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The field of cancer gene therapy is in continuous expansion,
and technology is quickly moving ahead as far as gene tar-
geting and regulation of gene expression are concerned. This
review focuses on the endocrine aspects of gene therapy, in-
cluding the possibility to exploit hormone and hormone re-
ceptor functions for regulating therapeutic gene expression,
the use of endocrine-specific genes as new therapeutic tools,

the effects of viral vector delivery and transgene expression
on the endocrine system, and the endocrine response to viral
vector delivery. Present ethical concerns of gene therapy and
the risk of germ cell transduction are also discussed, along
with potential lines of innovation to improve cell and gene
targeting. (Endocrine Reviews 25: 1–44, 2004)
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I. Introduction

THE CONCEPT OF gene therapy developed from the
observation that certain diseases are caused by inher-

itance of a single functionally defective gene, and, therefore,
could be potentially treated by the introduction and expres-
sion of a normal copy of the mutant or deleted gene in the
host cells. This original concept of gene therapy as “gene
supplementation” has rapidly switched to the more general
one comprising any strategy that uses genetic material to
prevent or cure a variety of diseases, including multifactorial
and somatic genetic diseases, such as cancer. Indeed, cancer
has become by far the most important indication for gene
therapy in clinical trials, representing 68.5% of gene therapy
protocols, enrolling a total of 2392 patients worldwide (The
Journal of Gene Medicine; www.wiley.co.uk/genmed/).
First results from clinical trials, however, indicate that some
key issues still need to be addressed before including gene
therapy as a standard of care in the management of cancer
patients. Critical problems to overcome are low efficiency
and lack of selectivity of currently available gene transfer
systems. These aspects have become particularly relevant
with the application of systemic delivery of nonreplicating,
or even replication-competent, viral vectors in cancer gene
therapy clinical trials, which sometimes may have unpre-
dictable toxicity. Effects related to therapeutic genes or gene
transfer procedures on the endocrine system have rarely
been addressed, although the interplay between the endo-
crine system and the immune-inflammatory response to viral
infection or transgene delivery suggests that endocrine cells
may play an important role in the acute response to thera-
peutic gene/vector administration. Moreover, effects of vec-
tor delivery on hormone production may be predicted on the
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stimulating factor; GR, glucocorticoid receptor; HIV-1, HIV type 1; HPA,
hypothalamus-pituitary-adrenal; 3�-HSD, 3�-hydroxysteroid dehydro-
genase/�5-�4 isomerase; HSP, heat-shock protein: HSV, herpes simplex
virus; HSV-TK, HSV-thymidine kinase; IFN, interferon; IGF-IR, IGF type
I receptor; LH-R, LH receptor; LTR, long terminal repeat; MDR, mul-
tidrug resistance; MHC, major histocompatibility complex; Mo-MLV,
Moloney murine leukemia virus; NAT, noradrenaline transporter; NIS,
sodium/iodide symporter; 4-OHT, 4-hydroxy-tamoxifen; OTC, orni-
thine transcarbamylase; pfu, plaque-forming unit; PRL, prolactin; PSA,
prostate-specific antigen; RAR, retinoic acid receptor; RXR, retinoid X
receptor; sst, somatostatin receptor subtype; TG, thyroglobulin; TPO,
thyroperoxidase; TR, thyroid hormone receptor; VEGF, vascular EGF;
X-SCID, X-linked severe combined immunodeficiency.
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basis of studies on the pathophysiology of viral infection of
endocrine cells. Knowledge of the interplay between vector
delivery and endocrine response may be useful in the choice
and design of vectors with an improved safety profile. An-
other contribution of endocrinology to the field of gene ther-
apy derives from the growing understanding of the mech-
anisms underlying regulation of gene expression: it is
becoming evident that tight regulation of hormone produc-
tion and hormone receptor functions may be exploited in the
development of regulated and targeted vector systems, not
only for applications in endocrine glands, but also for other
tissues.

After a brief introduction on efficacy and toxicity of gene
therapy in clinical trials for the treatment of cancer and the
strategies developed so far to target endocrine and endo-
crine-related tumors, this review will focus on the endocrine
aspects of cancer gene therapy. These include the possibility
to exploit molecular mechanisms of regulation of hormone
activity to control therapeutic gene expression, the use of
endocrine cell-specific genes as therapeutic tools, the poten-
tial side effects of cancer gene therapy on the endocrine
system, the neuroendocrine response to vector delivery, the
effects of ectopic expression of cytokines as therapeutic
genes, and side effects related to hormone or growth factor
inhibition. The risk of germ line cell transduction and present
ethical concerns will be also addressed.

A. Efficacy and toxicity of gene therapy

1. Overview. The concept of cancer gene therapy derives from
new understandings of the molecular biology of cancer and
the complex interactions between tumor cells and the im-
mune system. This knowledge has been exploited to develop
strategies to selectively target tumor cells or to stimulate the
immune response against tumor antigens. Current therapeu-
tic approaches and results from clinical trials of cancer gene
therapy, which have been reviewed recently (1, 2), are sum-
marized in Fig. 1 and Table 1. It is apparent that, since the
development of the first cancer gene therapy clinical trials in
the early 1990s, clinical results are still largely unsatisfactory,
notwithstanding efforts to improve gene transfer tools and
therapeutic genes.

Strategies and perspectives of clinical trials of gene ther-
apy, including cancer gene therapy, have been impressively
affected by two recent events: the death of the first patient
due to gene therapy itself and the first clinical successes of
gene therapy (3).

The first event was the tragic death, in September 1999, of
an 18-yr-old patient with ornithine transcarbamylase (OTC)
deficiency enrolled in a clinical trial at the University of
Pennsylvania (4). This event focused the attention of the
scientific world on the potential risks associated with gene
transfer and the need to accurately record and report serious
adverse events in gene therapy trials. In the Penn study,
patients with partial OTC deficiency were treated via the
hepatic artery with escalating doses of a nonreplicating ad-
enovirus carrying the gene encoding for OTC (5). Intravas-
cular administration of the vector resulted, in some patients,
in some of the clinical symptoms also reported in other
studies using adenoviral vectors, i.e., transient fever, myal-
gias, elevation in liver enzyme and cytokine levels, reversible
hypophosphatemia, thrombocytopenia, and anemia (6).
However, in a male patient enrolled in the highest dose
cohort who received approximately 4 � 1013 viral particles,
the initial mild symptoms progressed to acute respiratory
distress syndrome and subsequent multiorgan failure, re-
sulting in the patient’s death 4 d after treatment. A report
from the National Institutes of Health Recombinant Advi-
sory Committee (7) attributed the death to a systemic, ade-
novirus vector-induced shock syndrome, due to a cytokine
cascade that led to disseminated intravascular coagulation,
acute respiratory distress, and multiorgan failure. Moreover,
postmortem examination revealed bone marrow red cell
aplasia. It was suggested that the high dose of adenoviral
vector quickly saturated available receptors for the vector
and then spilled to other organ systems, including the bone
marrow, thus inducing a systemic immune response. Ad-
enoviral vector capsid proteins likely contributed to the pa-
tient’s immune response (8, 9).

The positive events were the first conclusive evidence that
gene therapy can be successful in humans. These regarded a
clinical protocol in patients with hemophilia based on im
injection of recombinant adeno-associated viral (AAV) vec-
tors (10) and a gene therapy clinical trial in children with
X-linked severe combined immunodeficiency (X-SCID) via
retrovirus transduction of hematopoietic stem cells (11, 12).

In the first study, after preclinical evidence of correction of
the hemophilic phenotype in animal models (13, 14), efficient
transduction and expression of factor IX was achieved in
three hemophilia B patients receiving im injection of an AAV
vector encoding blood coagulation factor IX. The procedure
was safe, and a mild improvement of clinical condition was
achieved (10). In the second study, four of five children with
X-SCID due to a deficiency of the �c chain, who were treated
with autologous bone marrow stem cells and transduced ex
vivo with the �c gene, showed evidence of long-term cor-
rection of the immune deficiency (11, 12). However, the great
optimism for the potential clinical benefits of gene transfer
generated by these results was frozen by the announcement
of serious adverse events observed in the clinical trial of gene
therapy for X-SCID, which led the U.S. Food and Drug Ad-
ministration and the American Society of Gene Therapy to

FIG. 1. Clinical trials for cancer gene therapy (n � 403) grouped
according to the therapeutic strategy employed (data were obtained
from the Journal of Gene Medicine, www.wiley.co.uk.genmed/ and
from the published literature).

2 Endocrine Reviews, February 2004, 25(1):1–44 Barzon et al. • Endocrine Aspects of Gene Therapy



the decision to put a clinical hold on similar trials in the same
disease in the United States (15). Two of 11 boys treated so
far in this clinical trial developed T cell leukemia-like illness
about 3 yr after the gene therapy procedure, one in Septem-

ber 2002 and the other in December 2002. The first case
involved the replication of a single clone of �� T cells, and the
second involved an excess of three clones of �� T cells. In
both cases, leukemia was probably a consequence of inser-

TABLE 1. Results from gene therapy clinical trials

Gene therapy protocol Therapeutic gene(s) Targeted tumor and results

Immunotherapy IL-3, IL-4, IL-7, IL-12
GM-CSF, TNF-�, TGF-�
IFN-�, IFN-�, IFN-�
Antigens (gp100, MART-1, melan-A, muc-1, CEA,

PSA, HLA-B7/�2-microglobulin)
Receptors (B7-1, scFvFc-Zeta TCR)

Partial response in up to 20% of patients
treated with IL-2 or IL-7 gene transfer (21,
26, 74). Local response in 18% of patients
receiving intratumoral injection of HLA-B7/
�2-microglobulin DNA-liposome complex for
metastatic melanoma (23)

Tumor suppressor gene
therapy

p53 Partial tumor responses in phase I and pilot
studies in lung, head and neck, bladder, and
metastatic liver tumors (25, 27, 32, 51, 78,
79, 90, 634–637), but no response in a phase
II study in non-small-cell lung carcinoma in
combination with chemotherapy (31)

BRCA1 Three cases of partial tumor response in phase
I trial (28), but no response in a phase II
trial for ovarian cancer (80)

p16 Prostate cancer (phase I)a

Oncogene suppression IGF-IR AS ODN 17% Complete responses and 33% partial
responses in patients with malignant glioma
(72)

TGF-�2 AS ODN Malignant glioma, non-small-cell lung cancera

c-myc or c-fos AS ODN Metastatic breast cancera

EGFR AS ODN Head and neck squamous cell carcinomaa

Anti-ErbB-2 single-chain antibody 38% Stable disease and 61% progressive
disease in ovarian carcinoma trial (638)

Suicide gene therapy HSV-TK Occasional partial responses in phase I and II
trials (36, 38, 81–85, 94, 294, 410, 639, 640),
but no significant therapeutic benefit over
radiotherapy in a phase III study in newly
diagnosed patients with glioblastoma
multiforme (86)

CYP2B1 No response in pancreatic carcinoma (641)
CD Breast cancer (phase I)a

Nitroreductase Head and neck, liver, ovarian cancer (phase I)a

Combined approaches IL-2 � GM-CSF; IL-7 � IL-2; IL-12 � B7-1; IL-7
� IL-12 � GM-CSF; IL-6 � sIL-6R; Muc-1 �
IL-2; IL-2 � IFN�; k-Ras AS ODN � p53; B7-1
� CEA; IL-2 � Lymphotactin; Staphylococcus
Enterotoxin B � IL-2; CD � HSV-TK; IL-7 �
HSV-TK; IL-2 � HSV-TK

Melanoma, lymphoma, renal cancer, colon
cancer, myeloma, ovarian cancer, breast
cancer, prostate cancer, non-small-cell lung
cancer, neuroblastoma.a Partial responses in
glioblastoma multiforme (88) and anaplastic
thyroid carcinoma (642) with HSV-TK � IL-2
gene transfer

Chemoprotection MDR-1 Metastatic cancer, lymphoma, germ cell cancer
(643–645)

Oncolysis dl1520 adenovirus Head and neck, liver, ovarian, pancreatic
colorectal cancer (phase I–III). Occasional
objective tumor responses in up to 25% of
cases in phase I–II trials (30, 49–52, 54, 79,
96–99, 646, 647).

CN706 adenovirus Prostate carcinoma (phase I). Response in 65%
(57)

Ad5-CD/TK rep adenovirus Prostate carcinoma (phase I). Response in
62.5% (648)

G207 herpesvirus Glioblastoma multiforme (phase I). Partial
response in 40% (60)

1716 herpesvirus Glioblastoma multiforme, melanoma (phase I).
Tumor response and long-term survival in
20–30% (61, 649, 650)

Vaccinia GM-CSF Melanoma (phase I). Response in 70% (39)
Newcastle disease virus Advanced solid cancer (phase I). Response in

14% (68)
H-1 autonomous parvovirus Phase I clinical trialsa

Reolysin reovirus Phase I clinical trialsa

AS ODN, Antisense oligodeoxynucleotide; TK, thymidine kinase; CD, cytosine deaminase.
a No available results from clinical trials.
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tional oncogenesis, because the vector inserted itself within
or near the same gene, LMO-2, which has been linked to
leukemia T cells (16–20). However, because the complication
of leukemia has not occurred in any other clinical trial (20),
multiple factors could have contributed to the development
of leukemia in the patients involved in this trial. These in-
clude the high level of engraftment and expansion of the
genetically modified cells, unique properties of the hemato-
poietic stem and progenitor cells in bone marrow of X-SCID
patients, the immune deficiency of the X-SCID patients,
and/or the transferred gene itself (19).

2. Safety in cancer gene therapy clinical trials. Although signif-
icant therapeutic benefit has not yet been demonstrated from
cancer gene therapy clinical trials, a positive remark for gene
therapy derives from the substantial safety of this approach
in cancer patients treated so far (Table 2).

Most of the clinical trials of cancer have been based on the
direct intratumor administration of recombinant vectors for
therapeutic gene transfer, whereas systemic delivery of vec-
tors has been more recently attempted. With regard to in-
tratumor injection of vector particles or viral vector-produc-
ing cells, most studies demonstrate the safety of this
approach, with only minor morbidity, generally related to
the injection procedure. Mild pain and bleeding at the in-
jection site have been reported in up to 50% of patients
receiving intratumor inoculation of vectors (21–26). Pneu-
mothorax has occurred in patients treated with pulmonary
injections of vectors for advanced lung cancer or tumors
metastatic to the lung (23, 27). Sterile peritonitis and pleuritis
have been occasionally reported in the case of ip or intrapleu-
ral administration of viral vectors (28–30).

Different side effects are observed by using different types
of vector, and toxicity is related to vector dose and site of
administration. Fever and chills are common side effects
observed after intratumoral administration of high doses of
adenoviral vectors (31–35); subarachnoidal hemorrhage and
aseptic vasculitis may occur after intracerebral inoculation of
retroviral vector-producing packaging cells for recurrent gli-
oblastoma multiforme (36); confusion, hyponatremia, sei-
zure, and signs of central nervous system toxicity occurred
in patients with end-stage malignant brain tumor injected
with adenoviral vectors (37, 38); and mild transient flu-like
symptoms and local inflammation with pustule formation
occurred after intratumoral injection of high doses of recom-
binant vaccinia virus vectors (39, 40). Administration of large
doses of plasmid DNA appeared to be well tolerated without
evidence of the development of anti-DNA antibodies (41).
Mild to moderate toxicity was reported after direct intrale-
sional delivery of Allovectin-7, an HLA-B7/�2-microblobu-
lin DNA-liposome complex, in patients with metastatic mel-
anoma (23). Symptoms included pruritus and erythema at
the injection site and general aches and pains (23).

With regard to adenoviral vectors, a revision of safety
parameters and long-term follow-up in 102 subjects receiv-
ing local administration (i.e., to the nasal and bronchial ep-
ithelium, metastatic tumors, skin, myocardium, and skeletal
muscle) of low (�109 particle units) and intermediate (109 to
1011 particle units) doses of replication-deficient adenoviral
vectors demonstrated an incidence of 0.7% major adverse

events, but no deaths related to an adenoviral vector (35). The
incidence of malignancy was within that expected for the
population. Most adverse events associated with adminis-
tration of the vector to the respiratory epithelium were fever
and/or leukocytosis associated with the bronchoscopy pro-
cedure, and, occasionally, increase in fibrinogen and liver
function tests. Vector administration to colon cancer meta-
static to the liver was sometimes accompanied by mild tran-
sient increase of transaminases, mild fever, leukopenia, and
thrombocytopenia (35, 42). Mild transient increase in
transaminases and transient hypotension were reported also
after intratumor adenoviral vector administration in patients
with mesothelioma (43, 44) or head and neck cancer (32).
Analysis of risk factors for adverse events in patients treated
with local delivery of adenoviral vectors demonstrated that
vector-related parameters, including dose, route, transgene,
or number of vector administrations, did not predict the
occurrence of major adverse events (34).

Replication-competent viral vectors may show side effects
related to local viral replication. Most clinical experience
with replicating viruses has been achieved with the E1B-
deleted adenovirus dl1520. Lacking E1B activity, this vector
should selectively replicate, and thereby kill, in cells with
unpaired p53 function (45), although replication in cells with
wild-type p53 has been demonstrated (46–48). Several clin-
ical protocols with this agent have been completed so far,
including trials in patients with head and neck cancer (49),
pancreatic adenocarcinoma (50), hepatocellular carcinoma
(51, 52), ovarian cancer (30), and gastrointestinal malignan-
cies metastatic to the liver (51, 53–55). Phase I studies were
based on intratumoral injection of a single dose of dl1520
ranging from 107 to 1011 plaque-forming units (pfu). All of
these showed that escalation of virus dose was possible with-
out dose-limiting toxicity. Most patients reported flu-like
symptoms after dl1520 administration. Symptoms generally
started after the first virus dose and consisted of generalized
malaise, headaches, nausea, myalgias, pyrexias, and rhinor-
rhea. Pain at injection site was reported in patients with head
and neck cancer receiving intratumoral application of up to
1011 viral particles (49). Doses of dl1520 ranging from 2 � 108

to 2 � 1012 pfu administered through the hepatic artery were
well tolerated, with only transient fever and elevation of liver
enzymes (51, 55). Dose-escalation was possible, and the max-
imum dose, which was based on manufacturing capabilities,
was shown to be well tolerated in treated patients (55). In-
travenous administration of up to 2 � 1012 dl1520 viral par-
ticles was also well tolerated, except for mild to moderate
constitutional symptoms and transient dose-dependent in-
crease of serum aminotransferase (51, 54). Intraperitoneal
injection of 109 to 1011 pfu for ovarian cancer was associated
with abdominal pain, consistent with peritonism, diarrhea,
heartburn, and vomiting (30). Interestingly, no cytopathic
effects suggesting viral replication have been observed in
normal tissues surrounding injected tumor tissues (55).

Other replicating viruses recently introduced to the clinic
include the conditionally replicating adenovirus CV706, in
which the adenoviral E1A gene is driven by prostate-specific
antigen (PSA) promoter/enhancer elements and, therefore, it
can selectively replicate in prostate tissue (56). A recently
completed phase I/II trial in patients with locally recurrent

4 Endocrine Reviews, February 2004, 25(1):1–44 Barzon et al. • Endocrine Aspects of Gene Therapy



T
A

B
L

E
2.

S
id

e
ef

fe
ct

s
of

ge
n

e
th

er
ap

y
in

cl
in

ic
al

tr
ia

ls
fo

r
ca

n
ce

r

P
ro

to
co

l
G

en
e/

ve
ct

or
/r

ou
te

P
ha

se
N

o.
of

pa
ti

en
ts

T
um

or
ty

pe
Si

de
ef

fe
ct

s
O

ut
co

m
e

R
ef

.

H
is

to
co

m
pa

ti
bi

lit
y

an
ti

ge
ns

H
L

A
-B

7/
lip

os
om

e/
in

tr
at

um
or

I
5

S
ta

ge
IV

m
el

an
om

a
N

o
1

C
R

65
1

H
L

A
-B

7/
�

2-
m

ic
ro

gl
ob

ul
in

/
lip

os
om

e/
in

tr
at

um
or

I
9

S
qu

am
ou

s
ce

ll
ca

rc
in

om
a

of
th

e
he

ad
an

d
ne

ck
N

o
4

P
R

65
2

H
L

A
-B

7/
lip

os
om

e/
in

tr
at

um
or

II
52

S
ta

ge
IV

m
el

an
om

a
P

ai
n,

he
m

or
rh

ag
e,

pn
eu

m
ot

ho
ra

x,
hy

po
te

ns
io

n
1

C
R

,3
P

R
,5

M
R

23

H
um

an
an

d
m

ur
in

e
M

H
C

/
lip

os
om

e/
in

tr
at

um
or

I/
II

19
C

ut
an

eo
us

m
et

as
ta

se
s

N
o

2
lo

ca
l

C
R

,4
lo

ca
l

P
R

65
3

Im
m

un
ot

he
ra

py
an

d
va

cc
in

at
io

n

IL
-2

/a
de

no
vi

ru
s/

ex
vi

vo
/s

c
in

je
ct

io
n

I
15

S
ta

ge
IV

m
el

an
om

a
E

ry
th

em
a,

in
du

ra
ti

on
,a

nd
pr

ur
it

us
at

in
je

ct
io

n
si

te
in

al
l

pa
ti

en
ts

;f
lu

-l
ik

e
sy

m
pt

om
s

in
so

m
e

pa
ti

en
ts

3
P

R
65

4

IL
-2

/a
de

no
vi

ru
s/

in
tr

at
um

or
I

23
S

ta
ge

IV
m

el
an

om
a

L
oc

al
in

fl
am

m
at

io
n

in
15

,f
ev

er
in

5
7

lo
ca

l
re

sp
on

se
s

65
5

IL
-2

/a
de

no
vi

ru
s/

in
tr

at
um

or
fo

llo
w

ed
by

pr
os

te
ct

om
y

I
12

L
oc

al
iz

ed
pr

os
ta

te
ca

nc
er

L
ym

ph
op

en
ia

in
1

pa
ti

en
t,

pe
ri

ne
al

di
sc

om
fo

rt
in

m
os

t
pa

ti
en

ts
,h

em
at

ur
ia

an
d

fl
u-

lik
e

sy
m

pt
om

s
in

2
pa

ti
en

ts

S
ig

ni
fi

ca
nt

de
cr

ea
se

of
P

S
A

le
ve

ls
in

m
os

t
pa

ti
en

ts
65

6

IL
-2

/a
de

no
vi

ru
s/

in
tr

at
um

or
I

21
N

S
C

L
C

N
R

N
R

65
7

IL
-2

au
to

lo
go

us
tu

m
or

ce
lls

/e
x

vi
vo

/s
c

in
je

ct
io

n
I

12
S

ta
ge

IV
m

el
an

om
a

M
ild

fe
ve

r
an

d
he

ad
ac

he
3

S
D

65
8

IL
-2

in
al

lo
ge

ni
c

tu
m

or
ce

ll
lin

e/
ex

vi
vo

/s
c

in
je

ct
io

n
I/

II
33

S
ta

ge
IV

m
el

an
om

a
S

w
el

lin
g

of
lo

co
re

gi
on

al
ly

m
ph

no
de

s,
in

du
ra

ti
on

at
in

je
ct

io
n

si
te

3
R

eg
re

ss
io

n
of

di
st

an
t

m
et

as
ta

se
s;

2
C

R
;7

S
D

65
9

IL
-2

au
to

lo
go

us
cy

to
ki

ne
-

in
du

ce
d

ce
lls

/e
x

vi
vo

/iv
I

10
M

et
as

ta
ti

c
re

na
l

ce
ll

ca
rc

in
om

a,
co

lo
re

ct
al

ca
rc

in
om

a,
ly

m
ph

om
a

F
ev

er
in

3
1

C
R

(l
ym

ph
om

a)
,3

S
D

,6
P

D
66

0

IL
-2

in
au

to
lo

go
us

fi
br

ob
la

st
s

�
au

to
lo

go
us

tu
m

or
ce

lls
/e

x
vi

vo
/s

c
in

je
ct

io
n

I
10

C
ol

or
ec

ta
l

ca
rc

in
om

a
F

at
ig

ue
an

d
fl

u-
lik

e
sy

m
pt

om
s

in
7,

de
la

y-
ty

pe
hy

pe
rs

en
si

ti
vi

ty
sk

in
re

ac
ti

on
s

in
5

1
S

D
,9

P
D

66
1

IL
-2

/li
po

so
m

e/
in

tr
at

um
or

I
24

M
el

an
om

a
(7

),
sa

rc
om

a
(4

),
co

lo
re

ct
al

ca
nc

er
(4

),
re

na
l

ce
ll

ca
rc

in
om

a
(3

),
an

d
ot

he
rs

M
ild

co
ns

ti
tu

ti
on

al
sy

m
pt

om
s

in
10

,p
ai

n
at

in
je

ct
io

n
si

te
in

16
,h

em
or

rh
ag

e
at

in
je

ct
io

n
si

te
in

5,
pn

eu
m

ot
ho

ra
x

in
3

5
M

in
or

re
sp

on
se

s,
4

S
D

21

IL
-2

in
al

lo
ge

ni
c

tu
m

or
ce

ll
lin

e/
ex

vi
vo

/s
c

in
je

ct
io

n
I/

II
52

M
el

an
om

a
(1

8)
,r

en
al

ce
ll

ca
rc

in
om

a
(1

7)
,s

ar
co

m
a

(1
7)

M
ild

co
ns

ti
tu

ti
on

al
sy

m
pt

om
s

in
27

,
gr

ad
e

3
ri

go
r

in
1,

pa
in

at
in

je
ct

io
n

si
te

in
23

3
P

R
(2

re
na

l
ce

ll
ca

rc
in

om
a,

1
m

el
an

om
a)

,S
D

(2
re

na
l

ce
ll

ca
rc

in
om

a,
3

m
el

an
om

a,
6

sa
rc

om
a)

21

IL
-2

in
xe

no
ge

ne
ic

fi
br

ob
la

st
s

(V
er

o-
IL

-2
ce

lls
)/e

x
vi

vo
/s

c
in

je
ct

io
n

I
9

M
et

as
ta

ti
c

so
lid

tu
m

or
s

F
ev

er
in

1,
m

ild
it

ch
in

g
an

d
er

yt
he

m
a

in
2

1
P

R
,4

S
D

26

IL
-7

/g
en

e
gu

n/
ex

vi
vo

/s
c

in
je

ct
io

n
I

10
S

ta
ge

IV
m

el
an

om
a

M
ild

fe
ve

r
M

in
or

re
sp

on
se

in
2

74

IF
N

-�
/r

et
ro

vi
ru

s/
ex

vi
vo

/s
c

in
je

ct
io

n
I

5
S

ta
ge

IV
m

el
an

om
a

N
o

1
L

on
g-

te
rm

di
se

as
e-

fr
ee

75

T
um

or
su

pp
re

ss
or

ge
ne

th
er

ap
y

p5
3/

ad
en

ov
ir

al
/in

tr
at

um
or

I
21

A
dv

an
ce

d
N

S
C

L
C

M
ild

fe
ve

r
A

m
el

io
ra

ti
on

of
ti

m
e

to
di

se
as

e
pr

og
re

ss
io

n
63

4

P
53

/a
de

no
vi

ra
l/i

nt
ra

tu
m

or
�

ch
em

ot
he

ra
py

I
24

A
dv

an
ce

d
N

S
C

L
C

T
ra

ns
ie

nt
fe

ve
r

in
8,

in
je

ct
io

n
si

te
pa

in
in

1
2

P
R

,1
7

S
D

,4
P

D
,1

N
E

90

P
53

/a
de

no
vi

ra
l/i

nt
ra

tu
m

or
I

15
A

dv
an

ce
d

N
S

C
L

C
N

o
4

S
D

63
5

P
53

/a
de

no
vi

ra
l/i

nt
ra

tu
m

or
�

ch
em

ot
he

ra
py

II
25

A
dv

an
ce

d
N

S
C

L
C

M
ild

fe
ve

r,
fl

u-
lik

e
sy

m
pt

om
s,

na
us

ea
or

an
or

ex
ia

,f
at

ig
ue

;o
cc

as
io

na
lly

,
in

je
ct

io
n-

si
te

co
m

pl
ic

at
io

ns

N
o

si
gn

if
ic

an
t

be
ne

fi
t

ov
er

ch
em

ot
he

ra
py

al
on

e
31

p5
3/

ad
en

ov
ir

al
/in

tr
at

um
or

or
in

tr
av

es
ic

al
in

st
ill

at
io

n
�

cy
st

ec
to

m
y

I
12

B
la

dd
er

ca
nc

er
U

re
th

ra
l

or
ve

si
cl

e
bu

rn
in

g
N

ot
ev

al
ua

te
d

25

p5
3/

ad
en

ov
ir

al
/in

tr
av

es
ic

al
in

st
ill

at
io

n
I

13
B

la
dd

er
ca

nc
er

B
la

dd
er

sp
as

m
in

3,
ur

ot
he

lia
l

ul
ce

ra
ti

on
in

1
2

S
D

,1
1

P
D

66
2

Barzon et al. • Endocrine Aspects of Gene Therapy Endocrine Reviews, February 2004, 25(1):1–44 5



P
ro

to
co

l
G

en
e/

ve
ct

or
/r

ou
te

P
ha

se
N

o.
of

pa
ti

en
ts

T
um

or
ty

pe
Si

de
ef

fe
ct

s
O

ut
co

m
e

R
ef

.

P
53

/a
de

no
vi

ra
l/i

p
�

ch
em

ot
he

ra
py

I/
II

36
R

ec
ur

re
nt

ov
ar

ia
n

ca
nc

er
F

ev
er

,h
yp

ot
en

si
on

,a
bd

om
in

al
pa

in
,

na
us

ea
,v

om
it

in
g

�
50

%
re

du
ct

io
n

of
C

A
12

5
le

ve
ls

in
8;

10
lo

ng
-t

er
m

su
rv

iv
or

s
af

te
r

tr
ea

tm
en

t
w

it
h

m
ul

ti
pl

e
do

se
s

63
6,

63
7

P
53

/a
de

no
vi

ra
l/i

nt
ra

tu
m

or
I

27
A

dv
an

ce
d

N
S

C
L

C
M

in
im

al
to

xi
ci

ty
2

P
R

,S
D

in
16

,7
P

D
27

P
53

/a
de

no
vi

ra
l/i

nt
ra

tu
m

or
�

ra
di

ot
he

ra
py

II
19

A
dv

an
ce

d
N

S
C

L
C

G
ra

de
1–

2
fe

ve
r

(7
9%

)
an

d
ch

ill
s

(5
3%

)
1

C
R

,1
1

P
R

,3
S

D
,2

P
D

,2
N

E
95

P
53

/a
de

no
vi

ra
l/i

nt
ra

tu
m

or
�

su
rg

er
y

I
15

R
ec

ur
re

nt
gl

io
m

a
G

ra
de

3
he

m
ip

ar
es

is
in

1
pa

ti
en

t,
ap

ha
si

a
in

2;
he

ad
ac

he
in

53
%

of
pa

ti
en

ts
,f

at
ig

ue
in

40
%

,f
ev

er
in

27
%

M
ea

n
pr

og
re

ss
io

n-
fr

ee
su

rv
iv

al
13

w
k,

m
ed

ia
n

ov
er

al
l

su
rv

iv
al

43
w

k

66
3

P
53

an
ti

se
ns

e
ol

ig
on

uc
le

ot
id

e/
iv

I
16

H
em

at
ol

og
ic

m
al

ig
na

nc
ie

s
N

o
N

o
re

sp
on

se
66

4

B
R

C
A

1/
re

tr
ov

ir
us

/ip
I

12
O

va
ri

an
ca

nc
er

3
A

cu
te

st
er

ile
pe

ri
to

ni
ti

s
3

P
R

,8
S

D
28

B
R

C
A

1
re

tr
ov

ir
us

/ip
II

6
O

va
ri

an
ca

nc
er

3
A

cu
te

st
er

ile
pe

ri
to

ni
ti

s
6

P
D

80
O

nc
og

en
e

su
pp

re
ss

io
n

IG
F

-I
R

an
ti

se
ns

e
ol

ig
on

uc
le

ot
id

e
tr

ea
tm

en
t

of
tu

m
or

ce
lls

/e
x

vi
vo

/s
c

im
pl

an
ta

ti
on

I
12

A
na

pl
as

ti
c

as
tr

oc
yt

om
a

4
D

ee
p

ve
no

us
th

ro
m

bo
si

s
2

C
R

,4
P

R
72

A
nt

i-
er

bB
2

si
ng

le
ch

ai
n

an
ti

bo
dy

/a
de

no
vi

ru
s/

ip
I

15
O

va
ri

an
ca

nc
er

9
T

ra
ns

ie
nt

fe
ve

r
5

S
D

,8
P

D
63

8

S
ui

ci
de

ge
ne

th
er

ap
y

H
S

V
-T

K
/r

et
ro

vi
ru

s/
in

tr
at

um
or

I
5

R
ec

ur
re

nt
gl

io
bl

as
to

m
a

N
o

1
P

R
82

H
S

V
-T

K
/r

et
ro

vi
ru

s/
in

tr
at

um
or

I
15

R
ec

ur
re

nt
gl

io
bl

as
to

m
a

N
o

3
P

R
,1

C
R

81
H

S
V

-T
K

/r
et

ro
vi

ru
s/

in
tr

at
um

or
I

12
R

ec
ur

re
nt

gl
io

bl
as

to
m

a
3

S
er

io
us

in
fe

ct
io

us
ev

en
ts

an
d

1
su

ba
ra

ch
no

id
he

m
or

rh
ag

e
re

la
te

d
to

th
e

su
rg

ic
al

pr
oc

ed
ur

e

4
S

D
36

H
S

V
-T

K
�

IL
-2

/r
et

ro
vi

ru
s/

in
tr

at
um

or
I/

II
14

R
ec

ur
re

nt
gl

io
bl

as
to

m
a

N
o

1
C

R
,5

P
R

,4
S

D
,4

P
D

P
al

ù
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prostate cancer showed that doses of up to 1013 particles of
the CV706 vector, administered using brachytherapy tech-
niques, appear to be safe, although biochemical (PSA) re-
sponses were observed in a minority of patients (57). A more
potent oncolytic adenovirus, CV787, which contains the
prostate-specific rat probasin promoter driving E1A expres-
sion and the human prostate-specific enhancer/promoter
driving the E1B gene (58), is currently being studied in phase
I and II clinical trials. This virus, unlike CV706, maintains a
wild-type E3 region, which encodes proteins that play a role
in cell lysis and evasion of host immune response (59). Other
oncolytic agents currently under evaluation in phase I and II
clinical trials include replication competent G207, HSV1716,
and NV1020 herpes simplex viruses (HSV). The double mu-
tant G207 HSV harbors deletions of both copies of the �34.5
gene and contains an insertional inactivation of the ICP6
gene, which encodes a subunit of viral ribonucleotide re-
ductase. The virus has been administered stereotactically in
patients with recurrent gliomas at doses up to 3 � 109 pfu
without any significant toxicity being encountered (60). In
particular, no patient has developed HSV encephalitis (60).
The HSV1716 virus, which lacks both copies of �34.5 has been
safely administered intratumorally up to doses of 105 pfu in
patients with recurrent high-grade glioma (61, 62) or meta-
static melanoma (63). NV1020 is currently being evaluated in
a phase I trial as a vaccine in the treatment of patients with
colorectal carcinoma liver metastases. This virus has only one
copy of �34.5 deleted and maintains sensitivity to acyclovir
and ganciclovir (GCV). In addition, it contains an exogenous
copy of the thymidine kinase gene under control of the pow-
erful HSV-1 �4 promoter. Genetic stability and safety have
been demonstrated in extensive rodent and primate studies
as well as in limited human vaccine trials (64, 65). Other
replicating viruses currently under evaluation in phase I/II
clinical trials include reovirus, a virus that replicates in ma-
lignant cells with activation of the Ras signaling pathway
(66), the animal pathogen Newcastle disease virus (63, 67),
vaccinia virus (39, 69), and autonomous parvoviruses (70,
71). Preliminary results from clinical trials are encouraging,
and no serious adverse events have been demonstrated so
far. The most common adverse events were flu-like symp-
toms occurring principally after administration of the first
dose of the Newcastle disease virus PV701 (68) or after in-
tratumoral injection of vaccinia/granulocyte macrophage-
colony stimulating factor (GM-CSF) recombinant virus (39).

Side effects directly related to therapeutic transgenes are
less frequent, such as in the case of mild flu-like symptoms
observed after administration of IL-2 cDNA in liposome com-
plex (21), or in the case of fever, fatigue, or change in mental
status in patients receiving intratumor injection of the E1A
adenovirus gene as a lipid complex (24). Deep vein throm-
bosis was reported in patients with malignant astrocytoma,
who underwent im implantation of autologous glioma cells,
treated ex vivo with an antisense oligodeoxynucleotide di-
rected against the IGF type I receptor (IGF-IR) (72). Side
effects due to the prodrug used in suicide gene therapy also
have been reported, i.e., rise of liver enzymes after GCV
administration (43).

3. Efficacy in cancer gene therapy clinical trials. Despite anec-
dotal reports of therapeutic responses in several patients,
unequivocal proof of the clinical efficacy of cancer gene ther-
apy is still lacking (Tables 1 and 2).

Of the different approaches to cancer gene therapy, in-
cluding immunotherapy, tumor suppressor gene replace-
ment, and suicide gene/prodrug activation therapy, immu-
notherapy showed better clinical results, being less affected
by the limitations related to vector titer and transduction
efficiency. Partial responses were observed after IL-2 (21, 26),
HLA-B7 (23, 73), IL-7 (74), or GM-CSF (39) gene transfer in
patients with advanced solid tumors, including renal cell
carcinoma, melanoma, and soft-tissue sarcomas. At variance,
no evidence of tumor response was seen at sites distal from
the injected tumor in a phase I trial of interferon-� (IFN-�)
retroviral vector administered intratumorally to patients
with metastatic melanoma (75).

Clinical and radiological improvements were observed in
patients with malignant astrocytoma, after ex vivo treatment
of autologous tumor cells with an antisense oligode-
oxynucleotide directed against the IGF-IR (72). Minor tumor
responses also were demonstrated in two of 16 evaluable
patients with recurrent breast and head and neck cancer,
receiving intratumoral liposome E1A gene therapy (24). In
this strategy, the E1A adenovirus gene functions as a tumor
suppressor gene by inhibiting expression of HER-2/neu and
other oncogenes, inducing apoptosis in cancer cells and sen-
sitizing cancer cells to chemotherapeutic drugs (76, 77).

Using tumor suppressor gene-replacement approaches,
transient local disease control and partial tumor responses
were observed after viral vector-mediated delivery of wild-
type TP53 in phase I and pilot studies in patients with lung
cancer (27, 78, 79), head and neck cancer (32), bladder cancer
(25), or metastatic malignant liver tumor (51). However, a
controlled phase II study in patients with newly diagnosed
advanced non-small-cell lung cancer failed to demonstrate a
significant clinical benefit from local TP53 gene transfer by
intratumoral vector injection in combination with effective
first-line chemotherapy (31). A phase I clinical trial in end-
stage ovarian cancer patients treated with ip administration
of retroviral vectors expressing the BRCA1 tumor suppressor
gene reported tumor reduction in three of 12 treated patients,
vector stability, and minimal antibody response (29). At vari-
ance, a subsequent phase II protocol on six patients with less
extensive disease showed no response, no disease stabiliza-
tion, and rapid clearance of the vector due to antibody de-
velopment (80). Conceivably, patients’ immune system sta-
tus played a major role in conditioning gene therapy
effectiveness.

Regarding prodrug activation therapy, phase I/II studies
in patients with recurrent brain tumors receiving intratumor
stereotactic administration of packaging cells producing a
retroviral vector encoding for the thymidine kinase gene of
HSV type 1 (HSV-TK), followed by treatment with GCV
reported up to 30% objective responses (36, 38, 81–85). How-
ever, no significant therapeutic benefit over radiotherapy
was obtained in a phase III study in newly diagnosed pa-
tients with glioblastoma multiforme (86). A combined ap-
proach, based on stereotactic intratumor injection of pack-
aging cells producing a retroviral vector carrying the human
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IL-2 and the HSV-TK genes (87), followed by GCV admin-
istration, led to tumor regression in four treated patients,
with partial response in one case (88).

An improvement of gene therapy efficacy has been ob-
served in association with conventional radiotherapy and
chemotherapy. Chemosensitization of a variety of cancers
after wild-type TP53 delivery has been demonstrated in in
vitro and in vivo preclinical studies (89) and confirmed in a
clinical trial in patients with non-small-cell lung cancer
treated with a nonreplicating p53 adenoviral vector (90).
Radiosensitization has also been demonstrated after TP53 or
HSV-TK gene transfer (91–94). A phase I/II trial of radiation
therapy in combination with three biweekly intratumor in-
jections of p53 adenoviral vector in patients with advanced
non-small-cell lung cancer documented a 1-yr progression-
free survival of 45.5%, superior to historic controls (27). These
results have been recently confirmed in a phase II protocol,
reporting a response rate of 12 of 19 treated patients (95).

First results from clinical trials with conditionally repli-
cating oncolytic viruses are available. In phase I/II dose-
escalation protocols of intratumoral injection of dl1520, ob-
jective tumor responses, generally minor, were reported in
10–25% of cases, even at high virus doses (96). In particular,
tumor necrosis at the site of single dl1520 injection was dem-
onstrated in three of 22 patients with head and neck cancer
enrolled in a phase I trial (97), whereas in a subsequent phase
II study of repeated virus injection, three complete responses
and two partial responses were observed out of 40 treated
patients (79). Mild tumor responses also were reported in six
of 23 patients with pancreatic adenocarcinoma enrolled in a
phase I study of intratumor administration of dl1520 (98).

Patients who received the highest viral doses (1012 pfu)
experienced better survival than patients treated with the
lower doses in a phase I study of intraarterial dl1520 admin-
istration in patients with colorectal carcinoma liver metas-
tases (99). On the other hand, no significant tumor response
was achieved with dl1520 as a single therapeutic agent in
patients with hepatocellular carcinoma (52), recurrent ovar-
ian cancer (30), or advanced solid cancers metastatic to the
lung (54).

Treatment with the conditionally replicating HSV mutant
G207 at doses of 106 to 3 � 109 pfu led to a decrease in tumor
volume in eight of 20 patients with recurrent malignant gli-
omas enrolled in a phase I trial, including two long-term
survivors (60, 100). In a phase I study of replication compe-
tent HSV1716 at doses of 103 to 105 pfu in nine patients with
recurrent malignant gliomas, four cases of long-term sur-
vival were documented, although no tumor responses were
detected (61). Two complete tumor responses and three par-
tial responses were observed, with evidence of viral repli-
cation and immune infiltration in injected lesions in a phase
I clinical protocol of intralesional administration of replica-
tion competent vaccinia virus carrying the GM-CSF gene in
patients with refractory, recurrent melanoma (39).

Conventional chemotherapy and radiotherapy also have
been associated with delivery of replication-competent vi-
ruses, resulting in improved clinical response. In a clinical
trial in head and neck cancer patients treated with dl1520 as
a single therapeutic agent, objective responses were observed
in 15% of cases compared with 60% of patients when the

treatment was combined with 5-fluorouracil/cisplatin che-
motherapy (49). Stabilization of disease and two cases of
objective response were achieved in patients with multiple
colorectal liver metastases undergoing intraarterial dl1520
and 5-fluorouracil infusion (51) or intrahepatic artery dl1520
infusion plus iv 5-fluorouracil and leucovorin (55).

4. Comment. A decade of clinical trials for cancer has dem-
onstrated disappointing results, with minimal antitumor ef-
ficacy of currently available gene therapy tools. On the other
hand, treatment modalities have been demonstrated to be
safe, with only minor gene therapy-related toxicities. On a
cost-benefit analysis, even anecdotal reports of cases of re-
sponse to gene therapy in patients with tumors refractory to
conventional treatment still favor gene therapy intervention,
considering the substantial safety of the procedure.

Assessment of transgene expression in target cells has
demonstrated poor transduction efficiency of gene transfer
vectors, which conceivably accounts for most therapeutic
failures. Thus, key issues to be considered are the improve-
ment of vectors to achieve high levels of therapeutic gene
expression and transduction of a sufficient number of target
cells to result in clinical benefits. To overcome the need to
infect all tumor cells to achieve complete response, suicide or
cytokine genes should be inserted into oncolytic vectors to
increase tumor cell killing and antitumor immunity.

B. Gene therapy strategies for targeting endocrine and
endocrine-related tumors

1. Overview. An important issue in the development of gene
therapy protocols is the need to target therapeutic gene de-
livery. Indeed, safety is a primary concern of gene therapy,
and targeted vectors are required both to minimize the risk
of germ line cell transduction and to prevent side effects to
the surrounding healthy tissues. Moreover, targeting can
reduce vector wastage and the amount of vector stocks that
need to be produced and administered in vivo to achieve
therapeutic levels of transduction.

Targeting of vectors can be obtained in many ways (Table
3). The easiest one is to administer the vector directly at the
target site. For systemic administration, molecular engineer-
ing is required to target either gene expression (transcrip-
tional targeting) or gene delivery (transductional targeting).
Transcriptional targeting can be attempted by the introduc-
tion of tissue-specific or tumor-specific enhancers/promot-
ers that control the expression of therapeutic genes (101, 102).
Transductional targeting is based on enhanced interaction
between the vector and target cell surface. It may exploit the
natural tropism shown by some viruses for specific tissues or
be achieved by modification of viral envelope protein se-
quences, by insertion of ligand molecules, by viral envelope
pseudotyping, or by expression of antibodies on the viral
particle surface to confer new binding specificity toward
target cell receptors (103).

Endocrine glands appear to favor gene therapy targeting
at different levels: 1) the easily accessible anatomical site of
some endocrine glands (thyroid, pituitary) allows the direct
inoculation of the vector and the evaluation of cell trans-
duction; 2) the transcriptional control elements (enhancer/
promoter) responsible for expression of tissue-specific genes
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(hormones, hormone receptors) may be used to selectively
direct transgene expression; 3) tissue-specific surface pro-
teins (such as hormone receptors) may be used as a target for
vectors with modified tropism (104).

2. Transductional targeting approaches. Attempts to improve
efficacy and selectivity of vector targeting to endocrine and
endocrine-related tumor cells have been reported only for
breast, ovary, and prostate cancer. An example of vector
retargeting was the engineering of retroviral vector envelope
glycoproteins were to display single chain antibodies rec-
ognizing Her2/neu, which is a member of the epidermal
growth factor (EGF) receptor (EGFR) family of receptors,
overexpressed in 20–30% of breast and ovarian cancers (105).
Targeting of the EGFR in tumor cells was also performed
with adenoviral vectors, by using a bifunctional crosslinker,
i.e., the Fab fragment of an antiknob monoclonal antibody
conjugated with an anti-EGFR monoclonal antibody (106), or
by using a single chain Fv antibody fragment specific to the
fiber, linked to EGF as a fusion protein (107). Other efforts of
adenoviral retargeting by using bifunctional crosslinkers in-
clude conjugates between antiviral knob monoclonal Fab
fragment and fibroblast growth factor (108) or folate (109) to
target fibroblast growth factor receptor and folate receptor,
respectively, both overexpressed on the surface of a variety
of tumor cells, including ovarian and breast carcinoma cells.

An alternative transductional targeting approach is based
on engineering of surface viral molecules to modify viral
tropism. An example of this approach is the generation of a
modified AAV vector displaying a 15-amino acid peptide,
which binds to the human LH receptor (LH-R), to selectively
transduce LH-R-bearing cells, such as ovarian cancer cells
(110). Transduction was shown to be LH-R-mediated and to
be increased by progesterone treatment, via induction of
LH-R expression (110). Similarly, the fiber of an oncolytic
adenovirus was modified by incorporating an integrin bind-
ing motif to increase transduction of ovarian cancer cells,
which generally do not express the coxsackie adenovirus
receptor (111, 112). At variance with adenoviral vectors, en-
gineering of envelope glycoproteins of ecotropic and am-

photropic retroviruses to redirect virus tropism may mark-
edly impair transduction efficiency, such as is the case of
modified retroviruses targeting EGFR, IGF receptor, and fo-
late receptor (113–115). It is conceivable that retargeted ret-
roviral particles bind to the target cells in an envelope-
independent manner and that the modification of cellular
factors incorporated into the lipid envelope plays a dominant
role in promoting initial adsorption of viral particles to cells.
The receptor binding domain of the envelope glycoprotein
would then function in a secondary recognition step essential
for intracellular translocation of the virus particle.

Hypothetically, transductional targeting strategies could
be feasible in a variety of endocrine tumors, exploiting tar-
geting moieties such as antibodies and hormones directed to
receptor molecules selectively expressed on the surface of the
target endocrine tumor cell. Moreover, innovative method-
ologies, involving screening of phage display libraries, are
available to find specific ligands with a high degree of spec-
ificity for the target cancer cell, without requiring that the
molecules against which they are targeted be identified
(116, 117).

3. Transcriptional targeting approaches. Transcriptional target-
ing strategies have been used largely to selectively express
cytokine or suicide genes in endocrine and endocrine-related
tumor cells (Table 3). Targeting has been attempted by using
enhancer/promoter sequences of genes that are selectively
expressed in endocrine and endocrine-related tissues or tu-
mors. Endocrine tumors favor this targeting approach be-
cause, typically, they express a variety of specific genes.

a. Thyroid cancer. Transcriptional targeting of differentiated
thyroid carcinomas was achieved by using thyroglobulin
(TG) promoter to control therapeutic gene expression in ei-
ther retroviral or adenoviral vectors (118–120). Strategies to
enhance promoter activity included the use of a synthetic TG
enhancer/promoter sequence (121) or a tandemly repeated
TG promoter in an adenoviral vector (122), the replacement
of viral enhancer with TG enhancer in a retroviral vector
(123), or the use of histone deacetylase inhibitors (121, 124).

TABLE 3. Targeting strategies for cancer gene therapy

Targeting strategies Example (Refs.)

Transductional targeting
Pseudotyping Pseudotyping of murine leukemia virus-based retroviral vectors with VSV

envelope glycoprotein G (666)
Engineering of viral surface proteins Engineering envelope glycoproteins of retroviral vectors (103, 667, 668)

Modification of the fiber protein of adenoviral vectors (669)
Modification of the penton base of adenoviral vectors (670)
Engineering of HSV vector envelope proteins (671)

Retargeting by use of bifunctional crosslinkers Bifunctional antibodies (103)
Soluble receptors and adapters (377)

Transcriptional targeting
Tissue-specific promoters PSA (672)

Tyrosinase (673)
Tumor-specific promoters Telomerase (674)

c-erbB2 (675)
c-Myc (676)

Inducible promoters Early growth response gene (EGR-1) promoter (677)
Hsp70 (217)
MDR-1 (678)

Transcriptional regulation of viral replication E1A controlled by DF3/MUC1 promoter (174)
ICP4 controlled by albumin enhancer/promoter (679)
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Another strategy to improve TG promoter activity was the
use of a Cre-loxP system, in which the Cre recombinase was
controlled by TG promoter to switch on transgene expression
in target thyroid carcinoma cells (125). With regard to un-
differentiated and anaplastic thyroid carcinomas, which do
not produce TG, targeting of transgene expression was ob-
tained by coexpressing thyroid transcription factor-1, which
activates the TG promoter, together with TG promoter-
driven therapeutic genes (126).

A tissue-specific approach was attempted also for med-
ullary thyroid carcinomas, exploiting the promoter sequence
of the calcitonin gene/calcitonin gene-related peptide gene
to drive selective expression of therapeutic genes in target
tumor cells (127). As for the TG promoter, also in the case of
transcriptional control elements of the calcitonin gene/cal-
citonin gene-related peptide gene, increased efficacy and
specificity were achieved by engineering a chimeric sequence
containing a tandemly repeated enhancer sequence and a
minimal promoter (128, 129).

b. Pituitary adenomas. Targeting therapeutic genes to spe-
cific cell types is particularly relevant for gene therapy of
pituitary adenomas to spare normal pituitary cells and
neighboring tissues. Cell type-specific expression of the ther-
apeutic gene was achieved using the promoters of the GH,
glycoprotein hormone �-subunit, prolactin (PRL), and
POMC genes (130–134). As for thyroid tumors, also in the
case of pituitary adenomas, Cre-mediated activation of loxP-
repressed transcriptionally targeted therapeutic genes was
demonstrated to be an efficacious strategy for targeted sui-
cide gene therapy. In an in vitro and in vivo model of GH-
secreting adenomas, coinfection with adenoviruses carrying
either Lox-P-repressed diphtheria toxin gene under GH pro-
moter regulation or the Cre recombinase gene under the
control of GH promoter caused a marked tumor regression
(135). In addition to cell type-specific expression of the ther-
apeutic gene, regulated transgene expression was pursued
by using a pharmacologically regulated gene expression sys-
tem, such as the tetracycline-inducible system. By driving the
expression of the tetracycline transactivator through the
PRL-specific promoter, expression of the inducible transgene
was restricted to both lactotrophic tumor cell lines and PRL-
positive cells in primary anterior pituitary cultures and
within the pituitary gland in vivo (136).

c. Adrenocortical carcinoma. Transcriptionally targeted gene
therapy for adrenocortical carcinoma was attempted by us-
ing a chimeric enhancer/promoter element, containing both
the CYP11B1 promoter and the P450SCC enhancer to drive
transgene expression (137). In this tumor model, expression
of HSV-TK in stably transfected cells was enhanced by treat-
ment with factors acting through the cAMP pathway, such
as ACTH (137).

d. Prostate carcinoma. Due to the presence of well-charac-
terized prostate-specific markers, such as PSA and a variety
of prostate-unique genes, prostate carcinoma has repre-
sented an ideal model for targeted gene therapy treatment
(138). Several studies used PSA regulatory regions to drive
expression of therapeutic genes (139–149). Tandem dupli-
cation of the PSA enhancer increases expression approxi-

mately 50-fold while retaining tissue-specific control (150). A
higher efficiency was achieved by coupling the PSA pro-
moter to a yeast promoter (142, 151) or by complex engi-
neering of the enhancer sequence (152). A minimal composite
PSA promoter/enhancer element was used to drive expres-
sion of adenoviral E1A in the attenuated replication-compe-
tent vector CN706 (56, 153). The PSA enhancer region used
in this vector contained a functional androgen response el-
ement capable of up to 100-fold induction of transgene ex-
pression in PSA-expressing cells in the presence of testos-
terone or the steroid analog R1881 (154). At variance, a long
PSA promoter allowed efficient transgene expression both in
the presence and absence of androgens (143). Coexpression
of a partial androgen receptor gene and PSA-driven thera-
peutic gene allowed activation of the PSA enhancer/pro-
moter even in the absence of androgens (155). Other tissue-
specific promoters used to target prostate cancer include the
human kallikrein gene promoter, which is expressed pre-
dominantly in the prostate and transcriptionally up-regu-
lated by androgens (156, 157); prostate-specific membrane
antigen, which is highly expressed in metastatic or poorly
differentiated prostate cancer and up-regulated by androgen
deprivation (158–161); the probasin promoter, selectively
expressed in prostate cells (162–165); or the osteocalcin pro-
moter to target metastatic lesions to the bone (166, 167).
Tissue-specific, inducible systems were developed by using
a prostate-specific chimeric promoter, based on the probasin
gene promoter and two copies of the androgen response
region, which was induced by activation of caspase after
administration of a chemical inducer of dimerization (168).
The same chimeric promoter sequence was used in a tetra-
cycline-regulated expression system (169).

e. Breast carcinoma. Transcriptional targeting of the mam-
mary tissue has been pursued by using either the human
�-lactalbumin or ovine �-lactalbumin promoter to drive ther-
apeutic gene expression (170). Tumor targeting was at-
tempted by using promoters of tumor-specific genes, such as
the DF3/MUC-1 gene, which encodes a high molecular
weight mucin-like glycoprotein overexpressed in the major-
ity of breast cancers (171–174), and the HER-2/neu oncogene
(also named c-erbB-2), which is overexpressed in a variety of
human cancers, including breast and ovarian carcinomas
(173, 175–177). A clinical trial was conducted for patients
with recurrent breast carcinoma expressing the HER-2/neu
gene (178). These patients were treated by intratumor injec-
tion of a plasmid containing the cytosine deaminase gene
driven by the tumor-specific erbB-2 promoter. Efficiency of
cancer cell killing was proportional to cellular HER-2/neu
expression.

Estrogen-responsive elements, which allow modulation of
transgene expression by estrogens and tamoxifen, have been
used to develop conditionally replicating adenoviral vectors
to target estrogen receptor (ER)-positive breast cancer (179),
or, in combination with hypoxia-responsive elements, to de-
velop a targeted and regulated adenoviral vector (180). Gene
therapy for breast carcinoma may also be approached by
tailoring a virus with affinity to this tissue, such as the mouse
mammary tumor virus. The glucocorticoid-responsive long
terminal repeats (LTRs) of this retrovirus have been used as
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promoters for dexamethasone-inducible oncolytic cytokine
expression (181).

f. Ovarian carcinoma. Several tumor-specific or tissue-
specific promoters have been investigated to target gene
delivery to ovarian cancer. These include the promoter/
enhancer sequences of the secretory leukoproteinase inhib-
itor gene (182, 183), the human epithelium-specific ets tran-
scription factor gene hESE1 (184), the L-plastin gene (185), and
the MUC1/DF3 gene (186), which are highly expressed in
several epithelial tumors, including ovarian cancers.

g. Neuroendocrine tumors. After positive results from clin-
ical studies of immunoscintigraphy and radioimmuno-
therapy with targeted monoclonal antibodies, several tu-
mor/tissue-specific transcriptional regulatory sequences or
antigens are being exploited to target transgene expression
or vector delivery to neuroendocrine tumors. Tissue/tumor-
specific genes under investigation include chromogranin A
and B (187–191), calcitonin (192), neuron-specific enolase
(193), arginine vasopressin (194), somatostatin receptor (195),
and the RET protooncogene (196).

4. Comment. A number of possibilities to target endocrine and
endocrine-related tumors by means of either transductional
or transcriptional targeting are available and make these
tumors ideal candidates for gene therapy. However, because
malignant transformation is generally accompanied by cell
dedifferentiation and loss of tissue-specific features, target-
ing is often not feasible. It is thus conceivable that effective
endocrine tumor targeting could be achieved only by using
oncolytic viruses characterized by selective tropism for en-
docrine glands. Indeed, as discussed in the following sec-
tions, several viruses have been shown to preferentially in-
fect and replicate in endocrine cells, such as reovirus in
thyroid and pancreas, adenovirus in adrenal cortex, and HSV
in adrenal cortex and adrenal medulla. These viruses could
be engineered as oncolytic agents for endocrine tumors or,
more generally, for gene therapy applications in the endo-
crine system.

II. How to Exploit the Endocrine System for
Regulating Therapeutic Gene Expression

The first clinical applications of cancer gene therapy did
not require fine regulation of transgene expression, either
because of short-term expression of the cytotoxic gene or
because of direct intratumor vector injection. However, be-
cause applications of cancer gene therapy are moving toward
long-lasting systemic diseases, a safe and efficient delivery
method would need a tight control over the levels of ther-
apeutic gene expression (197). One simple way to regulate
expression of a transgene is to place it under the control of
a promoter that is responsive to a physiological signal, such
as glucose elevation or hypoxia (197, 198). Alternatively,
regulation of transgene expression may be achieved using
exogenous control systems in which gene expression is reg-
ulated pharmacologically by administering a small-molecule
drug (199, 200). This allows titration into the therapeutic
window, dosing to be adjusted as the disease evolves, and
therapy to be terminated by drug withdrawal.

Tight regulation of gene expression is a typical feature of
the endocrine system. The increasing understanding of tu-
mor biology and the molecular mechanisms involved in gene
expression control (i.e., activators, repressors, coregulators)
(201) has led to the development of new molecular switches
that could be exploited for gene therapy applications and
functional genome research.

A. Physiologically regulated gene expression systems

Heat, hypoxia, glucose deprivation, irradiation, and che-
motherapeutic agents up-regulate various genes involved in
stress responses. Promoters of these genes are attractive for
cancer gene therapy because they depend to a large extent on
the biology of the tumor or are already induced by various
therapeutic modalities. Genes up-regulated in these condi-
tions include multidrug resistance (MDR-1), human heat-
shock protein (HSP), vascular EGF (VEGF), irradiation-
inducible early growth response (Egr-1), and the tissue
plasminogen activator (tpa) genes.

Hypoxia is a common feature in many solid tumors and
plays a significant role in the resistance of cancer to ionizing
radiation and cytotoxic chemotherapy. Cellular hypoxia in-
duces a stress response with up-regulation of many genes
involved in shifting cellular respiration toward the glycolytic
pathway, increasing erythropoiesis and angiogenesis (202).
The promoters of the genes that mediate this adaptive re-
sponse, i.e., phosphoglycerate kinase 1, erythropoietin, and
VEGF, contain cis-acting hypoxia response elements capable
of binding hypoxia inducible factor 1 and related proteins
(203–205). The feasibility of tumor targeting by using hyp-
oxia response elements promoters to drive therapeutic gene
expression has been demonstrated in vitro (206, 207) and in
vivo (208–210).

Irradiation- and chemotherapy-responsive promoter se-
quences were identified for tpa and Egr-1 genes. Expression
of the radiosensitizing cytokine TNF-� under the control of
the Egr-1 promoter followed by either radiotherapy (211, 212)
or chemotherapy (213) led to synergistic antitumor effects.
Engineering of the CArG consensus elements derived from
Egr-1 promoter allowed optimization of enhancer sensitivity
to low doses of ionizing radiation (214). Chemotherapeutic
agents, such as vincristine and doxorubicin, also induce the
MDR-1 gene, which encodes a membrane-effluxing
glycoprotein. Effective tumor-targeting has been achieved by
combining MDR-1 promoter-regulated expression of thera-
peutic genes and chemotherapy (215).

Heat-shock proteins are induced by a variety of stressful
environmental conditions, such as heat, irradiation, hypoxia,
acidosis, hypoglycemia, and osmotic changes, which are gen-
erally present in poorly vascularized tumors. Inducible HSP
promoters have been used to drive the expression of a variety
of therapeutic genes in experimental tumor models after
hyperthermia therapy or glucose starvation conditions (216–
221), as well as to enhance the oncolytic effect of replicative
viruses (222, 223).

B. Pharmacologically regulated gene expression systems

A number of drug-related gene expression systems are
available whereby targeted gene transcription is controlled

12 Endocrine Reviews, February 2004, 25(1):1–44 Barzon et al. • Endocrine Aspects of Gene Therapy



through the use of small-molecule inducing compounds
(101), such as the antibiotics tetracycline (224), streptogramin
(225), and macrolides (226); the insect steroid ecdysone or its
analogs (227); the antiprogestin mifepristone (RU486) (228–
231); and chemical dimerizers represented by the immuno-
suppressant rapamycin and its analogs (232, 233).

1. Mifepristone-inducible system. At variance with other sys-
tems using regulatory proteins of nonhuman origin, the
mifepristone system is based on a mutant human proges-
terone receptor, thus minimizing problems of potential im-
munogenicity. Like other nuclear receptors of the steroid-
hormone superfamily, the progesterone receptor consists of
three major functional domains; i.e., the DNA binding do-
main, the ligand binding domain, and the transactivation
domain, which can be interchanged with correspondent el-
ements of other receptors to generate chimeric molecules.
The progesterone receptor used in this system has a deletion
in the carboxy terminus of the ligand binding domain so that
it no longer binds to the agonist progesterone but is still
capable of binding to the antagonist mifepristone (234). This
mutant is fused to the DNA binding domain of the yeast
transcription factor gal4 and the transactivation domain of
the HSV VP16 protein, yielding the GL-VP transcription
factor (235). Alternatively, the transactivation domain of the
chimeric transcription factor may be represented by the ac-
tivation domain of the nuclear factor-�B p65 subunit. More-
over, to further reduce the risk of inducing a host immune
response, the yeast gal4 DNA binding domain could be re-
placed by a DNA binding domain of human origin. In the
presence of mifepristone, this chimeric regulator binds to
genes with upstream gal4 recognition sequences and effi-
ciently activates transcription of the target transgene. The
efficiency of the mifepristone-regulated system has been
demonstrated by incorporating it in recombinant viral and
nonviral vectors (236, 237).

2. Ecdysone-inducible system. This system is based on the use
of the insect molting steroid hormone ecdysone and its re-
ceptor, the ecdysone receptor (EcR), which is a member of the
nuclear receptor superfamily. In the ecdysone-inducible sys-
tem, a chimeric protein (VgEcR) composed of the VP16 ac-
tivation domain fused to an EcR with altered DNA-binding
specificity heterodimerizes with the retinoid X receptor
(RXR) and binds a unique synthetic response element not
recognized by natural nuclear hormone receptors. Upon ex-
posure to ecdysone or the synthetic analog muristerone, the
VgEcR/RXR complex efficiently induces transgene expres-
sion (238, 239) (Fig. 2). Advantages of this system include
lower basal activity and higher inducibility compared with
other regulated systems and absence of ecdysone effects on
mammalian cell physiology. Moreover, ecdysteroids have a
lipophilic nature favoring efficient penetration into all tissues
including the brain, possess short half-lives that allow for
precise and potent inductions, and exhibit favorable phar-
macokinetics that prevent storage and expedite clearance
(227). This system has been effectively used to generate trans-
genic mice (227) and inducible viral vectors (240).

3. Glucocorticoid-inducible system. Dexamethasone is also suit-
able to be used as an inducer, because it can selectively bind

and activate the p21 promoter in rat hepatoma cells via a
glucocorticoid-responsive region. Although this region does
not contain a canonical glucocorticoid response element, it
can confer specific dexamethasone responsiveness to heter-
ologous promoters (241). A glucocorticoid-inducible retro-
viral vector was generated by placing the transgene under
the control of a minimal synthetic promoter composed of five
tandem glucocorticoid response elements upstream to a
TATA box. In transduced cells, transgene expression was
dexamethasone-inducible and reversible, whereas it was low
in the absence of exogenous synthetic corticosteroids (242).
A similar construct, containing five tandem repeats of the
glucocorticoid-responsive element and the adenovirus
major-late promoter, was used to modulate VEGF gene ex-
pression (243). A glucocorticoid-inducible transcription sys-
tem, containing reiterated steroid-responsive cis elements,
was also used to generate a HSV-1 amplicon vector with
glucocorticoid-inducible gene expression (244). Glucocorti-
coid treatment produced up to 50-fold transgene induction
in transduced cells.

4. Tamoxifen-inducible system. Disadvantages of transcription-
ally regulated inducible systems are represented by basal
activity in the absence of induction and low inducibility. As
an improved hormone-dependent strategy for regulating
protein expression at a posttranslational level, fusion of the
hormone-binding domain of the transcriptionally inactive
mutant of the murine ER has been adopted (245–248). The
modified receptor is unable to bind estrogen yet retains nor-
mal affinity for the synthetic ligand 4-hydroxy-tamoxifen
(4-OHT). After administration of ligand, the ER fusion pro-
teins are rapidly activated by allowing translocation from the
cytosol to the nucleus (249). The effects and pharmacology of
nonsteroidal antiestrogens, such as tamoxifen and its deriv-
atives, have been well characterized in animal and human
trials, confirming their suitability for gene therapeutic ap-
proaches in humans (250). This regulated system was used
for the development of an inducible adenoviral vector for

FIG. 2. Schematic diagram of ecdysone-inducible gene expression
system. The modified ecdysone receptor (VgEcR) and RXR can het-
erodimerize in the presence of inducer (muristerone) and transacti-
vate the ecdysone-responsive element (EcRE)-containing promoter.

Barzon et al. • Endocrine Aspects of Gene Therapy Endocrine Reviews, February 2004, 25(1):1–44 13



cancer gene therapy. Activity of the E2F1 gene, encoding a
transcription factor that triggers massive apoptosis in several
human cancers, was made 4-OHT-dependent by fusion to the
ligand binding domain of the ER (251). Upon 4-OHT ad-
ministration, the ER-E2F1 fusion protein translocated from
the cytosol to the nucleus, transactivated E2F-dependent pro-
moters, and rapidly induced cytotoxicity both in vitro and in
vivo (251).

Another approach to designing an ER-based inducible
system was the construction of chimeric regulators contain-
ing the human ER ligand binding domain and a Cys (2)-His
(2)-type zinc finger DNA binding domain. Cys (2)-His (2)-
type zinc finger domains are common among human DNA
binding proteins and can be engineered to selectively bind
different DNA sequences. These chimeric regulators dem-
onstrated a very efficient drug-dependent transgene induc-
tion in vitro and in vivo, after adenovirus-mediated gene
delivery to mice (252). Moreover, specific point mutation in
the ER ligand-binding domain that ablated estrogen binding
enabled selective in vivo regulation by tamoxifen (252).

5. Other steroid hormone-inducible systems. Other inducible sys-
tems based on the use of steroid hormones include the thy-
roid hormone-, androgen-, and vitamin D3-regulated sys-
tems. A thyroid hormone-responsive system was developed
by using three copies of palindromic thyroid hormone/reti-
noic acid-responsive element to drive transgene expression.
Variations of thyroid hormones and all-trans-retinoic acid
levels within their physiological range allowed in vivo reg-
ulation of transgene expression (253). Tissue-specific, thyroid
hormone-mediated expression of toxic genes for gene ther-
apy of gliomas was achieved by using the promoter of the
myelin basic protein, which contains a thyroid hormone re-
sponse element (254). Tissue-specific inducible expression of
therapeutic genes was also achieved by using a human os-
teocalcin promoter, which is activated by vitamin D3, to
drive the early adenoviral E1A and E1B genes. Not only did
this promoter allow selective replication of the oncolytic
adenovirus in osteocalcin-expressing cells, but it also en-
hanced viral replication of at least 10-fold upon vitamin D3
exposure (167).

Androgen-responsive expression of therapeutic genes has
been widely used for prostate cancer gene therapy. Andro-
gen response elements have been identified and character-
ized in the enhancer/promoter region of a variety of andro-
gen-inducible genes, and engineered to attain enhanced
transactivation efficiency (154, 255). New inducible systems,
based on these naturally evolved switches, might be devel-
oped by manipulation of steroid hormone nuclear receptors
or their response elements (256, 257).

6. Comment. As shown for gene therapy targeting strategies,
endocrinology might greatly contribute to the development
of regulated transgene expression systems. Regulated endo-
crine axes might ideally represent a paradigm of any gene
switch systems, and knowledge in the field of endocrinology
should be translated in the set-up and refinement of these
gene expression tools. Potential applications will range from
oncology to cardiovascular diseases, hormone deficiencies,
and inherited diseases.

III. Endocrine Cell-Specific Genes as New
Therapeutic Tools

Genes expressed in endocrine glands, such as sodium/
iodide symporter (NIS), noradrenaline transporter (NAT),
and somatostatin receptors, play a significant role in the
diagnosis and treatment of endocrine tumors. Cloning and
characterization of these genes have allowed the potential
exploitation of their antitumor properties for the treatment of
tumors arising from tissues other than endocrine glands.

A. Sodium/iodide symporter

The iodide transporter NIS is an intrinsic plasma mem-
brane protein that mediates the active transport of iodide
in the thyroid, lactating mammary gland, stomach, and
salivary glands (258, 259). The presence of NIS in the
thyroid gland is exploited in diagnostic scintigraphic im-
aging and radioiodide therapy of thyroid cancer. The dem-
onstration of NIS expression in breast cancer, but not in
normal breast tissue (260), suggests the potential use of
radioiodine as a diagnostic and therapeutic tool also for
nonthyroid cancers in which NIS is functionally active.
Moreover, ectopic NIS expression in cancer cells by gene
transfer may be exploited for both diagnostic and thera-
peutic purposes. In this regard, NIS-transduced tumor
cells exhibited efficient iodide accumulation, either in cul-
ture or in xenografted tumors in nude mice, and were
selectively killed by radioiodide (261–264). In a mouse
model of intracerebral gliomas, which had been retrovi-
rally transduced with human NIS, tumors could be imaged
by 99mTcO4 and 123I scintigraphy and underwent a sig-
nificant regression after treatment with 131I (265). More-
over, radioiodide uptake and NIS expression in the thyroid
gland could be reduced by feeding a T4-supplemented diet
(264), thus preventing thyroid toxicity. Tissue-specific,
androgen-dependent iodide uptake has been induced in
prostate cancer cells in vitro by PSA promoter-directed NIS
expression (266). Transfected tumors showed a significant
regression after single-dose radioiodide therapy in animal
models of prostate cancer (267). Adenovirus-mediated NIS
gene transfer followed by radioiodide administration re-
sulted in highly active iodide uptake and significant tumor
volume reduction (268). However, less enthusiastic results
have been reported in other tumor models, in which a
rapid radioiodide efflux due to lack of iodide organifica-
tion and intracellular retention was demonstrated (269 –
272). An amelioration of iodide kinetic was achieved by
thyroid ablation and low-iodide diet, although this regi-
men, in combination with radioiodide therapy, did not
inhibit tumor development (273). Cotransfection of non-
small-cell lung cancer with both NIS and the thyroper-
oxidase (TPO) gene, which catalyzes iodination of proteins
and subsequent iodide retention within thyroid cells, re-
sulted in an increase in radioiodide uptake and retention
and enhanced tumor cell killing (272). However, by using
an adenoviral vector to deliver NIS and TPO, the levels of
iodide organification achieved were too low to signifi-
cantly increase iodide retention (274).
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B. Noradrenaline transporter

Metaiodobenzylguanidine conjugated to 131I-iodide is an
effective agent for targeted radiotherapy of tumors of neural
crest origin that express the NAT, i.e., pheochromocytoma,
neuroblastoma, carcinoid and medullary thyroid carcinoma.
Transfer of the NAT gene into nonneuroectodermal tumors
would allow targeting of 131I-MIGB to a wide range of tumor
types for which no specific and targetable characteristic cur-
rently exist. An attractive feature of tumor targeting with
131I-MIGB is that cancer cells that fail to accumulate a lethal
quantity of 131I-MIGB may still absorb �-radiation from
neighboring targeted cells. The feasibility of this approach
was demonstrated by transfecting cell lines with NAT (275–
278). In particular, human glioblastoma cell lines transfected
with bovine NAT showed a 15- to 25-fold enhancement of
radionuclide uptake and dose-dependent cell killing (277,
279). By using cells grown as either monolayer cultures or
spheroids, 131I-MIGB was twice as toxic for cells in spheroids
compared with cells in monolayers, consistent with a greater
radiation cross-fire effect (radiological bystander effect) from
131I �-radiation in the three-dimensional tumor spheroids
(277, 280). Moreover, efficient and tumor-selective NAT ex-
pression was achieved by placing the transgene under the
transcriptional control of the telomerase RNA promoter
(281).

C. Somatostatin receptor

Somatostatin and its analogs suppress the growth of tumor
cells that express somatostatin receptors, such as neuroen-
docrine tumors (282). This antiproliferative effect is mediated
by somatostatin receptor subtype 1 (sst1), sst2, and sst5 (283).
Tumor progression is often associated with the loss of dif-
ferentiated functions, including expression of somatostatin
receptors. In this regard, restoration of somatostatin respon-
siveness in tumor cells by sst2 gene transfer has been dem-
onstrated to be an effective gene therapy approach for human
pancreatic adenocarcinomas (284–286), which, typically,
show a specific loss of sst2 expression (287). Stable transfec-
tion of these cells with human sst2 resulted in the induction
of a negative-autocrine loop with secretion of endogenous
ligand that activated constitutively the recombinant sst2 re-
ceptor (284, 285, 288). sst2-Expressing cells showed signifi-
cant reduction of cell growth and tumorigenicity both in vitro
and in vivo (284, 285, 288), and this antitumor effect was
enhanced by administration of the cytotoxic somatostatin
analog AN-238 (288). Moreover, a significant bystander ef-
fect and inhibition of metastatic progression was reached
when only 25% of tumor cells expressed sst2 (284, 288, 289).

Aside from antitumor activity, sst2 gene transfer has been
exploited for in vivo noninvasive nuclear imaging of tumors.
After transduction of tumor cells with viral vectors encoding
the sst2 gene, tumor masses were visualized using radiola-
beled somatostatin-avid peptides (290–293). Transduction of
tumors with vectors coexpressing a therapeutic gene to-
gether with sst2 allows noninvasive in vivo monitoring of the
efficacy of gene therapy, as demonstrated in ovarian and
lung cancer models in mice injected with bicistronic adeno-
viruses carrying both HSV-TK and sst-2 (292, 293).

Comment. The idea of noninvasive in vivo monitoring of the
efficiency of gene therapy by radionuclide imaging has al-
ready moved to the clinic, with a protocol of gene therapy for
glioblastoma multiforme based on the intratumor delivery of
HSV-TK followed by radiolabeled nucleoside analog admin-
istration (294). Preclinical results in animal models indicate
NIS, NAT, and sst2 gene therapy could also be effectively
applied in humans for diagnostic and therapeutic purposes.
Specificity and stability of the interaction between the en-
docrine transporter, receptor, or enzyme and the ligand or
substrate are critical for the success of these therapeutic
approaches.

IV. Endocrine Side Effects of Gene Therapy

Endocrine side effects in the course of cancer gene therapy
have rarely been assessed in experimental models and in
clinical trials. Side effects may include direct cell and tissue
injury in endocrine glands, as well as impairment of hormone
production. Etiological factors are represented by chemical
and biological agents, including nonviral and viral vectors;
drugs, such as those used in suicide/prodrug activation ther-
apy; cytokines; and inflammatory and immunological reac-
tions to vector or transgene delivery (Table 4).

A. Nonviral vectors

To the best of our knowledge, no studies on the effects of
nonviral gene delivery systems on endocrine glands have
been published so far in the literature. However, in vitro and
in vivo evidence of significant cytotoxicity and stimulation of
immune response suggests that these effects may also in-
volve the endocrine system.

Nonviral gene delivery (reviewed in Refs. 295–297) refers
to the use of naked DNA (298), cationic lipids formulated into
liposomes and complexed with DNA (lipoplexes) (299, 300),
cationic polymers complexed with DNA (polyplexes) (301),
polymeric vesicles complexed with DNA (302), or a combi-
nation of both cationic lipids and cationic polymers com-
plexed with DNA (lipopolyplexes) (303). There have also
been attempts to combine the benefits of viral and nonviral
systems into one delivery vehicle (304).

Cationic liposomes and cationic polypeptides are efficient
reagents for the transfer of nucleic acids to cells in vitro and
in vivo. These reagents have several advantages over other
methods of nucleic acid transfer; however, toxicity remains
a significant problem, especially in vivo. These vehicles have
been used in several studies, including phase I and II clinical
trials (299). In cancer gene therapy, lipoplexes are generally
delivered through iv or intraarterial administration, or direct
intratumor injection, to limit toxicity to the targeted tissues
(reviewed in Ref. 299). One of the drawbacks of intratumor
administration is the localization of the delivered nucleic
acids predominantly in the needle track. When administered
systemically by iv injection, the distribution is mainly in the
lung, followed by liver, spleen, and kidney, whereas the
intraarterial route allows selective delivery to the target le-
sion (305–308). In cell culture, lipoplexes cause several
changes to cells, including cell shrinking, growth inhibition,
and vacuolization of the cytoplasm (309). Cationic lipids may
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also induce hemolysis (310) or fusion between erythrocytes
(311). In vivo studies demonstrated toxic effects mainly in the
injection site, such as inflammation of the eyes after intraoc-
ular instillation (312), epileptic seizures, and, in severe cases,
death after intracerebral injection in mice (313, 314), inflam-
matory response after intraarticular delivery (315), epithelial
cell death after intratracheal administration (316), and com-
plement activation via the alternative pathway (317). Cat-
ionic liposomes have also been reported to induce acute
systemic inflammatory reactions (299, 318) and macrophage
and neutrophil infiltration into the lungs of mice when ad-
ministered intratracheally (319). Nephrotoxicity (320) and
hepatoxicity (321) were reported after delivery of lipoplexes
via the renal artery and the portal vein, respectively. Intra-
vascular delivery of lipoplexes may lead to embolization and
microinfarctions, as demonstrated after iv, intraarterial, or
intracoronary administration (322). These complexes were
also found to be highly toxic when administered orally, pro-
voking a dramatic hypothermia resulting in death in some
mice (323). Systemic administration of lipoplexes stimulates
the production of proinflammatory cytokines, such as

TNF-�, IFN-�, IL-6, and IL-12 (318, 319, 324, 325). This effect
is mainly related to the plasmid DNA component of these
vectors and the cytosine-phosphate-guanine motifs con-
tained within (326). Although potentially associated with
significant side effects, these immunostimulatory properties
may be exploited for cancer immunotherapy. Effects on the
endocrine system of cytokines, including TNF-�, IFN-�, IL-6,
and IL-12, will be discussed in Section IV.C.

Cationic polymers, such as polylysine, histones, and den-
drimers, are able to interact electrostatically with the DNA
molecule and condense into compact particles (polyplexes).
Condensation prevents DNA degradation by nucleases and
allows internalization of particles into cells by natural pro-
cesses such as endocytosis, pinocytosis, and phagocytosis. To
improve transfection efficiency, cell-binding ligands have
been incorporated into these transfection vehicles, resulting
in receptor-mediated mechanisms for cellular uptake. Posi-
tively charged polycation/DNA complexes were found to
aggregate at physiological salt concentrations, to interact
with components of the coagulation and complement sys-
tem, and to cause aggregation of erythrocytes that can result

TABLE 4. Endocrine side effects of vectors used in gene therapy

Vectors Side effects (Refs.)

Nonviral vectors
Cationic liposomes and cationic polypeptides Cytotoxicity, inflammation (295–297)

Viral vectors
Adenoviral vectors Inflammation, immune response (9)

Selective adrenocortical toxicity after systemic delivery, with degeneration
and hemorrhage in the zona reticularis, and impairment of
steroidogenesis (9, 342)

Inflammation and focal necrosis after intrapituitary injection (348)
AAV vectors Inflammation, immune response (380–382)
HSV vectors Inflammation, immune response (394, 396)

Impairment of pituitary hormone production (397)
Retroviral vector Inflammatory response to vector-producing cells (36, 82, 84, 88, 410, 411)

Impairment of hormone production by pituitary and adrenal cells (421)
Autoimmunity (428–430)
Oncogenesis (16–20)
Germ line transmission? (591, 592)

Lentiviral vector Interaction between viral sequences or proteins and steroid hormone
receptors (443)

Oncogenesis?
Germ line transmission?

?, Hypothesized.

TABLE 5. Oncolytic viral infection of endocrine cells

Oncolytic virus Effects

Adenovirus Thyroid: no toxicity of dl1520 in normal rat thyroid cells (500); transformation
of thyroid cells (501, 502)?

Adrenal: selective adrenotropism of adenoviruses (335, 336, 503, 504); focal
necrosis in all cortical zonae (335, 336, 342, 503, 504)

Pituitary: inflammation, necrosis?
HSV Adrenal: adrenal tropism; necrosis and hemorrhage (516–519, 525–532)

Pituitary: activation of the HPA axis; impairment of hormone production (398,
523)

Reovirus Adrenal: adrenalitis and marked cytopathic effect (542, 543)
Pituitary: cytopathic effect (544, 545), GH deficiency (545)
Endocrine pancreas: destruction of �-cells (545–549)
Thyroid: thyroiditis (553–557)
Autoimmunity (pancreas, anterior pituitary, thymus, thyroid, gastric mucosa)

(540, 541)
Newcastle disease virus ACTH and cortisol hypersecretion (578–580)

?, Hypothesized.
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in microembolism (301, 303, 327–329). This process may be
enhanced by the avid binding of the positively charged com-
plexes to cell membranes (330–332). Nonspecific interactions
with plasma components or erythrocytes can be prevented
by shielding the surface of transfection particles with hy-
drophilic molecules, such as polyethylene glycol (329) or
transferrin (333, 334). Systemic delivery of nonshielded com-
plexes into tumor-bearing mice resulted in high transgene
expression in the lungs and lower gene expression in other
organs, such as heart and liver, but was often associated with
severe toxicity (328), particularly when high molecular
weight complexes were used (303). At variance, shielded
complexes preferentially accumulated in tumor tissues (297,
299, 333, 334).

B. Viral vectors

Endocrine side effects in the course of cancer gene therapy
could be due to untoward infection of endocrine cells by
nonreplicative viral vectors, active viral replication and lysis
of endocrine cells in the case of replicating viruses, and toxic
effects due to stimulation of cytokine production by these
vectors. Endocrine side effects caused by replication-defi-
cient viral vectors will be discussed in this section, whereas
infection of endocrine cells by wild-type and oncolytic vi-
ruses will be dissected in Section V.

1. Adenoviral vectors. Among endocrine glands, adenoviral
vectors have a natural tropism for adrenocortical cells, as
demonstrated in animal models and in humans (9, 335–342).
One of the major factors in determining adrenal targeting
after intravascular delivery is the presence of fenestrations in
the microcirculation of the adrenal gland, which may allow
a direct contact of the vector with adrenal cells. The lack of
delivery to most other parenchymal tissues is most probably
due to the endothelium, which acts as an anatomical barrier.
Endothelial cells are relatively resistant to adenoviral infec-
tion, because of low levels of expression of the coxsackie-
adenovirus receptor (CAR) (343, 344). Indeed, there is little
correlation of the tissue distribution of CAR or integrins with
expression from adenoviral vectors (343).

Intravenous administration in a baboon of high doses of a
first-generation nonreplicating human adenoviral vector ex-
pressing �-galactosidase resulted in fatal toxicity, with
thrombocytopenia, increased liver enzymes, and severe en-
dothelial injury (9). At necropsy, there were pleural and
pericardial effusions; hemorrhages in lymph nodes, testes,
and spleen; and brain congestion. Histological examination
demonstrated the presence of the vector (i.e., expression of
�-galactosidase) in the liver, red pulp of the spleen, vascular
system, the lymph node sinus, and rare acinar pancreatic
cells. Adrenocortical cells frequently showed expression of
vector, whereas the parenchyma of other organs was nega-
tive. In particular, neither germ cells and Sertoli cells nor
interstitial cells in the testis were positive. Injury to the vas-
cular endothelium was the most prominent histological ab-
normality. Focal degeneration was present in the adrenal,
particularly in the zona reticularis with congestion and hem-
orrhage as well as a few neutrophils. The periadrenal tissues
showed vascular dilatations and increased numbers of in-

travascular leukocytes. No abnormalities were identified in
other endocrine glands including pancreas, testis, thyroid,
and parathyroid. A 10-fold lower dose of the vector did not
cause any significant toxicity or changes in laboratory values
in another injected baboon (9). At necropsy, the microscopic
abnormalities consisted of enlargement of spleen and lymph
nodes, but no other abnormalities were identified. Expres-
sion of �-galactosidase was detected in liver, spleen, pan-
creas, and adrenal, but not in other tissue parenchyma. Pos-
itively staining adrenocortical cells were few to moderate in
number. No histological abnormalities were observed. In-
creased levels of IL-6 and TNF-�, but not IL-8, were observed
only in the baboon injected with the higher adenoviral vector
dose (9). Immunocompetent mice administered with three
doses of the vector (i.e., half the dose, equivalent to the dose,
or twice the dose administered to the high-dose baboon)
showed similar hepatotoxicity and endothelial injury at the
higher vector doses (9).

Adenoviral tropism for the adrenal gland was also dem-
onstrated in animal studies of fetal gene therapy. Adminis-
tration of a nonreplicating human adenoviral vector to
guinea pig fetuses in the late stage of pregnancy through the
umbilical vein led to prominent transgene expression in liver
and moderate expression in spleen, adrenal gland, and heart
(339). In a mouse model, the pattern of gene expression was
dependent on the developmental stage of the embryo at the
time of virus administration (338). The most extensive gene
transduction was detected in embryos injected at 15 d. When
injected at this embryonic stage, endothelial cells of the ad-
renal expressed the transgene besides other organs, whereas
no adrenal transduction was detected when embryos were
injected at other stages (338).

In vitro infection of primary cultures of isolated bovine
adrenocortical cells by nonreplicating first-generation hu-
man adenoviral vector type 5 demonstrated that cell trans-
duction was followed by specific ultrastructural alterations
(342). The most significant changes involved mitochondria,
which appeared pleiomorphic, exhibiting a reduced amount
of tubular internal membranes. The cristae had a lamellar
morphology, characteristic of nonsteroidogenic cells or ste-
roidogenic cells after deprivation of trophic hormones, and
the mitocondria matrix contained crystalline structures. Seg-
mentation of the nucleus and the presence of intranuclear
viral particles were also observed (342). Adrenocortical cell
proliferation was increased after transduction. Adrenocor-
tical response to ACTH was significantly suppressed by vec-
tor infection, whereas basal steroidogenesis was increased,
probably related to the increased cell proliferation (342). Sim-
ilar modifications in patterns of steroidogenesis have been
reported in Y-1 mouse adrenal tumor cells after transforma-
tion by a simian adenovirus (345, 346).

Data in the literature on side effects caused by adenoviral
transduction of other endocrine glands are scarce. Recom-
binant adenoviral vectors can infect all pituitary cell types
and hypothalamic cells effectively, as demonstrated in cell
cultures and in animal models stereotactically injected with
vector particles (130–136, 347). Anterior pituitary glands in-
jected with recombinant human adenoviral vector type 5
displayed variable degrees of inflammatory response, with
periglandular fibrosis, lymphocytic infiltrate, venulitis, and
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focal necrosis and/or apoptosis in almost all cases (348).
However, adenoviral-mediated transduction of hypothala-
mus and pituitary cells in vivo after systemic delivery seems
to be unlikely. Efficient gene transfer to the pituitary and part
of the hypothalamus near the pituitary was only achieved
when recombinant adenoviral vectors were injected into the
amniotic cavity of rat embryos at embryonic d 12, but not at
other embryonic periods. Transgene expression persisted at
least 1 wk after birth (349). It is conceivable that transduction
of the hypophysis occurred through the pharynx, because the
adenohypophysis is originally developed from a pharynx
segment, and the duct connecting the adenohypophysis to
the pharynx is still open at embryonic d 12. The risk of
untoward pituitary cell transduction during systemic or in-
tracerebral delivery of recombinant adenoviruses for cancer
therapy has not been assessed so far. Moreover, effects on the
hypothalamus and pituitary gland of the inflammatory re-
sponse elicited by vector delivery into the brain have not
been investigated. This issue is of interest, because gene
transfer into the brain using adenoviral vectors has been
demonstrated to induce acute inflammatory reactions (350,
351), whereas peripheral readministration of viral vectors
induces a delayed-type hypersensitivity reaction accompa-
nied by localized demyelination, which eliminates transgene
expression (350). Examination of the long-term outcome of
adenovirus-mediated HSV-TK followed by GCV in a rat
syngeneic glioblastoma model demonstrated the presence of
active brain inflammation 3 months after successful inhibi-
tion of tumor growth (352). The inflammatory infiltrate con-
sisted of activated macrophages/microglia and astrocytes
and T lymphocytes and was associated with demyelination.
Strong and widespread HSV-TK immunoreactivity and vec-
tor genomes were detected throughout large areas of the
brain (352). Thus, besides the risk of infection of pituitary and
hypothalamic cells, potential endocrine side effects due to
persistent transgene expression and long-term cytokine pro-
duction by inflammatory cells should be evaluated in clinical
gene therapy trials for brain tumors. Effects of cytokines in
the endocrine system, which have been extensively reviewed
in the literature (353–357), are addressed in Sections VI.C.
and VI.

Although thyroid cell transduction seems to be an unlikely
event after systemic administration of recombinant adeno-
viral vectors (9), adenoviral proteins could have some effects
on thyroid function. Indeed, the adenovirus E1A gene prod-
ucts have been demonstrated to interact directly with nuclear
receptors, including retinoic acid receptor � (RAR�) (358,
359) and thyroid hormone receptor (TR) (360), and thereby
function as a potent cofactor for transcriptional activation.
The biological significance of these interactions may be re-
lated to the role of RAR� and TR in transcriptional activation
of specific genes involved in cell differentiation.

Efficient gene transfer to pancreatic islets in vitro and in
grafted animals using first-generation adenoviral vectors has
been reported (361–367). Gene transfer was not associated
with islet toxicity, as determined by measuring glucose-stim-
ulated insulin release (365, 366).

With the exception of cancer, in which an immune re-
sponse to vector could result in antitumor activity, preex-
sisting immune response is a major cause of inefficiency and

side effects of the commonly used first-generation human
adenoviral vectors type 2 or 5 (368). To approach this prob-
lem, the use of the so-called “gutless” adenoviral vectors,
which are devoid of all sequences encoding for structural
proteins, has been suggested (369, 370). As an alternative,
recombinant adenoviral vectors of nonhuman origin (e.g.,
ovine, canine, bovine, porcine adenoviral vectors) could be
effectively used to avoid inflammation and immune re-
sponse (371–376). Some improvement in transgene persis-
tence can also be achieved by repeated administration with
human adenoviral vector of different serotypes (e.g., adeno-
virus type 34), although there appears to be some T cell
cross-reactivity in recognizing different human adenovirus
subgroups (377, 378).

2. AAV vectors. AAVs are human parvoviruses that normally
require a helper virus, such as adenovirus, to mediate a
productive infection. Lack of pathogenicity and the tendency
to establish latent infection through integration into the chro-
mosomal DNA make this virus an attractive vector for gene
therapy (379, 380). Because the AAV vector genome lacks
viral coding sequences, the vector itself has not been asso-
ciated with toxicity or any inflammatory response, except for
the generation of neutralizing antibodies that may limit re-
administration (380–384). The vector can efficiently trans-
duce both dividing and nondividing cells and can be deliv-
ered to many different organs, including the central nervous
system, liver, lung, and muscle, by in vivo administration
(379). Several preclinical and clinical studies conducted with
AAV demonstrate the efficacy and safety of this delivery
system (380, 385–387), which however will best suit appli-
cation for local gene transfer to target tissues, e.g., brain and
skeletal muscle. After local injection, the vector does not
spread to surrounding tissues; thus, the risk of untoward
infection of nontarget cells, including endocrine cells, should
be very limited. On the other hand, efficient in vitro trans-
duction of hypothalamic, medullary thyroid, and pancreatic
�-cells after direct exposure to the virus has been demon-
strated (388–391).

3. HSV vectors. Development of highly defective nonrepli-
cative HSV vectors allowed a marked reduction of vector
toxicity even for primary neurons in culture, readily killed by
less defective HSV vectors (392). Highly defective nonrep-
licative HSV vectors are most suited for transgene expression
in the nervous system in which the virus has evolved to
remain lifelong in a latent state (393, 394). Deletion of mul-
tiple immediate early genes reduces the cytotoxicity of HSV-
based vectors. These vectors are suitable for both short-term
applications and long-term gene expression. In the first case,
immediate early promoters or exogenous promoters are used
to produce high level transgene expression for up to 1 wk
after injection. In the latter case, highly defective HSV vectors
are used for expression of genes in the nervous system, where
they are able to efficiently establish latency in neurons and
serve as a platform for long-term gene expression driven by
the latency promoter system (395, 396). These mutants cannot
reactivate from latency and cannot spread to other nerves or
tissues after cell infection. Because most applications involve
the nervous system, endocrine cells that could be potentially
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involved in toxic effects are hypothalamic or pituitary cells.
Indeed, efficient gene transfer after HSV infection has been
demonstrated in these cell types (397–399). Experiments per-
formed in primary cultures of normal and hyperplastic rat
pituitary cells and in grafted rat pituitaries in vivo showed a
significant reduction of hormone production after exposure
to the vector (398).

4. Retroviral vectors. Retroviral vectors, especially those de-
rived from the Moloney murine leukemia virus (Mo-MLV),
are currently the most common type of vector used in gene
therapy clinical trials. Properties of these vectors are infec-
tivity over a wide range of cell types, lack of pathogenicity,
and integration into the genome of the host cell. Disadvan-
tages include the risk of insertional mutagenesis or activation
of oncogenes as a result of random integration of the viral
genome into the host cell chromosomes, transcriptional si-
lencing of the integrated transgene, low vector titer, and
inactivation by human complement (400–402). The ability of
vectors derived from the oncovirus group to selectively
transduce cancer cells (which are usually more proliferative
than normal cells) is an advantage of this type of retroviral
vector for use in cancer treatment. Hence, these vectors have
been investigated in clinical trials for the treatment of several
cancers including ovarian, breast, brain, and lung cancers.
Phase I clinical trials, using retroviral vectors for gene de-
livery, have demonstrated no toxicity, which is a major ad-
vantage of this type of vector over other viral vectors (28, 35,
80, 85, 403–409). To obviate low vector titer and rapid elim-
ination by human complement, retroviral vector-producing
cells may be directly injected into the target lesion. In this
case, side effects related to the injection procedure or in-
flammation due to the delivery of xenogenic cells may be
observed (36, 80, 82, 84, 88, 410, 411). Moreover, transient
detection of vector sequences in peripheral blood leukocytes
has been reported in patients who underwent intracerebral
administration of retroviral vector-producing cells for gene
therapy of brain tumors (36, 82, 84, 86, 88, 411). Immune
response to vector or vector-producing cells has been re-
ported in 9% and 50% of treated patients, respectively (411).

Development of a second malignancy as a consequence of
insertional mutagenesis has not been demonstrated so far in
cancer patients treated with gene therapy. This potential risk
should always be weighted with the benefits of gene therapy
in this category of patients, especially after the French trial
(15–20). It is, however, conceivable that the carcinogenic risk
of gene therapy is not higher than that of other cancer treat-
ment regimens, such as chemotherapy and radiotherapy.

Although never demonstrated in patients treated with ret-
roviral vectors or retroviral vector-producing cells, genera-
tion of replication-competent virus particles represents an
important safety issue. To minimize the risk of replication-
competent virus particle production and that of pseudotype
formation, improved packaging cell lines of different animal
origin have been established. Moreover, vectors have been
more carefully designed to contain hybrid LTR and chimeric
cis-acting sequences and separated in different plasmids for
expression of the different retroviral functions. Appropriate
deletions in the LTRs have led to the so-called self-inacti-

vating vectors, thus diminishing the risk of insertional mu-
tagenesis (412).

With regard to the endocrine system, normal resting en-
docrine cells should be rather refractory to retroviral vector
transduction because of their low mitotic activity. However,
transduction of endocrine cell lines and primary cell cultures
by retroviral vectors has been demonstrated (362, 412–414).
Retrovirus infection of endocrine glands has been associated
with the development of endocrine disorders both experi-
mentally (415, 416) and clinically (417–420). Infection of the
murine pituitary cell line GH3 and the murine adrenocortical
cell line Y-1 in vitro by Mo-MLV resulted in increased cell
proliferation without significant cytopathic effect (421). The
establishment of active and productive infection in Y-1 cells
in vitro led to a transient increase in steroid secretion; how-
ever, during the continuous passage of infected cells, steroid
production was reduced. In contrast, secretion of PRL and
GH was markedly reduced in infected GH3 cells during
initial and continuous cell passaging. In addition, the reduc-
tion in hormone secretion in pituitary cells corresponded
with an increase in virus yield. Because the decrease in hor-
mone secretion during infection occurred with no reduction
in cell viability, a modulatory effect of Mo-MLV infection on
hormone secretion and synthesis was suggested (421).

An intriguing issue is the detection of elevated levels of
human endogenous retrovirus expression in endocrine
glands (422–425), especially in the fetal adrenal cortex (426).
Moreover, the human endogenous retrovirus HERV-R has
been shown to be expressed in all layers of the human ad-
renal cortex, but not in the medulla. High levels of expression
were demonstrated also in adrenocortical adenomas,
whereas expression was low in pheochromocytomas (427).
At variance, preferential expression of the human endoge-
nous retrovirus HERV-E was revealed in the pancreas and
thyroid gland (425). These findings suggest a role of endog-
enous retroviruses in development, differentiation, and/or
hormone production by endocrine cells. Endogenous retro-
viruses have also been related to the pathogenesis of organ-
and non-organ-specific autoimmune disorders (428, 429), al-
though this hypothesis still remains quite controversial with
regard to endocrine autoimmune diseases (430–432).

Thus, although retroviral vectors should be considered
among the safest gene transfer tools, safety issues on the risk
of germ line transmission, development of autoimmunity, or
malignant transformation remain to be thoroughly elucidated.

5. Lentiviral vectors. At variance with oncoretroviruses, len-
tiviruses such as HIV type 1 (HIV-1) can replicate in non-
mitotic cells. In fact, their preintegration complex, a macro-
molecular structure that includes the viral genome, a few
structural proteins, reverse transcriptase, and integrase can
enter into the nucleus without requiring nuclear fragmen-
tation (433). Lentiviral vector particles are generated by co-
expressing the virion packaging elements and the vector
genome in producer cells. To improve the safety profile of
lentiviral vectors, multiple attenuated packaging systems
have been created, the latest (“third”) generation of which
comprise only three of the nine genes of HIV-1 to prevent
reconstitution of the parental virus (434). As done with on-
coretroviral vectors, engineering of self-inactivating HIV-1-
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derived vectors makes it possible to minimize the risk of
emergence of replication-competent recombinants and
avoids problems related to promoter interference (435, 436).

Experience with lentiviral vectors from clinical trials is still
very limited; however, progress accomplished in the design
of such vectors suggests that their biosafety characteristics
should be superimposable to those of retroviral vectors. On
the other hand, it is conceivable that undesired transduction
of slowly replicating endocrine cells by lentiviral vectors in
the course of cancer gene therapy should be more frequent
than when using oncoretroviral vectors (437–439).

Endocrine dysfunctions observed in HIV-1-infected pa-
tients are generally related to opportunistic infection and
malignancy occurring in late stages of the disease or to an-
tiretroviral drugs and medications used in the treatment of
opportunistic infections, but not to HIV infection per se (440–
442). It is therefore conceivable that lentiviral vector delivery
should not be accompanied by specific side effects on the
endocrine system.

On the other hand, hormones may modulate lentiviral
vector function. Steroid hormone receptors, including glu-
cocorticoid receptor (GR), TR, RXR, RAR, peroxisome
proliferator-activated receptors, orphan receptors, and nu-
merous other host factors have been shown to participate in
the regulation of the HIV-1 LTR promoter, and thus in the
expression of viral genes (443). Among hormone receptors,
GR has been demonstrated to interact with glucocorticoid
response elements in HIV-1 LTR (444, 445). Treatment with
glucocorticoids led to increased viral production in culture
and enhancement of HIV gene expression (445). The HIV-1
virion-associated accessory protein, which functions as a reg-
ulator of cellular processes linked to HIV life cycle, has been
demonstrated to interact directly with the GR and general
transcription factors, such as p300/CBP coactivators, thus
acting as an adapter linking transcription components and
coactivators (446, 447). Heterodimers of TR/RXR have been
shown to bind the critical region of the promoter that con-
tains the nuclear factor-�B and Sp1 binding sites (448–451)
and to repress LTR in the context of chromatin (451). Addi-
tion of either T3 or a histone deacetylase inhibitor relieves this
repression, suggesting that TR/RXR heterodimer activates
the HIV-1 LTR in the presence of T3 (449–451) and that
transcriptional regulation of chromatinized LTR involves hi-
stone acetylation (451).

C. Ectopic expression of cytokines as therapeutic genes

Many of the cytokines that are used in cancer gene therapy
as immunomodulating genes exert important effects on the
endocrine system. These cytokines are also released in re-
sponse to immune/inflammatory insults, including viral
vector administration. Therefore, gene transfer is expected to
trigger the activation of the immune and neuroendocrine
systems and the release of a cascade of cytokines with pleio-
tropic effects on endocrine cells. On the other hand, hor-
mones modulate the effects of cytokine genes on target cells
(353).

Among cytokine genes, the most commonly used as ther-
apeutic tools in cancer gene therapy are those encoding for

IL-2, IL-4, IL-7, IL-12, IFN-�, IFN-�, IFN-�, TNF-�, TGF-�,
and GM-CSF.

Effects of cytokines on the endocrine systems have been
extensively reviewed elsewhere (353–357); therefore, only a
brief summary on this issue will be presented here. IFNs,
which are typically produced as a defense against viral in-
fection, were among the first cytokines to be demonstrated
to have neuroendocrine effects, i.e., stimulation of steroido-
genesis. Activation of the hypothalamus-pituitary-adrenal
(HPA) axis was demonstrated also for IL-1, IL-2, or IL-6,
IFN-�, IFN-�, leukemia inhibitory factor, and TNF-� in both
animal models and humans (452–454). IL-1, IL-2, IL-6, and
TNF-� directly stimulate cortisol secretion by adrenal cells in
culture, and IL-1 and IL-6 stimulate pituitary cells to produce
ACTH and �-endorphin via stimulation of hypothalamic
CRH secretion (454). IL-2, which is widely used in cancer
gene therapy as an immunostimulating gene, is more potent
than CRH in stimulating ACTH secretion and is the most
potent secretagogue for ACTH currently identified (455).
This effect, which has been confirmed in cancer patients
receiving IL-2 administration (456), might also be observed
in the case of systemic IL-2 gene therapy. Among other cy-
tokines used for cancer gene therapy, GM-CSF stimulates
ACTH and corticosterone production (457) and melatonin
release by the pineal gland (458), whereas IFN-�, besides
stimulating melatonin secretion from pinealocytes (459), up-
regulates GR expression by macrophages (460). Induction of
melatonin release represents a positive feedback loop, be-
cause melatonin itself enhances IFN-� production (461).
TGF-� exerts an inhibitory effect on steroidogenesis (462)
and seems to be involved in fetal (463, 464) and adult (465)
steroidogenesis, where it seems to reduce the synthesis of
dehydroepiandrosterone sulfate.

Regarding the effects of cytokines on other neuroendo-
crine mechanisms, IL-1, TNF-�, IFN-�, and IL-6 exert an
inhibitory effect on the hypothalamus-pituitary-thyroid axis
(466–469), whereas IL-1 inhibits the hypothalamus-pitu-
itary-gonadal axis by decreasing LHRH and LH concentra-
tions (470). Cytokines may also affect sexual steroid produc-
tion by direct modulation of hormone release from the
gonads (355).

Immune cytokines also influence complex mechanisms
involving thermoregulation, food intake, sleeping patterns,
and behavior (355). Moreover, cytokines induce several met-
abolic alterations, including increase of insulin levels after
IL-1 administration (355).

D. Inhibition of hormones and growth factors

Endocrine therapy has become a standard of care for
endocrine-related tumors, including breast, ovarian, and
prostate carcinoma, and has brought a significant improve-
ment of patients’ outcome. However, systemic treatment is
often poorly tolerated and associated with long-term side
effects (471–476). Gene therapy approaches, allowing local
delivery of therapeutic genes or selective inhibition of pro-
tein expression by antisense oligonucleotides or ribozymes,
should represent an advantage over conventional drugs in
terms of toxicity and efficacy. So far envisaged gene therapy
strategies based on the inhibition of hormones or growth
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factors include the use of antisense oligonucleotides or ri-
bozymes directed against androgen receptor (477–480), ER
(481), and various growth factors or their cognate receptors,
such as VEGF (482), EGF (483–486), and IGFs (487–496).
Some of these approaches have already entered clinical trials
without unusual side effects (1, 2, 72). While further data are
being achieved from experimental studies and ongoing clin-
ical trials, a careful investigation on the potential impairment
of endocrine physiology should be carried out.

Comment. Side effects of cancer gene therapy on the endo-
crine system have rarely been assessed so far both in pre-
clinical studies and in clinical trials. They are, however, un-
likely to occur with nonreplicating viral vectors and, if
present, are generally related to an acute inflammatory re-
action after vector or xenoantigen delivery. Because gene
therapy of cancer is moving toward more ambitious pur-
poses, i.e., long-term cure of diseases, careful evaluation of
safety issues and long-term outcome of treated patients
should be of primary importance.

V. Oncolytic Virus Infection of Endocrine Cells

The idea of using viruses as oncolytic agents originated at
the beginning of the 20th century, when spontaneous tumor
regression was observed in some patients with viral infection
or after rabies vaccination (497). This idea was temporarily
abandoned after clinical experience with a variety of wild-
type viruses, due to low efficacy and significant toxicity (497,
498). The field of viral therapy for cancer has been reborn in
the last decade, with the development of viruses engineered
to replicate selectively in tumor cells, and several clinical
trails with oncolytic viruses are currently ongoing.

Since there is a total lack of information on the effects of
replication-selective viruses on the endocrine system, indi-
rect assumptions could be obtained from wild-type viruses.
Even with important limitations (oncolytic viruses are en-
gineered to selectively replicate in cancer cells and thus are
generally attenuated), wild-type viruses might represent a
model for oncolytic viral infection and thus could provide
important information for vector design and safety
evaluation.

A. Oncolytic adenoviruses

Replication-competent oncolytic adenoviral vectors are
generated by deletion of gene functions that are critical for
viral replication in normal cells but not in tumor cells (re-
viewed in Refs. 497–499). In particular, deletion of the E1A
or the E1B gene, whose products inactivate the tumor sup-
pressor proteins pRB and p53, respectively, allows adeno-
viral replication in pRB- or p53-defective tumor cells, but not
in normal cells with intact pRB and p53 pathways. Another
strategy to achieve tumor-selective adenoviral replication is
the use of tumor- or tissue-specific promoters to drive the
expression of an adenoviral gene that is critical for efficient
viral replication, such as E1A (497, 498). Several studies
demonstrate that tumor selectivity is not absolute, and
efficient replication may also occur in nontarget cells (499).
Thus, potential cytotoxic effects, after systemic administra-

tion of replication-competent adenoviral vectors, should be
considered.

1. Thyroid gland. Efficient infection of the thyroid gland by
adenoviral vectors has been well documented in the litera-
ture (104). With regard to oncolytic adenoviral vectors, in-
fection with the E1B 55-kDa gene-defective adenovirus
dl1520 efficiently induced cell death in p53-defective thyroid
carcinoma cell lines and reduced growth of xenografted thy-
roid tumors in nude mice (500). Conversely, the virus did not
produce cytopathic effects on normal rat differentiated cells
(501), suggesting that it should not be toxic for thyroid cells
if systemically delivered. On the other hand, a phase I clinical
study based on iv infusion of the dl1520 adenovirus in pa-
tients with metastatic cancers bearing p53 mutations, includ-
ing a patient with papillary thyroid carcinoma, showed ev-
idence of viral replication and cytokine response (54). In
particular, most patients, including the patient with thyroid
cancer, experienced transient fever, nausea, and fatigue after
virus administration. Disease stabilization was observed in
all but one case that progressed (54).

Effects of adenovirus on thyroid cell differentiation and
transformation should also be taken into account. Transfec-
tion of the adenovirus E1A gene into a rat-differentiated
thyroid cell line induced a block in the expression of differ-
entiated functions, although without the appearance of typ-
ical transformation markers (501). Indeed, E1A-transformed
thyroid cells maintained sensitivity to growth inhibition in-
duced by cAMP (502). A highly malignant phenotype was
achieved by cooperation of adenovirus E1A with other on-
cogenes (501).

2. Adrenal gland. As reported above, several studies demon-
strated that the adrenal gland is a major target for adenoviral
infection. In particular, selective adrenotropism of adenovi-
rus has been demonstrated in mice (335, 336) and calves (503,
504) during experimentally induced infections. In the exper-
imental mice model, adenoviral infection involved all three
zones of adrenal cortex, with 80% or more of the cells ex-
hibiting intranuclear inclusions (335) associated with virion
accumulation (336). In calves, acute focal nonsuppurative
necrosis was present in the zona glomerulosa and fasciculata
and occasionally in the zona reticularis and medulla of the
adrenal glands, with pyknotic nuclei and eosinophilic in-
tranuclear inclusions (503, 504). Nonspecific histological
changes have also been observed in infants with generalized
adenoviral infections, including edema of the capsule and
stroma, loss of trabecular structure, delipoidization in the
definitive adrenal cortex, and readsorption of the elements of
the fetal cortex (337).

The E1B-deleted dl1520 oncolytic adenoviral vector was
used for the treatment of a patient with metastatic adreno-
cortical carcinoma, resulting in disease stabilization. The pa-
tient, who had transient fever after iv virus administration,
was taken off the study due to renal failure after 103 d of
follow-up (54).

The effect of replication-competent adenoviral vectors in
adrenocortical cells was analyzed in primary cultures of bo-
vine adrenal cortical cells transduced with different adeno-
viral deletion mutants. Whereas E3/E4-deleted vectors did
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not affect adrenocortical morphology and function, includ-
ing steroid secretion, nonreplicative E1/E3-deleted viruses
led to alteration of the ultrastructure and increased prolif-
eration of adrenocortical cells, associated with suppression of
response to ACTH stimulation (342). These findings suggest
a role for adenovirus E4 region in the impairment of steroid
secretion.

3. Pituitary gland. Although infection of pituitary cells with
replication-competent oncolytic adenoviral vectors has not
been assessed so far in the literature, efficient transduction of
all pituitary cell types by nonreplicative recombinant adeno-
viral vectors has been demonstration in several in vitro and
in vivo studies (130, 133, 505–507). The evidence of a severe
inflammatory reaction, with periglandular fibrosis, lympho-
cytic infiltrates, venulitis, and focal necrosis in ovine pitu-
itary glands injected with first-generation adenoviral vectors
(348) indicates the need for evaluation of possible adverse
effects in the normal pituitary gland after adenoviral vector-
mediated gene delivery into the central nervous system.

B. Oncolytic herpes simplex viruses

As with the oncolytic adenoviruses, two strategies are
used to target HSV-1 replication to tumor cells. The first
involves deletion or inactivation of viral genes that are es-
sential for viral replication in normal cells but dispensable in
tumor cells, such as HSV-TK, ribonucleotide reductase, and
�34.5 (497, 508). The second is based on the use of cellular
tumor-specific or tissue-specific promoters to drive the ex-
pression of a viral gene that is critical for viral replication,
such as the immediate-early ICP4 gene (509).

Data in the literature on infection of endocrine glands with
replicating herpesviruses are scarce. However, reports of
adrenal infection by HSV-1 and HSV-2 both in humans (510,
511) and in experimental models (512–518) and documented
effects of HSV-1 on the hypothalamo-pituitary-adrenocorti-
cal axis (519, 520) indicate that systemic or intracerebral de-
livery of replicative HSV-based vectors could be potentially
associated with life-threatening adverse events. Although
mutations in critical viral sequences markedly decrease neu-
rovirulence and cytotoxicity of oncolytic HSV, distant indi-
rect effects, such as activation of the HPA axis could persist.
Other safety concerns in the case of HSV vector inoculation
into the tumor or into the brain are virus leakage into the
bloodstream or infection of susceptible distant organs. More-
over, vector inoculation could lead to reactivation of, comple-
mentation, or recombination with a patient’s latent virus to
cause disease. Although a rare event (521), it has been shown
in mice that mixed infections with two nonlethal nonneu-
roinvasive HSV-1 strains can result in a lethal infection and
spread to the brain (522).

1. Pituitary gland. HSV-based vectors are capable of trans-
ducing pituitary cell lines and normal and hyperplastic an-
terior pituitary cells in vitro (397) as well as in vivo in ectopic
grafts of normal anterior pituitary glands and in estrogen-
induced prolactinomas in rats (523). Infection of normal and
hyperplastic anterior pituitary cells leads to a significant
reduction of hormone release in vitro and in pituitary-grafted
animals in vivo (398). Replication of oncolytic HSV vectors

in pituitary or hypothalamic cells has not been investigated
so far.

2. Adrenal gland and other endocrine glands. Clinical cases of
involvement of the adrenal gland in the course of dissemi-
nated wild-type HSV infection, with the presence of hem-
orrhagic necrosis in the adrenal cortex and evidence of HSV
particles, have been reported in the literature (510, 511, 524).
The adrenal gland is a major target of HSV-1 infection. The
propensity of HSV to localize in the adrenals was demon-
strated after several routes of administration in animal mod-
els, including intranasal (525), sc (526), iv (517, 527, 528), ip
(529–531), vaginal (516, 532), and intraocular injection (515).
Experimental intranasal infection of mice with wild-type
HSV-1, VR3 strain, was constantly followed by interstitial
pneumonia and adrenal necrosis, often leading to death
(525). Viral antigens were detected in the lungs and the
adrenals 24–48 h after inoculation, suggesting that the virus
reached the adrenal gland via hematogenous dissemination,
possibly initiated by virus invasion of the pulmonary vessels.
At variance, no histological lesions were detected in the
thyroid gland and pancreas (525). Extensive adrenocortical
necrosis, beginning in the zona fasciculata and subsequently
involving the other zonae, was a constant finding along with
the presence of the virus in the affected adrenal glands as
confirmed by immunohistochemistry (525). Subcapsular cell
proliferation developed in the damaged adrenal cortex as
early as 12 d after inoculation with HSV-1, a finding partic-
ularly evident in mice surviving up to 1 yr after virus inoc-
ulation. Adrenals from these latter animals still released in-
fectious HSV when cocultivated with susceptible cells (525).

With regard to the iv route of infection, replication of
HSV-1 in the adrenal gland of mice was observed 12 h after
inoculation, peaked at 48 h, and was maintained until death
(517). In particular, infection involved the zona fasciculata
and induced cell apoptosis. Lesions involved the medulla
48 h after inoculation. In the adrenal medulla, cells were
fused and formed multinucleated giant cells but rarely dis-
played clear signs of cell death. Macrophages, which serve as
a frontal barrier to viral infection in the adrenal gland, es-
pecially the cortex, were fewer in number than those found
in the liver or spleen, suggesting that HSV-1 infection of the
adrenal gland may result in suppression of local immunity.
In this context, adrenal cell apoptosis would serve as a prim-
itive type of immunity to limit viral replication (517).

After ip inoculation in mice, HSV-1 and HSV-2 replicated
to high titers in the adrenal glands and the ovaries, but not
in the testes (514, 530). In the adrenals, the lesions were
mainly restricted to the zona fasciculata and the zona re-
ticularis, sometimes extending to the medulla. In the ovaries,
lesions were detected in follicles and in the stroma. During
the course of infection, HSV nucleic acids and proteins could
be detected in adrenal and ovary lesions, but there was no
evidence of HSV latency in either organ (514, 530, 532).

After vaginal infections of mice with neuroinvasive strains
of HSV-1 and HSV-2, virus replicates in the vaginal epithe-
lium, in the paravaginal ganglia, in the spinal cord, and
finally in the brain and the adrenal glands (516, 532). How-
ever, viral antigens could be demonstrated only in the me-
dulla of the adrenal glands but not in the cortex (532). HSV
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could not be isolated from liver, spleen, uterus, and ovaries.
This is in contrast with the ip route of infection after which
replication is occurring in different visceral organs including
the adrenal cortex (516, 530).

After acute infection via intracameral inoculation, HSV-1
can establish latent infection in the adrenal gland, as dem-
onstrated by the presence of latency-associated transcripts in
adrenal tissues. Reactivation from latency is induced with
appropriate stimuli (515).

The adrenal gland is a route of HSV-1 spread to the central
nervous system after a viremic phase (528). After replication
in the adrenal gland, the virus enters the preganglionic nerve
fibers that supply the medulla and spreads through tracts of
autonomic fibers in the thoracic cord (528). Efficient transfer
into sympathoadrenal preganglionic neurons was also dem-
onstrated after adrenal inoculation with nonreplicating mu-
tant HSV-1 vectors, which, at variance with nonreplicative
adenoviral vectors, remained confined to the adrenal gland
(533).

C. Reovirus

Reovirus is selectively oncolytic for many tumor cell types,
and this selectivity is inherent to the biology of the virus
(534). The mechanism behind reovirus oncolytic activity was
recently elucidated, with the demonstration of preferential
reovirus replication in cells with an activated ras signaling
pathway (535). When reovirus infects normal cells, early viral
transcription activates double-stranded RNA-activated pro-
tein kinase, which inhibits protein translation by phosphor-
ylation of EIF-2�. This cellular response inhibits reovirus
replication. In cells with an activated ras pathway, RNA-
activated protein kinase phosphorylation and activity are
impaired, thereby allowing viral protein synthesis and the
lytic cycle to proceed.

The efficacy of reovirus as an oncolytic agent via either
intratumor or systemic administration was demonstrated in
several in vitro and in vivo models of tumor with an activated
ras pathway, including glioblastoma (66, 536), Lewis and
lung carcinoma metastases (537), breast cancer (538), ovarian
and colon cancer (539).

Infections in humans are generally mild and restricted to
the respiratory and gastrointestinal tracts. However, reovi-
rus infection may be associated with significant cytotoxicity
in endocrine cells and with the development of an autoim-
mune polyendocrine disease with autoantibodies to the pan-
creas, anterior pituitary, thymus, and gastric mucosa (540,
541).

1. Adrenal gland. Experimental infection of neonatal mice with
reovirus 3 was characterized primarily by encephalitis, hep-
atitis, and pancreatitis. Although not as a major manifesta-
tion, mice also showed acute adrenalitis, characterized ini-
tially by foci of coagulative necrosis, which enlarged and
became surrounded by leukocytic infiltration (542). Viral
replication was demonstrated mainly in adrenocortical cells,
but also in medullary and endothelial cells (542). Reovirus
infection, associated with a marked cytopathic effect, was
also demonstrated in vitro in the Y-1 mouse adrenal cell line
(543).

2. Pituitary gland. Specific receptors for reovirus have been
demonstrated in pituitary cell lines (544), thereby allowing
efficient reovirus growth in pituitary cell cultures (545). Cy-
topathic effects are especially associated with reovirus type
3 infection (545). The presence of reovirus particles was also
demonstrated in vivo in the anterior, but not posterior pitu-
itary of mice infected with reovirus type 1 (546). In particular,
virus particles were found in GH-producing cells from in-
fected mice, leading to decreased GH blood concentration
(546). Moreover, infected animals showed transient diabetes
mellitus and developed autoantibodies directed against in-
sulin, GH, and gastric mucosa of uninfected mice. Reovirus
type 3, in contrast to reovirus type 1, did not induce auto-
antibodies to GH. By use of recombinant viruses, the
genomic region responsible for the induction of autoanti-
bodies to GH was identified as the S1 gene segment from
reovirus type 1, which codes for the sigma 1 polypeptide (i.e.,
hemagglutinin). At variance, virus containing the S1 gene
segment from reovirus type 3 failed to infect cells in the
anterior pituitary and did not induce autoantibodies to GH
(546).

3. Endocrine pancreas. Efficient reovirus infection of the en-
docrine pancreas has been demonstrated in �-cell cultures
(547) and in vivo (546, 548) in association with autoimmune
diabetes mellitus (540, 546, 549). In particular, reovirus pro-
duced insulitis when inoculated into 1- to 2-wk-old mice.
Viral particles were observed in insulin-containing �-cells,
but not in glucagon-containing �-cells. The infection resulted
in �-cell destruction, reduction of the pancreatic insulin con-
tent, and impaired response to the glucose tolerance test
(548). Reovirus infection of �-cells led to substantial cyto-
pathic effects also in vitro, although without significant im-
pairment of insulin secretion (545). The mechanism at the
basis of reovirus-induced diabetes mellitus has not been
completely elucidated; it seems to be mediated by T1-helper
lymphocytes, whose production of IFN-� may play a role in
islet inflammation leading to cell destruction (550–552).

4. Thyroid gland. Newborn mice infected with reovirus type
1 developed a mild thyroiditis characterized by focal de-
struction of acinar tissue, infiltration of inflammatory cells,
and autoantibodies to TG and microsomal antigens (553). If
the study by Srinivasappa et al. (553) failed to detect viral
antigens in thyroid tissue samples, with the exception of an
occasional cell, Onodera and Awaya (554) showed viral an-
tigens in the cytoplasm of thyroid epithelial cells and the
presence of serum anti-TG autoantibodies. Reovirus type 3,
in contrast to reovirus type 1, did not induce autoantibodies
against TG. By the use of recombinants between reovirus
type 1 and type 3, the segment of the reovirus genome re-
sponsible for the induction of autoantibodies to TG was
identified to be S1, as observed for GH-secreting pituitary
cells.

In vitro studies demonstrated that reovirus was able to
infect and replicate in rat and murine thyroid cell lines in-
ducing expression of both major histocompatibility complex
(MHC) class I (555) and MHC class II antigens (556) in a
dose-dependent fashion. Thus, reovirus infection might ini-
tiate autoimmune endocrine disease by inducing endocrine
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cells to express MHC class II antigens and augmenting MHC
class I antigen expression in susceptible animals. Reovirus
types 1 or 3 enhanced expression of MHC class I and, to a
lesser extent, of MHC class II molecules also on primary
cultures of human thyroid follicular cells (557). The addition
of antisera to IFN-� or IFN-� inhibited the increased class I
MHC expression on thyroid follicular cells by both types of
reovirus (557). These data suggest that the mechanism of
MHC class I enhancement was most probably mediated by
the release of IFN-� and IFN-� from infected cells.

5. Comment. Selective tropism of several viruses for endocrine
glands, in particular the adrenal cortex, is impressive. Al-
though experimental studies have demonstrated cytopathic
effects in endocrine cells and autoimmunity associated with
adenovirus, herpesvirus, and reovirus infection, it is also
conceivable that, in most clinical infections, endocrine in-
volvement is asymptomatic and not diagnosed. A finalistic
explanation for adrenal tropism of viruses could be the fa-
vorable immunosuppressed environment created by local
high cortisol levels. This hypothesis is corroborated by the
demonstration of steroid hormone synthesis by a viral en-
zyme, i.e., an active 3�-hydroxysteroid dehydrogenase/
�5-�4 isomerase (3�-HSD) encoded by the SalF7L vaccinia
virus open reading frame, which can convert pregnenolone
to progesterone (558). This enzyme, which has 31% amino
acid identity to human 3�-HSD, represents a virulence factor
possibly involved in viral escape from cellular immune sur-
veillance (559, 560). These conceptual implications should
prompt the clinician to evaluate endocrine gland involve-
ment in the course of viral infection (either wild-type or
engineered) for early diagnosis of impairment (e.g., adrenal
failure in the case of acute adrenal or herpes viral infection).

VI. Endocrine Response to Viral Vector Delivery

Infections are regarded by the neuroendocrine system as
stressors. In the face of stress, the function of the neuroen-
docrine system is to protect the homeostasis of the body by
modulating the immune response. The neuroendocrine sys-
tem constantly monitors and regulates the activities of the
immune system. Conversely, the immune system needs the
neuroendocrine system to help in determining the context of
a perceived threat and setting the best way to respond (353).

Administration of a viral vector for gene delivery may be
accompanied by a response of the neuroendocrine system,
such as in the course of viral infections. Besides viral parti-
cles, therapeutic genes, such as cytokines, may also contrib-
ute to the activation of the neuroendocrine response, as dis-
cussed in Section IV. The HPA axis plays a major role in stress
response, and various viral agents and their products have
been demonstrated to activate the HPA axis (354–357).

A. HSV-based vectors

Both nonreplicative and replication-competent HSV vec-
tors are used for cancer gene therapy, mostly by direct in-
tratumor delivery for brain cancer. Although effects of vector
delivery on the HPA axis have not been accurately investi-
gated so far, experimental studies with wild-type HSV have

demonstrated that the virus induces a marked activation of
the HPA axis. After corneal inoculation in rats with crude
HSV-1 preparations from infected cells, the virus invaded the
nervous system and replicated in the brainstem without clin-
ical signs of disease (519). During this early, presymptomatic
stage of the infection, in which very low virus titers were
detected in the brain, a marked elevation in serum ACTH and
corticosterone levels was observed (519). These elevated hor-
mone levels failed to respond to stressful stimulation or to
dexamethasone suppression. HSV-1-induced HPA axis ac-
tivation was not associated with any tissue damage or in-
flammatory infiltrates in the brain, and no virus was isolated
from the hypothalamus (519). HPA axis activation was
dependent on an intact ventral noradrenergic ascending
pathway that connects the brainstem and the hypothalamic
paraventricular nucleus (561). Moreover, after corneal or in-
trahypothalamic inoculation, HSV-1 induced the expression
of the IL-1� gene in the brainstem and hypothalamus (562).
At variance with cerebral administration, systemic (ip) in-
oculation of HSV-1 did not influence HPA axis responses
(519), indicating that effects on HPA axis were mediated
centrally and not by systemic mechanisms.

HSV-1 can acutely activate the HPA axis before and in-
dependently of any viral replication, because intraventricu-
lar inoculation of UV-inactivated purified virions caused a
marked, but transient, increase in serum corticosterone and
ACTH (520). Moreover, HSV-1-induced HPA axis activation
was demonstrated to depend on a permissive action of cir-
culating glucocorticoids and on host-derived brain IL-1 (520).

B. Adenoviral vectors

Preclinical and clinical studies with adenoviral vectors
have clearly demonstrated the efficiency of this gene transfer
system. However, adenoviral vectors elicit strong humoral
and cellular immune responses that reduce the persistence of
transgene expression (563–565) and, more importantly, may
be associated with significant toxicity in rodents (566, 567)
and in primates (9, 568, 569). Untoward events associated
with vector administration may be related to direct cytotox-
icity in target tissues or may reflect an activation of immune
response cascades (570).

Administration of first-generation adenoviral vectors
causes a rapid induction of IL-6, as well as other indicators
of the acute-phase response, in mice, primates, and humans
that experience toxicity (568, 571, 572). Induction of TNF-�,
observed in early phases after vector delivery, has also been
associated with the activation of immune response to ade-
novirus (572–576). Investigation of the in vitro response of
human peripheral blood mononuclear cells after exposure to
wild-type adenovirus, replication-deficient recombinant ad-
enoviral vectors, and empty capsids demonstrated a signif-
icant and sustained stimulation of IL-6, GM-CSF, and a panel
of �- and �-chemokines, including IL-8, Mip1-�, Gro-�, and
Rantes (577). Induction of TNF-� by intact virions was low,
although stimulation by empty capsids gave a significant
and sustained response (577). Similarly, exposure to empty
capsids was more effective than exposure to intact virions in
cytokine induction. Although this in vitro model did not
include the cell populations responsible for in vivo toxicity,
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e.g., vascular endothelium or hepatocytes, it demonstrated
that binding of virions/capsids to the cell surface activates
cellular transduction mechanisms that stimulate transcrip-
tion of proinflammatory cytokine genes.

C. Newcastle disease virus

Systemic inoculation of Newcastle disease virus in mice
caused hypersecretion of ACTH and corticosterone under
basal condition (578, 579). This effect was not caused by the
virus itself or by the stress of the infection, but was mediated
at least in part by the release of IL-1 from immune cells (578,
580).

Comment. Viral infection represents a stressful event that
activates the HPA axis. This effect is elicited not only by
replicating wild-type viruses, but also by structural viral
proteins, thus suggesting that even administration of non-
replicating viral vectors could activate an acute stress re-
sponse. Indeed, fever, chills, tachycardia, hypotension or
hypertension, etc., are often observed in association with
systemic viral vector delivery.

VII. Risk of Germ Cell Transduction and Present
Ethical Concerns

A. Risk of germ cell transduction

1. Adenoviral vectors. The possibility of inadvertent exposure
of gonadal cells to gene therapy vectors has raised safety
concerns about germ line infection. With regard to the risk
of adenoviral infection, CAR expression has been demon-
strated in mouse germ cells (581), thus suggesting the pos-
sibility that adenovirus could infect germ cells. However,
some in vivo experiments indicate that this risk is low. After
in vivo injection of an adenoviral vector carrying the germ
cell-specific protamine promoter fused to the �-galactosidase
reporter gene into the left ventricular cavity of mice, no
expression of the reporter gene was detected in developing
spermatids or in mature epididymal spermatozoa (581). Pri-
mary germ cells cultured in vitro were also refractory to
adenoviral infection (581, 582). Moreover, no transgene ex-
pression was detected in preimplantation embryos produced
by in vitro fertilization with sperm exposed to adenoviral
vector (582). Direct injection of adenoviral vector into the
testis and epididymis of mice resulted in transgene expres-
sion only within the testis interstitium and not within the
seminiferous tubules (582). At variance, intraprostatic injec-
tion of a replication-competent adenoviral vector led to high-
level and persistent accumulation of viral DNA in prostate,
testis, and liver (583). In vitro infection of mouse prostate-,
testis-, and liver-derived cell lines demonstrated that the
virus was indeed capable of replication in these mouse cell
types, although with reduced efficiency relative to human
cells (583). Despite vector persistence in male gonads, no
evidence of germ line transmission was observed in embryos
resulting from adenovirus-injected males mated to females 1
and 4 wk after injection (583). Adenoviral transduction of
Sertoli cells and Leydig cells, but not germ cells, was dem-
onstrated also in rats in both in vitro and in vivo experiments
(584). Efficient gene transfer into spermatozoa was instead

obtained in pigs, after exposure of spermatozoa to adenoviral
vectors (585). Of the two-cell to eight-cell embryos obtained
after in vitro fertilization with adenovirus-exposed sperm,
21.7% expressed the transgene, whereas about 7% of piglets
obtained after artificial insemination were positive for trans-
gene expression (585).

The risk of infection of female germ cells with recombinant
first-generation adenoviral vector was tested in the mouse
model by injecting infectious particles directly into the ovary
and by exposing naked oocytes to adenoviral particles before
in vitro fertilization (586). A very large amount of transgene
expression was detected in the thecal portion of the ovary,
but not in oocytes. No transgene expression was detected in
preimplantation embryos, in fetuses resulting from mating of
mice with adenovirus-injected ovaries, and in morulae ob-
tained from eggs fertilized after vector exposure (586).

After intravascular or periadventitial adenovirus-medi-
ated gene transfer into rabbits, marker gene expression was
found in various tissues, including the vasculature of testis
and epididymis, but not inside the testicular tubules or germ
cells (587). No inadvertent germ line transmission was de-
tected after systemic tail vein administration of adenoviral
vector in male and female mice (588).

2. AAV vectors. The risk of germ line transmission of vector
sequences was investigated in four species of male animals
(mouse, rat, rabbit, and dog) after im injection of recombi-
nant AAV vector (589). There was a dose-dependent increase
in the likelihood that vector sequences could be detected in
gonadal DNA in mice and rats, whereas dog DNA extracted
from semen was negative for vector sequences. In rabbits,
analysis of both semen and testicular DNA showed the pres-
ence of AAV vector sequences in testes, which diminished
with time, but not in semen DNA. Recombinant AAV vector
sequences were localized to the testis basement membrane
and the interstitial space, whereas no intracellular signal was
observed (587). Similar findings were obtained after hepatic
artery administration of recombinant AAV in rats and dogs
(589). Attempts to transduce isolated murine spermatogonia
directly with the AAV vector were unsuccessful (589). Hu-
man subjects injected im with an AAV vector showed no
evidence of vector sequences in semen (10, 590).

3. Retroviral vectors. Retroviral transduction of germ line cells
has been demonstrated, although it seems to be a rare event.
Intraperitoneal injection of ecotropic murine leukemia virus
into newborn mice led to infection of thecal cells (ovary) and
Leydig cells (testis), but not of germ line cells (591, 592). Both
cell types actively synthesized viral RNA and expressed viral
antigens. Production of viral particles from thecal cells was
also demonstrated (592), and this was probably responsible
for vertical transmission of retrovirus by female mice (591).
Retroviral transduction was also achieved in adult mouse
and rat spermatogonial stem cells in vitro and in vivo by using
several infection systems (593, 594). No germ line transmis-
sion occurred in sheep when retrovirus supernatant or pro-
ducing cells were injected into embryos in utero at both low
(595) and high titer (596).

It is, however, conceivable that the risk of germ cell trans-
duction is negligible after direct intratumor injection of ret-
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roviral vector particles or retroviral vector-producing cells,
a common procedure in cancer gene therapy (597). In fact,
after sc injection or direct intracerebral injection of retroviral
vector-producing cells, the presence of retroviral vector se-
quences generally remained limited to the injection site, al-
though vector DNA may be occasionally detected in draining
lymph nodes (598). These results are in agreement with data
obtained from biological monitoring of patients enrolled in
cancer gene therapy clinical trials, which demonstrated the
occasional presence of vector sequences in circulating pe-
ripheral blood leukocytes (88, 411). Vector sequences have
also been detected in autopsy specimens from brain tissue,
liver, kidney, and lung specimens (599), but, importantly,
they have not been detected in any gonadal specimens from
patients evaluated to date.

Although testicular germ cells of HIV-seropositive men
are frequently found infected by the virus (600, 601), germ
line transduction by pseudotyped recombinant lentiviral
vectors during gene therapy has not been demonstrated so
far (602, 603).

4. HSV vectors. The presence of wild-type HSV has been
demonstrated in human spermatozoa (604); however, trans-
duction of the germ line even with replication-competent
HSV-based vectors has been excluded after local delivery in
animal models (605, 606).

5. Nonviral vectors. Although nonviral vectors are considered
safe tools for gene delivery in humans, data on the risk of
gene transfer to the germ line are controversial. Systemic iv
injection of plasmid DNA/cationic liposome complexes led
to transient transgene expression in several tissues, including
ovary (607), a finding not replicated by other studies (608).
Liposome-mediated gene transfer was also achieved in
sperm through direct intratesticular injection in rats (609).

B. Ethical issues

Ethical issues in human gene transfer research have been
deeply discussed in the scientific literature, to which the
reader is referred (610–629). In the field of somatic cell gene
therapy, which might simply be considered as an extension
of traditional medical interventions aimed at manipulating
expression of genes, the debate involves the relative risks and
benefits of treatment, the adequacy of preclinical studies, the
selection of patients, the protection of their rights, and their
proxies to informed consent, free withdrawal, and privacy.
At variance with somatic gene therapy, techniques aimed at
germ line genetic intervention produce clinical changes that
may be transmitted to the offspring of the treated subject.
This aspect is the main consideration that has led to pro-
scribing human germ line gene therapy. Other important
concerns with germ line gene therapy are related to uncer-
tainties on the long-term effects of gene transfer to patients
and their offspring and evaluation of the cost-effectiveness of
this approach. Another important argument that has arisen
against germ line therapy is that it would encourage the
practice of genetic enhancement and eugenics, thus fostering
discrimination and stigmatization of subjects with certain
genetic traits. For all of these reasons, there is a general
consensus that gene therapy, both somatic and germ line,

should be evaluated as a clinical tool used on behalf of
seriously ill patients, and not as a eugenic program or as a
tool for personal social advantage (624).

VIII. Summary

The prevalent clinical application of gene therapy is can-
cer, accounting for 68.5% of the protocols. A decade after the
first clinical trial of gene therapy, unequivocal proof of clin-
ical efficacy is still lacking. Besides efficacy, safety remains a
critical issue that needs to be further addressed before in-
cluding gene therapy as a standard of care in the manage-
ment of cancer patients.

Effects related to therapeutic genes or gene transfer pro-
cedures on the endocrine system have rarely been assessed
in experimental models and in clinical trials. Viral and non-
viral vectors may exert direct cell and tissue injury in endo-
crine glands, as well as impairing hormone production.
Much experience has been achieved with adenoviral vectors,
which show a natural tropism for adrenocortical cells (9).
Adenoviral infection of the adrenal gland results in degen-
eration, hemorrhage, inflammation, and impairment of re-
sponse to ACTH (348).

Side effects of gene therapy are also mediated by the cas-
cade of cytokines both induced after vector administration
and delivered as therapeutic genes. The HPA axis plays a
major role in stress response, and various viral agents and
products thereof have been demonstrated to activate the
HPA axis (354–357). Knowledge of the interplay between
vector delivery and endocrine response may be useful in the
choice and design of vectors with improved safety profile.

Endocrinology also has contributed to the field of gene
therapy by providing knowledge on the mechanisms under-
lying regulation of gene expression. This knowledge has
been transferred to the development of regulated and tar-
geted vector systems, such as tamoxifen-regulated, glucocor-
ticoid-regulated, and other steroid hormone-regulated sys-
tems. Moreover, genes specifically expressed in endocrine
glands such as NIS, NAT, and ssr2, which play a significant
role in the diagnosis and treatment of endocrine tumors, have
been successfully exploited as therapeutic genes for tumors
arising from tissues other than endocrine glands (261–264,
277–281, 284–286).

Because gene therapy of cancer is moving toward the use
of oncolytic viruses as a means to provide a generalized
treatment to patients suffering for a systemic disease, repli-
cation-competent vectors will become more similar to their
wild-type counterparts. Virologists and gene therapists
should therefore more carefully consider the molecular com-
plexity of such viruses/vectors (e.g., adenovirus, HSV, pox-
virus) and the strategies these viruses have developed in the
course of their evolution to evade the immune response and
to persist in the host. For example, some herpesviruses en-
code for chemokine and chemokine receptors, which play
critical roles in viral infection and replication and viral escape
from the immune system (630–633). Such virally encoded
functions are exploitable to increase inflammatory response
when pursuing a sort of tumor vaccination strategy. On the
other hand, when viruses are to be used for tumor vaccina-
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tion purposes, attention should be paid to delete relevant
immunosuppressive genes, such as for the case of 3�-HSD in
poxvirus. Whereas viruses and vectors derived therefrom
can be safely used when delivered to the patient through
their natural route of infection, some safety concerns may
arise when such viruses/vectors are administered at high
doses through other routes. In this case, impairment of the
endocrine system may occur either directly through infection
of natural target glands or indirectly through an abnormal
immune-inflammatory response. A full assessment of the
endocrine function, which has never been considered so far,
is highly warranted.
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