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Edited by Leo P. Kadanoff, University of Chicago, Chicago, IL, and approved October 29, 2007 (received for review July 4, 2007)

In setting up a stochastic description of the time evolution of a
financial index, the challenge consists in devising a model com-
patible with all stylized facts emerging from the analysis of
financial time series and providing a reliable basis for simulating
such series. Based on constraints imposed by market efficiency and
on an inhomogeneous-time generalization of standard simple
scaling, we propose an analytical model which accounts simulta-
neously for empirical results like the linear decorrelation of suc-
cessive returns, the power law dependence on time of the volatility
autocorrelation function, and the multiscaling associated to this
dependence. In addition, our approach gives a justification and a
quantitative assessment of the irreversible character of the index
dynamics. This irreversibility enters as a key ingredient in a novel
simulation strategy of index evolution which demonstrates the
predictive potential of the model.

complex systems � finance � stochastic processes

For over a century, it has been recognized (1) that the
unpredictable time evolution of a financial index is inherently

a stochastic process. However, despite many efforts (2–11), a
unified framework for simultaneously understanding empirical
facts (12–19), such as the non-Gaussian form and multiscaling in
time of the distribution of returns, the linear decorrelation of
successive returns, and volatility clustering, has been elusive.
This situation occurs in many natural phenomena, when strong
correlations determine various forms of anomalous scaling
(20–27). Here, by employing mathematical tools at the basis of
a generalization of the central limit theorem to strongly corre-
lated variables (28), we propose a model of index evolution and
a corresponding simulation strategy which account for all robust
features revealed by the empirical analysis.

Let S(t) be the value of a given asset at time t. The logarithmic
return over the interval [t, t � T] is defined as r(t, T) � ln S(t �
T) � ln S(t), where t � 0, 1, . . . and T � 1, 2, . . . , in some unit
(e.g., day). From a sufficiently long historical series, one can
sample the empirical probability density function (PDF) of r over
a time T, p�T(r), and the joint PDF of two successive returns r1 �
r(t, T) and r2 � r(t � T, T), denoted by p�2T

(2)(r1, r2). This joint PDF
contains the information on the correlation between r1 and r2 in
the sampling. A well established property (13–16) is that, if T
is longer than tens of minutes, the linear correlation vanishes:
�p�2T

(2)(r1, r2)r1r2 dr1dr2 � �r1r2�p�2T
(2) � 0. This is a consequence of the

efficiency of the market (3), which quickly suppresses any
arbitrage opportunity. Another remarkable feature is that,
within specific T ranges, p�T approximately assumes a simple
scaling form

p� T�r	 �
1

TD�
g�� r

TD� �, [1]

where g� and D� are the scaling function and exponent, respec-
tively. Eq. 1 manifests self-similarity, a symmetry often met in
natural phenomena (20–23, 27): plots of TD� p�T vs. r/TD� for
different T values collapse onto the same curve representing g�.
We verify the scaling ansatz in Eq. 1 for the Dow Jones Industrial
(DJI) index using a dataset of more than one century (1900–

2005) of daily closures. This index is paradigmatic of market
behavior and the considerable number of data reduces sampling
fluctuations substantially. In Fig. 1 the collapse of the empty
symbols is rather satisfactory (the explanation of the meaning of
the full symbols in Fig. 1 is given below). The scaling function in
Eq. 1 is non-Gaussian (2, 12–17). Although linear correlations
vanish, in the T range considered g� is determined by the strong
nonlinear correlations of the returns. Only for T 
 �c (with �c
of the order of the year) successive index returns become
independent and p�T turns Gaussian in force of the central limit
theorem (29).

Results and Discussion
Our first goal is to establish up to what extent the assumption of
simple scaling in Eq. 1 does constrain the structure of the joint
PDF p�2T

(2). One must of course have

� p� 2T
�2	�r1, r2	��r � r1 � r2	dr1dr2 � p� 2T�r	,

� p� 2T
�2	�r1, r2	dr2 � p�T�r1	,

� p� 2T
�2	�r1, r2	dr1 � p�T�r2	.

[2]

Indeed, the first line of Eqs. 2 follows from r(t, 2T) � r1 � r2.
Furthermore, because the joint PDF p�2T

(2) is sampled from a
sequence of time-translated intervals of duration 2T along the
historical series, both the first and the second halves of all such
intervals provide an adequate sampling basis for p�T. This
justifies the second and third lines of Eqs. 2. At this point,
we notice that the property �r1r2�p� 2T

(2) � 0 implies that �r2�p� 2T
�

�(r1 � r2)2�p� 2T
(2) � 2�r2�p� T

. In force of Eq. 1, �r2�p� T
� T2D� . Hence,

we obtain 2T2D� � (2T)2D� , i.e., D� � 1/2. Remarkably, for all
developed market indices, �r2�p� T

is found to scale consistently
with a D� pretty close to 1/2 (30).

By switching to Fourier space in Eq. 2, the notion of a
generalized product operation allows to identify a solution for
p�2T

(2) in terms of p�T alone. Although the ordinary multiplication
of characteristic functions (i.e., Fourier transforms) of Gauss-
ian PDFs would yield trivially the correct p�2T

(2) in the case of
independent successive returns (29), the generalized product
is used here to take into account strong nonlinear correlations
consistently with the anomalous scaling they determine [see
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supporting information (SI) Text] and can be seen to be at the
basis of a central limit theorem (28). Our solution is strongly
supported by the remarkable consistency with the numerical
results and by the analogy with the independent case. In Fig.
2 we compare the PDF of the return r2 conditioned to a given
absolute value of the return r1, as obtained through our
solution (continuous lines), with the empirically sampled one
(symbols). The agreement does not involve fitting parameters,
because D� and those entering the assumed analytical form of
g� are already fixed in Fig. 1.

At this point, we must take into account that the simple scaling
ansatz in Eq. 1 is only approximately valid (7). Indeed, a
consequence of Eq. 1 is ��r�q�p� T

� TqD� , which we exploited above
for q � 2. However, a careful analysis reveals that the qth
moment exponent deviates from the linear behavior qD� � q/2 for
q � 3 (open circles in Fig. 3). Like the linear behavior with slope
1/2 observed for low-order moments, this multiscaling effect is
common to most indices (30). To explain this feature, we have

to investigate the relation between the empirical p�T and the
stochastic process generating the time series. If PDFs like p�T and
p�2T

(2) were directly describing such a process, this would be with
stationary increments. This assumption is legitimate only for
sufficiently long times, larger than �c. Below, we identify in the
interplay between scaling and nonstationarity a precise mecha-
nism accounting for the robust features of p�T detected for T ��
�c, including its multiscaling.

Let us indicate by pt,T and pt,2T
(2) the ensemble PDF’s correspond-

ing to p�T and p�2T
(2), respectively. The additional dependence on t,

the initial time of the interval [t, t � T], shows that we do not
assume stationarity for these PDF’s. We postulate that, within
specific T ranges (e.g., the one in Fig. 1), p0,T obeys a simple
scaling like that in Eq. 1, but possibly with a D and a g different
from D� and g�, respectively. One then realizes that this scaling and
the linear decorrelation of returns impose on pt,2T

(2) constraints
analogous to those for p�2T

(2) in Eq. 2, except for the third one,
which now reads

� p0, 2T
�2	 �r1, r2	dr1 � pT, T�r2	 � p0, aT�r2	. [3]

This last condition tells us that, as a consequence of the
nonlinear correlations, the effective time span of the marginal
PDF obtained by integrating p0,2T

(2) in r1 must be renormalized by
a factor a. This factor is determined again by consistency of the
second moments scaling properties, as above. Since now
��r�2�p0,T

� T 2 D, one gets from Eq. 3 a � (22D � 1)1/2D. So, D 
1/2 implies a  1, and thus nonstationarity and irreversibility of
the process. Similar functional relations hold for the PDFs of the
magnetization of critical spin models upon doubling the system
size and can be explained in that context by the renormalization
group theory (27). Our generalized multiplication of character-
istic functions allows us to express pt,2T

(2) in terms of pt,T and to
establish the time-inhomogeneous scaling property

pt, T�r	 �
1

��t � T	2D � t2D g � r

��t � T	2D � t2D�. [4]

It remains now to make explicit the link between the p values
and the sampled p� , and to determine D. By construction, p�T is a
t average of pt,T. Because the time inhomogeneity of pt,T must
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Fig. 1. Data collapse for p� T(r) (T measured in days) sampled from a record of
�2.7 � 104 DJI daily closures (open symbols). The average daily trend of the
order of 10�4 has been subtracted. The collapse analysis furnishes the scaling
function g� reported as the full line and the scaling exponent D� � 1/2 (see also
Fig. 3 and SI Text). Filled symbols report the data collapse for the results of a
single simulation of the DJI history.
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Fig. 2. Conditional probabilities of daily returns r2 for different values of r1.
Empty symbols refer to the DJI data. The continuous curves are the predictions
of our theory for p� 2T

(2)(r2	r1�) � [p� 2T
(2)(r1,r2) � p� 2T

(2) (�r1,r2)]/�[p� 2T
(2)(r1,r2)�

p� 2T
(2)(�r1,r2)]dr2. The absolute value of r1 is introduced for reducing sample

fluctuations.
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Fig. 3. Scaling exponent of the qth moment of p� T. Open (filled) circles refer
to the DJI data (simulation) of Fig. 1. The dashed line is q/2. Multiscaling is due
to the deviation of D� (q) from a constant value. The full line reports the
time-averaged asymptotic (�c 

 1) theoretical prediction based on Eq. 5.
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cross over into homogeneity for t exceeding �c, we expect the
following approximation

p� T�r	 �
1
�c



t�0

�c�1

pt, T�r	 [5]

to hold. Indeed, the history over which p�T is sampled is much
longer than �c and allows in principle also an indirect sampling
of pt,T if we simply assume pt��c

,T(r) � pt,T(r).
Despite the fact that Eq. 4 implies a simple scaling exponent

D for p0,T, Eq. 5 leads to the remarkable property that, inde-
pendently of D, the low-q moments of p�T approximately scale
with exponent q/2 as soon as �c 

 1. Moreover, if D � 1/2, p�T
displays a multiscaling of the same type as that found empirically:
D� (q) � 1/2 for the high-order moments. The matching of the
theoretical predictions for the multiscaling of p�T on the basis
of Eq. 5 with the empirical results is a first way of identifying
D. For the DJI, in Fig. 3 we show that with D � 0.24 this
matching is very satisfactory. The scaling functions of p0,T and
p�T can also be shown to be simply related, once D is known. We
notice that the observed multiscaling features of financial
indices, which inspired multiplicative cascade models (8, 19) in
analogy with turbulence (20, 21), are explained here in terms
of an additive process possessing the time-inhomogeneous
scaling (Eq. 4).

The introduction of autoregressive schemes like ARCH (5)
marked an advance in econometrics and financial analysis (6, 9),
and, more generally, in the theory of stochastic processes. In an
autoregressive simulation, a number of parameters weighting the
influence of the past history on the PDF of the following return
must be fixed through some optimization procedure. By our ap-
proach, a generalization of pt,2T

(2) to the case of n consecutive
intervals can be fully expressed just in terms of pt,T and D. This
is obtained by taking the inverse Fourier transform of our
solution for the characteristic function of the joint PDF (see SI
Text). In this way, we can precisely calculate the PDF that rules
the extraction of the ith return, ri, giving us as conditioning inputs
the previous m ones, ri�m, . . . , ri�1. Consistently with our
schematization in Eq. 5, the existence of exogenous factors
acting on the market can be taken into account by resetting the
width of the marginal PDFs with an (average) periodicity equal
to �c (see SI Text). The results for a single simulation with m �
100, �c � 500, and D � 0.24 are illustrated by the filled symbols
in Figs. 1 and 3. The coincidence of the scaling properties
observed for the DJI with those of our simulation furnish a
second strong indication of the validity of our approach and of
the estimation of D.

The correctness of the value of D can be further checked by
considering the volatility autocorrelation function at time sep-
aration � (Fig. 4). A well established fact (12–16, 19) is its power
law decay c(�) � ��� for � � �c, with � � 0.2 for the DJI. This
behavior is not reproduced by routine simulation methods in
quantitative finance like GARCH (6) and requires the intro-
duction of more sophisticated, fractional integration techniques
(9). The full characterization of the joint PDF of n-consecutive
returns allows us to obtain a model expression for c(�), which

again takes into account the nonstationarity of the process (see
SI Text). Such an expression behaves asymptotically as a power
of � with an exponent depending on D [c(�) is constant for D �
1/2 and decays for D � 1/2]. In particular, with D � 0.24 both the
model asymptotic expression and the results of our simulation
procedure furnish a nice agreement with the exponent � � 0.2
observed for the DJI index (Fig. 4). Thus, the algebraic volatility
autocorrelation function decay is reproduced by our scheme and
provides a second criterion to fix consistently the anomalous
scaling exponent D.

Our approach is based on two postulates: inhomogeneous-
time scaling and the vanishing of linear return correlations.
These symmetries lead, in an unambiguous, deductive manner,
to a model for the underlying stochastic process determining
market evolution. Of course, the results follow only when the
postulates are valid and we have shown that within specific
time-ranges the consequences of these postulates are in re-
markable agreement with the data. Major advances in under-
standing critical phenomena worked in a similar vein decades
ago (20), when the scaling assumptions allowed to establish
links between seemingly disparate phenomena and put the
basis for the development of renormalization group theory
(27). So far, the coexistence of anomalous scaling with the
requirement of absence of linear correlation imposed by
economic principles has been regarded as an outstanding open
problem in the theory of stochastic processes. We believe that
our solution could be relevant for developments in this field,
as well as for describing scaling behaviors of other complex
systems (20–26).
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