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Heisenberg isoperimetric problem. The axial case

Roberto Monti
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Abstract. We prove Pansu’s conjecture about the Heisenberg isoperimetric problem in the
class of axially symmetric sets. The result is based on a weighted rearrangement scheme in the
half plane which is of independent interest.
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1 Introduction

We identify the Heisenberg group Hn with Cn � R, n 2 N, endowed with the group
law

.z; t/.z0; t 0/ D .z C z0; t C t 0 C 2 Im z � Nz0/;

where t; t 0 2 R, z D x C iy; z0 D x0 C iy0 2 Cn with x; y; x0; y0 2 Rn and z � Nz0 DPn
jD1 zj Nz

0
j . The group is non-commutative and its center is Z D f.z; t/ 2 Hn j z D

0g. The Lie algebra of left-invariant vector fields is spanned by

Xj D
@

@xj
C 2yj

@

@t
; Yj D

@

@yj
� 2xj

@

@t
and T D

@

@t
;

with j D 1; : : : ; n. The distribution spanned by the vector fields Xj and Yj , called
horizontal distribution, generates the Lie algebra by brackets. The maps ı� W Hn !
Hn, � > 0,

ı�.z; t/ D .�z; �
2t /; (1.1)

form a group of automorphisms of Hn called dilations.
The natural volume in Hn is the Haar measure, which, up to a positive factor, co-

incides with Lebesgue measure L2nC1 in Cn � R. Let � � Hn be an open set. The
Heisenberg (horizontal) divergence of a vector field ' 2 C 1.�IR2n/ is

divH' D

nX
jD1

�
Xj'2j�1 C Yj'2j

�
:

The Heisenberg perimeter in � of a L2nC1-measurable set E � Hn is

P .EI�/ D sup
�Z

E

divH'.z; t/ dzdt

ˇ̌̌̌
' 2 C 1

0 .�IR
2n/; k'k1 � 1

�
:
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If P .EI�/ < C1, we say that E has finite Heisenberg perimeter in �. In the case
� D Hn, we let P .E/ D P .EIHn/. The structure of sets with finite Heisenberg
perimeter is studied by Franchi, Serapioni and Serra Cassano in [10]. In this arti-
cle, among many other results, it is proved that for sets with boundary of class C 1

perimeter equals the .2nC 1/-dimensional spherical Hausdorff measure of the bound-
ary constructed by means of the Carnot–Carathéodory metric. For sets with boundary
of class C 2, perimeter also coincides with Minkowski content of the boundary [20].

Volume and perimeter are related through the Heisenberg isoperimetric inequality:
there exists a constant Cn > 0 such that for any L2nC1-measurable set E � Hn

min
˚
L2nC1.E/;L2nC1.Hn nE/

	
� CnP .E/

2nC2
2nC1 : (1.2)

This inequality was first proved by Pansu in [21] and [22] in the case n D 1 for
bounded smooth sets (with 3-Hausdorff measure replacing perimeter). In the general
form (1.2), the inequality is due to Garofalo and Nhieu [11] (see also [8]). As far as
the exponents appearing in (1.2) is concerned, note that volume and perimeter scale
homogeneously with respect to dilations (1.1), and precisely for any � > 0

L2nC1.ı�.E// D �
2nC2L2nC1.E/ and P .ı�.E// D �

2nC1P .E/:

Volume and perimeter are left invariant.
We denote by E the family of all L2nC1-measurable subsets E of Hn such that

0 < L2nC1.E/ < C1 and consider the infimum

Isop.E/ D inf
�

P .E/2nC2

L2nC1.E/2nC1

ˇ̌̌̌
E 2 E

�
: (1.3)

By (1.2), it is Isop.E/ > 0. A set E 2 E at which the infimum is attained is
called (Heisenberg) isoperimetric set. The existence of isoperimetric sets is proved by
Leonardi and Rigot in [15]. The Heisenberg isoperimetric problem consists in comput-
ing isoperimetric sets. In [22], Pansu notes that the boundary of a smooth isoperimetric
set in H1 has “constant mean curvature” and that a smooth surface has “constant mean
curvature” if and only if it is foliated by horizontal lifts of plane circles with constant
radius. Then he conjectures that an isoperimetric set in H1, if smooth, is obtained by
rotating around the center of the group a geodesic joining two points in the center.
Recently, Pansu’s conjecture appeared again in [14].

We prove the natural generalization of Pansu’s conjecture in Hn for any n � 1 under
an additional symmetry assumption on the sets.

Definition 1.1 (Axially symmetric set). We say that a setE � Hn is axially symmetric
if .z; t/ 2 E implies that .�; t/ 2 E for all � 2 Cn such that j�j D jzj. The set
F � R2

C
D RC � R such that

E nZ D
˚
.z; t/ 2 Hn

ˇ̌
.jzj; t / 2 F

	
is called generating set of E.
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Denote by A the family of all sets E 2 E which are axially symmetric and consider
the infimum

Isop.A/ D inf
�

P .E/2nC2

L2nC1.E/2nC1

ˇ̌̌̌
E 2 A

�
: (1.4)

Clearly, it is Isop.A/ � Isop.E/. A set E 2 A for which the infimum in (1.4) is at-
tained is called an axially symmetric isoperimetric set. Our main result is the following

Theorem 1.2. The infimum Isop.A/ is attained. Moreover, up to a dilation, a ver-
tical translation and a L2nC1-negligible set, any axially symmetric isoperimetric set
coincides with

Eisop D

�
.z; t/ 2 Hn

ˇ̌̌̌
jt j < arccos jzj C jzj

q
1 � jzj2; jzj < 1

�
: (1.5)

Here, by “vertical translation” we mean a left translation by some .0; t0/ 2 Hn. This
is actually an Euclidean vertical translation.

The boundary of the set (1.5) is obtained, for n D 1, by rotating around the center
of the group a Heisenberg geodesic for the Carnot–Carathéodory metric joining the
antipodal points .0;˙�=2/, i.e., the set (1.5) is the solution to problem (1.3) conjec-
tured by Pansu. The natural generalization of Pansu’s conjecture states thatEisop is the
unique solution of (1.3), up to group operations and negligible sets. There is a wide
evidence supporting this conjecture.

1. Resolution with axial symmetry and regularity ([25]). If the boundary of an isoperi-
metric set in Hn is of class C 2 then it has “constant mean curvature”, away from the
characteristic set of the boundary, where the curvature is not defined. Complete con-
stant mean curvature hypersurfaces which are rotationally invariant are classified by
Ritoré and Rosales in [25]. Among other results, the authors prove that the unique
compact rotationally invariant hypersurface of class C 2 with constant mean curvature
in Hn is the boundary of the set (1.5), up to dilation and vertical translation.

2. Resolution with C 2 regularity ([26]). If an isoperimetric set in H1 has boundary of
class C 2, then it is the set (1.5) with n D 1, up to dilation and left translation. This the-
orem is due to Ritoré and Rosales [26]. The authors first describe the structure of the
characteristic set of the boundary using some results of [5] and then they determine the
isoperimetric set using the ruling property (foliation by geodesics) of constant mean
curvature surfaces. The regularity issue, however, is a delicate one: for instance, so-
lutions to the Plateau problem in the Heisenberg group are not in general of class C 2

(see e.g. [23]).

3. Resolution with one spherical section and regularity ([6]). Consider the family of
sets E � Hn which satisfy the properties:

(i) L2nC1.E \ ft > 0g/ D L2nC1.E \ ft < 0g/;
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(ii) E D f.z; t/ 2 Hn W �v.z/ < t < u.z/; jzj < 1g, for functions u; v which are
non negative and of class C 2 in fjzj < 1g and continuous on fjzj � 1g with
u.z/ D v.z/ D 0 for jzj D 1;

(iii) u.z/ D v.z/ D 0 implies jzj D 1.

In [6], Danielli, Garofalo and Nhieu prove that the isoperimetric problem restricted to
the class of sets satisfying (i)–(iii) has a unique solution which is the set Eisop in (1.5).

4. Resolution with convexity ([19]). In the case n D 1, an isoperimetric set which
is convex has the form (1.5), up to dilation, left translation and an L3-negligible set.
This result is due to Rickly and the author .[19]/. Distributional solutions of the Euler
equation for the variational formulation of the problem are proved to have Sobolev
regularity. This enables to solve the equation along a regular Lagrangian flow, thus
establishing the “foliation by geodesics property” conjectured by Pansu.

5. Calibration argument ([24]). For r > 0 let Br D f.z; 0/ 2 Hn j jzj < rg and
Cr D f.z; t/ 2 Hn j jzj < rg. Let E � Hn be a bounded open set with finite
perimeter such that:

(i) Br � E � Cr for some r > 0;

(ii) L2nC1.E/ D L2nC1.Eisop/, where Eisop is the set in (1.5).

Then, it is P .Eisop/ � P .E/. In [24], Ritoré also discusses the equality case. The
proof of this result is based on a calibration argument. The calibration is constructed
using the horizontal unit normal to the boundary of Eisop. I would like to seize this
opportunity to thank M. Ritoré for sending me an early version of his paper.

6. Other contributions. Some observations on the Heisenberg isoperimetric problem
can be found in [16] and [17]. A 2-dimensional version of the problem is formulated
and solved by Morbidelli and the author in [18]: in the Grushin plane, isoperimetric
sets coincide with the section of the set Eisop � H1 with the y D 0 plane, properly
scaled and translated. Existence and uniqueness of p-area minimizers are studied by
Cheng, Hwang and Yang in [4]. The compact version of H1 is the complex sphere
of C2: several results of [26] have been generalized to this setting by Hurtado and
Rosales [12]. Finally, the monograph [3] is a detailed introduction to the isoperimetric
problem in the Heisenberg group.

By a rearrangement argument, we reduce Theorem 1.2 to a one dimensional prob-
lem which can be solved by elementary methods. The first step is the reduction of the
Heisenberg isoperimetric problem with axial symmetry to an isoperimetric problem in
the half plane R2

C
D RC � R.

Let F � R2
C

be a measurable set and let D � R2
C

be an open set. We define the
weighted perimeter of F in D

Q.F ID/ D sup

(Z
F

�
@r
�
r2n�1 1

�
C 2r2n@t 2

�
dr dt

ˇ̌̌̌
 2 C 1

0 .DIR
2/;

k k1 � 1

)
: (1.6)



Heisenberg isoperimetric problem. The axial case 97

In the case D D R2
C

, we let Q.F IR2
C
/ D Q.F /.

Proposition 1.3 (Planar reduction). Let E � Hn be a measurable axially symmetric
set with generating set F � R2

C
, and let � � Hn be an axially symmetric open set

with generating setD � R2
C

. Then E has finite Heisenberg perimeter in� if and only
if F has finite weighted perimeter in D, and moreover

P .EI�/ D !2n�1Q.F ID/; (1.7)

where !2n�1 D H2n�1.S2n�1/ is the standard surface measure of the .2n� 1/-dimen-
sional unit sphere.

Proposition 1.3 is proved in Section 4. Using spherical coordinates in Cn, we find the
representation for the Lebesgue measure of an axially symmetric set E � Hn

L2nC1.E/ D !2n�1

Z
F

r2n�1dr dt D !2n�1V.F /; (1.8)

where the volume V.F / of the generating set F is defined by the last equality.
By the isoperimetric inequality (1.2), from (1.7) and (1.8) it follows that there exists

a constant C 0n > 0 such that

min
˚
V.F /;V.R2

C n F /
	
� C 0nQ.F /

2nC2
2nC1 (1.9)

for L2-measurable sets F � R2
C

. We also have the relation

P .E/2nC2

L2nC1.E/2nC1 D !2n�1Isop.F /;

where the isoperimetric ratio of F is defined by

Isop.F / D
Q.F /2nC2

V.F /2nC1 : (1.10)

The infimum Isop.A/ in (1.4) is thus equal to

Isop.A/ D !2n�1 inf
˚
Isop.F /

ˇ̌
F � R2

C L2-measurable, 0 < V.F / < C1
	
: (1.11)

A set F � R2
C

at which the infimum in (1.11) is attained is called Q-isoperimetric set.
We look for a rearrangement scheme which, starting from a set F � R2

C
, produces

a set F ] � R2
C

such that:

(i) the sections F ]t D
˚
r 2 RC

ˇ̌
.r; t/ 2 F ]

	
, t 2 R, are intervals

of the form .0; g.t// for some g.t/ � 0;

(ii) Q.F ]/ � Q.F /I

(iii) V.F ]/ � V.F /:

(1.12)
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The coefficient r2n in front of the partial derivative @t in the variational definition of
Q.F I �/ in (1.6) makes it difficult to manage the contribution of “vertical” perimeter
under rearrangement. This is the reason why the standard (Steiner) decreasing re-
arrangement does not seem to work in similar situations (see, e.g. for Dirichlet-type
integrals, Theorem 2.13 in [13] and Theorem 1 in [2]).

Let us set the problem in a more general framework. We consider the following
perimeter of a L2-measurable set F � R2

C
in an open set D � R2

C
:

R.F ID/ D sup
�Z

F

˚
@r
�
% 1

�
C @t

�
� 2

�	
dr dt

ˇ̌̌̌
 2 C 1

0 .DIR
2/;

k k1 � 1

�
: (1.13)

As usual, we let R.F IR2
C
/ D R.F /. The functions %; � W R2

C
! R are assumed to

satisfy the following properties:

1) %; � 2 C.R2
C/ and %; � > 0 on R2

C;

2) for L1-a.e. t 2 R, the function r 7! %.r; t/ is in Liploc.RC/
and increasing, i.e. %.r1; t / � %.r2; t / for 0 < r1 � r2;

3) �.r; t/ D �1.r/�2.t/ with �1 2 L
1.0; ı/, for all ı > 0, and �2 2 Liploc.R/.

(1.14)

By the Lipschitz regularity in 2) and 3), the integral in (1.13) is well defined. By 3),
the function ‚ W R2

C
! RC

‚.r; t/ D

Z r

0
�.s; t/ ds (1.15)

is defined for all .r; t/ 2 R2
C

and moreover, for any fixed t 2 R the function r 7!
‚.r; t/ is strictly increasing, by 1). We denote by ‚�1

t the inverse function of ‚t D
‚.�; t /.

Definition 1.4 (� -rearrangement). We say that a measurable set F � R2
C

is � -rear-
rangeable if the function f W R! Œ0;C1�

f .t/ D

Z
Ft

�.r; t/ dr (1.16)

is in L1
loc.R/. In this case, we let g.t/ D ‚�1

t .f .t//, and we call the set

F ] D
˚
.r; t/ 2 R2

C W 0 < r < g.t/
	

the � -rearrangement of F .

Related to Definition 1.4, we prove the main rearrangement result.
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Theorem 1.5. Assume that % and � satisfy conditions (1.14). Let F � R2
C

be a L2-
measurable set which is � -rearrangeable and such that R.F / < C1. Then its � -
rearrangement F ] satisfies

R.F ]/ � R.F /: (1.17)

Moreover, if R.F ]/ D R.F / then F D F ] up to a L2-negligible set.

The proof of Theorem 1.5 is contained in Section 2. We explain how inequality (1.17)
is related to the notion of � -rearrangement. If R.F / < C1, the open sets map D 7!
R.F ID/ extends to a finite Borel measure on R2

C
. This measure is the total variation

of the vector valued Borel measure
�
R1.F I �/;R2.F I �/

�
, where, for open sets D �

R2
C

,

R1.F ID/ D sup
�Z

F

f@r
�
% 
�
dr dt

ˇ̌̌̌
 2 C 1

0 .D/; k k1 � 1
�
;

R2.F ID/ D sup
�Z

F

f@t
�
� 
�
dr dt

ˇ̌̌̌
 2 C 1

0 .D/; k k1 � 1
�
:

The search for a rearrangement F ] of F such that R2.F
]IRC � A/ � R2.F IRC �

A/ for any open set A � R lead us to Definition 1.4 (see Step 2 in the proof of
Theorem 1.5). On the other hand, the monotonicity of r 7! %.r; t/ required in (1.14)
guarantees that R1.F

]IRC �A/ � R1.F IRC �A/ for any open set A � R. As both
partial perimeters do not increase under � -rearrangement, the same holds for their total
variation and we get (1.17). The study of partial perimeters under Steiner symmetric
decreasing rearrangement is a key step in De Giorgi’s proof [7] of the isoperimetric
property of the Euclidean ball in Rn in the class of sets with finite perimeter (see also
the modern version of the proof by Talenti [27]).

In order to complete the program sketched in (1.12), we need to control the change
of volume. Let us introduce a general volume in the half plane. We take a function
u W R2

C
! RC which satisfies the following properties:

1) u is L2-measurable and u > 0 on R2
C;

2) r 7! u.r; t/ is in L1.0; ı/ for all ı > 0 and for L1-a.e. t 2 R:
(1.18)

The function U W R2
C
! R

U.r; t/ D

Z r

0
u.s; t/ ds; (1.19)

is positive and moreover r 7! U.r; t/ is strictly increasing, by 1). We denote by U�1
t

the inverse function of Ut D U.�; t /.
We define the volume of a L2-measureable set F � R2

C
by

U.F / D

Z
F

u.r; t/ dr dt:
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The volume of F is finite if and only if u 2 L1.F /.

Definition 1.6. We say that the volume U is non decreasing with respect to the � -
rearrangement if for any L1-measurable set A � RC we have

U�1
t

� Z
A

u.r; t/ dr
�
� ‚�1

t

� Z
A

�.r; t/ dr
�

(1.20)

for L1-a.e. t 2 R.

Condition (1.20) ensures that U.F ]/ �U.F / (see Proposition 2.4).
Then it remains to check that the compatibility condition is verified in the case we

are dealing with. In our case, we have �.r; t/ D 2r2n and u.r; t/ D r2n�1 (see (1.8)).
For this pair of functions, the compatibility condition (1.20) is a consequence of the
elementary inequality�

.˛ C 1/
Z
A

r˛dr

� 1
˛C1

�

�
.ˇ C 1/

Z
A

rˇdr

� 1
ˇC1

for A � RC L1-measurable and �1 < ˛ < ˇ (Example 2.5).
If the coefficients % and � appearing in the divergence in (1.13) do not depend on t ,

the Steiner rearrangement of a set in direction t is standard (see Section 3). In Section
5, we prove the following

Theorem 1.7. The infimum in (1.11) is attained and a Q-isoperimetric set F satisfies:

(i) F D F ], up to a L2-negligible setI

(ii) the sections Fr D ft 2 R W .r; t/ 2 F g are equivalent to intervals, for L1-
a.e. r 2 RC I

(iii) F is contained in a bounded rectangle, and precisely

F �

(
.r; t/ 2 R2

C

ˇ̌̌̌
0 < r � cnQ.F /

1
2nC1 ;

jt � t0j � dnQ.F /2n=V.F /2n�1

)
(1.21)

for some t0 2 R and for dimensional constants cn; dn > 0.

Thanks to Theorem 1.7, the axial isoperimetric problem in the Heisenberg group can
be reduced to a one dimensional problem which can be solved by elementary methods,
thus proving Theorem 1.2.

Notation. We denote by jzj the usual norm of z D .z1; : : : ; zn/ 2 Cn with zj D
xj C iyj � .xj ; yj /. J is the standard complex structure J.z/ D iz. RC D .0;C1/
is the positive open half line and R2

C
D RC�R is the open half plane. Lk is Lebesgue

measure in Rk , H2n is the 2n-dimensional Hausdorff measure in R2nC1 and H1 is the
Hausdorff measure in the plane. By h�; �i we mean the standard inner product in Rk .
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2 Weighted rearrangement in the half plane

2.1 Preliminaries on perimeters

Let � � Rk , k � 2, be an open set and let V1; : : : ; Vm 2 Liploc.�IRm/, m � 2, be
vector fields in �. We identify these vector fields with the differential operators

Vi .x/ D

kX
jD1

%ij .x/
@

@xj
; i D 1; : : : ; m;

where %ij 2 Liploc.�/. We denote by V �i the adjoint operator of Vi in L2.�/, i.e., the
operator is defined by Z

�

' Vi dx D

Z
�

 V �i ' dx

for all '; 2 C 1
0 .�/.

We introduce the family of test functions

Fm.�/ D
˚
' D .'1; : : : ; 'm/ 2 C

1
0 .�IR

m/
ˇ̌
'2

1 C : : :C '
2
m � 1 in �

	
:

Let F � � be a Lk-measurable set and let A � � be an open set. For any i D
1; : : : ; m, we define the i th partial perimeter of F in A by

Ri .F IA/ D sup
'2F1.A/

Z
F

V �i ' dx: (2.1)

By Riesz representation theorem, if Ri .F I�/ < C1 then the open sets function
A 7! Ri .F IA/ extends to a finite Radon measure �i in � and there exists a Borel
function �i W �! R with j�i j D 1 �i -a.e. such thatZ

F

V �i ' dx D

Z
�

' �i d�i (2.2)

for all ' 2 C 1
0 .�/. We denote by � D .�1; : : : ; �m/ the vector valued Radon measure

in � whose i th component is the measure �i .
We introduce the formal divergence of a given vector field ' D .'1; : : : ; 'm/ 2

C 1.�IRm/ with respect to the frame of vector fields V D .V1; : : : ; Vm/:

divV ' D �
mX
iD1

V �i 'i :

The V -perimeter in an open set A � � of a Lk-measurable set F � � is

R.F IA/ D sup
'2Fm.A/

Z
F

divV ' dx: (2.3)
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By Riesz representation theorem, if R.F I�/ < C1 then the open sets function
A 7! R.F IA/ extends to a finite Radon measure � in �. Moreover, there exists a
Borel map n W �! Rm such that jnj D 1 �-a.e. andZ

F

divV ' dx D
Z
�

h'; ni d� (2.4)

for all ' 2 C 1
0 .�IR

m/. Note that �.�/ < C1 implies �i .�/ < C1 for all i D
1; : : : ; m.

The measures � and �i , i D 1; : : : ; m, are finite Radon measure. In particular, they
are Borel regular and � is the total variation of � D .�1; : : : ; �m/. Before sketching
the proof of this fact we recall the following definition.

Definition 2.1. The total variation of a vector valued Borel measure� D .�1; : : : ; �m/

in � is the Borel measure j�j defined, for Borel sets E � �, by

j�j.E/ D sup
� C1X
jD1

j�.Ej /j

ˇ̌̌̌
.Ej /j2N disjoint sequence

of Borel sets with E D
C1[
jD1

Ej

�
:

(2.5)

By the Radon–Nikodym theorem it is � D �j�j, where � W �! Rm is a Borel map
such that j�j D 1 j�j-a.e. in �. From (2.2) and (2.4), we have for any ' 2 C 1

0 .�/ and
i D 1; : : : ; m,Z

�

' ni d� D

Z
F

V �i ' dx D

Z
�

' �i d�i D

Z
�

' �i�id j�j;

where n D .n1; : : : ; nm/. By density, this identity holds for any characteristic function
' of any open set in �. Thus, we deduce that ni� D �i�i D �i�i j�j. The set
E D fx 2 � W j�i .x/j ¤ 1g has vanishing �i measure. It follows that �i .x/ D 0 for
j�j-a.e. x 2 E, and then the Borel mapb� W � ! Rm defined byb�i D �i�i satisfies
jb�j D 1 j�j-a.e. in �. For any Borel set B � �, we have

j�j.B/ D

Z
B

hb�;b�id j�j D Z
B

hb�; nid� � �.B/:
The same argument provides �.B/ � j�j.B/. This shows that � D j�j.

2.2 �-rearrangement

From now on, we work in the half plane R2
C
D RC � R and we denote by .r; t/ 2

RC�R a generic point. Let %; � W R2
C
! R be functions satisfying (1.14) and consider

the vector fields

V1 D %.r; t/
@

@r
; V2 D �.r; t/

@

@t
: (2.6)
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According to (2.1) and (2.3), we define the following perimeters of a L2-measurable
set F � R2

C
in an open set D � R2

C

R1.F ID/ D sup
 2F1.D/

Z
F

@r.% / dr dt;

R2.F ID/ D sup
 2F1.D/

Z
F

@t .� / dr dt;

(2.7)

and the V -perimeter

R.F ID/ D sup
 2F2.D/

Z
F

f@r.% 1/C @t .� 2/
	
dr dt: (2.8)

We recall some standard facts in the following two propositions.

Proposition 2.2. Let A � R be an open set and let F � R2
C

be a L2-measurable set
such that R1.F IRC � A/ < C1. Then we have

R1.F IRC � A/ D
Z
A

�
sup

 2F1.RC/

Z
Ft

@r
�
%.r; t/ .r/

�
dr
�
dt: (2.9)

Here, Ft D fr 2 RC W .r; t/ 2 F g is the section of F at level t 2 R.

Proof. The inequality � in (2.9) is elementary. We prove the converse inequality. By
Theorem 2.2.2 in [9], there exists a sequence of functions fj 2 C1.RC �A/, j 2 N,
such that:

1) fj ! �F in L1
loc.R

C � A/ as j !C1;

2) we have

lim
j!C1

Z
RC�A

j@rfj .r; t/j %.r; t/ dr dt D R1.F IRC � A/: (2.10)

By 1), for L1-a.e. t 2 R it is fj .�; t / ! �F .�; t / in L1
loc.R

C/ as j ! C1. On the
other hand, by Fatou’s lemma and by the lower semicontinuity of the total variation
with respect to the L1

loc-convergence, we have

lim
j!C1

Z
A

Z
RC
j@rfj .r; t/j %.r; t/ dr dt

�

Z
A

lim inf
j!C1

Z
RC
j@rfj .r; t/j %.r; t/ dr dt

D

Z
A

lim inf
j!C1

sup
 2F1.RC/

Z
RC
fj .r; t/@r

�
%.r; t/ .r/

�
dr dt

�

Z
A

sup
 2F1.RC/

Z
Ft

@r
�
%.r; t/ .r/

�
dr dt:

(2.11)

From (2.10) and (2.11) we get the inequality � in (2.9).
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Proposition 2.3. Let %1 2 Liploc.RC/ be a function such that %1 > 0 in RC, and let
E � RC be a L1-measurable set such that

sup
 2F1.RC/

Z
E

@r.%1 / dr < C1: (2.12)

Then, up to a L1-negligible set we have E D
S
i2IEi , where I � Z, Ei D .ai ; bi /

is an interval, 0 � ai < bi � C1 for all i 2 I and bi < aj for i; j 2 I with i < j .
Moreover,

sup
 2F1.RC/

Z
E

@r.%1 / dr D
X
i2I

�
%1.ai /C %1.bi /

�
; (2.13)

where we agree that %1.0/ D %1.C1/ D 0.

Proof. For any bounded open subset A � RC there is a constant C > 0 such that
%1 � C on A. Thus, by (2.12) we have

sup
 2F1.A/

Z
E

@r dr < C1;

i.e., E has locally finite perimeter (unweighted perimeter) in RC. It follows that E DS
i2IEi as in the statement of the proposition (see e.g. [1, Section 3.2]). Moreover,

for any  2 C 1
0 .R
C/ we haveZ
E

@r.%1 / dr D
X
i2I

�
%1.bi / .bi / � %1.ai / .ai /

�
: (2.14)

Now, (2.13) follows from (2.14) on taking the supremum over  2 F1.RC/.

Before proving Theorem 1.5, we need a couple of observations.

Let f 2 BVloc.R/ be a function of locally bounded variation in R. Upon modifying
f on a set of vanishing L1-measure, f is the difference of two increasing functions,
by Jordan theorem. Thus f has left and right limit at any point, and moreover they are
equal in the complement of an at most countable set N D ftk 2 R W k 2 Kg for some
K � N. Let

g.t/ D ‚�1
t .f .t//; (2.15)

where ‚�1
t is the inverse of the function ‚t D ‚.�; t / defined in (1.15). The function

g has the same continuity properties as f . For k 2 K denote by Sk the closed segment
in R2 with end-points

�
g.tk/

�; tk
�

and
�
g.tk/

C; tk
�
, where g.tk/� and g.tk/C are the

left and right limits of g at tk . The “graph” of g

�g D
[
k2N

Sk [
˚
.g.t/; t/ 2 R2 ˇ̌ t 2 R nN

	
(2.16)
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is relatively closed in R2
C

. The measure R.F ]I �/ associated with the set F ] D˚
.r; t/ 2 R2

C

ˇ̌
0 < r < g.t/

	
is supported in �g and in particular

R.F ]IR2
C n �g/ D 0: (2.17)

In fact, for any  2 F2.R2
C
n �g/ by the divergence theorem it isZ

F ]

�
@r.% 1/C @t .� 2/

�
dr dt D 0:

A second observation concerns the factorization property �.r; t/ D �1.r/�2.t/ in
item 3) in (1.14). For some L2-measurable set F � R2

C
, let

f1.t/ D

Z
Ft

�1.r/ dr: (2.18)

Then, the function f in (1.16) is of the form f .t/ D f1.t/�2.t/ and definition (2.15)
is equivalent with Z g.t/

0
�1.r/ dr D f1.t/; (2.19)

because �2 > 0.

Proof of Theorem 1.5. We introduce the Borel measures �1 and �2 on R

�1.B/ D R1.F IRC � B/;

�2.B/ D R2.F IRC � B/;

where B � R is a Borel set. Analogously, starting from F ] we define

�
]
1.B/ D R1.F

]
IRC � B/;

�
]
2.B/ D R2.F

]
IRC � B/:

Step 1. We claim that �]1.B/ � �1.B/ for any Borel set B � R.

Since the measures are Borel regular, it is sufficient to prove the claim for an open set
B � R. By assumption R.F / < C1 and then R1.F IR2

C
/ < C1. By Proposition

2.2, it follows that for L1-a.e. t 2 R we have

sup
 2F1.RC/

Z
Ft

@r
�
%.r; t/ .r/

�
dr < C1;

and then, by Proposition 2.3, possibly modifying F in a L2-negligible set, it is

Ft D
[
i2I.t/

�
ai .t/; bi .t/

�
; (2.20)
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where I.t/ � Z, 0 � ai .t/ < bi .t/ � C1 for i 2 I.t/ and bi .t/ < aj .t/ for i < j .
Note that bi .t/ < C1 for all i 2 I.t/ and

i].t/ D sup I.t/ < C1;

because F is � -rearrangeable and r 7! �.r; t/ is increasing. Moreover, the sum in
(2.13) is finite. Using (2.9) and (2.13), we get

�1.B/ D sup
 2F1.RC�B/

Z
F

@r
�
%.r; t/ .r; t/

�
dr dt

D

Z
B

�
sup

 2F1.RC/

Z
Ft

@r.%.r; t/ .r// dr
�
dt

D

Z
B

X
i2I.t/

�
%.ai .t/; t/C %.bi .t/; t/

�
dt:

(2.21)

In order to compute �]1.B/, recall that F ] D
˚
.r; t/ 2 R2

C

ˇ̌
0 < r < g.t/

	
, where

g.t/ D ‚�1
t .f .t// and, by (1.16) and (2.20),

f .t/ D

Z
Ft

�.r; t/ dr D
X
i2I.t/

˚
‚.bi .t/; t/ �‚.ai .t/; t/

	
:

Then, by (2.9) and (2.13), we have

�
]
1.B/ D

Z
B

%.g.t/; t/ dt: (2.22)

Because r 7! ‚.r; t/ is increasing, we have

g.t/ D ‚�1
t

� X
i2I.t/

�
‚
�
bi .t/; t

�
�‚

�
ai .t/; t

���
� bi].t/.t/; (2.23)

and we finally obtain the pointwise estimate

%
�
g.t/; t

�
� %

�
bi].t/.t/; t

�
�

X
i2I.t/

�
%.ai .t/; t/C %.bi .t/; t/

�
; (2.24)

which is a consequence of (2.23), because r 7! %.r; t/ is increasing, as well. Now, the
claim of Step 1 follows from (2.21), (2.22) and (2.24).

Step 2. We claim that �]2.B/ � �2.B/ for any Borel set B � R.

It is sufficient to consider open sets B � R. By property 3) in (1.14), restricting the
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family of test functions and recalling (2.18) we get

�2.B/ D sup
 2F1.RC�B/

Z
F

@t .�.r; t/ .r; t// dr dt

� sup
 2F1.B/

Z
F

�1.r/@t
�
�2.t/ .t/

�
dr dt

D sup
 2F1.B/

Z
R

�Z
Ft

�1.r/ dr

�
@t
�
�2.t/ .t/

�
dt

D sup
 2F1.B/

Z
R
f1.t/@t

�
�2.t/ .t/

�
dt:

(2.25)

Recall that f 2 L1
loc.R/, because F is � -rearrangeable and thus f1 2 L

1
loc.R/, as well.

Let us define the total variation of f1 in B with respect to the vector field �2.t/
@
@t

jD�2f1j.B/ D sup
 2F1.B/

Z
R
f1.t/@t

�
�2.t/ .t/

�
dt:

With this notation, (2.25) reads �2.B/ � jD�2f1j.B/. By the Coarea formula (see
e.g. Theorem 4.2 in [20]), it holds

jD�2f1j.B/ D

Z C1
0

sup
 2F1.B/

Z
ff1>sg

@t
�
�2.t/ .t/

�
dt ds: (2.26)

Now we perform the change of variable

s D

Z �

0
�1.r/ dr; with ds D �1.�/d�:

By (2.18)–(2.19), f1.t/ > s is equivalent with g.t/ > � . Thus, we get

jD�2f1j.B/ D

Z C1
0

�1.�/ sup
 2F1.B/

Z
fg>�g

@t
�
�2.t/ .t/

�
dt d�

� sup
 2F1.RC�B/

Z C1
0

Z
fg>�g

@t
�
�.�; t/ .�; t/

�
dt d�

D sup
 2F1.RC�B/

Z
F ]
@t
�
�.�; t/ .�; t/

�
d� dt

D �
]
2.B/:

(2.27)

Now our claim follows from (2.25) and (2.27).

Denote by j�j and j�]j the total variation measures on R of the vector valued measures
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� D .�1; �2/ and �] D .�]1; �
]
2/ respectively.

Step 3. We claim that j�j.E/ � R.F IRC � E/ and j�]j.E/ D R.F ]IRC � E/ for
any Borel set E � R.

It is sufficient to prove the claim for an open setE � R. Denote by j�]j D R.F ]I �/ the
total variation of the vector valued measure �] D .�

]
1 ; �

]
2/ D

�
R1.F

]I �/;R2.F
]I �/

�
on R2

C
. For any Borel partition .Ej /j2N of E there is a Borel partition of product

type .RC � Ej /j2N of RC � E. It follows that j�]j.E/ � j�]j.RC � E/. The same
argument proves the claim in Step 3 concerning j�j.

In order to prove the converse inequality j�]j.RC � E/ � j�]j.E/, it is sufficient
to show that for any Borel partition .Fj /j2N of RC � E there exists a Borel partition
of product type .RC �Eh/h2N of RC �E such thatX

j2N
j�].Fj /j �

X
h2N

j�].Eh/j: (2.28)

By (2.25), f1 2 BVloc.R/ and the same holds for f , because �2 2 Liploc.R/ is
positive. Let �g be the graph of g defined in (2.16) with N D ftk 2 R W k 2 Kg as
in the discussion before formula (2.15). Let J � N be the set of all j 2 N such that
Fj \ �g ¤ ¿. By (2.17), we have

�].Fj / D 0 for all j 2 N n J: (2.29)

Letting shrink the open set A in (2.9) to one point, we see that �]1.R
C � ftg/ D 0 for

all t 2 R. Thus we have the countable additivityˇ̌̌
�]
� [
j2N

Bj � ftg
�ˇ̌̌
D

X
j2N
j�].Bj � ftg/j (2.30)

for any sequence of pairwise disjoint Borel sets Bj � RC, j 2 N.
Denote by � W R2

C
! R, �.r; t/ D t , the standard projection onto the second

coordinate. Let .Eh/h2N be the Borel covering of E made up by the sets �.Fj / n N
with j 2 J together with ftkg, k 2 K, such that tk 2 E. By (2.29) and (2.30), we
have X

j2N
j�].Fj /j D

X
j2J

j�].Fj /j

�

X
j2J

�
j�].Fj n RC �N/j C j�]

�
Fj \ .RC �N/

�
j
�

D

X
j2J

j�].RC � .�.Fj / nN/j C
X

k2K;tk2E

j�].RC � ftkg/j

D

X
h2N

j�].Eh/j:
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This ends the proof of (2.28) and of Step 3.

From the Steps 1 and 2 and recalling definition (2.5), it follows that

j�]j.B/ � j�j.B/ (2.31)

for any Borel set B � R. Now, (1.17) follows from Step 3. In fact,

R.F ]/ D j�]j.R/ � j�j.R/ � R.F /: (2.32)

Step 4. We claim that if R.F ]/ D R.F / then F D F ] up to a L2-negligible set.

We have j�]j.R/ D j�j.R/, by (2.32), and thus j�]j.E/ D j�j.E/ for any Borel set
E � R, by (2.31). By Radon–Nikodym theorem it is �] D �]j�j and � D �j�j for
Borel maps �; �] W R ! R2 such that j�j D 1 and j�]j D 1 j�j-a.e. in R. On the
other hand, �]1 � �1 and �]2 � �2, by Steps 1 and 2. We deduce that �] D � j�j-a.e. in
R, and in particular we have �]1.B/ D �1.B/ for any Borel set B � R. From (2.21)
and (2.22), we deduce that we have equalities in (2.23) and (2.24). This implies that
Ft D .0; g.t// for L1-a.e. t 2 R, up to a L1-negligible set of RC.

2.3 �-rearrangement and volume

Proposition 2.4. Assume that u W R2
C
! R satisfies (1.18) and (1.20). Let F � R2

C

be a L2-measurable set which is � -rearrangeable and such that U.F / < C1. Then
its � -rearrangement F ] satisfies

U.F ]/ �U.F /: (2.33)

Proof. We have, by the Fubini–Tonelli theorem,

U.F / D

Z
R

Z
Ft

u.r; t/ dr dt;

U.F ]/ D

Z
R

Z g.t/

0
u.r; t/ dr dt D

Z
R
U.g.t/; t/ dt;

(2.34)

where U is the function in (1.19) and

g.t/ D ‚�1
t

� Z
Ft

�.r/ dr
�
:

We have g.t/ < C1 for L1-a.e. t 2 R, because F is � -rearrangeable. For any such t ,
condition (1.20) yields

U.g.t/; t/ �

Z
Ft

u.r; t/ dr: (2.35)

Now our claim (2.33) follows from (2.34) and from the pointwise estimate (2.35).
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Example 2.5. Let ˛; ˇ 2 R be a pair of numbers such that �1 < ˛ < ˇ and consider
the functions u.r; t/ D r˛ and �.r; t/ D rˇ , r > 0. We show that the volume U in
(1.19) does not decrease under � -rearrangement. Precisely, we have to check condition
(1.20), which in the present case reduces to�

.˛ C 1/
Z
A

r˛dr

� 1
˛C1

�

�
.ˇ C 1/

Z
A

rˇdr

� 1
ˇC1

(2.36)

for L1-measurable A � RC. It is sufficient to prove (2.36) when

A D

k[
iD1

Ai

is the finite union of k 2 N disjoint intervals Ai D .ai ; bi / with 0 � ai < bi <

aiC1. The case when A is a countable union of intervals is obtained by monotone
convergence. The general case follows upon approximating a L1-measurable set A �
RC by open sets.

For s > 0 let

 .s/ D log
� kX
iD1

s

Z
Ai

rs�1dr
� 1
s
D

1
s

log
kX
iD1

.bsi � a
s
i /:

Proving (2.36) for �1 < ˛ < ˇ is equivalent to showing that  is strictly increasing
for s > 0. The inequality  0.s/ > 0 is equivalent to

kX
iD1

�
bsi log bsi � a

s
i log asi

�
�

kX
iD1

�
bsi � a

s
i

�
log

kX
iD1

�
bsi � a

s
i

�
> 0: (2.37)

We prove (2.37) by induction on k 2 N. For k D 1, letting bs1 D x and as1 D y, we
have to check that

Lx.y/ D x log x � y logy � .x � y/ log.x � y/ > 0 for 0 � y < x:

This follows from Lx.0/ D Lx.x/ D 0 and

L00x.y/ D
x

y.y � x/
< 0 for 0 < y < x:

Now assume that (2.37) holds for k 2 N. We prove it for k C 1. Letting bsi D xi
and asi D yi , we have to check that

L.ykC1/ D

kC1X
iD1

�
xi log xi � yi logyi

�
�

kC1X
iD1

.xi � yi / log
kC1X
iD1

.xi � yi / > 0
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for xk < ykC1 < xkC1. We consider L as a function of ykC1 alone, for fixed
x1; : : : ; xkC1 and y1; : : : ; yk . By the induction assumption, we have L.xk/ > 0 and
L.xkC1/ > 0. The claim follows from

L00.ykC1/ D �
1

ykC1
�

� kC1X
iD1

.xi � yi /
��1

< 0

for xk < ykC1 < xkC1.

3 Steiner rearrangement in the vertical direction

Let %; � 2 C.R2
C
/ be two functions which satisfy the following properties:

1) %.r; t/ D %.r/ is positive in RC and in Liploc.RC/;

2) �.r; t/ D �.r/ is positive.
(3.1)

The vector fields V D .V1; V2/ are as in (2.6) and the perimeter R.F ID/ of a L2-
measurable set F � R2

C
in an open set D � R2

C
is defined in (2.8). The partial

perimeters Ri .F ID/, i D 1; 2, are defined in (2.7).

Definition 3.1 (Steiner symmetric decreasing rearrangement). We say that a measur-
able set F � R2

C
is t -rearrangeable if the function h W RC ! Œ0;C1�, given by

h.r/ D
1
2

L1.Fr/; (3.2)

is in L1
loc.R

C/. Here, Fr D
˚
t 2 R

ˇ̌
.r; t/ 2 F

	
is the section of F at level r 2 RC.

In this case, we call the set

F � D
˚
.r; t/ 2 R2

C

ˇ̌
jt j < h.r/

	
the Steiner symmetric decreasing rearrangement (simply, t -rearrangement) of F .

Theorem 3.2. Assume that % and � satisfy conditions (3.1). Let F � R2
C

be a L2-
measurable set which is t -rearrangeable and such that R.F / < C1. Then its t -
rearrangement F � satisfies

R.F �/ � R.F /: (3.3)

Moreover, if R.F �/ D R.F / then Fr � R is equivalent with a segment for L1-
a.e. r 2 RC.

Proof. We introduce the Borel measures �1 and �2 on RC

�1.B/ D R1.F IB � R/;

�2.B/ D R2.F IB � R/;
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where B � RC is a Borel set. Analogously, starting from F �, we define

��1 .B/ D R1.F
�
IB � R/;

��2 .B/ D R2.F
�
IB � R/:

For any open set B � RC, we have by the Fubini–Tonelli theorem and by the
Coarea formula (see (2.25)–(2.27))

�1.B/ � 2 sup
 2F1.B/

Z
RC
h.r/@r

�
%.r/ .r/

�
dr

� 2
Z C1

0
sup

 2F1.B/

Z
fh>sg

@r
�
%.r/ .r/

�
dr ds

� ��1 .B/:

(3.4)

On the other hand, as in the proof of Step 1 in Theorem 1.5 (see the argument
starting from formula (2.21)), it is

�2.B/ D

Z
B

�.r/
�

sup
 2F1.R/

Z
Fr

@t .t/ dt
�
dr

with
sup

 2F1.R/

Z
Fr

@t .t/ dt � sup
 2F1.R/

Z
F �r

@t .t/ dt; (3.5)

because the right hand side can be either 0 (in which case the left hand side is also
0) or 2 (in which case the left hand side is equal or larger than 2). It follows that
�2.B/ � ��2 .B/, with equality if and only if Fr is equivalent to a segment for L1-
a.e. r 2 B .

Now, the claim (3.3) follows by the same argument as in (2.31)–(2.32). Moreover,
if R.F �/ D R.F / then, arguing as in Step 4 of the proof Theorem 1.5, we deduce
that �2.B/ D �

�
2 .B/ for any Borel set B � RC. This implies that we have equality in

(3.5) for L1-a.e. r 2 RC. Thus Fr is equivalent to a segment for L1-a.e. r 2 RC.

4 Proof of Proposition 1.3

We first note that, by an easy approximation argument, we have P .EI�/ D P.EI�n
Z/. Without loss of generality, we prove Proposition 1.3 in the case � D Hn and
D D R2

C
. LetE � Hn be an axially symmetric L2nC1-measurable set with generating

set F � R2
C

.

Step 1. We claim that we have the inequality

P .E/ � !2n�1Q.F /: (4.1)
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For any  2 F2.R2
C
/ we define ' 2 F2n.Hn/ by letting

'.z; t/ D
1
jzj

˚
 1.jzj; t /z �  2.jzj; t /J.z/

	
: (4.2)

Here, z D .z1; : : : ; zn/ 2 Cn � R2n with zj � .xj ; yj / and J.z/ D iz is the
standard complex structure. For z and J.z/ are orthogonal, it is easy to check that
'2

1 C : : :C '
2
2n � 1 is equivalent with  2

1 C  
2
2 � 1. Moreover, we have

@xj '2j�1 D �
xj

jzj3

�
xj 1 C yj 2

�
C

1
jzj

�
 1 C

x2
j

jzj
@r 1 C

xjyj

jzj
@r 2

�
;

@yj '2j D �
yj

jzj3

�
yj 1 � xj 2

�
C

1
jzj

�
 1 C

y2
j

jzj
@r 1 �

xjyj

jzj
@r 2

�
;

2yj @t'2j�1 D
2
jzj

�
xjyj @t 1 C y

2
j @t 2

�
;

�2xj @t'2j D
2
jzj

�
� xjyj @t 1 C x

2
j @t 2

�
;

and, summing up, we get the following expression for the Heisenberg divergence of '

divH'.z; t/ D @r 1.jzj; t /C
2n � 1
jzj

 1.jzj; t /C 2jzj@t 2.jzj; t /: (4.3)

Letting Et D fz 2 Cn W .z; t/ 2 Eg and Ft D fr 2 RC W .r; t/ 2 F g, using the
Fubini–Tonelli theorem and spherical coordinates (Coarea formula) in Cn, we obtain
by (4.3)Z
E

divH'.z; t/ dzdt D

Z C1
�1

Z
Et

divH'.z; t/ dz dt

D

Z C1
�1

Z C1
0

Z
jzjDr

�E .z; t/divH'.z; t/ dH2n�1 dr dt

D !2n�1

Z C1
�1

Z
Ft

�
@r 1.r; t/C

2n � 1
r

 1.r; t/C 2r@t 2.r; t/
�
r2n�1 dr dt

D !2n�1

Z
F

�
@r
�
r2n�1 1.r; t/

�
C 2r2n@t 2.r; t/

�
dr dt:

(4.4)

Taking the supremum over all  2 F2.R2
C
/ we obtain (4.1).

Step 2. We claim that if E � Hn is an axially symmetric bounded open set with finite
perimeter and with boundary which is of class C1 in Hn nZ, then we have

P .E/ D !2n�1Q.F /: (4.5)
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Denote by � D .�z; �t / 2 S2n the exterior unit normal to @E nZ, and let .�r ; �t / 2 S1

be the exterior unit normal to @F (the boundary of F in R2
C

). We have the relation
�z.z; t/ D �r.jzj; t /z=jzj for z ¤ 0. By the divergence theorem, we get from (4.4)Z

@E

h'; �z � 2�tJ.z/idH2n
D !2n�1

Z
@F

�
 1�r C 2r 2�t

�
r2n�1dH1: (4.6)

Note that j�z � 2�tJ.z/j D 0 implies z D 0. The vector fields  on @F and ' on
@E n Z which make maximum the right respectively the left hand side of (4.6) with
the L1 bound k k1 � 1 on @F and k'k1 � 1 on @E nZ, are

 1 D
�r

.�2
r C 4r2�2

t /
1=2
;  2 D

2r�t
.�2
r C 4r2�2

t /
1=2
;

and

' D
�z � 2�tJ.z/
j�z � 2�tJ.z/j

D
1
jzj

˚
 1z �  2J.z/

	
:

Note that ' is related to  according to (4.2). Indeed, we have j�z � 2�tJ.z/j2 D
�2
r C 4r2�2

t because �z and J.z/ are orthogonal. The vector fields ' and  can be
smoothly extended in a neighborhood of @E n Z respectively of @F , with L1 norms
bounded by 1. These extended vector fields can be uniformly approximated (near the
boundaries) by compactly supported smooth vector fields with the same L1 bound.
This finishes the proof of (4.5).

Step 3. We claim that we have the inequality

P .E/ � !2n�1Q.F /:

We can assume that Q.F / < C1. By Theorem 2.2.2 and Corollary 2.3.6 in [9], there
exists a sequence .Fj /j2N of open sets of R2

C
with boundary of class C1 in R2

C
and

such that

(i) lim
j!C1

L2�.Fj�F / \K� D 0 for any compact set K � R2
C

;

(ii) lim
j!C1

Q.Fj / D Q.F /.

For any j 2 N, denote by Ej � Hn the axially symmetric open set with boundary of
class C1 in Hn n Z which has Fj as generating set. From (i), it follows that for any
compact set K 0 � Hn nZ we have

lim
j!C1

L2nC1�.Ej�E/ \K 0� D 0;

and thus, by the lower semicontinuity of perimeter with respect to the L1
loc conver-

gence, it follows

P .E/ D P .EIHn nZ/ � lim inf
j!C1

P .Ej IHn nZ/:



Heisenberg isoperimetric problem. The axial case 115

On the other hand, by the Step 2 and by (ii), we see that we actually have a limit and

lim
j!C1

P .Ej IHn nZ/ D !2n�1 lim
j!C1

Q.Fj / D !2n�1Q.F /:

This ends the proof of the Step 3 and of Proposition 1.3.

5 Proof of Theorems 1.7 and 1.2

Let n 2 N and introduce the functions

%.r/ D r2n�1; �.r/ D 2r2n; v.r/ D r2n�1: (5.1)

The functions % and � satisfy both conditions (1.14) and (3.1), and the function v
satisfies conditions (1.18). For a L2-measurable set F � R2

C
, the volume

V.F / D

Z
F

v.r/ dr dt

is non decreasing with respect to the � -rearrangement, i.e., the condition (1.20) holds.
This follows from Example 2.5 with ˛ D 2n � 1 and ˇ D 2n.

Proof of Theorem 1.7. We divide the proof into three steps.

Step 1. Let F � R2
C

be a L2-measurable set such that 0 < V.F / < C1 and
Q.F / < C1. Let F � be the Steiner symmetric decreasing rearrangment of F in
direction t introduced in Definition 3.1. Note that the function h in (3.2) belongs
to L1

loc.R
C/, because V.F / < C1. By Theorem 3.2, we have Q.F �/ � Q.F /.

Moreover V.F �/ D V.F /, because the density of the volume V, the function v in
(5.1), does not depend on t . Then we have

Isop.F �/ � Isop.F /: (5.2)

Assume that F D F � and Q.F / < C1. The function f W R ! Œ0;C1� associ-
ated with F as in (1.16) is even and decreasing on .0;C1/, because F D F �. As in
(2.25) with B D .0;C1/ and �2 D 1, we have

sup
 2F1.0;C1/

Z
R
f .t/@t .t/ dt � Q.F / < C1;

i.e. f 2 BV.0;C1/, and in particular f is essentially bounded near t D 0. Then
it is f 2 L1

loc.R/ and F is � -rearrangeable, as required in Definition 1.4. Denote
by F ] the � -rearrangement of F . By Theorem 1.5 we have Q.F ]/ � Q.F /, and by
Proposition 2.4 along with Example 2.5 we have V.F ]/ � V.F /. Moreover, by (1.9)
it is V.F ]/ < C1, because V.R2

C
n F ]/ D C1. Then we have

Isop.F ]/ � Isop.F /: (5.3)
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Step 2. Assume that F ] D F and that the sections Fr are (equivalent to) intervals. We
claim that, possibly modifying F in a L2-negligible set, we have

F �
�
0; cnQ.F /

1
2nC1

�
�
�
t0 � dnQ.F /2n=V.F /2n�1; t0 C dnQ.F /2n=V.F /2n�1�;

(5.4)
for some t0 2 R and for dimensional constants cn; dn > 0.

Up to a L2-negligible set, the set F is of the form

F D
˚
.r; t/ 2 R2

C

ˇ̌
0 < r < g.t/; t 2 R

	
(5.5)

for some function g W R ! Œ0;C1� which is decreasing on .t0;C1/ and increasing
on .�1; t0/ for some t0 2 R. We let M D supt2R g.t/. As in (2.25)–(2.27), we have

Q.F / � sup
 2F1.R2

C
/

Z
F

�.r/@t .r; t/ dr dt

�

Z C1
0

�.r/ sup
 2F1.R/

Z
fg>rg

@t .t/ dt dr

D 4
Z M

0
r2n dr D

4M 2nC1

2nC 1
:

Then, we get the estimate

M �
�
.2nC 1/Q.F /=4

� 1
2nC1 : (5.6)

The set F in (5.5) is also of the form

F D
˚
.r; t/ 2 R2

C

ˇ̌
k.r/ < t < h.r/; r 2 RC

	
for some functions k; h W RC ! Œ�1;C1� such that h and�k are decreasing, thanks
to F D F ]. Moreover, we can assume that h.r/ D k.r/ D t0 for all r > M . Thus, as
in (3.4), we have

Q.F / � sup
 2F1.R2

C
/

Z
F

@r
�
%.r/ .r; t/

�
dr dt

� sup
 2F1.RC/

Z
RC

�
h.r/ � k.r/

�
@r
�
%.r/ .r/

�
dr

�M 2n�1 sup
 2F1.RC/

Z
RC

�
h.r/ � k.r/

�
@r .r/ dr

�M 2n�1 lim
r!0C

�
h.r/ � k.r/

�
:

(5.7)
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From (5.7), we infer that

F � R WD
�
0;M

�
�
�
t0 �Q.F /=M 2n�1; t0 CQ.F /=M 2n�1�; (5.8)

and from (5.8) we get an estimate from below for M

V.F / � V.R/ D
Q.F /

n
M: (5.9)

Finally, from (5.6), (5.8) and (5.9), we obtain the inclusion (5.4) with the dimensional

constants cn D
�
.2nC 1/=4

� 1
2nC1 and dn D 1=n2n�1.

Step 3. The infimum in (1.11) is attained.

Let .Fj /j2N be a minimizing sequence for (1.11): Fj � R2
C

are L2-measurable sets
such that 0 < V.Fj / < C1 for all j 2 N and

lim
j!C1

Isop.Fj / D
Isop.A/
!2n�1

> 0: (5.10)

By (5.2) and (5.3) in Step 1, we can without loss of generality assume that Fj D F �j D

F
]
j for all j 2 N. We can also assume that V.Fj / D 1 for all j 2 N. If this is not the

case, we replace Fj with ı�.Fj / where ı�.r; t/ D .�r; �2t / and � > 0 is fixed in such
a way that �2nC2V.Fj / D V.ı�.Fj // D 1.

We have Fj D
˚
.r; t/ 2 R2

C
j jt j < hj .t/; r 2 RC

	
for functions hj W RC !

Œ0;C1� which are decreasing on .0;C1/. By Step 2, the functions hj are uniformly
bounded and moreover, by (5.4), there exists r0 > 0 such hj .r/ D 0 for all r � r0
and for all j 2 N. By Helly’s theorem, possibly taking a subsequence, the sequence
.hj /j2N converges pointwise to a decreasing function h W RC ! Œ0;C1/. Let

F D
˚
.r; t/ 2 R2

C

ˇ̌
jt j < h.r/; r 2 RC

	
:

By the dominated convergence theorem, we have

V.F / D lim
j!C1

V.Fj / D 1: (5.11)

Moreover, �Fj converges to �F in L1
loc.R

2
C
/. By the lower semicontinuity of the

perimeter
Q.F / � lim inf

j!C1
Q.Fj /: (5.12)

From (5.10), (5.11) and (5.12), it follows that Isop.F / D Isop.A/=!2n�1.

Now, let F be any Q-isoperimetric set. By Theorem 1.5, F satisfies F ] D F . More-
over, by Theorem 3.2, the sections Fr are intervals for L1-a.e. r 2 RC. By Step 2, the
set F satisfies the inclusion (1.21).
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Proof of Theorem 1.2. Theorem 1.2 now follows from Theorem 1.7 and from the re-
sults of [24]. Here, we give a brief self contained proof leaving the details to the
reader.

By Theorem 1.7 and Proposition 1.3, the infimum in (1.4) is attained at a set E 2
A. The generating set of F � R2

C
of E is a minimum for (1.11). After a vertical

translation, we can assume that t0 D 0 in (1.21). Possibly modifying F in a L2-
negligible set, we can assume that F � R2

C
is open. The boundary @F of F in R2

C

is rectifiable, and precisely it is the union of two 1-Lipschitz curves, by properties (i)
and (ii) of F in Theorem 1.7. Then the perimeter of F is

Q.F / D

Z
@F

q
�2

1 C 4r2�2
2 r

2n�1dH1; (5.13)

where � D .�1; �2/ is the exterior unit normal to @F , that is defined H1-a.e. on @F .
Formula (5.13) is obtained from (1.6), first transforming integrals into boundary inte-
grals by the divergence theorem, and then taking the supremum over test functions.

The set F minimizes Q.F / among sets with the same volume V.F /. Equivalently,
F minimizes the isoperimetric ratio Isop.F / in (1.10). Because the integrandq

�2
1 C 4r2�2

2 r
2n�1

is elliptic away from the set r D 0, by standard regularity theory we deduce that
@F \ R2

C
is a curve of class C1.

If �2.r; t/ ¤ 0 there is a neighborhood of .r; t/ 2 @F in R2
C

such that in this
neighborhood @F is the graph of a function t D  .r/ with  2 C1.I /, for some
maximal open interval I � RC. By the variational principle, the function  satisfies
the weak equationZ
I

 0.r/'0.r/p
 0.r/2 C 4r2

r2n�1 dr D K

Z
I

'.r/ r2n�1 dr; K D
.2nC 1/Q.F /
.2nC 2/V.F /

(5.14)

for any ' 2 C10 .I /. This can be obtained modifying the piece of boundary of F given
by the graph of  with the graph of  C "', " 2 R, and using the fact that at " D 0
the isoperimetric ratio is a minimum. The weak equation (5.14) yields

�
d

dr

 
r2n�1 0.r/p
 0.r/2 C 4r2

!
D Kr2n�1: (5.15)

Possibly replacing F with a rescaled set, we can assume that K D 2n. It is either
 � 0 or  � 0. Assume that we are in the latter case: then we have  0 � 0.
Integrating equation (5.15) we get

 0.r/ D �
2r.r2n CH/p

r4n�2 � .r2n CH/2
(5.16)
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for some constant H 2 R. The function  0 is defined in the interval I D fr 2 RC W
r2n�1 > jr2n C H jg. If H < 0 the derivative  0 changes sign at r2n D �H . This
is not possible because it is  0 � 0 in I . The case H < 0 gives rise to rotational
symmetric constant mean curvature hypersurfaces (in the Heisenberg group) which
are called nodoids in [25].

If H > 0 then it is I D .r0; r1/ for some 0 < r0 < r1 and in particular  0.r/ tends
to �1 as r ! rC0 . Let J D  .I / D .s0; s1/ and let � W J ! I be the inverse
function of  . This function solves the differential equation

�0 D �

p
�4n�2 � .�2n CH/2

2�.�2n CH/
:

Squaring both sides, taking a derivative and simplifying �0, we get a second order
equation for � of the form �00 D f .�/ for some smooth function f , away from � D 0.
The graph of the solution to this equation for s 2 .s0; s1/ with data �.s1/ D r0 and
�0.s1/ D 0 is contained in @F . If �00.s1/ D 0 then � is constant, which is not possible.
If �00.s1/ ¤ 0, i.e. �00.s1/ > 0, then we contradict property (ii) of F in Theorem
1.7, because @F would be a strictly convex graph r D �.s/ in a neighborhood of
.s1; �.s1// 2 @F . The case H > 0 gives rise to rotational symmetric constant mean
curvature hypersurfaces which are called unduloids in [25]. Eventually, it must be
H D 0, and from (5.16) we get the ordinary differential equation

 0.r/ D �
2r2
p

1 � r2
; r 2 .0; 1/:

For @F \R2
C

is of class C1 it must be  .1/ D 0. With this condition, the solution of
the equation is  .r/ D arccos r C r

p
1 � r2, which gives formula (1.5).
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