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ABSTRACT 

 
In logics of branching-time, ‘possibility’ can be conceived as ‘existence of a suitable set of histories’ 
passing through the moment under consideration. A particular limit case of this is the Ockhamist notion 
of possibility, which is explained as truth at some history. The tree-like representation of time offers 
other ways of defining possibility as, for instance, truth at any history in some equivalence class modulo 
undividedness. In general, we can consider representations of time in which, at any moment t, the set of 
histories passing through t can be decomposed into indistinguishability classes. This yields to a new 
general notion of possibility including, as particular cases, other notions previously considered. 

 

 

1. INTRODUCTION 

 
The modal notions considered in this paper are closely related to the assumption that, 

according to Indeterminism, moments in Time have many different, incompatible, possible 

futures.1
 

If a coin is tossed at moment t0, we can think of two moments t and tʹ, both in the 

future of t0, in which it comes out tails and heads, respectively. This means in particular that 

Time is branching: it does not consist of a single linear sequence of moments; it is made of 

different possible courses of events. A further assumption of Indeterminism is that only the 

future (of a given moment) is manifold; the past is unique. Then, if two courses of events share 

a common moment, they also overlap in the past of that moment.  

 

From a set-theoretical point of view, the above considerations lead to conceive Time as a tree. 

In the context of branching-time semantics, a tree is a pair T = ⟨T,<⟩ in which T is a set and < is 

a binary relation on T with the following properties: irreflexivity (t ≮ t for all t ∈ T ), transitivity 

(if t < tʹ and tʹ < tʹʹ, then t < tʹʹ), and left-linearity (if tʹ < t and tʹʹ < t, then either tʹ < tʹʹ , or tʹʹ < tʹ, 

or tʹ = tʹʹ). The elements of T represent (and are called) moments, and < is the earlier/later 

relation between them. Thus, t < tʹ can be read as ‘t is in the past of tʹ ’, or as tʹ is in the future 

of t’. By irreflexivity, no moment is in the past or in the future of itself. Left-linearity is the set-

theoretical correspondent of the uniqueness of the past. Figure 1 below represents a tree in 

which tʹ < t whenever t can be reached from tʹ moving upward along a line. Then t0 is in the 

past of both t1 and t2, but these two moments are not temporally comparable.  

 

                                                 
*  I am deeply grateful to Roberto Ciuni for pertinent and very useful observations and suggestions. 
** Dipartimento di Matematica Pura ed Applicata, Via Trieste, 63 -35121 Padova -Italy  
1 I will not consider, then, notions of possibility defined in terms of temporal notions like, e.g., the 
Diodorean possibility which is defined as “truth now, or in the future”. For such notions, see (Denyer 
2009) and (Ciuni, 2009), in this volume. 
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Figure 1 

 

A linear order < on the set X is an irreflexive and transitive relation on X such that, for all      

x  y in X, either x < y or y < x. A history in a tree T is a subset h of T, which is linearly ordered 

by < and is maximal for inclusion: for every X ⊆ T , if h ⊆ X and < linearly orders X, then X = h.2 

The marked line h in Figure 1 represents a history. Histories correspond to (complete) courses 

of events and play a crucial role when possibilities are involved in branching-time contexts. 

Sentences like “it is possible that it will come up tails” allow representations in terms of (first-

order) quantification over moments: “there is a future moment in which it comes up tails”. But 

sentences like “it is possible that it will never come up heads” involve a (second order) 

quantification over courses of events.  

Quantification over histories is a peculiar aspect of Prior’s Ockhamist and Peircean 

semantics for branching-time (Prior, 1967), which are defined in Section 2. In both these 

semantics, possibility is viewed as existence of a history: ‘possible at moment t0’ in Figure 1, 

means ‘true in (at least) one of the histories passing through t0’. This agrees with the above 

example of the toss of a coin.  

There are other ways, though, in which possibility can be conceived. Considering Figure 1 

again, we can observe that, at t0, Time branches out in only two ways, despite the fact that 

there are six histories passing through that moment. Possibility at t0 can be viewed as 

openness with respect to take one path or the other. From the set-theoretical point of view, 

this notion of possibility is based on the undividedness relation between histories (Section 3), 

which is particularly relevant in Belnap’s s.t.i.t. logic of agency (Belnap et al. 2001).  

The notion of undividedness can be generalized by considering other ways of ‘grouping 

histories together’. In (Zanardo, 1998) I have considered the notion of indistinguishability 

(possibly for a given agent) between histories. Intuitively, we can assume that, at any given 

moment in Time, some histories passing through that moment cannot be distinguished from 

one-another.  

Consider for instance a game G with two players, P1 and P2, and let M be the set of all 

possible moves. Then a match is a sequence m1
0
,m2

0
,m1

1
,m2

1
...  of moves, where the superscripts 

denote the player and m 𝑖
𝑛 belongs to a set M 𝑖

𝑛
 ⊆ M. The set M 𝑖

𝑛
 is determined by the situation 

reached at that step of the match. The rules of G might establish, for instance, that the match 

ends (and Pi loses) when M 𝑖
𝑛 is empty. The set of all possible matches of the game can be 

                                                 
2 Histories are sometimes chronicles, for instance in (Øhrstrøm and Hasle, 1995) and (Øhrstrøm, 2009)  



Alberto Zanardo – Modalities in Temporal Logic 
 

3 

 

viewed as the set of histories in a tree structure TG.3 At any stage t0 of a match, the choice of 

the player in turn depends, among other things, on the investigation of the possible evolutions 

of the match after that stage. In this context, it is quite reasonable to assume that the player is 

unable to distinguish different evolutions if they agree (overlap) on a sufficiently large number 

of moves. That number depends of course on the complexity of the game as well as on the 

computing ability of the player.  

Differently from undividedness, indistinguishability is a primitive notion. Thus, in Section 4, I 

will consider temporal structures consisting of a tree endowed with a family of binary 

(indistinguishability) relations, indexed on the set of moments. This will allow us to define 

other kinds of possibilities. In particular, in Section 5, I will consider the notion of possibility 

related to the notion of choice. It will be shown that indistinguishability provides a general 

framework for dealing with all these modal notions.  

 

2. OCKHAMIST AND PEIRCEAN SEMANTICS 

 
In this paper only propositional languages are considered: starting with a denumerable set 

{p0,p1,...,pn,...} of propositional variables, complex formulas are built by means of the usual 

Boolean operators.4
  

Temporal languages have in general two further operators, P and F, which 

are read as ‘at least once in the past’ and as ‘at least once in the future’ (of the moment under 

consideration). The interpretation of the past operator is rather obvious: if α is true at a 

moment t, then Pα is true at any tʹ
 

in the future of t. When Time is given a tree-like structure, 

the interpretation of the operator F is more controversial. This issue is widely discussed in 

(Prior, 1967), where Ockhamist and Peircean semantics are proposed as solutions to the 

problem of interpreting formulas of the forma Fα in branching-time contexts.5
 

 

The peculiar aspect of the Ockhamist reading of the operator F is that, in general, it makes 

no sense to ask whether formulas of the form Fα are true or false at a given moment. 

Ockhamist truth is relative to pairs ⟨t, h⟩, where the moment t belongs to the history h. This 

means that the truth value of Fα at ⟨t, h⟩ is established on the basis of the truth value of α at 

pairs ⟨tʹ, h⟩, where tʹ 
 

is in the future of t and belongs to h.6  

Since histories are linear orders, Ockhamist logic of the operators P and F is linear-time 

logic. In order to deal with the branching aspect of Time, Ockhamist language has a modal 

operator  which is read “at some history passing through the moment under consideration”. 

                                                 
3 The technical details of the definition of TG are a bit complex since a single move m can occur in 

different matches. Thus, we have to consider as elements of TG the finite sequences σ = ⟨m0, m1,...,mn⟩ 
that are compatible with the rules of G, and we set σ < σʹ whenever σ is an initial segment of σʹ. 
4
 The restriction to the propositional case agrees with most of the works on the subject of this paper. 

The extension to first-order languages are technically very complex and the quantification within or 
without tense operators raises difficult, but extremely intriguing, philosophical problem 
5 It is interesting to observe that Ockhamist and Peircean logics are quite similar to the logics CTL* and 
CTL (Computation Tree Logic), which were independently defined as application of temporal logic to 
Theoretical Computer Science (Clark et al., 1986; Emerson and Halpern, 1986).  
6 Sometimes, truth at ⟨t, h⟩ is explained as “truth at t, under the assumption that h is the history that 

will actually take place”. But, as shown in (Belnap and Green, 1994) and (Belnap et al., 2001), the notion 
of actual future is rather debatable. This matter is widely discussed in (Øhrstrøm, 2009) in this volume.  
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Then, as observed in the introduction, the first notion of possibility that we find in a branching-

time context is “truth, at some course of events”.  

Given any tree T, the set of all histories in it will be written as H(T). We write Ht(T), or Ht 

when T is given by the context, to denote the set of histories passing through the moment t. 

An Ockhamist evaluation of the propositional variables in T is a function V assigning each 

propositional variable a set pairs ⟨tʹ, h⟩ in which t ∈ h ∈ H(T). We read ⟨tʹ, h⟩ ∈ V (pn) as “pn is 

true at ⟨tʹ, h⟩”.7
  

Ockhamist truth relation will be written ⊨Ock and is recursively defined by rules O0 to O5 

below. T,V ⊨Ock α [t, h] means that “α is true at  ⟨tʹ, h⟩ in T with the evaluation V”.  

 
O0 : T,V ⊨Ock pn [t, h]          iff ⟨tʹ

 

,h⟩ ∈ V (pn) 
O1 : T,V ⊨Ock ¬α [t, h]        iff T,V ⊭ Ock α [t, h] 
O2 : T,V ⊨Ock α ∧ β [t, h] iff T,V ⊨Ock α [t, h]  and  

T,V ⊨Ock β [t, h] 
O3 : T,V ⊨Ock Fα [t, h] iff ∃ tʹ

 

∈ h : t < tʹ 
 

and  

T,V ⊨Ock α [tʹ, h] 

O4 : T,V ⊨Ock Pα [t, h]        iff ∃ tʹ 
 

< t : T,V ⊨Ock α [tʹ, h]  

O5 : T,V ⊨Ock α [t, h] iff ∃ hʹ ∈ Ht : T,V ⊨Ock α [t, hʹ]  

                       

Universal closures of T,V ⊨Ock α [t, h] (with respect to V, or ⟨t, h⟩, etc.) are written in the 

usual way. For instance T,V ⊨Ock α means that T,V ⊨Ock α [t, h] holds for all t and h ∋ t. If ⊨Ock α, 

then we say that α is an Ockhamist validity.  

The dual operators H, G, and □ are defined in the usual way as ¬P¬, ¬F¬, and ¬¬, 

respectively, and their meaning is given by the obvious universal quantification over moments 

or over histories.  

Ockhamist truth of formulas of the form α or □α is history independent, in the sense that 

T,V⊨Ock α [t, h] implies T,V ⊨Ock α [t, hʹ] for all hʹ ∋ t, and similarly for □α.8 Also formulas of 

the form Pα enjoy a sort of history independency: the truth of Pα at ⟨t, h⟩ does not depend on 

h whenever α is built from formulas of the form □α1,..., □αn without any use of the operator F. 

If history independent evaluations are adopted (see Footnote 7), then we have only to assume 

that α is F-free. There is a substantial difference, though, between the independence from 

histories of formulas of the form α and that of formulas Pα. In the first case, the property is 

due to the quantification over histories in the semantics of the operator , while, in the second 

case, the property is due to the tree-like structure of time: all histories passing through the 

                                                 
7 Some authors consider history independent evaluations, that is, evaluations assigning sets of moments 
to propositional variables. With these evaluations, the truth condition O0 below would be simply t ∈ V 

(pn) and pn ≡ □pn would be a validity. This corresponds to the idea that propositional variables represent 
atomic facts (like “it is raining”) and hence their truth depends only on the moment under 
consideration. Prior himself discusses this issue in (Prior, 1967). A brief discussion can also be found in 
(Zanardo, 2006b).  
8 The logic CTL* distinguishes between state formulas and path formulas. The former are those 

equivalent to formulas of the form □α, whose truth depends only on the moment (state) and does not 
depend on the particular history (path) we are considering. 
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moment at hand agree in the past of that moment.  

 
Peircean truth is relative to moments and the quantification over histories is implicit in the 

operator F which is interpreted as “at some future moment, on each history”. Peircean 

language has also a ‘weak’ future operator, f, whose meaning is “at some future moment, on 

some history”.  

Peircean evaluations on a tree ⟨T,<⟩ are functions V assigning a set of moments to each 
propositional variable. Peircean truth relation ⊨Peir is defined by rules P0 to P5 below. We read 
T,V ⊨Peir α [t] as “α is true at t in T with the evaluation V ”.  
 

P0: T,V ⊨Peir pn [t]      iff t ∈ V (pn) 

P1,2:  the usual rules for ¬ and ∧   

P3: T,V ⊨Peir Fα [t]    iff ∀h ∈ Ht, ∃tʹ ∈ h :     

t < tʹ and T,V ⊨Peir α [tʹ]  

P4: T,V ⊨Peir fα [t]      iff ∃h ∈ Ht, ∃tʹ ∈ h : 

t < tʹ and T,V ⊨Peir α [tʹ] 
P5: T,V ⊨Peir Pα [t]     iff ∃tʹ

 

< t : T,V ⊨Peir α [tʹ]  

                                      

As observed above, in Peircean semantics the second-order quantification over histories is 

implicit in the truth rules for the operators F and f. Thus, we don’t have modal operators in the 

usual sense.
9

 On the technical side, it must be observed that in rule P4 the expression ∃h ∈ Ht, 

∃th ∈ h : t < tʹ  ... is equivalent to ∃tʹ > t... and hence this rule is expressible by a first-order 

quantification over moments.  

The dual operator H = ¬P¬  has the obvious meaning also in Peircean logic, and this holds 

similarly for future universal operators G = ¬f¬ which can be read “always in the future”. The 

operator g = ¬F¬  is more interesting: by P3, its meaning is “always in the future, on some 

possible history”. If α means “it comes up heads”, then the sentence “it is possible that it will 

never come up heads” considered above is expressed by g¬α.  

Peircean language can be viewed as a fragment of the Ockhamist one because the 

operators f and F can be expressed as F and □F.10 Despite this technical relation, it is evident 

that the two approaches correspond to deeply different conceptions of the meaning of tensed 

assertions in branching-time contexts.  

 

2.1 BUNDLED TREE SEMANTICS 

 
The Ockhamist operator  and the Peircean operator F quantify over the set Ht of all the 

histories passing through the moment t at hand. Various works in the literature have 

                                                 
9 In the neighborhood semantics of (Segerberg, 1971), or in the minimal models of (Chellas, 1980) we 
can actually see a semantics for modal logic similar to Peircean semantics for the operator F. 
10 Since, in Peircean semantics, propositional variables are evaluated at sets of moments, this 
embedding of Peircean language into Ockhamist one preserves truth on if history independent 
(Ockhamist) evaluations are considered -see Footnote 7. 
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considered branching time semantics in which these operators quantify over a fixed set of 

histories passing through t, possibly different from Ht. Formally, a bundled tree is a pair ⟨T, β⟩ 

in which β is a set of histories such that ∪ β = T, that is, every moment in T belongs to some 

element of β. In Figure 2, for instance, every moment belongs to some hi and hence we can 

consider a bundle β consisting of those histories. We have β  H(T) because hω  β. 

 

Figure 2 

   

Ockhamist and Peircean semantics can be based on bundled trees: the only difference is 

that the quantification over Ht in O5 and P3 is replaced by quantification over Ht ∩ β.  

From the mathematical logic point of view, moving from trees to bundled trees allows to 

turn a second-order quantification into a first-order one and the matter offers many technical 

problems and results (Burgess, 1979; Burgess, 1980; Zanardo, 2006b; Zanardo et al. 1999). On 

the philosophical side, quantifying over histories in a bundle amounts to hold that, at any 

moment in Time we can consider a set of admissible histories and that there might be maximal 

linear sequences of moments which are not admissible. This matter is discussed, for instance, 

in (Belnap et al., 2001) and in (Thomason, 1984), where this point of view is criticized: roughly 

speaking, excluding the history hω in the structure of Figure 2, seems to lead to 

counterintuitive consequences of some plausible premises -see (Belnap et al., 2001, pp.199-

203). In (van Benthem, 1986), instead, the admissible history approach is defended. In private 

correspondence, van Benthem writes: putting in a set of runs [i.e. histories] explicitly at least 

invites us to state interesting conditions on them, that explain the temporal reasoning practice 

we want to analyze.  

In the sequel of this paper I will still consider only standard structures in which history 

quantifiers act on the whole sets Ht, but for all those structures the bundled tree semantics can 

be adopted as well.  

 

3. UNDIVIDED HISTORIES - IMMEDIATE POSSIBILITIES 

 

Definition 3.1 The histories h1 and h2 are undivided at the moment t in the tree ⟨T,<⟩ (in 

symbols, Ut(h1, h2)) whenever there exists a moment tʹ
  

> t such that tʹ
 

∈ h1 ∩  h2.  

 
The relation Ut is called undividedness at t and is an equivalence relation on Ht. The 
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equivalence class of h modulo Ut will be written [h]U
𝑡

. As observed in the introduction, 

equivalence classes modulo Ut represent the ways in which Time branches out at t and it is 

natural to refer to them as immediate possibilities at t (Belnap, 1992). For instance, in Figure 1 

there are two immediate possibilities at t0 while at any t < t0 there is only one immediate 

possibility. In Belnap’s s.t.i.t. logic of agency (Belnap et al., 2001), undividedness is deeply 

involved in connection with the notion of choice (see also the Theory of Causation in (von 

Kutschera, 1993)). These issues will be discussed below in Section 5.  

In (Zanardo, 1998) I have considered an extension of Ockhamist language obtained by 

adding an operator U
 

quantifying within equivalence classes modulo undividedness. The 

semantics of this operator is given by the following rule  

 
T,V ⊨Ock 

U
 

α [t, h]  iff  ∃hʹ
 

: Ut (h, hʹ) and T,V ⊨Ock α [t, hʹ] 

 

Some combinations of U
 

with Ockhamist operators are equivalent to Ockhamist 

expressions. For instance, it easy to verify that  

 

⊨Ock 
U

 

α ↔ α  and ⊨Ock 
U

 

□α ↔ □α 

 
but in general the operator U

 

is not expressible in Ockhamist language: for instance, the 

formula UGp0 is not equivalent to any Ockhamist formula (Zanardo, 1998, Prop. 3.1). Beyond 

the technical details, the non-equivalence between the standard Ockhamist language and the 

present enriched one reflects the fact that, in general, quantifications over a given equivalence 

class modulo Ut cannot be simulated by quantifications over the whole Ht.  

In this enriched version of Ockhamist language, the possibility operators,  and U, still 

quantify over histories, but a quantification over immediate possibilities can be simulated by 

combining those operators. For instance, the formula □Uα expresses the fact that α holds at 

(every history of) some immediate possibility.  

In the above-mentioned paper I have also considered Peircean-like operators quantifying 

over the set of immediate possibilities at a given moment of a branching-time structure. For 

instance, I have considered an operator therein written as fU
 

defined by  

 

⊨Peir f
U

 

α [t]   iff   there is an immediate possibility π at t such that 

                                              ∀h ∈ π, ∃tʹ ∈ h : t<tʹ and ⊨Peir α [tʹ]  

 
Also this operator is not definable in the usual Peircean language (Zanardo, 1998, Prop. 

3.5).  

The results sketched above show that, in order to deal with reasonable notions of 

possibility related to undividedness, new operators are needed. In Section 5 I will show that 

these notions of possibility can be viewed as a particular case of possibility related to 

indistinguishability.  
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3.1 RELATIVE CLOSENESS -TOPOLOGY 

 
Undividedness at t, as a partition of Ht, determines a sort of relative closeness relation in 

this set: if Ut(h, h1) holds, but Ut(h, h2) does not, then it makes sense to say that h is closer, or 

more similar, to h1 than to h2. In general, we can set  

 
Cl(h, h1,h2)  ⇔  h ∩ h2 ⊂ h ∩ h1                                                       (3.1) 

 

where ⊂ is proper inclusion. The ternary relation Cl is called relative closeness and Cl(h, h1, h2) 

is read as h is closer to h1 than to h2. 

Differently from undividedness, relative closeness does not depend on a particular 

moment. It is also worth observing that this relation is not always definable in terms of 

undividedness. Consider for instance the tree of Figure 3 and assume that the intersection       

h ∩ h1 ∩ h2 has no maximum, while h ∩ h1 has just one moment which does not belong to h2. 

In this case, for any moment t, Ut(h, h1) ⇔ Ut(h, h2), but we have also Cl(h, h1, h2).  

 

Figure 2 

 

The natural environment for relative closeness issues is topology. Given any tree T, we can 

consider the topology τT on H(T) generated by the set {Ht : t ∈ T } (Sabbadin and Zanardo, 

2003). It is straightforward to verify that Cl(h, h1,h2) holds if and only if there exists an open set 

X in τT such that h, h1 ∈ X, but h2 ∉ X.  

The topological approach is not only a different way of describing the usual set-theoretical 

relations between moments and histories in a tree. This approach provides also a different 

ontological perspective under which branching-time semantics can be viewed. In the papers 

(Zanardo, 2004; Zanardo, 2006a) I have inverted (dualized) the usual perspective which 

describes histories as set of moments. It turns out that we can start from a primitive notion of 

history with a suitable topology on the set of all histories, or with a (primitive) notion of 

relative closeness having two suitable, quite natural, properties: (1) every history is closer to 

itself than to any other history, and (2) if h is closer to hʹ   than to hʹʹ, then it is not the case that 

h is closer to hʹʹ
 

than to hʹ. Representation results can be proved and, as far as Ockhamist 

validity is concerned, the dual approach turns out to be equivalent to the original one.  

 

4. INDISTINGUISHABLE HISTORIES - RECOGNIZED POSSIBILITIES 

 

In the Introduction I considered an example of indistinguishable histories in the framework 

of a given game. In that example two histories cannot be distinguished at the moment t if, in 

the future of t, they overlap on a segment Δt whose length depends on the complexity of the 
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game and on the computing ability of the player. If Δt > 0, then indistinguishability can be 

viewed as a strengthening of undividedness: any two indistinguishable histories are also 

undivided.  

Examples of the opposite situation can be considered as well. Assume for instance that the 

agent a is at a cross-roads at the present moment t0, and that he can decide either to turn left 

or to turn right. Then the set Ht0 
can be decomposed into two sets Hleft and Hright according to 

the choice of the agent a. Given any hl ∈ Hleft and hr ∈ Hright we have that hl and hr are divided at 

t0 because, in the near future of t0, they differ, at least, in a’s choice. If the notion of 

indistinguishability we are considering is relative to the knowledge of some other agent b who 

has no access to a’s activity, then hl and hr might be indistinguishable at t0. This happens, for 

instance, when the only difference between hl and hr in the near future of t0 is just the choice 

of the agent a.  

In any case, any reasonable notion of indistinguishability seems to have a temporal 

dimension: if two histories are distinguishable now, they cannot become indistinguishable at 

some future moment. This justifies the following formal definition.  

 
Definition 4.1 An I-tree is a pair ⟨T,I⟩ in which T is a tree and I is an indistinguishability function 

on T: the domain of I is T and, for all t ∈ T , It in an equivalence relation on Ht such that, It(h, hʹ) 

& tʹ
 

< t⇒ Itʹ (h, hʹ).  

 
At any moment t in Time, we can consider the partition of Ht into equivalence classes 

modulo It. The class of the history h, that is {hʹ: It(h, hʹ)}, will be denoted by [h]𝐈
𝑡t

. According to 

the intended meaning of the relations It, single histories cannot be recognized at that moment: 

the only recognizable entities at t are classes [h]𝐈
𝑡
. Each of these classes represents a 

recognized way in which Time branches out at t, and hence we will refer to them as recognized 

possibilities at t. Sometimes we will write i ∈ It to mean that i is an equivalence class modulo It; 

this will make the notation lighter.11
  

The set of all recognized possibilities in an I-tree ⟨T,I⟩ will be written as TI. In the technical 

definition of this set we have to take into account that there might be recognized possibilities 

[h]𝐈
𝑡
=[h] 𝐈

𝑡′
 with t ≠ tʹ

 

. No confusion can arise if we consider pairs ⟨t, i⟩:  

 
TI = {⟨t, i⟩: t ∈ T and i ∈ It}                                                     (4.2) 

 
Quantifying over It or within some element of It give rise to different new notions of 

possibility at t.12 In (Zanardo, 1998) I have considered a language containing Ockhamist-like 

operators, as well as Peircean-like ones. The starting point is an Ockhamist notion of truth, but, 

                                                 
11 In mathematical terms, this means that the equivalence It and its quotient set are identified.  
12 A more exhaustive treatment of indistinguishability would have required a notion of agent-indexed 
indistinguishability functions Ia, where a ranges over a set of agents: two histories may be 
distinguishable for an agent, but indistinguishable for another one. Accordingly, we would have 
different, simultaneous, notions of possibility and the language would have agent-indexed possibility 
operators. Such a distinction, though, goes beyond the aim of this work, where we consider only the 
basic properties of possibility related to indistinguishability. 
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since some histories may be indistinguishable from one-another, we consider truth at pairs     

⟨t, i⟩: at the moment t, truth at ⟨t, h⟩ and truth at ⟨t, hʹ⟩ cannot be distinguished if It(h, hʹ). On 

the other hand, differently from O3, we interpret the operator for the future in a Peircean way, 

because i is generally constituted by many histories.  

An evaluation on an I-tree ⟨T,I⟩ is a function V assigning a set of pairs ⟨t, i⟩, with i ∈ It, to 

each propositional variable. Then truth is relative to recognized possibilities. We write ⊨Ind for 

truth in I-trees. The following rules provide a semantics for a language with an Ockhamist 

operator , and the Peircean operators F and f (in addition to the past operator P).  

 
I0 :  ⟨T,I⟩, V ⊨Ind pn [t, i]    iff ⟨t, i⟩  ∈ V (pn) 

I1,2 :  the usual rules for ¬ and ∧    

I3 :  ⟨T,I⟩, V ⊨Ind Fα [t, i]    iff ∀h ∈ i, ∃tʹ
 

∈ h :                                                

t < tʹ
 

and ⟨T,I⟩, V ⊨Ind α [tʹ
 

, [h] 𝐈
𝑡′
] 

I4 :  ⟨T,I⟩, V ⊨Ind fα [t, i]    iff ∃h ∈ i, ∃tʹ
 

∈ h :  

t < tʹ
 

and ⟨T,I⟩, V ⊨ Ind α [tʹ
 

, [h] 𝐈
𝑡′
] 

I5 :  ⟨T,I⟩, V ⊨Ind Pα [t, i]   iff ∃tʹ
 

<t : ⟨T,I⟩, V ⊨Ind α [tʹ
 

, [h] 𝐈
𝑡′
] 

I6 :  ⟨T,I⟩, V ⊨Ind α [t, i]   iff ∃iʹ∈ It : ⟨T,I⟩, V ⊨Ind α [t, iʹ] 
  

 

We observed above that the second-order quantification in Rule P4 is equivalent to a first-

order quantification moments. This does not happen for the quantification over histories in I4 

because this quantification is restricted to the elements of the recognized possibility i. The 

quantification over It in I6, instead, can be replaced by a quantification over Ht: the right side of 

this rule is equivalent to ∃h ∈ Ht : T,V ⊨Ock α [t, [h]𝐈
𝑡
]. Like in the case of Ockhamist semantics, 

the truth of α, or of □α at ⟨t, i⟩ does not depend on i.  

The set TI
 

of recognized possibilities in an I-tree can be endowed with an order relation and 

with an equivalence relation in a natural way. We set 

 

⟨t, i⟩  ⟨τ, j⟩
Def
≡   t < τ and j ⊆ i 

(4.3) 

⟨t, i⟩ ∼ ⟨τ, j⟩
Def
≡   t = τ 

 

The following proposition is a straightforward consequence of Definition 4.1.  

 

Proposition 4.2 For every I-tree ⟨T,I⟩,  

(1) ≺ is a tree relation on TI; and  

(2) if ⟨t, i⟩ ∼ ⟨τ, j⟩, then the restriction of ∼ to {⟨tʹ, iʹ⟩: ⟨tʹ, iʹ⟩ ≺ ⟨t, i⟩} × {⟨τʹ, jʹ⟩: ⟨τʹ, jʹ⟩ ≺ ⟨τ, j⟩} is an 

order isomorphism.  

 

The tree ⟨TI, ≺⟩ will be denoted by TI
 

. On the basis of Proposition 4.2, the evaluation rules I0 

to I6 can be rewritten as evaluation rules in structures ⟨TI, ≺, ∼⟩. It turns out that the semantics 
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for the operators F, f and P in these structures is just Peircean semantics in the tree TI, while  

is interpreted as the modal S5-operator with accessibility relation ∼.  

An interesting peculiarity of the I-tree semantics is that it can be viewed as a unified 

framework having Ockhamist and Peircean semantics as limit cases (Zanardo, 1998). If in fact it 

is the total relation for any t, that is It(h, hʹ) for all h, hʹ ∈ Ht, then every It contains only one 

equivalence class which is Ht. In this case the map φ : ⟨t, i⟩ → t is an isomorphism from TI onto T, 

and the equivalence ∼ is equality. This means in particular that F and f have the same meaning 

as in Peircean logic and that the possibility operator is vacuous, i.e. ⟨T,I⟩⊨Ind α ≡α for all 

formulas α.  

If conversely It is the diagonal relation for all t, that is It(h, hʹ) iff h = hʹ, then every class in It 

contains exactly one history. In particular, the operators F and f coincide - i.e. ⟨T,I⟩⊨Ind fα ≡ Fα 

for all α - and  has the same meaning as in Ockhamist logic. In this case TI
 

is the union of 

disjoint linear orders, and the relation ∼ renders the structure an Ockhamist frame (Zanardo, 

1985; Zanardo, 1996) or, with some minor differences, a Leibnizian structure, in the 

terminology of (Øhrstrøm and Hasle, 1995).  

The properties of I-trees have of course a topological counterpart. In particular, the 

topology τTI is a refinement of τT (see Subsection 3.1). In the two limit cases considered above 

we have that τTI is not a proper refinement when T and TI are isomorphic, while, in the other 

case, τT
I  is the discrete topology.  

 

5. CHOICES 

 
The general framework provided by the I-tree semantics allows us to deal with the 

particular case in which possibility is meant as possibility (for a given agent, at a given 

moment) of choosing among different alternatives. The notion of choice we consider here is 

the one involved in Belnap’s logic of agency, as well as von Kutschera’s logic of causation.  

A choice function for an agent a in a tree-like representation of Time is a function Ca 

assigning a partition Ca,t of Ht to each moment t. In (Belnap et al., 2001, p. 34) we read (using 

the notation of the present paper)  

 

...the idea is that, by acting at t, the agent a is able to determine a particular one of the 

equivalence classes from Ca,t within which the future course of history must then lie, but this is the 

extent of his influence.  

 
The elements of Ca,t can be thought of as the ways in which the world goes on, depending 

on a’s actions. Thus, if a decides to spend the week-end at home, and this is really a choice 

allowed to him, then he constraints the course of events to lie in an element of Ca,t which 

contains only histories in which a is at home in the week-end. One of the requests on the 

partitions Ca,t corresponds to the idea that no choice of a at t can distinguish two histories that 

are undivided at t:  

 

if Ut(h, hʹ) and h ∈ X ∈ Ca,t then hʹ ∈ X                                           (5.4)  
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The other property that choice functions must have in the context of logic of agency is 

significant when multiple agents are considered. For any set A of agents and any                        

Xa ∈ Ca,t (a ∈ A), ∩
a∈A 

Xa  ∅. This property is discussed in (Belnap et al., 2001, Sect. 7C.4) where 

it is called Independence of Agents.13 As observed in Footnote 12, considering more than one 

agent is beyond the goals of the present paper; thus, in the sequel, we denote choice functions 

by C and the index a is suppressed.  

Choice functions are particular indistinguishability functions. If in fact Ct(h, hʹ) and tʹ
 

< t, 

then h and hʹ are undivided at tʹ
 

and hence, by (5.4), Ctʹ(h, hʹ) holds as well. On the other hand, 

if the indistinguishability function I contains undividedness, then it is a trivially a choice 

function, and hence choice functions are precisely the indistinguishability functions that 

contain undividedness. The following proposition provides a characterization of the I-trees 

with this property.  

 
Proposition 5.1 (Proposition 4.2 in (Zanardo, 1998)) For every I-tree ⟨T,I⟩  

 
 ⟨T,I⟩⊨Ind Pp → □Pp ⇔ 

⇔ ∀t ∈ T, ∀h, hʹ ∈ Ht, Ut(h, hʹ) → It(h, hʹ) 

 
It is interesting to observe that this characterization of choice functions involves the 

formula Pp → □Pp which expresses the unpreventability of the past: if something happened, 

then it is necessary (now unpreventable) that it happened.  

In Ockhamist logic, the formula Pα → □Pα is valid when α is constructed from formulas of 

the form □α1,..., □αn without any use of the operator F. If propositional variables are evaluated 

at sets of moments (see Footnote 7), then the equivalences pi ≡ □pi are Ockhamist validities, 

so that the formula Ppn → □Ppn is valid as well. Also in this case, though, it is not difficult to find 

counterexamples to the Ockhamist validity of, e.g., PFp → □PFp.  

Adopting the I-tree semantics, instead, the assumption that I is a choice function (that is    

Ut ⊆ It for all t) guarantees that Pα → □Pα is true for any formula α, possibly containing future 

operators. I think that this unexpected relation between the notion of choice in branching-time 

and unrestricted formulation of unpreventability of the past is rather intriguing and deserves 

further investigations.  

 

The following proposition shows that the case in which indistinguishability is contained in 

undividedness is definable as well. Then, we can characterize the particular case in which 

indistinguishability is exactly undividedness.  

 
Proposition 5.2 For every I-tree ⟨T,I⟩, 

 
 ⟨T,I⟩⊨Ind fp ∧ g¬p → F(g¬p ∧ (p ∨ fp)) ⇔ 

                                                 
13 In many works on Belnap’s theory of agency this property is expressively described as “something 
happens”.  
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⇔∀t ∈ T, ∀h, hʹ ∈ Ht, It(h, hʹ) → Ut(h, hʹ) 

 
Proof. Assume the right side of ⇔ and ⟨T,I⟩, V ⊨Ind fp ∧ g¬p [t, i] for some evaluation V, 

moment t, and i ∈ It. This means that there are two histories h1, h2 ∈ i such that, for some t1 > t 

in h1, and for all tʹ
 

> t in h2, 

 

(∗) ⟨T, I ⟩,V ⊨Ind p [t1, [h1] 𝐈
𝑡′
] and (∗∗) ⟨T, I ⟩,V ⊨Ind ¬p [t, [h2] 𝐈

𝑡′
] 

 

Let h be any history in the recognized possibility i; then It(h, h1) and It(h, h2). Since we are 

assuming that indistinguishability is contained in undividedness, there is a moment t0 ∈ h ∩ h1 

∩ h2 such that t < t0. 

  

Two cases can be considered: either t has an immediate successor in h ∩ h1 ∩ h2, or t has no 

immediate successor in h ∩ h1 ∩ h2. In both cases we can assume that t0 ≤ t1. By (∗), ⟨T,I⟩,V ⊨Ind 

p ∨ fp [t0, [h1] 𝐈
𝑡0

], and, by (∗∗), we have also ⟨T, I⟩,V ⊨Ind g¬p [t0, [h2] 𝐈
𝑡0

]. Then ⟨T, I⟩,V ⊨Ind g¬p ∧ 

 (p ∨ fp)[t0, [h] 𝐈
𝑡0

]. Since h is an arbitrary element of i, this implies that ⟨T,I⟩,V ⊨Ind F(g¬p ∧  

(p ∨ fp)) [t, i]. This concludes the first part of the proof. Conversely, assume that there exist t0, 

h1, h2 in ⟨T,I⟩ such that It0(h1, h2), but not-Ut0(h1, h2). Consider any evaluation V such that  

 

V (p) = {(t, [h] 𝐈 ) : h ∈ [h1] 𝐈
𝑡0

∩ [h]𝐔
𝑡0

and t0 <t} 

 

This implies that ⟨T, I⟩,V ⊨Ind fp ∧ g¬p [t0, [h2] 𝐈
𝑡0

]. Consider any moment t such that t≥tʹ
 

for 

some tʹ>t0 in h2. Since h2 is not Ut0 
-related to h1, we have that, for every h passing through t, 

⟨T, I⟩,V ⊨Ind ¬p [t, [h]
𝐈
𝑡
]. This implies in particular that ⟨T, I⟩,V ⊨Ind ¬(p ∧ fp)[tʹ

 

, [h2] 𝐈
𝑡′
] for every  

tʹ
 

>t0 in h2. Then  ⟨T, I⟩,V ⊨Ind F(g¬p ∧ (p ∨ fp)) [t0, [h2] 𝐈
𝑡0

].                                                              ∎ 

 

6. CONCLUSIONS 

 
We have considered various modal notions in branching-time contexts and in all cases 

possibility is viewed as existence of a suitable set of courses of events. In Ockhamist logic 

possibility is ‘existence of (at least) one history’, while, if undividedness is taken into account, 

possibility can be conceived as ‘existence of an equivalence class modulo undividedness’. In 

these two perspectives, possibility can be defined on the basis of the set-theoretical structure 

of Time.  

Some examples show that it makes sense to assume that, at any moment in Time, some 

histories cannot be distinguished from others. We can have various notions of 

indistinguishability depending on the context to which branching time logic is applied. This 

yields to consider tree-like structures endowed with (moment relative) indistinguishability 

relations, and to conceive possibility as existence of indistinguishability classes.  

These enriched structures provide a unified semantics for branching-time logics as well as 

a general framework for dealing with choices. It is shown that the particular indistinguishability 

relations corresponding to choices and undividedness are definable relations.  
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