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POSITIVE SOLUTIONS
OF ANISOTROPIC YAMABE-TYPE EQUATIONS IN Rn

ROBERTO MONTI AND DANIELE MORBIDELLI

(Communicated by Matthew J. Gursky)

Abstract. We study entire positive solutions to the partial differential equa-
tion in Rn,

∆xu + (α + 1)2|x|2α∆yu = −|x|2αu
n+2
n−2 ,

where x ∈ R2, y ∈ Rn−2, n ≥ 3 and α > 0. We classify positive solutions with
second order derivatives satisfying a suitable growth near the set x = 0.

1. Introduction

In this paper, we study positive solutions to the partial differential equation in
R

n,

(1.1) ∆xu + (α + 1)2|x|2α∆yu = −|x|2αu
n+2
n−2 ,

where x ∈ R2, y ∈ Rn−2, n ≥ 3, and α > 0. This equation is an anisotropic
generalization of the Yamabe equation in Rn, the case α = 0, and it displays
several interesting properties. In particular, the structure of positive entire solutions
depends on whether α is an integer or not.

Our technique is based on a Kelvin inversion naturally associated with the equa-
tion, which was introduced in [MM], and on an integration-by-parts argument in-
spired by Obata’s classical paper [O]. In this part of the argument, we need to
assume a bound on the growth of second order derivatives of solutions near the
singular set x = 0.

Equation (1.1) has the following geometric interpretation. Let M = {(x, y) ∈
R

2 × R
n−2 : x �= 0} be endowed with the Riemannian metric

(1.2) g = (α + 1)2|x|2α|dx|2 + |dy|2.
The manifold (M, g) is locally isometric to Rn with the standard metric, an isometry
being (x, y) �→ (xα+1, y) with the xα+1 power of x as a complex number. If x ∈ Rk

with k ≥ 3, this is no longer true. The isometry, however, is not global and (M, g) is
not complete. The scalar curvature R of g vanishes identically. The scalar curvature
R̂ of the conformal metric ĝ = u

4
n−2 g is

R̂ = −4
n − 1
n − 2

u− n+2
n−2 ∆gu,
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where ∆g is the Laplace-Beltrami operator of g. It can be checked that ∆g =
(α + 1)−2|x|−2α∆x + ∆y. Then, u solves (1.1) in Rn \ {x = 0} if and only if (M, ĝ)
has constant scalar curvature R̂ = 4(n−1)

(n−2)(α+1)2 .
The partial differential operator

L = ∆x + (α + 1)2|x|2α∆y

is known as the “Grushin operator” and is an important example of a second
order elliptic degenerate operator (see [Gr], [FL], [BGG], [GV1], [GV2]). In [MM],
we studied symmetry and uniqueness properties of positive entire solutions of the
unweighted equation

(1.3) Lu = −u
Q+2
Q−2 in R

n,

where x ∈ R
k, y ∈ R

n−k, α > 0 and Q = k + (α + 1)(n − k). Equation (1.3) is
the critical point equation for a Sobolev inequality whose extremal functions are
studied in [Mo] (see also [B]). The number Q+2

Q−2 , which is the critical exponent for
the Grushin operator, is strictly smaller than n+2

n−2 for any α > 0. The gap between
these exponents is balanced by the weight |x|2α in the right-hand side of equation
(1.1).

In order to state our assumption in the classification theorem, let us identify
ξ ∈ R

2 with ξ = ξ1 + iξ2 ∈ C. Let C
∗ = C \ {ξ ∈ C : Re ξ ≤ 0 and Im ξ = 0} and

take on C∗ a fixed branch ξ1/(α+1) of the (α + 1)-th root. We say that u ∈ C2(Rn)
belongs to the class A, and we write u ∈ A, if for any ϑ ∈ [0, 2π) and r > 0 there
exist C > 0 and β < 1 such that the function

(1.4) v(ξ, y) = u
(
eiϑξ

1
α+1 , y

)
, ξ ∈ C

∗ and y ∈ R
n−2,

satisfies

(1.5) |∇2
ξξv(ξ, y)| ≤ C|ξ|−β, for |y| ≤ r and |ξ| ≤ 1,

where |∇2
ξξv| =

∑2
i,j=1 |∂ξi

∂ξj
v|.

If u solves (1.1), then the function v in (1.4) solves the Yamabe equation

(1.6) ∆v = − 1
(α + 1)2

v
n+2
n−2 in C

∗ × R
n−2.

The positive entire solutions to equation (1.6) in the whole Rn = C × Rn−2 are
classified. A recent proof for this well-known result and up-to-date references can
be found in [LZ]. Our results cannot be obtained from this classification because
the solutions to equation (1.6) may be singular on the set where Re ξ ≤ 0 and
Im ξ = 0.

Condition (1.5) has an intrinsic meaning in terms of the metric g in (1.2). This
will be clear in Section 3, where we shall look at the manifold M in suitable coor-
dinates.

Our main result is the following theorem.

Theorem 1.1. Let u ∈ C2(Rn) ∩ A be a positive solution of (1.1). Then:
i) If α ∈ N, there are (x0, y0) ∈ R2 × Rn−2 and a, b > 0 with

n(n − 2)(α + 1)2ab = 1 such that

(1.7) u(x, y) =
(
a{|xα+1 − xα+1

0 |2 + |y − y0|2} + b
) 2−n

2 .
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ii) If α ∈ R+ \N, there are y0 ∈ Rn−2 and a, b > 0 with n(n−2)(α+1)2ab = 1
such that

(1.8) u(x, y) =
(
a{|x|2(α+1) + |y − y0|2} + b

) 2−n
2 .

Both functions in (1.7) and (1.8) are of class C2(Rn). Moreover, they satisfy (1.5)
with β = 0. We have not been able to find a counterexample showing the sharpness
of condition (1.5). This condition is needed in a crucial step in the argument of
Section 3 (see (2.5) and (3.11)–(3.12)).

If x0 �= 0, the function in (1.7) is not radial in x in spite of the symmetric
structure of equation (1.1). A similar phenomenon appears for the Liouville-type
equation ∆u(x) = −8π(α + 1)|x|2αeu(x) in R

2, which has only radial solutions if
α /∈ N and has both radial and nonradial solutions if α ∈ N (see the classification
result in [PT]).

Notation. In the following, C > 0 is a constant which may vary from line to line.
We also use the following notation:

|∇2
ξyv| =

2∑
k=1

n−2∑
j=1

|∂ξk
∂yj

v|, |∇2
ξξv| =

2∑
k,h=1

|∂ξk
∂ξh

v|, etc.

2. Asymptotic estimates

Introduce the inversion I : Rn \ {0} → Rn \ {0} by

I(z) =
(

x

‖z‖2
,

y

‖z‖2(α+1)

)
, where ‖z‖ =

(
|x|2(α+1) + |y|2

) 1
2(α+1) .

The inversion is a conformal map of the metric (1.2) (see [M]). The Kelvin transform
of a function u in Rn is the function u∗ in Rn \ {0} given by

(2.1) u∗(z) = ‖z‖(2−n)(α+1)u (I(z)) .

The Kelvin transform (2.1) was introduced in [MM] in connection with the study
of equation (1.3) (but see also [LP] for the case x ∈ R). The Kelvin transform
preserves equation (1.1).

Proposition 2.1. If u ∈ C2(Rn) is a positive solution of (1.1) in Rn, then u∗ ∈
C2(Rn \ {0}) is a solution of (1.1) in R

n \ {0}.

Proof. Let ϕ ∈ C1
0 (Rn \ {0}) be a test function and denote by ϕ∗ its Kelvin trans-

form. We use identity (2.8) in [MM], which reads

(2.2)
∫

Rn

∇αu∗(z) · ∇αϕ∗(z) dxdy =
∫

Rn

∇αu(z) · ∇αϕ(z) dxdy,

where ∇αu = (∇xu, (α + 1)|x|α∇yu) and · denotes the standard scalar product in
Rn. By an integration by parts, we get from (2.2):∫

Rn

Lu∗(z) ϕ∗(z) dxdy = −
∫

Rn

∇αu(z) · ∇αϕ(z) dxdy

=
∫

Rn

Lu(z) ϕ(z) dxdy

= −
∫

Rn

u(z)
n+2
n−2 ϕ(z) |x|2αdxdy.

(2.3)
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In the last line we used equation (1.1). Denote by JI(z′) the Jacobian determinant
of I at the point z′ = (x′, y′) ∈ R2 × Rn−2, z′ �= 0. By Lemma 2.2 in [MM], we
have |JI(z′)| = ‖z′‖−2(n−2)(α+1)−4. Performing the change of variable z = I(z′) in
the integral on the last line of (2.3), we obtain∫

Rn

Lu∗(z) ϕ∗(z) dxdy = −
∫

Rn

u∗(z′)
n+2
n−2 ϕ∗(z′) |x′|2α

dx′dy′.

This proves the claim. �
In view of equation (1.6), Proposition 2.1 can also be proved by means of the

standard properties of the usual Kelvin transform.
For any function u : Rn → R and λ > 0, we define the function uλ in Rn \ {0}

by

uλ(z) =
(‖z‖

λ

)(2−n)(α+1)

u

(
λ2x

‖z‖2
,

λ2(α+1)y

‖z‖2(α+1)

)
.

If u solves (1.1) in Rn, then uλ solves (1.1) in Rn \ {0}. This follows from
Proposition 2.1 and from the fact that equation (1.1) is invariant with respect to
the scaling u �→ δλu, where

δλu(z) = λ(n−2)(α+1)/2u(λx, λα+1y), λ > 0.

Theorem 2.2. Let u ∈ C2(Rn) be a positive solution of equation (1.1). Then there
exists λ > 0 such that u = uλ.

Proof. The proof of this theorem is identical to the proof of Theorem 2.7 in [MM].
It relies on Proposition 2.1 and uses the moving spheres method. The scheme of
the argument is due to Li and Zhang [LZ, Sec. 2].

Here, we give only a very brief sketch of the proof. In a first step, it is shown
that for any positive solution u ∈ C2(Rn) of (1.1) there exists λ0 > 0 such that

uλ(z) ≤ u(z), for all λ ∈ (0, λ0) and z ∈ R
n with ‖z‖ ≥ λ.

Then we can define

(2.4) λ̄ = sup
{
λ0 > 0 : uλ ≤ u in {z ∈ R

n : ‖z‖ ≥ λ}, for each λ ∈ (0, λ0]
}
.

In a second step, it is shown that if λ̄ < +∞, then u ≡ uλ̄ on Rn \ {0}, which
ends the proof of the theorem. In order to see this fact, one considers the function
wλ = u − uλ, which satisfies wλ(z) = 0 for ‖z‖ = λ, and

wλ ≥ 0, Lwλ ≤ 0 in {z ∈ R
n : ‖z‖ ≥ λ} for any λ ∈ (0, λ̄].

If, by contradiction, wλ̄ does not vanish identically, then one can violate definition
(2.4) for λ̄.

It remains to check that λ̄ < +∞. Using the invariance of equation (1.1) with
respect to translations in y, one can prove that λ̄ = +∞ implies u ≡ 0, which is
not the case. �

From now on, we denote by ζ = (ξ, y) variables in C
∗ × R

n−2.

Theorem 2.3. Let u ∈ C2(Rn) ∩ A be a positive solution to equation (1.1) and
let v be the function introduced in (1.4), for some ϑ ∈ [0, 2π). Then, there exists a
constant C > 0 such that
(2.5)

1
C
|ζ|2−n ≤ v(ζ) ≤ C|ζ|2−n, |∇v(ζ)| ≤ C|ζ|1−n, |∇2v(ζ)| ≤ C|ζ|−n

( |ζ|
|ξ|

)γ

,
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for all ζ ∈ C∗ × Rn−2 such that |ζ| ≥ 1. Here, we have γ = max{β, α/(α + 1)},
where β is the constant in (1.5). ∇v and ∇2v denote the Euclidean gradient and
Hessian in the variable ζ.

Proof. By Theorem 2.2, we have u = uλ for some λ > 0. Assume without loss of
generality that λ = 1, i.e. u = u∗ in Rn. By (1.4), this identity implies

(2.6) v(ζ) = |ζ|2−nv
( ζ

|ζ|2
)
, for any ζ ∈ C

∗ × R
n−2.

The first estimate in (2.5) follows directly from (2.6) and from the fact that u
is positive and continuous. Upon differentiating both sides of identity (2.6), we
deduce that there is a constant C > 0 such that for ζ ∈ C∗ × Rn−2 we have

|∇v(ζ)| ≤ C

{
|ζ|1−nv

( ζ

|ζ|2
)

+ |ζ|−n
∣∣∣∇v

( ζ

|ζ|2
)∣∣∣} ,

|∇2v(ζ)| ≤ C

{
|ζ|−nv

( ζ

|ζ|2
)

+ |ζ|−1−n
∣∣∣∇v

( ζ

|ζ|2
)∣∣∣ + |ζ|−2−n

∣∣∣∇2v
( ζ

|ζ|2
)∣∣∣} .

(2.7)

We claim that for some C > 0 we have

(2.8) |∇v(ζ)| ≤ C for |ζ| ≤ 1.

Indeed, |∇yv(ζ)| is uniformly bounded for |ζ| ≤ 1 because u ∈ C2(Rn). Moreover,
|∇ξv(ζ)| is uniformly bounded as soon as |ζ| ≤ 1 because, by (1.5), |∇2

ξξv| is locally
integrable along lines lying in 2-dimensional planes of R

n of the form C
∗ ×{y0} for

any y0 ∈ Rn−2. Now the second estimate in (2.5) follows from (2.8) and from the
first line in (2.7).

Next we prove the last estimate. Observe first that there is a constant C > 0
such that for ζ = (ξ, y) ∈ C

∗ × R
n−2 with |ζ| ≤ 1 we have

(2.9) |∇2
ξyv(ζ)| ≤ C|ξ|− α

α+1 sup
‖z‖≤1

|∇2
xyu(z)|.

This follows upon taking mixed second order derivatives in (1.4). Now, from the
second line in (2.7), by (1.5), (2.8) and (2.9) we deduce that there is a constant
C > 0 such that, if |ζ| ≥ 1, we have

|∇2v(ζ)| ≤ C
{
|ζ|−n + |ζ|−2−n

∣∣∣∣ ξ

|ζ|2

∣∣∣∣−γ }
≤ C|ζ|−n

( |ζ|
|ξ|

)γ

,

with γ = max{β, α/(α + 1)}. This is the last estimate in (2.5). �

3. Classification of solutions

In this section, we prove Theorem 1.1. The geometric motivation of the proof
can be found in Obata’s argument [O] for the classification of all metrics on the
sphere conformal to the standard one and with constant scalar curvature. In order
to prove that the new metric is Einstein, Obata shows that the total integral of a
certain multiple of the squared norm of the traceless Ricci tensor vanishes. Here
we follow a similar idea which leads to the system of partial differential equations
(3.17). In our case, however, the manifold is noncompact and noncomplete. This
requires careful estimates at infinity and near the singular set x = 0.

In order to use estimates (2.5), we prefer to work in suitable charts. This also
makes the system of equations (3.17) easy to integrate. Let m = [α] + 2, where
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[α] is the largest integer less than or equal to α, and for h = 0, 1, ..., m − 1, let
ϑh = 2hπ/m. Define the open subsets of M = {(x, y) ∈ C × Rn−2 : x �= 0

}
to be

(3.1) Uh =
{

(x, y) ∈ M : x = reiϑ, r > 0, |ϑ − ϑh| < π/(α + 1)
}

,

and let fh : Uh → C∗ × Rn−2,

fh(z) =
(
(e−iϑhx)α+1, y), z = (x, y) ∈ Uh.

Here, the branch of the (α+1)-power is such that f0(U0) = C∗×Rn−2. The charts
(Uh, fh), h = 0, 1, ..., m − 1, form an oriented atlas for M .

Let u : M → R be a function. For each h = 0, 1, ..., m−1, we define the function
vh : C

∗ × R
n−2 → R by letting

(3.2) vh(ζ) = u
(
f−1

h (ζ)
)
, ζ ∈ C

∗ × R
n−2.

In the intersection of the charts, we have vh(fh(z)) = vh+1(fh+1(z)), z ∈ Uh∩Uh+1,
which is equivalent to

(3.3) vh(ξ, y) = vh+1

(
e−2(α+1)πi/mξ, y

)
, if arg ξ ∈

((
2(α + 1)/m − 1

)
π, π

)
.

Since the pull-back (f−1
h )∗g of the metric g in (1.2) is the Euclidean metric on

C∗ × Rn−2, it is clear that the left-hand side of (1.5) is part of the length of the
Riemannian Hessian of u.

Now we begin the proof of Theorem 1.1.

Step 1. Let u ∈ C2(Rn) ∩ A be a positive solution of equation (1.1). By elliptic
regularity, this function is of class C∞ away from x = 0. By the chain rule, we find

(3.4) ∆vh(ζ) = (α + 1)−2|ξ|− 2α
α+1 ∆xu(f−1

h (ζ)) + ∆yu(f−1
h (ζ)),

where ∆ is the standard Laplace operator in Rn. Then, each vh solves the Yamabe
equation

(3.5) ∆vh = − 1
(α + 1)2

v
n+2
n−2
h in C

∗ × R
n−2.

We let ϕh = v
2/(2−n)
h . In the following, subscript and superscript h always refers

to charts. We drop the superscript h for a while and write ϕ = ϕh. From (3.5), we
get

(3.6) 2ϕ∆ϕ − n|∇ϕ|2 =
4

(n − 2)(α + 1)2
in C

∗ × R
n−2.

We denote by ϕj = ∂jϕ and ϕjk = ∂j∂kϕ the first and second order partial deriva-
tives of ϕ with respect to ζj , ζk. Let us introduce

(3.7) pjk = ϕjk − ∆ϕ

n
δjk,

the traceless Euclidean Hessian of ϕ. Here, δjk is the Kronecker symbol. Differen-
tiating identity (3.6), we get, for j = 1, ..., n,

(3.8) nϕkpjk = ϕ∆ϕj ,

where, here and in the following, we adopt the convention on summation of repeated
indices. Using ∂kpjk = n−1

n ∆ϕj , identity (3.8) becomes (n − 1)ϕkpjk = ϕ∂kpjk.
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Therefore we get ∂k

(
ϕ1−npjk

)
= (1 − n)ϕ−nϕkpjk + ϕ1−n∂kpjk = 0, and conse-

quently

(3.9) ∂k

(
ϕ1−npjkϕj

)
= ∂k

(
ϕ1−npjk

)
ϕj + ϕ1−npjkϕjk = ϕ1−npjkpjk,

because pjkδjk = 0. Note that (3.9) gives a scalar invariant equation on the Rie-
mannian manifold (M, g).

Step 2. Fix positive numbers ε, r, with 0 < ε < r, and let

Aεr =
{
ζ = (ξ, y) ∈ C

∗ × R
n−2 : |arg ξ| < (α + 1)π/m, |ξ| > ε, |ζ| < r

}
.

By the divergence theorem, we get from (3.9),

(3.10)
∫

Aεr

ϕ1−npjkpjk dζ =
∫

∂Aεr

ϕ1−npjkϕjνk dHn−1,

where ν = (ν1, ..., νn) is the exterior unit normal to ∂Aεr and Hn−1 is the standard
hypersurface measure in R

n. The boundary of Aεr can be split into four parts,
∂Aεr = Rεr ∪ Sεr ∪ T−

εr ∪ T+
εr, where

Rεr = ∂Aεr ∩ {|ζ| = r},
Sεr = ∂Aεr ∩ {|ξ| = ε},
T±

εr = ∂Aεr ∩ {arg ξ = ±(α + 1)π/m}.

Step 3. We claim that, for any r > 0, we have

(3.11) lim
ε→0+

∫
Sεr

ϕ1−npjkϕjνk dHn−1 = 0.

Indeed, there exists a constant C > 0, depending on r, such that
1
C

≤ ϕ(ζ) ≤ C, |∇ϕ(ζ)| ≤ C, |∇2
ξyϕ(ζ)| + |∇2

ξξϕ(ζ)| ≤ C|ξ|−γ

for |ζ| ≤ r and |ξ| ≤ 1. The estimate for second order derivatives is a consequence
of (1.5) and (2.9), with γ = max{β, α/(α + 1)}. It follows that

|ϕ1−npjkϕjνk| = ϕ1−n

∣∣∣∣
(

ϕjkϕj −
1
n

∆ϕϕk

)
νk

∣∣∣∣ ≤ C|ξ|−γ ,

for all ζ ∈ Sεr, where the sum in k ranges over k = 1, 2. Thus, we have

(3.12)
∫

Sεr

∣∣ϕ1−npjkϕjνk

∣∣ dHn−1 ≤ Cε1−γ ,

with γ < 1, and (3.11) follows.

Step 4. Now we claim that

(3.13) lim
r→+∞

∫
|ζ|=r

∣∣ϕ1−npjkϕjνk

∣∣ dHn−1 = 0.

By Theorem 2.3, the function vh satisfies estimates (2.5). Then, for some con-
stant C > 0 we have, for |ζ| ≥ 1,

(3.14)
1
C
|ζ|2 ≤ ϕ(ζ) ≤ C|ζ|2, |∇ϕ(ζ)| ≤ C|ζ|, |∇2ϕ(ζ)| ≤ C

( |ζ|
|ξ|

)γ

,

where γ < 1 is the constant given by Theorem 2.3. It follows that, for r ≥ 1,∫
|ζ|=r

∣∣ϕ1−npjkϕjνk

∣∣ dHn−1 ≤ Cr2(1−n)+1+γ

∫
|ζ|=r

|ξ|−γ dHn−1,
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where ∫
|ζ|=r

|ξ|−γ dHn−1 =
d

dr

∫
|ζ|<r

|ξ|−γdζ = (n − γ)rn−γ−1

∫
|ζ|<1

|ξ|−γdζ.

Observe that |ξ|−γ is locally integrable in R
n. Now (3.13) follows from∫

|ζ|=r

∣∣ϕ1−npjkϕjνk

∣∣ dHn−1 ≤ Cr2−n,

with n ≥ 3, and C > 0 a constant which does not depend on r.

Step 5. Let us recall that ph
jk is the traceless Hessian of ϕh = v

2/(2−n)
h , as in

(3.7). Formula (3.10) holds for each ϕh, h = 0, 1, ..., m − 1. Summing up all these
identities, we obtain

m−1∑
h=0

∫
Aεr

(ϕh)1−nph
jkph

jk dζ =
m−1∑
h=0

∫
Sεr∪Rεr

(ϕh)1−nph
jkϕh

j νk dHn−1.(3.15)

The contribution of the piece of boundary T±
εr cancels because

(3.16)
∫

T+
εr

(ϕh)1−nph
jkϕh

j νk dHn−1 = −
∫

T−
εr

(ϕh+1)1−nph+1
jk ϕh+1

j νk dHn−1,

for all h = 0, 1, ..., m − 1. For h = m − 1, the right-hand side should be read with
0 instead of h + 1. Indeed, the rotation � : C × R

n−2 → C × R
n−2, �(ξ, y) =

(e−2(α+1)πi/mξ, y) transforms T+
εr into T−

εr and maps the outward unit normal to
T+

εr, the vector ν, to the inward unit normal to T−
εr, which is −ν. Now (3.16) follows

from the relation ph
jkϕh

j = �ik(ph+1
�i ϕh+1

� ) ◦ �, which can be obtained from (3.3).
This cancellation is nothing else but the fact that we are integrating the scalar

invariant equation (3.9) on the set
⋃m−1

h=0 f−1
h (Āεr) ⊂ M with the Riemannian

divergence theorem.

Step 6. By (3.11) and (3.13), the right-hand side of (3.15) converges to 0 when
we let, first, ε → 0+ and afterwards r → +∞. The integrand in the left-hand
side of (3.15) is nonnegative, and we deduce that for all h = 0, 1, ..., m − 1 and
j, k = 1, ..., n, it is ph

jk = 0, that is,

(3.17) ϕh
jk − 1

n
∆ϕh δjk = 0.

This system of equations can be integrated: there exist ah, ch ∈ R and bh =
(b′h, b′′h) ∈ R

2 × R
n−2 = R

n such that

ϕh(ζ) = ah|ζ|2 + bh · ζ + ch = ah

{
|ξ − ξ0,h|2 + |y − y0,h|2

}
+ ch − |bh|2

4ah
,

where ξ0,h = − b′h
2ah

and y0,h = − b′′h
2ah

.
Now let z = (x, y) ∈ Uh with x = reiϑ, |ϑ − ϑh| < π/(α + 1). Relation (3.2)

gives:

u(z) = vh(fh(z)) =
(
ah

{ ∣∣(e−iϑhx)α+1 − ξ0,h

∣∣2 + |y − y0,h|2
}

+ ch − |bh|2
4ah

)(2−n)/2

=
(
ah

{ ∣∣∣rα+1ei(α+1)ϑ − ei(α+1)ϑhξ0,h

∣∣∣2 + |y − y0,h|2
}

+ ch − |bh|2
4ah

)(2−n)/2

.
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If z ∈ Uh ∩ Uh+1, the last equation holds both for h and h + 1. Therefore we
conclude that ah, y0,h, ch − |bh|2

4ah
and ei(α+1)ϑhξ0,h must be independent from h. In

other words, after some relabeling, we have

u(reiϑ, y) =
(
a
{ ∣∣∣rα+1ei(α+1)ϑ − ξ0

∣∣∣2 + |y − y0|2
}

+ b
)(2−n)/2

for all ϑ ∈
(
− π/(α + 1), ϑm−1 + π/(α + 1)

)
. In order to have a well-defined (one-

valued) function on R2 × Rn−2, we must have either ξ0 = 0 or, in the case ξ0 �= 0,
α ∈ N.

Ultimately, u must have the form (1.7) if α ∈ N and (1.8) if α ∈ R
+ \ N.

Step 7. In order to determine the parameters a > 0 and b > 0, we briefly show that
the function u in (1.7) satisfies

(3.18) ∆xu + (α + 1)2|x|2α∆yu = −n(n − 2)(α + 1)2ab|x|2αu
n+2
n−2 in R

n.

In order to check (3.18), let ϕ = u1/µ with µ = (2 − n)/2. Denoting by ∂x, ∂x̄

complex derivatives, we have

∂xu = µ(α + 1)axα(x̄α+1 − x̄α+1
0 )ϕµ−1,

and then a short computation gives

∆xu = 4∂x̄∂xu = 4µ(α + 1)2a|x|2α
{

µa|xα+1 − xα+1
0 |2 + a|y − y0|2 + b

}
ϕµ−2.

Analogously, we have

∆yu = 2µa
{
− 2a|y − y0|2 + (n − 2)a|xα+1 − xα+1

0 |2 + (n − 2)b
)}

ϕµ−2.

Summing up we get (3.18).
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