
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 138, Number 7, July 2010, Pages 2607–2617
S 0002-9939(10)10318-9
Article electronically published on February 24, 2010

UNIQUENESS FOR A STOCHASTIC INVISCID DYADIC MODEL

D. BARBATO, F. FLANDOLI, AND F. MORANDIN

(Communicated by Edward C. Waymire)

Abstract. For the deterministic dyadic model of turbulence, there are exam-
ples of initial conditions in l2 which have more than one solution. The aim of
this paper is to prove that uniqueness, for all l2-initial conditions, is restored
when a suitable multiplicative noise is introduced. The noise is formally energy
preserving. Uniqueness is understood in the weak probabilistic sense.

1. Introduction

The infinite system of nonlinear differential equations

dXn (t)

dt
= kn−1X

2
n−1 (t)− knXn (t)Xn+1 (t) , t ≥ 0,(1.1)

Xn (0) = xn

for n ≥ 1, with coefficients kn > 0 for each n ≥ 1, X0(t) = 0 and k0 = 0, is
one of the simplest models which presumably reflect some of the properties of 3D
Euler equations. At least, it is infinite dimensional, formally conservative (the
energy

∑∞
n=1 X

2
n (t) is formally constant), and quadratic. One of its ‘pathologies’

is the lack of uniqueness of solutions, in the space l2 of square summable sequences:
when, for instance, kn = λn with λ > 1, there are examples of initial conditions
x = (xn)n≥1 ∈ l2 such that there exist at least two solutions in l2 on some interval

[0, T ], with continuous components. This has been proved in [3]: on one side, given
any x ∈ l2, there exists a solution such that

∑∞
n=1 X

2
n (t) ≤

∑∞
n=1 x

2
n for all t ≥ 0;

on the other side, for special elements a = (an)n≥1 ∈ l2, the strictly increasing
sequence

an
t0 − t

, t ∈ [0, t0)

is a (self-similar) solution. Other counterexamples can be done by time-reversing
any solution that dissipates energy (this happens for all solutions having positive
components). System (1.1) and variants of it have other special features, such as
energy dissipation and loss of regularity; see [5], [6], [7], [14], [17], [18], [26], [3].

In this paper we prove that uniqueness is restored under a suitable random
perturbation. On a filtered probability space (Ω, Ft, P ), let (Wn)n≥1 be a sequence
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of independent Brownian motions. We consider the infinite system of stochastic
differential equations in Stratonovich form:

(1.2) dXn =
(
kn−1X

2
n−1 − knXnXn+1

)
dt+σkn−1Xn−1◦dWn−1−σknXn+1◦dWn

for n ≥ 1, with X0(t) = 0 and σ �= 0. The concept of an exponentially integrable
solution, used in the following theorem, is defined in the next section. By classical
arguments, we shall prove weak existence in the class of exponentially integrable
solutions. Our main theorem is:

Theorem 1.1. Given x ∈ l2, in the class of exponentially integrable solutions on
an interval [0, T ] there is weak uniqueness for equation (1.2).

The proof is given in section 4. Weak uniqueness here means uniqueness of

the law of the process on the space C ([0, T ] ;R)N. Our approach is based on the
Girsanov transformation, so this is the natural result one expects. We do not know
about strong uniqueness. Our use of the Girsanov transformation is not the most
classical one and is inspired by [1], [8].

The multiplicative noise in equation (1.2) preserves the formal energy conserva-
tion. By applying the rules of Stratonovich calculus (see the same computation at
the Itô level in the proof of Theorem 3.2) we have

dX2
n = 2

(
kn−1X

2
n−1Xn − knX

2
nXn+1

)
dt

+ σkn−1Xn−1Xn ◦ dWn−1 − σknXnXn+1 ◦ dWn

so that, formally, d
∑∞

n=1 X
2
n (t) = 0. Only a multiplicative noise of a special

form has this property, which is one of the key properties formally verified by the
Euler equations. Notice that the Itô formulation (2.1) below (see also the linear
analog (3.1)) contains a dissipative term, which however is exactly balanced by the
correction term when the Itô formula is applied. Thus equation (2.1) below is not
formally dissipative as it may appear at first glance.

Having in mind the lack of uniqueness, or at least the open problems about
uniqueness, typical of various deterministic models in fluid dynamics, we think it
is relevant to know that suitable stochastic perturbations may restore uniqueness.
An example in this direction is known for the linear transport equation with poor
regularity of coefficients; see [12]. The model of the present paper seems to be the
first nonlinear example of this regularization phenomenon (in the area of equations
of fluid dynamic type; otherwise see [15], [16] and related works, based on com-
pletely different methods). Partial results in the direction of improvements of well
posedness, by means of additive noise, have been obtained for the 3D Navier-Stokes
equations and other models by [9], [13].

Let us remark that, although equation (1.2) is not a PDE, it has a vague corre-
spondence with the stochastic Euler equation

du+ [u · ∇u+∇p] dt+ σ
∑
j

∇u ◦ dW j (t) = 0, divu = 0.

The energy is formally conserved also in this equation. The noise of this equation
is multiplicative as in [12] and linearly dependent on the first derivatives of the
solution. For a Lagrangian motivation of such a noise, in the case of stochastic
Navier-Stokes equations, see [22].
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In equation (1.2), we have inserted the parameter σ �= 0 just to emphasize the
basic open problem of understanding the zero-noise limit, σ → 0. For simple exam-
ples of linear transport equations this is possible and yields a nontrivial selection
principle among different solutions of the deterministic limit equation; see [2]. In
the nonlinear case of the present paper the small coefficient σ appears in the form
of a singular perturbation in the Girsanov density; thus the analysis of σ → 0 is
nontrivial.

2. Itô formulation

The Itô form of equation (1.2) is

dXn =
(
kn−1X

2
n−1 − knXnXn+1

)
dt+ σkn−1Xn−1dWn−1 − σknXn+1dWn(2.1)

− σ2

2

(
k2n + k2n−1

)
Xndt

for all n ≥ 1, with k0 = 0 and X0 = 0, as explained at the end of this section.
All our rigorous analyses are based on the Itô form, the Stratonovich one serving
mainly as an heuristic guideline.

Let us introduce the concept of a weak solution (equivalent to the concept of a
solution of the martingale problem). Since our main emphasis is on uniqueness, we
shall always restrict ourselves to a finite time horizon [0, T ].

By a filtered probability space (Ω, Ft, P ), on a finite time horizon [0, T ], we mean
a probability space (Ω, FT , P ) and a right-continuous filtration (Ft)t∈[0,T ].

Definition 2.1. Given x ∈ l2, a weak solution of equation (1.2) in l2 is a filtered
probability space (Ω, Ft, P ), a sequence of independent Brownian motions (Wn)n≥1

on (Ω, Ft, P ), and an l2-valued stochastic process (Xn)n≥1 on (Ω, Ft, P ), with con-
tinuous adapted components Xn, such that

Xn (t) = xn +

∫ t

0

(
kn−1X

2
n−1 (s)− knXn (s)Xn+1 (s)

)
ds

+

∫ t

0

σkn−1Xn−1 (s) dWn−1 (s)−
∫ t

0

σknXn+1 (s) dWn (s)

−
∫ t

0

σ2

2

(
k2n + k2n−1

)
Xn (s) ds

for each n ≥ 1, with k0 = 0 andX0 = 0. We denote this solution by (Ω, Ft, P,W,X),
or simply by X.

To prove uniqueness we need the following technical condition, which we call
exponential integrability, for brevity.

Definition 2.2. We say that a weak solution (Ω, Ft, P,W,X) is exponentially in-
tegrable if

EP

⎡
⎣e 1

σ2

∫ T
0

∑∞
n=1 X2

n(t)dt

(
1 +

∫ T

0

X4
i (t) dt

)2
⎤
⎦ < ∞

for all i ∈ N.
We say that a weak solution is of class L∞ if there is a constant C > 0 such that∑∞
n=1 X

2
n (t) ≤ C for a.e. (ω, t) ∈ Ω× [0, T ].
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L∞-solutions are exponentially integrable. Our main result, Theorem 1.1, states
the weak uniqueness in the class of exponentially integrable solutions. In addition,
we have

Theorem 2.3. Given (xn) ∈ l2, there exists a weak L∞-solution to equation (1.2).

The proof is given in section 4 and is based again on the Girsanov transform.
However, we remark that existence can be proved also by the compactness method,
similarly to the case of stochastic Euler or Navier-Stokes equations; see for instance
[4] and [11]. In both cases, notice that it is a weak existence result: the solution is
not necessarily adapted to the completed filtration of the Brownian motions.

The following proposition clarifies that a process satisfying (2.1) rigorously sat-
isfies also (1.2).

Proposition 2.4. If X is a weak solution of equation (1.2), then for every n ≥ 1,
the process (Xn (t))t≥0 is a continuous semimartingale; hence the two Stratonovich
integrals ∫ t

0

kn−1Xn−1 (s) ◦ dWn−1 (s) for n ≥ 2,

−
∫ t

0

knXn+1 (s) ◦ dWn (s) for n ≥ 1

are well defined and equal, respectively, to∫ t

0

kn−1Xn−1 (s) dWn−1 (s)−
σ

2

∫ t

0

k2n−1Xn (s) ds,

−
∫ t

0

knXn+1 (s) dWn (s)− σ

2

∫ t

0

k2nXn (s) ds.

Hence X satisfies the Stratonovich equations (1.2).

Proof. We use a number of concepts and rules of stochastic calculus that can be
found for instance in [21]. We have∫ t

0

Xn−1 (s) ◦ dWn−1 (s) =

∫ t

0

Xn−1 (s) dWn−1 (s) +
1

2
[Xn−1,Wn−1]t ,

where [Xn−1,Wn−1]t is the joint quadratic variation of Xn−1 and Wn−1. From the
equation for Xn−1 (t), using the independence of the Brownian motions, we can

compute [Xn−1,Wn−1]t = −
∫ t

0
σkn−1Xn (s) ds. Similarly∫ t

0

Xn+1 (s) ◦ dWn (s) =

∫ t

0

Xn+1 (s) dWn (s) +
1

2
[Xn+1,Wn]t

and [Xn+1,Wn]t =
∫ t

0
σknXn (s) ds. The proof is complete. �

3. Auxiliary linear equation

Up to a Girsanov transform (section 4), our results are based on the following
infinite system of linear stochastic differential equations:

dXn = σkn−1Xn−1 ◦ dBn−1 − σknXn+1 ◦ dBn,

Xn (0) = xn
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for n ≥ 1, with X0(t) = 0 and σ �= 0, where (Bn)n≥0 is a sequence of independent
Brownian motions. The Itô formulation is

dXn = σkn−1Xn−1dBn−1 − σknXn+1dBn − σ2

2

(
k2n + k2n−1

)
Xndt,(3.1)

Xn (0) = xn.

Definition 3.1. Let (Ω, Ft, Q) be a filtered probability space and let (Bn)n≥0

be a sequence of independent Brownian motions on (Ω, Ft, Q). Given x ∈ l2, a
solution of equation (3.1) on [0, T ] in the space l2 is an l2-valued stochastic process
(X (t))t∈[0,T ], with continuous adapted components Xn, such that Q-a.s.

Xn (t) = xn +

∫ t

0

σkn−1Xn−1 (s) dBn−1 (s)−
∫ t

0

σknXn+1 (s) dBn (s)

−
∫ t

0

σ2

2

(
k2n + k2n−1

)
Xn (s) ds

for each n ≥ 1 and t ∈ [0, T ], with k0 = 0 and X0 = 0.

Our main technical result is the following theorem.

Theorem 3.2. Given x ∈ l2, in the class of solutions of equation (3.1) on [0, T ]
such that

(3.2)

∫ T

0

EQ
[
X4

n (t)
]
dt < ∞

for each n ≥ 1 and

(3.3) lim
n→∞

∫ T

0

EQ
[
X2

n (t)
]
dt = 0

there is at most one element.

Proof. By linearity, it is sufficient to prove that a solution (Xn)n≥1, with properties

(3.2) and (3.3), with null initial condition is the zero solution. Assume thus that
x = 0. We have

Xn (t) = xn +

∫ t

0

σkn−1Xn−1 (s) dBn−1 (s)−
∫ t

0

σknXn+1 (s) dBn (s)

−
∫ t

0

σ2

2

(
k2n + k2n−1

)
Xn (s) ds;

hence, from the Itô formula, we have

1

2
dX2

n = XndXn +
1

2
d [Xn]t

= −σ2

2

(
k2n + k2n−1

)
X2

ndt+ dMn +
σ2

2

(
k2n−1X

2
n−1 + k2nX

2
n+1

)
dt,

where

Mn (t) =

∫ t

0

σkn−1Xn−1 (s)Xn (s) dBn−1 (s)−
∫ t

0

σknXn (s)Xn+1 (s) dBn (s) .

From (3.2), Mn (t) is a martingale, for each n ≥ 1; hence EQ [Mn (t)] = 0. More-
over, for each n ≥ 1, EQ

[
X2

n (t)
]
is finite and continuous in t: it follows easily
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from condition (3.2) and equation (3.1) itself. From the previous equation (and the
property EQ

[
X2

n (0)
]
= 0) we deduce that EQ

[
X2

n (t)
]
satisfies

EQ
[
X2

n (t)
]
= −σ2

(
k2n + k2n−1

) ∫ t

0

EQ
[
X2

n (s)
]
ds

+ σ2k2n−1

∫ t

0

EQ
[
X2

n−1 (s)
]
ds+ σ2k2n

∫ t

0

EQ
[
X2

n+1 (s)
]
ds

for n ≥ 1, with u0 (t) = 0 for t ≥ 0. It follows that∫ t

0

EQ
[(
X2

n+1 (s)−X2
n (s)

)]
ds ≥

k2n−1

k2n

∫ t

0

EQ
[(
X2

n (s)−X2
n−1 (s)

)]
ds.

Since X0 ≡ 0, we have
∫ t

0
EQ

[(
X2

1 (s)−X2
0 (s)

)]
ds ≥ 0 and thus∫ t

0

EQ
[(
X2

n+1 (s)−X2
n (s)

)]
ds ≥ 0

for every n ≥ 1, by induction. This implies that∫ T

0

EQ
[
X2

n (s)
]
ds ≤

∫ T

0

EQ
[
X2

n+1 (s)
]
ds

for all n ≥ 1. Therefore, by assumption (3.3), for every n ≥ 1 we have∫ T

0

EQ
[
X2

n (s)
]
ds = 0.

This implies that X2
n (s) = 0 a.s. in (ω, s); hence X is the null process. The proof

is complete. �

We complete this section with an existence result. The class L∞ (
Ω× [0, T ] ; l2

)
is included in the class described by the uniqueness theorem.

Notice that this is a result of strong existence and strong (or pathwise) unique-
ness.

Theorem 3.3. Given x ∈ l2 , there exists a unique solution in L∞ (
Ω× [0, T ] ; l2

)
,

with continuous components.

Proof. We have only to prove existence. For every positive integer N , consider the
finite dimensional stochastic system

dX(N)
n = σkn−1X

(N)
n−1dBn−1 − σknX

(N)
n+1dBn − σ2

2

(
k2n + k2n−1

)
X(N)

n dt,

X(N)
n (0) = xn

for n = 1, ..., N , with k0 = kN = 0, X
(N)
0 (t) = X

(N)
N+1 (t) = 0. This linear finite

dimensional equation has a unique global strong solution. By the Itô formula,

1

2
d
(
X(N)

n

)2

= X(N)
n dX(N)

n +
1

2
d
[
X(N)

n , X(N)
n

]
t

= σkn−1X
(N)
n X

(N)
n−1dBn−1 − σknX

(N)
n X

(N)
n+1dBn − σ2

2

(
k2n + k2n−1

) (
X(N)

n

)2

dt

+
σ2

2

(
k2n−1

(
X

(N)
n−1

)2

+ k2n

(
X

(N)
n+1

)2
)
;

(3.4)
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hence

1

2
d

N∑
n=1

(
X(N)

n

)2

=
N∑

n=1

σkn−1X
(N)
n X

(N)
n−1dBn−1 −

N∑
n=1

σknX
(N)
n X

(N)
n+1dBn

− σ2

2

N∑
n=1

k2n

(
X(N)

n

)2

dt+
σ2

2

N∑
n=1

k2n−1

(
X

(N)
n−1

)2

− σ2

2

N∑
n=1

k2n−1

(
X(N)

n

)2

dt+
σ2

2

N∑
n=1

k2n

(
X

(N)
n+1

)2

.

This is equal to zero. Thus

N∑
n=1

(
X(N)

n

)2

(t) =

N∑
n=1

x2
n, Q-a.s.

In particular, this very strong bound implies that there exists a subsequence Nk →
∞ such that

(
X

(Nk)
n

)
n≥1

converges weakly to some (Xn)n≥1 in Lp
(
Ω× [0, T ] ; l2

)
for every p > 1 and also weak star in L∞ (

Ω× [0, T ] ; l2
)
. Hence in particular

(Xn)n≥1 belongs to L∞ (
Ω× [0, T ] ; l2

)
. Now the proof proceeds by standard ar-

guments typical of equations with monotone operators (which thus apply to linear
equations), presented in [23], [20]. The subspace of Lp

(
Ω× [0, T ] ; l2

)
of progres-

sively measurable processes is strongly closed, hence weakly closed, and hence
(Xn)n≥1 is progressively measurable. The one-dimensional stochastic integrals

which appear in each equation of system (3.1) are (strongly) continuous linear
operators from the subspace of L2

(
Ω× [0, T ] ; l2

)
of progressively measurable pro-

cesses to L2 (Ω); hence they are weakly continuous, a fact that allows us to pass to
the limit in each one of the linear equations of system (3.1). A posteriori, from these
integral equations, it follows that there is a modification such that all components
are continuous. The proof of existence is complete. �

4. Girsanov transform

The idea is that equation (2.1) written in the form

dXn = σkn−1Xn−1

(
1

σ
Xn−1dt+ dWn−1

)
− σknXn+1

(
1

σ
Xndt+ dWn

)

− σ2

2

(
k2n + k2n−1

)
Xndt

becomes equation (3.1) because the processes Bn (t) := 1
σ

∫ t

0
Xn (s) ds+Wn (t) are

Brownian motions with respect to a new measure Q on (Ω, FT ); conversely, both
weak existence and weak uniqueness statements transfer from equation (3.1) to
equation (2.1). Equation (3.1) was also proved to be strongly well posed, but the
same problem for the nonlinear model (2.1) is open.

Let us give the details. We use results about the Girsanov theorem that can be
found in [25], Chapter VIII, and an infinite dimensional version proved in [19], [10].
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4.1. Proof of Theorem 1.1. Let us prepare the proof with a few remarks. As-
sume that (Xn)n≥1 is an exponentially integrable solution. Since in particular

E
[∫ T

0

∑∞
n=1 X

2
n (s) ds

]
< ∞, the process Lt := − 1

σ

∑∞
n=1

∫ t

0
Xn (s) dWn (s) is well

defined, is a martingale and its quadratic variation [L,L]t is
1
σ2

∫ t

0

∑∞
n=1 X

2
n (s) ds.

Since E
[
exp ( 1

2σ2

∫ T

0

∑∞
n=1 X

2
n (t) dt)

]
< ∞, the Novikov criterium applies, so

exp
(
Lt − 1

2 [L,L]t
)
is a strictly positive martingale. Define the probability measure

Q on FT by setting

(4.1)
dQ

dP
= exp

(
LT − 1

2
[L,L]T

)
.

Notice also that Q and P are equivalent on FT , by the strict positivity and

(4.2)
dP

dQ
= exp

(
ZT − 1

2
[Z,Z]T

)
,

where

Zt =

∞∑
n=1

∫ t

0

1

σ
Xn (s) dBn (s) ,

Bn (t) = Wn (t) +

∫ t

0

1

σ
Xn (s) ds.

Indeed dP
dQ = exp

(
−LT + 1

2 [L,L]T
)
, and one can check that −LT + 1

2 [L,L]T =

ZT − 1
2 [Z,Z]T .

Under Q, (Bn (t))n≥1,t∈[0,T ] is a sequence of independent Brownian motions.

Since ∫ t

0

kn−1Xn−1 (s) dBn−1 (s) =

∫ t

0

kn−1Xn−1 (s) dWn−1 (s)

+

∫ t

0

kn−1Xn−1 (s)Xn−1 (s) ds

and similarly for
∫ t

0
knXn+1 (s) dBn (s), we see that

Xn (t) = Xn (0) +

∫ t

0

kn−1Xn−1 (s) dBn−1 (s)−
∫ t

0

knXn+1 (s) dBn (s)

−
∫ t

0

1

2

(
k2n + k2n−1

)
Xn (s) ds.

This is equation (3.1). We have proved the first half of the following lemma:

Lemma 4.1. If (Ω, Ft, P,W,X) is an exponentially integrable solution of the non-
linear equation (1.2), then it is a solution of the linear equation (3.1), where the
processes

Bn (t) = Wn (t) +

∫ t

0

1

σ
Xn (s) ds

are a sequence of independent Brownian motions on (Ω, FT , Q), Q defined by (4.1).
In addition, the process X on (Ω, FT , Q) satisfies the assumptions of Theorem 3.2.
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Proof. It remains to prove that conditions (3.2) and (3.3) hold true. We have

EQ

[∫ T

0

X4
n (t) dt

]
= EP

[
E (L)T

∫ T

0

X4
n (t) dt

]

= EP

[
exp

(
LT − [L,L]T +

1

2
[L,L]T

)∫ T

0

X4
n (t) dt

]

≤ EP [exp (2LT − 2 [L,L]T )]
1/2

EP

⎡
⎣
(∫ T

0

X4
n (t) dt

)2

exp [L,L]T

⎤
⎦
1/2

.

The second factor is finite by the condition of exponential integrability of X. The
term EP [exp (2LT − 2 [L,L]T )] is equal to one, by the Girsanov theorem applied
to the martingale 2Lt. The proof of condition (3.2) is complete. As to condition

(3.3), it follows from the fact that E
[∫ T

0

∑∞
n=1 X

2
n (s) ds

]
< ∞, a consequence of

the exponential integrability of X. The proof is complete. �
One may also check that

dXn = σkn−1Xn−1 ◦ dBn−1 − σknXn+1 ◦ dBn,

so the previous computations could be described at the level of Stratonovich calcu-
lus.

Let us now prove weak uniqueness (the proof is now classical). Assume that(
Ω(i), F

(i)
t , P (i),W (i), X(i)

)
, i = 1, 2, are two exponentially integrable solutions of

equation (1.2) with the same initial condition x ∈ l2. Then

(4.3) dX(i)
n = σkn−1X

(i)
n−1dB

(i)
n−1 − σknX

(i)
n+1dB

(i)
n − σ2

2

(
k2n + k2n−1

)
X(i)

n dt,

where, for each i = 1, 2,

B(i)
n (t) = W (i)

n (t) +

∫ t

0

1

σ
X(i)

n (s) ds

is a sequence of independent Brownian motions on
(
Ω(i), F

(i)
T , Q(i)

)
, Q(i) defined

by (4.1) with respect to
(
P (i),W (i), X(i)

)
.

We have proved in Theorem 3.2 that equation (3.1) has a unique strong solution.

Thus it has uniqueness in law on C ([0, T ] ;R)N, by the Yamada-Watanabe theorem
(see [25], [24]); namely, the laws of X(i) under Q(i) are the same. The proof of the
Yamada-Watanabe theorem in this infinite dimensional context, with the laws on

C ([0, T ] ;R)N, is step by step identical to the finite dimensional proof, for instance
of [25], Chapter 9, Lemma 1.6 and Theorem 1.7. We do not repeat it here.

Given n ∈ N, t1, ..., tn ∈ [0, T ] and a measurable bounded function f :
(
l2
)n → R,

from (4.2) we have

EP (i)
[
f
(
X(i) (t1) , ..., X

(i) (tn)
)]

= EQ(i)

[
exp

(
Z

(i)
t − 1

2

[
Z(i), Z(i)

]
t

)
f
(
X(i) (t1) , ..., X

(i) (tn)
)]

,

where Z
(i)
t :=

∑∞
n=1

∫ t

0
1
σX

(i)
n (s) dB

(i)
n (s). Under Q(i), the law of

(
Z(i), X(i)

)
on

C ([0, T ] ;R)N ×C ([0, T ] ;R)N is independent of i = 1, 2. A way to explain this fact
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is to consider the enlarged system of stochastic equations composed of equation
(4.3) and equation

dZ(i) =

∞∑
n=1

1

σ
X(i)

n dB(i)
n .

This enlarged system has strong uniqueness, for trivial reasons, and thus also weak
uniqueness by the Yamada-Watanabe theorem.

Hence

EP (1)
[
f
(
X(1) (t1) , ..., X

(1) (tn)
)]

= EP (2)
[
f
(
X(2) (t1) , ..., X

(2) (tn)
)]

.

Thus we have uniqueness of the laws of X(i) on C ([0, T ] ;R)N. The proof of unique-
ness is complete.

4.2. Proof of Theorem 2.3. Let (Ω, Ft, Q,B,X) be a solution in L∞ (Ω× [0, T ] ;
l2
)
of the linear equation (3.1), provided by Theorem 3.3. Let us argue as in the

previous subsection but from Q to P , namely by introducing the new measure P
on (Ω, FT ) defined as dP

dQ = exp
(
ZT − 1

2 [Z,Z]T
)
, where

Zt :=
∞∑
n=1

∫ t

0

1

σ
Xn (s) dBn (s) .

Under P , the processes

Wn (t) := Bn (t)−
∫ t

0

1

σ
Xn (s) ds

are a sequence of independent Brownian motions. We obtain that (Ω, Ft, P,W,X)
is an L∞-solution of the nonlinear equation (2.1). The L∞-property is preserved
since P and Q are equivalent. The proof of existence is complete.
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15. I. Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equa-
tions, Stochastic Process. Appl. 73 (1998), no. 2, 271–299. MR1608641 (99b:60091)
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