is the mass of the SMBH in units of 106 M�, σ? is the central

velocity dispersion in units of 100 km s−1, and D is the galaxy distance in Mpc. Column 14: classification of the nuclear spectrum from Ho et al. (1997) except NGC 2815
(Véron-Cetty & Véron 1986). H = H II nucleus. L = LINER. S = Seyfert nucleus. T = transition object. ... = uncertain.
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Table 2. Instrumental setup for spectroscopic observations.

Parameter MMT INT 3.6-m ESO

Date 21–23 Oct. 1990 17–18 Dec. 1990 19–20 Mar. 1996 03–04 Feb. 1997
Spectrograph Red Channela IDSa CASPECb

Grating (grooves mm−1) 1200 1800 31.6
Detector Loral 12× 8mmt TK1024A TK1024AB
Pixel size (µm2) 15× 15 24× 24 24× 24
Pixel binning 1× 1 1× 1 1× 1
Scale (′′ pixel−1) 0.30 0.33 0.33
Reciprocal dispersion (Å pixel−1) 0.82 0.24 0.076
Slit width (′′) 1.25 1.9 1.3
Slit length (′) 3.0 4.0 2.4
Spectral range (Å) 4850–5500 6650–6890 6630–6651
Comparison lamp He–Ne–Ar–Fe Cu–Ar Th–Ar
Instrumental FWHM (Å) 2.24± 0.26 2.57± 0.11 0.869 ± 0.040 0.233 ± 0.017
Instrumental σc (km s−1) 57 65 5 17
Seeing FWHM (′′) 1.2–1.5 1.0–1.4 0.8–1.2

a Grating used at the first order.
b CASPEC mounting of the Long Camera in long-slit configuration without crossdisperser. The spectral order #86 (λc = 6617 Å)
corresponding to the redshifted Hα region was isolated by means of the narrow-band 6630/51 Å filter.
c The instrumental dispersion has been measured at [O III]λ5007, [N II]λ6583 and Hα for the MMT, INT and 3.6-m ESO
spectra, respectively.

Table 3. Log of spectroscopic observations.

Object Date Telescope texp PA

[name] [s] [◦]

NGC 470 22 Oct. 90 MMT 3600 155
NGC 772 22 Oct. 90 MMT 3600 130
NGC 949 21 Oct. 90 MMT 3600 145
NGC 980 22 Oct. 90 MMT 3600 110
NGC 1160 21 Oct. 90 MMT 3600 50
NGC 2179 03 Feb. 97 3.6-m ESO 4× 3600 170

04 Feb. 97 3.6-m ESO 2× 3600 170
NGC 2541 21 Oct. 90 MMT 3600 165
NGC 2683 18 Dec. 90 MMT 3600 44
NGC 2768 19 Mar. 96 INT 2× 3600 95
NGC 2815 04 Feb. 97 3.6-m ESO 3× 3600 10
NGC 2841 22 Oct. 90 MMT 3600 147
NGC 3031 17 Dec. 90 MMT 3600 157
NGC 3281 04 Feb. 97 3.6-m ESO 3600 140
NGC 3368 17 Dec. 90 MMT 3600 5
NGC 3521 17 Dec. 90 MMT 3600 342
NGC 3705 17 Dec. 90 MMT 3600 122
NGC 3898 19 Mar. 96 INT 3× 3600 107
NGC 4419 20 Mar. 96 INT 2× 3300 133

20 Mar. 96 INT 3600 133
NGC 4698 20 Mar. 96 INT 3600 170
NGC 5064 03 Feb. 97 3.6-m ESO 3× 3600 38

04 Feb. 97 3.6-m ESO 3600 38
NGC 7320 22 Oct. 90 MMT 3600 132
NGC 7331 22 Oct. 90 MMT 3600 171
NGC 7782 22 Oct. 90 MMT 3600 30

3. Position-velocity diagrams

3.1. Galaxy continuum subtraction

We subtracted the stellar continua from the spectra
to study the two-dimensional shape of the emission

lines. Without a large library of stellar (or even galaxy)
absorption-line spectra obtained with the same observing
setup of the spectra of the sample galaxies we were unable
to apply the technique of template subtraction for an op-
timal correction for the starlight contamination (e.g. Ho
et al. 1997).

The galaxy continua have been removed from MMT
spectra by applying the technique outlined by Bender
et al. (1994). The following procedure was applied to the
each row of the galaxy spectrum. First we fit a sixth-
to-tenth-order polynomial to the observed spectrum and
calculated the rms variation, σ, of the spectrum around
the polynomial. Then, the fit was repeated including only
those pixels with values falling within −1σ to 0σ of the
first fit in order to avoid both emission and strong ab-
sorption lines. The new polynomial fit was adopted as
the galaxy continuum and subtracted from the observed
spectrum.

We were prevented from adopting the same method for
the INT and ESO spectra because of their shorter wave-
length range. Our major concern, with the stellar con-
tinuum subtraction was avoiding the creation of spurious
features. For this reason we adopted a very simple but
robust approach. Specifically, we made the reasonable as-
sumption that the underlying observed stellar profile is
the same at all wavelengths in the small observed range.
An average profile was determined in regions free from
emission-line flux and this same profile, properly scaled
and subtracted from all the columns of the spectrum. The
stellar continuum under the emission features was approx-
imated by linear interpolation.

For our purposes, the above techniques give a sat-
isfactory approximation of the galaxy continuum in the
spectral range centered on the relevant emission lines we
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measure, specifically [O III]λ5007, [N II]λ6583, and Hα for
the MMT, INT and ESO spectra, respectively. In Fig. 2
we show the continuum-subtracted spectra of the sample
galaxies as well as the isodensity contour plots (i.e. the
PV diagram) of the emission lines we measure.

3.2. Measuring the position-velocity diagrams

The PV diagrams plotted in Fig. 2 show the variety of
two-dimensional shapes of the optical emission lines in the
inner regions of disk galaxies. This finding is in agreement
with the earlier results of Rubin et al. (1997) and Sofue
et al. (1998). We suggest a classification of these PV dia-
grams based on the comparison of the velocity gradients,
velocity dispersions and fluxes measured at different dis-
tances from the center. Our goal is to identify galaxies
hosting a CNKD.

We measured the line-of-sight velocity, V , of the ion-
ized gas at r ' ±1′′ and r ' ±4′′ by fitting a Gaussian
to the relevant emission line. The central wavelength of
the Gaussian fit was converted to velocity in the optical
convention and then the standard heliocentric correction
was applied to obtain V . The radii, r ' ±1′′, used for
measuring the inner velocity gradient (∆V/∆r)in, are dic-
tated by the spatial resolution limit imposed by seeing on
our data (0.′′8 <∼ FWHM <∼ 1.′′5). Choosing the smallest
possible radii according to the seeing limit assures us that
if a central mass concentration is present, the observed
inner velocity gradient is maximized. The outer velocity
gradient, (∆V/∆r)out, measured at r ' ±4′′, serves as
a reference. In fact, for each sample galaxy the radius of
influence, θ•, of the possible central mass concentration
predicted using the M• − σ relation (Merritt & Ferrarese
2001a, see Table 1) is θ• � 4′′. Therefore, (∆V/∆r)out is
essentially determined by the contribution of galaxy stel-
lar component to the potential.

We checked that velocity gradients did not significa-
tively change if the ∆V are computed from the differ-
ence of line-of-sight velocity distribution maxima instead
of the centers of the fitting Gaussian fit. Moreover, to
test the robustness of our measurements and to estimate
the associated uncertainties, we compute (∆V/∆r)in at
rin ' ±0.′′7 and at ±1.′′3 and we compute (∆V/∆r)out

at rout ' ±3′′ and at ±5′′, respectively. The errors on
(∆V/∆r)in have been estimated from the maximum differ-
ence between the values measured at ±0.′′7 and ±1.′′3 with
respect to those measured at ±1′′. Similarly, the errors on
(∆V/∆r)out have been estimated from the maximum dif-
ference between the values obtained at ±3′′ and ±5′′ with
respect to those measured at ±4′′. The measured values
of (∆V/∆r)in and (∆V/∆r)out are given in Table 4.

The inner-to-outer velocity gradient ratio Γ is indepen-
dent of galaxy inclination and has been adopted to indi-
cate which galaxies are characterized by rapidly-rotating
gas in the inner regions. However, to allow a direct com-
parison of their absolute values, we plotted the inner ve-
locity gradients as a function of the corresponding outer
velocity gradients in Fig. 3, after correcting for galaxy

inclination and distance given in Table 1. NGC 980,
NGC 2179, NGC 2683, NGC 3031 and NGC 7782 are
clearcut cases of galaxies characterized by Γ±∆Γ > 2.

To characterize the velocity-dispersion and surface-
brightness radial profiles of each gaseous disk, we mea-
sured the velocity dispersion and integrated flux of the
ionized gas in the galaxy center and at r ' ±4′′, using
a Gaussian fit to the line adopted for the velocity mea-
surements. The FWHM of Gaussian fit was corrected for
instrumental FWHM and converted into the velocity dis-
persion, σ. The formal error of the fit has been adopted
as the error on the central value of velocity dispersion,
while the errors on the outer values have been estimated
using the maximum difference between the measurements
obtained at ±3′′ and ±5′′ with respect to those at ±4′′.
The integrated flux was assumed to be the area of the
Gaussian fit and the associated error was estimated from
Poisson statistics. We considered only the central-to-outer
integrated-flux ratio since spectra were not flux calibrated.
This process results in line fluxes of different objects ob-
served with different setups that are not directly com-
parable. The measured values of the velocity dispersion
and the central-to-outer integrated-flux ratio are given
in Table 4. The central velocity dispersions are shown
as a function of the outer velocity dispersions in Fig. 3.
NGC 980, NGC 2179, and NGC 3031 exhibit the sharpest
rises in observed velocity dispersion towards their centers.

3.3. A classification of the position-velocity diagrams

We propose an operational classification of the PV dia-
grams of Fig. 2 based on the properties we measured in
Sect. 3.2 and based on the analogy between the shapes of
the PV diagrams we observed and the shapes predicted
for the spectrum of a ionized thin gaseous disk, under the
assumption that the gas moves in circular orbits, in the
plane of the galaxy. Although the model assumptions may
not be accurate in practice, the classification is useful to
identify the effects of rapid gas rotation. We do not pre-
tend to draw any general conclusions on the phenomenol-
ogy of PV diagrams from such a classification; it is just a
tool adopted to select the sample galaxies which possibly
host CNKDs.

Under the model assumptions, two parameters are cru-
cial in determining the observed shape of the PV dia-
grams; they are the value of the central mass concentra-
tion and the steepness of the intrinsic surface-brightness
distribution of the gaseous disk. To investigate the change
in the PV diagrams resulting from these two effects, we
have used the IDL modeling software developed in Bertola
et al. (1998). We refer the reader to that paper for further
details on the model. A slit width and a seeing FWHM of
1′′ have been adopted, with a spectrograph velocity scale
of 10 km s−1 pixel−1 and a spatial scale of 0.′′3 pixel−1. The
underlying galaxy potential is assumed to result in a rigid
rotation of 0.4 km s−1 pc−1 in the plane of the disk, which
is “observed” at 60◦ inclination (i = 90◦ corresponding to
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Table 4. Measured parameters of the sample galaxies.

Object (∆V/∆r)in (∆V/∆r)out Γ σ0 σout σ0/σout F0/Fout Type
[name] [km s−1 arcsec−1] [km s−1 arcsec−1] [km s−1] [km s−1]

(1) (2) (3) (4) (5) (6) (7) (8) (9)

NGC 470 33± 4 23± 7 1.4+0.9
−0.5 101± 15 103± 41 1.0+0.9

−0.4 4.0± 0.1 III
NGC 772 32± 3 33± 19 1.0+1.5

−0.4 131± 19 138± 51 0.9+0.8
−0.4 3.7± 0.1 III

NGC 949 6± 3 6± 4 1.0+3.5
−0.7 57± 13 42± 23 1.4+2.3

−0.7 2.7± 0.1 III
NGC 980 108± 12 52± 11 2.1+0.8

−0.6 259± 34 129± 95 2.0+6.6
−1.0 6.9± 0.1 I

NGC 1160 17± 14 33± 24 0.5+2.9
−0.5 66± 21 32± 11 2.0+2.1

−1.0 1.2± 0.1 II
NGC 2179 86± 4 41± 6 2.1+0.5

−0.4 170± 29 42± 11 4.0+2.4
−1.4 4.2± 0.1 I

NGC 2541 7± 1 4± 2 1.8+2.3
−0.8 48± 18 55± 13 0.9+0.7

−0.4 5.2± 0.2 III
NGC 2683 36± 6 12± 8 3.0+7.5

−1.5 109± 13 163± 31 0.7+0.3
−0.2 3.2± 0.1 *

NGC 2768 20± 2 7± 4 2.9+4.5
−1.2 174± 12 141± 48 1.2+0.8

−0.4 10.8 ± 0.1 III
NGC 2815 49± 1 49± 6 1.0+0.2

−0.1 149± 16 94± 9 1.6+0.4
−0.3 15.0 ± 0.5 III

NGC 2841 15± 7 17± 2 0.9+0.6
−0.5 135± 18 144± 19 0.9+0.3

−0.2 2.5± 0.1 III
NGC 3031 21± 4 7± 3 3.0+3.3

−1.3 237± 51 57± 41 4.2+13.8
−2.3 65.6 ± 0.4 III

NGC 3281 34± 5 18± 9 1.9+2.4
−0.8 119± 20 92± 12 1.3+0.4

−0.3 19.9 ± 0.5 III
NGC 3368 35± 12 32± 8 1.1+0.9

−0.5 113± 19 69± 12 1.6+0.7
−0.5 6.1± 0.2 III

NGC 3521 21± 10 18± 11 1.2+3.3
−0.8 180± 39 146± 66 1.2+1.5

−0.6 8.9± 0.1 III
NGC 3705 22± 1 14± 10 1.6+4.2

−0.7 110± 14 55± 42 2.0+7.5
−1.0 13.3 ± 0.4 III

NGC 3898 13± 1 26± 3 0.5+0.1
−0.1 131± 21 110± 27 1.2+0.6

−0.4 4.6± 0.1 III
NGC 4419 7± 1 14± 2 0.5+0.2

−0.1 117± 11 83± 21 1.4+0.7
−0.4 13.6 ± 0.1 III

NGC 4698 8± 5 3± 1 2.7+3.8
−1.9 86± 8 103± 7 0.8+0.1

−0.1 6.0± 0.1 III
NGC 5064 74± 11 56± 11 1.3+0.6

−0.4 52± 22 43± 11 1.2+1.1
−0.7 0.9± 0.1 II

NGC 7320 6± 1 5± 3 1.2+2.3
−0.6 12± 10 10± 7 1.2+6.1

−1.1 0.3± 0.1 II
NGC 7331 16± 4 15± 11 1.1+3.9

−0.6 102± 11 130± 65 0.8+1.0
−0.3 3.7± 0.1 III

NGC 7782 170± 25 56± 11 3.0+1.3
−0.9 151± 19 96± 29 1.6+1.0

−0.5 5.3± 0.1 I

Notes – Column 2: inner velocity gradient at r ' ±1′′. Column 3: outer velocity gradient at r ' ±4′′. Column 4: inner-to-outer
velocity gradient ratio. Column 5: central velocity dispersion. Column 6: outer velocity dispersion at r ' ±4′′. Column 7: central-
to-outer velocity dispersion ratio. Column 8: central-to-outer integrated-flux ratio. F0 and Fout have been measured at r = 0′′

and r ' ±4′′, respectively. Column 9: type of PV diagram according to our classification; * = figure-of-eight PV diagram
(see appendix).

edge-on). A distance of 17 Mpc was adopted for the mod-
eling, corresponding to the distance of the Virgo cluster.

The predicted effect on the PV diagram from an in-
crease of the central mass concentration is presented in the
upper panels of Fig. 4. In this case, we assume an expo-
nential the surface-brightness profile superposed on a con-
stant term: I(R) = I0 + I1 exp(−R/RI), with I0 = 1 and
I1 = 5 (in arbitrary units) and RI = 1′′, where the central
mass is given by M• = 0, 108, 109 M� in panels (a), (b)
and (c) respectively.

The PV change that results from a variation in the
brightness of a central unresolved source is shown in the
bottom panels of Fig. 4. In these panels the adopted
surface-brightness profile is assumed to be an essen-
tially unresolved Gaussian superposed on a constant term:
I(R) = I0 +I1 exp[−R2/(2σ2

I )], with I0 = 1, σI = 0.′′3 and
I1 = 0, 20, 100 (in arbitrary units) in panel (a), (b) and
(c) respectively.

By comparing the models of Fig. 4 with the observed
PV diagrams, and inspecting the measured values of Γ,
σ0/σout and F0/Fout we identify three different types of
PV diagrams (see Fig. 5).
Type I. This type of PV diagrams suggests the pres-
ence of two distinct kinematical gaseous components. This
results from the sharp increase of ∆V/∆r towards small

radii, which indicates the presence of a rapidly rotating
gas in the innermost region of the galaxy. The inner-to-
outer velocity gradient ratio is Γ > 2 and the intensity dis-
tribution along the line shows two symmetric peaks with
respect to the center.
The PV diagram of the Sa galaxy NGC 2179 (Fig. 5) can
be considered the prototype of this class. As we showed
in Bertola et al. (1998), the peculiar shape and inten-
sity distribution of this PV diagram can be modeled as
a unique gaseous component that is rotating in the com-
bined potential of a central mass concentration embedded
in an extended stellar disk. Therefore the galaxies that ex-
hibit this kind of PV diagram (NGC 980, NGC 2179, and
NGC 7782) are good candidates to host a CNKD rotat-
ing around a central mass concentration. They are ideal
targets for HST spectroscopic follow-up to constrain the
mass of the possible SMBH. A good estimate of this mass
requires that the innermost kinematical points be within
the radius of influence (e.g. Merritt & Ferrarese 2001b).
The three galaxies meet this criterion, since the expected
angular extension of the radii of influence of their SMBHs
are comparable to the pixel size of the Space Telescope
Imaging Spectrograph (θ• ≈ 0.′′05). An increase in the
velocity dispersion (σ0 >∼ 150 km s−1), associated with a
large increase in the velocity gradient (as in NGC 980
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NGC 470 { Sb(rs)

1’

NGC 470 

NGC 772 { Sb(s)

1’

NGC 772 

Fig. 2. Optical images, spectra and PV diagrams of the sample galaxies. We show from left to right: a) an optical image of the
galaxy taken from the Digitized Sky Survey with the slit position and angular scale superimposed. The orientation of the image
is north up and east to the left. b) The galaxy spectrum after continuum removal with wavelength, radial distance from the
nucleus, and orientation marked. Color cuts are chosen to show the fainter structures and the radial extension of the emission
lines. In the INT and ESO spectra the nuclear continuum is the residual after subtraction of about 90% of the continuum.
c) The galaxy PV diagram derived from [O III]λ5007, [N II]λ6583, and the Hα emission line for the spectra obtained at the
MMT, INT, and 3.6-m ESO telescopes, respectively. In the PV diagram the intensities of the plotted contours correspond
to 5%, 15%, 25%, . . . , 95% of the maximum emission-line intensity. The plotted region in the PV diagram corresponds to
the rectangular box marked in the galaxy spectrum. PV diagrams are shown with the same scale for the observed radii and
velocities, but we also indicate the distance from the center in kpc to aid comparison.

and NGC 2179) is expected in the presence of a nuclear
mass concentration. It could result from differential mo-
tion within the aperture or from intrinsic turbulence in
the gaseous disk. On the other hand, an increase in veloc-
ity dispersion that is not associated with an increase in
the velocity gradient may indicate that the gas is not in a
disk. However, a central mass concentration may still be
the cause of this increase in the velocity dispersion.
Type II. This class of PV diagram is characterized by a
single velocity component which is in rigid-body rotation,
as indicated by Γ ≈ 1. σ0/σout ≈ 1 and F0/Fout ≈ 1 are
characteristic of these PV diagrams too.
We consider the PV diagram of the Sa galaxy NGC 5064
to be the prototypical example of this kind of PV diagram
(Fig. 5). In Bertola et al. (1998), we pointed out that in
this galaxy either the unresolved Keplerian part of the
gaseous disk does not result in a detectable contribution
or the central mass concentration is lower than 5×107 M�.
Therefore we suggest that galaxies exhibiting this type of

PV diagram (see Table 4) may harbor low-mass SMBHs,
although high spatial resolution spectroscopy and dynam-
ical modelling of the stellar kinematics are required to
distinguish this possibility from the effects of a peculiar
gas distribution.

Type III. PV diagrams of this type are characterized by
an apparently broad nuclear emission-line component su-
perimposed on a normal velocity curve. This results from
the sharp increase of the line flux toward the center, as
indicated by F0/Fout > 1.

The best example of this type of PV diagram is that of
the S0 NGC 2768 (Fig. 5). Most of the sample galaxies
exhibit a PV diagram belonging to this class because of a
selection effect. They have been observed because of their
strong emission lines.

The classification and the peculiarities of the PV di-
agrams of all the sample galaxies are discussed in the
appendix.
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Fig. 2. continued.
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Fig. 2. continued.



J. G. Funes, S. J. et al.: Position-velocity diagrams of disk galaxies 59

NGC 2841 { Sb(r):

1’

NGC 2841 

NGC 3031 { Sab(s)

2’

NGC 3031 

NGC 3281 { Sab(s)pec:

1’

NGC 3281

NGC 3368 { SABab(rs)

1’

NGC 3368 

Fig. 2. continued.
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Fig. 2. continued.
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Fig. 2. continued.
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NGC 7782 { Sc(s)

1’

NGC 7782 

Fig. 2. continued.

Fig. 3. Inner vs. outer velocity gradients (left panel) and central vs. outer velocity dispersions of the sample galaxies (right
panel). Observed velocity gradients collected in Table 4 have been corrected for galaxy inclination and distance given in Table 1.

4. Discussion and conclusions

In Bertola et al. (1998) we demonstrated that it is possible
to detect the signature of a CNKD in the emission-line
PV diagrams obtained from ground-based spectroscopy of
nearby galaxies. In addition, we showed that once properly
modelled, this technique can lead to reliable upper-limits
for the central mass concentration. Using these results,
and to identify new galaxies hosting a CNKD, we obtained
long-slit spectra along the major axes of 23 nearby disk
galaxies, measuring the PV diagrams of the ionized-gas
components from the emission lines.

To achieve our goal, we analyzed these emission-line
PV diagrams by measuring the values of the velocity gra-
dient, the velocity dispersion, and the integrated flux of
the ionized gas at different radii, and by comparing the
shape of the observed emission lines with that predicted

for a thin disk of gas moving in circular orbits in the galaxy
plane. This classification allowed us to recognize the pos-
sible presence of a CNKD in 3 of our objects. Recently,
Rubin et al. (1997) and Sofue et al. (1998) discussed the
kinematics of rapidly-rotating gas disks observed in the
central few hundred parsecs of S0’s and spiral galaxies.
By combining our sample with their samples, we find that
the PV diagrams of 9 out 54 galaxies exhibit a Γ > 2,
which is indicative of a CNKD. The fact that in the ma-
jority of these cases CNKDs have not been observed means
that not all of these galaxies enough gas detectable and
rotating Keplerian orbits. Therefore, we estimated that
the frequency of CNKDs, measured from ground-based
spectroscopy of emission-line disk galaxies, is <∼20%. This
result is consistent with the findings of Sarzi et al. (2001),
which are based on HST spectroscopy. Indeed, they found
a gaseous disk with a well-ordered velocity field suitable
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Fig. 4. Upper panels: the shapes of PV diagrams as a function the central mass concentration. The three panels represent the
emission lines of CNKDs rotating around central pointlike sources of a) M• = 0 M�; b) M• = 108 M�; and c) M• = 109 M�.
The PV diagram in panel c) is representative of Type I. Lower panels: the shape of PV diagrams as a function of the intrinsic
surface brightness of the gas. The three panels represent the emission lines of gaseous disks in rigid-body rotation with a projected
velocity gradients (∆V/∆r)in = (∆V/∆r)out = 27 km s−1 arcsec−1, observed velocity dispersions σ0 = σout = 100 km s−1, and
nuclear fluxes a) F0 = Fout; b) F0 = 20×Fout; and c) F0 = 100×Fout. The PV diagrams in panels a) and c) are representative
of Type II and III, respectively.

for dynamical modelling at HST resolution in only 4 of
the 23 randomly selected emission-line disk galaxies they
observed.

The analysis of ground-based PV diagrams allows
identification of those galaxies that are good candidates
for hosting a CNKD rotating around a central mass

concentration, and are therefore are good candidates for
follow-up HST spectroscopy. It is worth noting that in
this way it is possible to improve the present low suc-
cess rate of HST programs aimed at estimating SMBH
masses in nearby bulges by modelling nuclear gas kinemat-
ics. Although the SMBH mass hosted by the candidates
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Fig. 5. Contour plots of the prototypical examples of the three types of PV diagrams. Left panel: NGC 2179 (Type I). Middle
panel: NGC 5064 (Type II). Right panel: NGC 2768 (Type III).

selected by ground-based observations are expected to lie
in the high-mass end of the M•−σ diagram because of the
resolution limits imposed on their PV diagrams by seeing,
these candidates are required to elucidate the relationship
for disk galaxies, which are underrepresented relative to
elliptical galaxies in the sample of galaxies studied so far.
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Appendix A: Notes on individual galaxies

The PV diagrams of the sample galaxies are plotted in
Fig. 2 and their classifications according to the criteria
proposed in Sect. 3.3 are given in Table 4. In this sec-
tion, we describe the most important properties of the
sample galaxies and discuss the classification of their PV
diagrams. The values of the velocities and the velocity
dispersions include no corrections for inclination.

NGC 470. This intermediate-type spiral hosts either two
nested bars (Wozniak et al. 1995) or a bar with a triaxial

bulge (Friedli et al. 1996). The velocity gradient and veloc-
ity dispersion of the [O III]λ5007 line do not significantly
change moving from the nuclear to the outer regions, while
its integrated flux increases toward the center. We classify
the PV diagram of NGC 470 as Type III.

NGC 772. According to the dynamical modelling of
Pignatelli et al. (2001), the velocity of the ionized gas
traces the circular speed in gravitational equilibrium. The
PV diagram of NGC 772 derived from the [O III]λ5007
emission line is classified as Type III since the integrated
flux of the emission line in the nucleus is greater than that
measured in the outer regions.

NGC 949. As in the previous case, also the Type III
classification of the PV diagram of NGC 949 results from
the increase of the integrated flux of the [O III]λ5007 line
toward the center.

NGC 980. In the PV diagram of this S0 galaxy, a tilted
and bright component appears to be superimposed on a
normal rotation curve. The increase of both the velocity
gradient and the velocity dispersion toward the center are
indicative of the kinematics of a CNKD and give this PV
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diagram its Type I classification. This is also the case for
NGC 2179 and NGC 7782.

NGC 1160. The PV diagram of this Scd spiral is char-
acterized by a constant velocity gradient and a constant
integrated flux for the [O III]λ5007 line. This makes its
Type II classification straightforward.

NGC 2179. The PV diagram of NGC 2179 is the proto-
type of the Type I class. The two-dimensional shapes of
the emission lines are such that they gives the erroneous
impression of two distinct velocity components. One ap-
parent velocity component has the form of a highly tilted
straight line rising from zero velocity in the galaxy center
(i.e., a faster-rising rotation curve). The other component
is a less-tilted straight line (i.e., a slower-rising rotation
curve) superimposed on the first. Both lines naively ap-
pear to imply solid-body rotation in the inner parts of
this galaxy; both lines culminate as the radius increases
to almost the same maximum velocity; the slower-rising
rotation curve shows a flat portion in its outer regions.
Rather than being of two different physical origins, we
have shown that properly accounting for the seeing, slit
width, and pixel size effects, these two apparently solid-
body rotation curves can be modelled as the velocity field
of a thin gaseous disk rotating in the combined gravita-
tional potential of central point-like mass and an extended
stellar disk (see Bertola et al. 1998 for details).

NGC 2541. The bright central component in this PV
diagram is characterized by the same velocity dispersion
measured in the outer parts of the disk. This is typical of
Type III diagrams.

NGC 2683. According to Merrifield & Kuijken (1999),
the PV diagram of NGC 2683 has a “figure-of-eight”
shape produced by the presence of two kinematically dis-
tinct gaseous components. This feature is barely visible in
our PV diagram because of the lower S/N ratio of the
spectrum. Although the properties of the PV diagram of
NGC 2683 are similar to those of NGC 980, NGC 2179 and
NGC 7782, it does not warrant a Type I classification.
Indeed in NGC 2683 we are observing two gas compo-
nents which are spatially distinct and superimposed along
the line of sight because of the high inclination of the
galaxy (i = 78◦). They are generated by the presence of
a non-axisymmetric potential (Kuijken & Merrifield 1995;
Bureau & Athanassoula 1999).

This is not the case for NGC 980, NGC 2179 and
NGC 7782, which are less inclined (i = 58◦, 47◦ and
58◦, respectively) and unbarred, exhibiting unique gaseous
components.

NGC 2768. The presence of a definite outer enve-
lope with subtle dust patches surrounding the bulge (see
panels 38 and 53 in CAG) supports the S0 classification
of this galaxy, which appears as an E6∗ in RC3. The kine-
matical decoupling between the ionized gas and the stars,
detected by Bertola et al. (1992), has been interpreted as
a result of the presence of gas orbiting in a polar ring

(Möllenhoff et al. 1992; Fried & Illinghworth 1994). The
inner velocity gradient is higher than the outer one
which is one of the lowest we measured ((∆V/∆r)out=
0.09 km s−1 pc−1). The constant velocity dispersion and
the steep increase of [N II]λ6583 flux in the center imply
a Type III classification for this PV diagram.

NGC 2815. The presence of the spectrum of broad emis-
sion lines in the nuclear region of NGC 2815 with wings
which are very close each to other makes the subtraction
of the galaxy continuum critical. Indeed, residual contin-
uum is still visible in the PV diagram derived from the
Hα line; it gives the erroneous impression that the PV
diagram shape is similar to that of NGC 2179. We classify
this PV diagram as Type III class because of its constant
velocity gradient and large central-to-outer integrated-flux
ratio.

NGC 2841. According to Sil’Chenko et al. (1997) the
ionized gas is rotating orthogonally with respect to the
galaxy plane in the inner 5′′. Alternatively, Sofue et al.
(1998) reported that the central portion of the PV dia-
gram derived from the Hα and [N II]λ6583 lines is slightly
tilted in the direction of the galactic rotation, suggesting
the presence of a rapidly rotating nuclear disk. Our PV
diagram exhibits a complex and asymmetric shape that
could be related to these different kinematic components.
However, we do not measure a significant variation of the
velocity gradient or the velocity dispersion with radius.
The line flux increases slightly toward the center. These
features are similar to those of PV diagrams included in
the Type III class, and make it difficult to associate with
the central component to a fast-rotating disk as by indi-
cated Sofue et al. (1998).

NGC 3031. HST Hα imaging reveals the presence of a
nuclear gaseous disk (Dereveux et al. 1997) similar in size
and shape to the CNKD of M 87 (see Macchetto et al.
1997 and references therein). The disk is rotating around
a SMBH with M• = 3 × 106 M�, according to determi-
nations based on stellar kinematics (Bower et al. 1996)
and broad-line emission (Ho et al. 1996). The spatial and
spectral resolution of our spectrum allow us only to detect
the presence of a broad and bright central component in
the PV diagram. In fact, it exhibits the highest central-to-
outer integrated-flux ratio of our sample, which warrants
a Type III classification. From the available spectrum, it
is difficult to claim that NGC 3031 is hosting a CNKD
even though we measure a remarkably large (∆V/∆r)in

(=3.4 km s−1 pc−1) and a large inner-to-outer velocity-
gradient ratio (Γ = 3.0).

NGC 3281. The ionized-gas kinematics measured by
Rubin et al. (1985) and Corsini et al. (1999) extends out to
about 50′′ from the nucleus but in our spectrum the emis-
sion is confined in the innermost 5′′. The inner velocity
gradient is steeper than the outer one and this early-type
spiral has one of the highest central-to-outer flux ratios of
the whole sample. Even if the emission is not extended we
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consider the PV diagram of NGC 3281 to be of Type III
because of its intense nuclear emission.

NGC 3368. From NIR photometry, Jungwiert et al.
(1997) identified a possible double-barred structure within
this Sab spiral. Although the PV diagram seems to have
a two-component structure, the constant velocity gra-
dient and steep increase of the integrated flux of the
[O III]λ5007 line toward the center suggest a Type III
classification.

NGC 3521. The PV diagram of this intermediate-
type spiral has been recently measured by Sofue et al.
(1998) from the Hα and the [N II]λ6583 emission lines.
They interpreted the central component observed in the
[N II]λ6583 line as an indication of the presence of a fast
rotating gaseous disk in the nucleus. We suggest that this
feature, which is clearly visible also in the PV diagram we
derived from the [O III]λ5007 emission line, results from
the increase of the line flux rather than the velocity gradi-
ent. Morever, the velocity dispersion does not change with
radius. Therefore it is Type III diagram.

NGC 3705. The Type III classification of this PV dia-
gram mostly results from the centrally-peaked radial pro-
file of the integrated flux of the [O III]λ5007 line, which
gives the impression of a steep central component super-
imposed on a slowly-rotating component.

NGC 3898. The ionized-gas distribution and kinemat-
ics of this Sa galaxy have recently been studied in detail
by Pignatelli et al. (2001). They found that in the inner-
most region (|r| <∼ 8′′) of NGC 3898, the ionized gas is
rotating more slowly than the circular velocity predicted
by dynamical modelling based on stellar kinematics and
photometry. The fingerprint of such a “slowly-rising” rota-
tion curve (according to Kent 1988 definition) can be rec-
ognized in the decrease of the velocity gradient at smaller
radii. The two-component shape of the PV diagram re-
sults from the bright nuclear emission and not the increase
of velocity gradient or the velocity dispersion. This is a
Type III PV diagram and its similarity to the PV dia-
gram of NGC 4419 is remarkable.

NGC 4419. The spectrum and consequently the PV dia-
gram of NGC 4419 are similar to those of NGC 3898. The
spectra show the same strong and broad Hα absorption
and the PV diagrams are characterized by the same bright
central component. They have also similar inner-to-outer
velocity gradient and dispersion ratios and both belong to
the Type III class. As NGC 3898 also NGC 4419 is one
of the bulge-dominated spirals displaying a slowly-rising
rotation curve of the ionized gas discussed by Kent (1988).

NGC 4698. This Sa galaxy shows a remarkable orthog-
onal geometrical and kinematical decoupling between the
inner portion of the bulge and galaxy disk (Bertola et al.
1999). The asymmetric shapes of the Hα and [N II] lines
are seen at a simple visual inspection of the spectrum,
and they are more evident in the PV diagram obtained
from the [N II]λ6583 line. Although we measured an

increase of the velocity gradient toward the center, we
note that NGC 4698 has the shallowest outer gradient of
all the sample galaxies ((∆V/∆r)out= 0.05 km s−1 pc−1).
This gradient corresponds to the central plateau measured
in the ionized-gas rotation curve by Bertola & Corsini
(2000). The Type III classification has been assigned to
this PV diagram on the basis of its high central-to-outer
integrated-flux ratio.

NGC 5064. The PV diagram of NGC 5064 is the pro-
totype of the Type II class. It is useful to compare the
emission-line spectrum of NGC 5064 to that of NGC 2179,
because both spectra have been obtained with same setup
and observing conditions. In contrast with NGC 2179, the
emission-line spectrum of NGC 5064 does not show any
peculiar features; there is only one component in the cen-
tral region. The velocity increases linearly with radius un-
til it reaches about 200 km s−1, 4′′ from the center. The
velocity dispersion and the integrated flux of the Hα line
remain almost constant in this radial range.

NGC 7320. The spectrum we obtained for this late-type
spiral, which belongs to Stephan’s Quintet is of poor qual-
ity. The [O III]λ5007 line shows a bright knot at about 5′′

from the center resulting in the observed F0/Fout = 0.3.
The Type II classification of the PV diagram is based on
the constant inner-to-outer velocity gradient and velocity
dispersion.

NGC 7331. The presence of a SMBH (M• ∼ 108 M�) in
the center of NGC 7331 has been debated by different au-
thors (Afanasiev et al. 1989; Bower et al. 1993; Mediavilla
et al. 1997; Sil’Chenko 1999). The debate centers on obser-
vations of the distribution and kinematics of ionized gas.
Our PV diagram is similar to that of NGC 772. We mea-
sure an increase of the integrated flux of the [O III]λ5007
line at smaller radii, along with constant velocity gradient
and to slight increase of the velocity dispersion. The PV
diagram of NGC 7331 is of Type III.

NGC 7782. The inner region of this PV diagram is char-
acterized by a sharp increase of the velocity gradient, as
confirmed by the large inner-to-outer velocity-gradient ra-
tio we measure. The [O III]λ5007 line exhibits a bright
nuclear component and it velocity dispersion rapidly de-
creases with radius. The properties of the PV diagram of
NGC 7782 are close to those of NGC 2179 leading to the
Type I classification. The nuclear ionized-gas kinematics
of NGC 7782 is indicative of a CNKD.
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