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[1] This study develops a nudging data assimilation algorithm for estimating unknown
pumping from private wells in an aquifer system using measured data of hydraulic head.
The proposed algorithm treats the unknown pumping as an additional sink term in the
governing equation of groundwater flow and provides a consistent physical interpretation
for pumping rate identification. The algorithm identifies the unknown pumping and, at the
same time, reduces the forecast error in hydraulic heads. We apply the proposed algorithm
to the Las Posas Groundwater Basin in southern California. We consider the following
three pumping scenarios: constant pumping rates, spatially varying pumping rates, and
temporally varying pumping rates. We also study the impact of head measurement errors
on the proposed algorithm. In the case study we seek to estimate the six unknown
pumping rates from private wells using head measurements from four observation wells.
The results show an excellent rate of convergence for pumping estimation. The case
study demonstrates the applicability, accuracy, and efficiency of the proposed data
assimilation algorithm for the identification of unknown pumping in an aquifer system.
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1. Introduction

[2] Successful modeling of groundwater flow in aquifer
systems relies not only on accurate calibration of model
parameters, but also on the correct identification of the
factors that force the flow, such as natural recharge and well
pumping. While well locations and discharge generally are
assumed to be known, estimation of recharge rates may be
obtained as closure components of water balance equations
for the entire hydrological system [Scanlon et al., 2002;
Sanford, 2002] or derived from groundwater level measure-
ments [Healy and Cook, 2002]. The reliability of the
estimations using a water budget obviously is limited by
the accuracy of the different terms in the continuity equa-
tion, whereas methods that take advantage of head measure-
ments in principle provide better accuracy. These methods
generally are based on some kind of optimization, such as
minimizing the least squares error where the error is defined
as the difference between the model output and observation
at selected locations.
[3] Similar to the identification of recharge rates, but

much less studied, is the problem of estimating groundwater
pumping rates and related uncertainty. In intensively
exploited regions, groundwater extraction commonly is
used to increase water supply reliability, in particular for
agricultural or industrial purposes. Even though well loca-
tion generally is known, the pumping rate as a function of

time is often not available, particularly for private wells. In
California, ‘‘property rights do not require land owners in
nonadjudicated basins to measure their groundwater pump-
ing rates and publicly disclose them’’ [Harter, 2003]. In fact,
lack of data is not unique to California, but is a common
problem across the entire United States and worldwide. A
typical situation occurring during the development phase of a
groundwater model is the existence of (almost) sufficient
information regarding the number and location of production
wells, but only partially known pumping rate data [Ruud et
al., 2004]. Even if pumping rates are reported, the frequency
of reporting is generally insufficient.
[4] Estimation of groundwater pumping rates has been

studied in a number of publications [Koczot, 1996; Hanson
et al., 2003; Ruud et al., 2004; Tung and Chou, 2004;
Farrar et al., 2006; Lin and Yeh, 2008]. Methodologies
based upon indirect evidence have been used in particular
for estimating past extraction conditions. Koczot [1996]
developed an estimation technique for agricultural basins
in which the unknown pumping rates were estimated on the
basis of water demand of the different crops. The technique
later was applied successfully by Hanson et al. [2003] and
Farrar et al. [2006]. The approach starts from land use
maps and can be very useful in particular for the determi-
nation of past conditions. Ruud et al. [2004] considered
groundwater extraction as a closure term in the global
hydrological water balance, leading to an indirect estima-
tion. This water balance–based approach has been applied
to the southern San Joaquin Valley in California. As noted
by the authors, the closure term approach may contain large
errors because measurement data are seldom available and
the pumping estimation is intrinsically indirect. Tung and
Chou [2004] treated the estimation of average groundwater
extraction and its spatial distribution as an inverse problem
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of parameter estimation. While this method may be globally
accurate in terms of estimating the average extraction, it
does not provide information regarding the pumping rate
from each well. Lin and Yeh [2008] used simulated anneal-
ing to identify pumping source location, pumping rate, and
pumping period for a single pumping well.
[5] Pumping rates generally are characterized by relatively

high temporal variations, with scales ranging from hours to
seasons. While hourly frequency is seldom employed in
groundwater modeling, the seasonality of the rates must be
captured accurately for better groundwater management.
Hydraulic head variations represent the system response to
time-varying forcing functions, such as extraction, injection,
and recharge. Thus hydraulic head observations contain
information about these forcing functions, although in an
aggregate form. Decomposition of the head measurements
into their generating factors is the object of this study, where
we seek to estimate the pumping rates by minimizing some
appropriate measure of the difference between the simulated
and observed heads at specified locations. Gehrels et al.
[1994] proposed a linear stochastic transfer function to
separate natural and artificial components from the ground-
water level fluctuations. In our study, we propose a data
assimilation technique to separate the influence of pumping
from each pumping well on each of the observation wells. We
assume that both pumping and observation well locations are
known and that a calibrated groundwater model is available.
This is a common situation that may occur, for example, when
the aquifer system is exploited by a number of private wells,
when no discharge reporting is required, or when reporting is
infrequent. The goal of our study is to utilize the available
head observations and a calibrated groundwater model to
estimate the well pumping rates as a function of time and with
a frequency that is sufficient for management purposes.
[6] The problem at hand can be formulated in the context

of a four-dimensional data assimilation (4DDA) algorithm,
where the forecasted solution at a given time is changed in
such a way that the new solution (the analysis) minimizes
some statistical measure of the difference between the
observed and simulated variables [Nichols, 2003]. It is a
sequential method in that it consists of a forecast step
followed by an update step, traditionally called an ‘‘analysis’’
[Ide et al., 1997]. Data assimilation (DA) is an active field of
research in hydrological sciences. However, it needs to be
explored further, as it can be employed successfully in a
variety of problems [Troch et al., 2003]. Among the different
4DDA techniques, the simplest is Newtonian relaxation, or
‘‘nudging’’ [Hoke and Anthes, 1976; Lorenc, 1986]. Nudging
is a DA technique that extracts information from observations
and arbitrarily adds additional source/sink terms into the
original model to drive model output toward the observed data.
This added relaxation term incorporates four-dimensional
(three spatial dimensions and one temporal dimension)
interpolation of the measurement data and relaxes the model
solution toward the observations [Hoke and Anthes, 1976;
Lorenc, 1986; Stauffer and Seaman, 1990; Stauffer et al.,
1991]. Grid nudging and observation nudging are two major
ways to apply the nudging technique. Grid nudging applies to
cases in which observations are available at all model grid
points, or a geometrically contiguous subset of model grid
points. A typical application of grid nudging is the assimila-
tion of remotely sensed data, generally available at the

surface of the model domain. In contrast to grid nudging,
observation nudging is applicable when observations are
only available at sparse grid points [Stauffer et al., 1991].
These two nudging techniques can be combined together if
necessary [Paniconi et al. 2003].
[7] Nudging has been applied widely in atmosphere

dynamics to assimilate different kinds of data, such as wind,
temperature, and water vapor [Hoke and Anthes, 1976;
Lorenc, 1986]; as well as in oceanographic modeling
[Verron, 1990]. Such applications are given by Miguez-
Macho et al. [2004], who studied spectral nudging for
regional-scale climate simulations; by Stiles et al. [2002],
who used nudging to obtain simulated ocean surface winds;
and by Pacione et al. [2001], who implemented nudging to
assimilate data on wind, temperature, and the mixing ratio
for estimating precipitable water. Applications to hydrolog-
ical problems are given by Drusch [2007], who applied
nudging to assimilate satellite-derived surface soil moisture
data in order to improve the results of a weather prediction
model of temperature and relative humidity; and by Pauwels
et al. [2001], who used nudging to assimilate remotely
sensed soil moisture data for a land-atmosphere model in
order to improve discharge prediction at the Zwalm catch-
ment in Belgium. However, applications of DA to ground-
water simulations are sparse and mostly related to the
assimilation of unsaturated zone measurements. Houser et
al. [1998] applied nudging to assimilate soil moisture data
coming from remote sensing at the Walnut Gulch Experi-
mental Watershed in southeastern Arizona. Paniconi et al.
[2003] applied nudging to a small hypothetical catchment
simulated with a coupled surface-subsurface flow model for
the assimilation of both groundwater depth and soil mois-
ture observations. Hurkmans et al. [2006] further extended
the approach to a real catchment, the Brisy subcatchment
located in southeastern Belgium.
[8] The nudging approach offers several attractive features

for application to groundwater problems. It is easy to imple-
ment the algorithm for any existing groundwater flow sim-
ulator and its computational burden is sufficiently low to
allow implementation in three-dimensional time-dependent
models. Additionally and most importantly for our purposes,
it provides a consistent and intuitive physical interpretation of
the identified pumping rates, which are represented in the
governing equation as sink terms. In this study we develop a
nudging scheme to identify unknown pumping using
observed hydraulic head data. We first describe the mathe-
matical development of nudging and its application to the
groundwater flow model. We then implement the proposed
technique to a real world problem where we seek to estimate
the unknown private well pumping rates in the Las Posas
groundwater basin in Ventura County, California (USA).

2. Application of Nudging to the Groundwater
Equation

2.1. Groundwater Flow Model

[9] The three-dimensional groundwater equation for sat-
urated flow in a confined aquifer can be written as [Bear,
1988; Willis and Yeh, 1987]

Ss
@h

@t
¼ div Krh½ # þ q x; tð Þ ð1Þ
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where Ss is the specific storage (L'1), h(x, t) is the
piezometric head (L), x (L) is the vector of three-
dimensional spatial coordinates, t (T) is time, K is the
hydraulic conductivity tensor (LT'1), and q (T'1) represents
the source or sink term. The effect of pumping and injection
wells within the aquifer system may be simulated by
representing the wells (or well clusters) as point sources or
point sinks. In the case of a number of pumping wells (or
well clusters), the sink term q (x, t) can be specified as

q x; tð Þ ¼
X

nw

i¼1

qw;i tð Þd xw;i
! "

ð2Þ

where qw,i (t) (T
'1) represents the time varying extraction

rate of the ith pumping well, located at coordinate xw,i;
d(xw,i) is the Dirac delta function, equal to one if x = xw,i and
zero otherwise; and nw denotes the total number of wells (or
well clusters). Appropriate initial and boundary conditions
complete the formulation of the mathematical model. In this
paper we adopt MODFLOW [Harbaugh et al., 2000] to
simulate groundwater flow. However, our proposed algo-
rithm is independent of the simulator and can be applied to
any other numerical scheme used to discretize equation (1).
MODFLOW uses an integrated block-centered finite differ-
ence approach to achieve spatial discretization with a first-
order backward Euler finite difference scheme for the time
discretization [McDonald and Harbaugh, 1988]. Following
the integrated finite difference approach, equation (1) is
solved in an integral form; i.e., it first is integrated in space
over the entire domain, and then the intercell fluxes are
discretized by finite differences. Formally, we can write the
fully discretized system (in space and time) as

P
hkþ1 ' hk

Dt
¼ Lhkþ1 þ qkþ1 ð3Þ

where h 2 Rn is the vector of head cell values, n is the total
number of cells in the numerical model; k is the time step
index; Dt is the time step; P and L are the discretization
operators, with dimension (L2) and (L2/T), respectively; and
qk+1 2 Rn is the sink term vector at time tk+1 and has
dimension (L3/T). Following standard MODFLOW termi-
nology, Dt is the time step used in numerical integration;
and the stress period (T) is the time during which the source/
sink term qk+1 is kept constant (it is generally multiples
of Dt). To simplify the discussion we assume that only
Dirichlet boundary conditions are specified and their
implementation are included directly into the matrix L.
Other types of boundary conditions can be treated with no
additional mathematical complexity. We also assume that
there is no other recharge or discharge in the aquifer system
except for the specified wells. Inclusion of these terms into
the formulation is straightforward but would make the
derivations more cumbersome and cause distractions. We
note that this is by no means a limitation of the proposed
nudging scheme; rather, this assumption simplifies its
mathematical development.

2.2. Nudging Equation

[10] Standard nudging uses observations of the state
variable to nudge the state variable of the model’s output.
In our groundwater model, the state variable is the hydraulic

head. However, for pumping estimation, instead of nudging
the state variable we use observations to nudge the
unknown forcing function. We add an artificial nudging
term as an additional forcing term in the governing equa-
tion. This additional term measures the head difference
between the observations and model output, which is caused
by the unknown forcing function. Multiple unknown pump-
ings may contribute to the head difference at a single
observation well. We therefore must disseminate the aggre-
gated information of head into the pumping rate at each
individual pumping well. In this study, the number of
observation wells is smaller than the number of pumping
wells. As a result, an inverse problem formulation would be
notoriously ill posed [Yeh, 1986].
[11] Nudging can be included directly into the discretized

groundwater model as an additional sink term so that (3)
becomes [Auroux and Blum, 2008]

P
hkþ1 ' hk

Dt
¼ Lhkþ1 þ qkþ1 þ G ho ' Chkþ1ð Þ ð4Þ

where G (L2/T) is an (n ( no) matrix (called the gain); no is
the number of available observations, stored in the no-
dimensional vector ho; and C (-) is an appropriate (no ( n)
matrix used to project hk+1 onto the observation space.
In the original nudging procedure proposed by Hoke and
Anthes [1976], the gain G is actually a scalar quantity
representing the time of relaxation toward the observed state
ho. In other words, the forecast state will tend toward the
observed state in a time proportional to 1/G. More generally,
G may represent the relative strength of the different
processes in the mathematical model in order to numerically
balance the assimilation of the different variables [Stauffer
and Seaman, 1990]. A large value of G implies that more
weight is given to the observations so that the model
solution will quickly match the observations. Vidard et al.
[2003] formally optimized G by treating it as a parameter
estimation problem. The results show that nudging actually
can be related to the Kalman filter-based data assimilation
technique. In fact, assuming that L is a symmetric and
positive definite matrix, it is easy to see that if we take G =
CT R'1, where R is the covariance matrix of the observation
error, then equation (4) is actually the Euler-Lagrange
equation, i.e., the necessary and sufficient condition
(because matrix L is symmetric) for the solution of the
following energy minimization problem [Auroux and Blum,
2008]:

min
h

1

2
h' hkð ÞT P h' hkð Þ 'Dt

2
hT Lhþ 2qkþ1ð Þ

#

þ Dt

2
ho ' Chð ÞTR'1 ho ' Chð Þ

$

: ð5Þ

Therefore, solution of (5) is also the solution of (4), which
in turn is the numerical approximation of the weak solution
of (1) augmented with the nudging sink term G (ho ' Chk+1)
[Quarteroni and Valli, 1997]. Nudging actually can be
thought of as a four-dimensional variational data assimila-
tion scheme as well as a special case of a Kalman filter [Li
and Navon, 2001; Vidard et al., 2003].
[12] Our goal is to modify the standard nudging approach

for pumping estimation using head observations. More
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precisely, we want to evaluate the vector of well pumping
rates qw = {qw,i}, i = 1, . . . , nw of equation (2), given the
model (3) and the observation vector ho = {hi

o}, i = 1, . . . ,
no. We assume that head measurements are available at
times tu, u = 1, . . , nt (also called the update times), which
may be different from both the numerical time steps and the
model stress periods.
[13] Before going into the details of the derivation of the

nudging term, we briefly review some nomenclature used in
the DA literature [Ide et al., 1997]. The n-dimensional
vector hu

f indicates the forecast, i.e., the result from model
prediction at time tu without the contribution of the nudging
term; the n-dimensional vector hu

a indicates the analysis,
i.e., the forecast as modified by the DA algorithm; while
the no-dimensional vector hu

o is the vector of observations,
always at time tu. The difference between observation and
forecast at time tu at observation well i is grouped into the
no-dimensional vector du, known as the innovation residual:

du ¼ hou ' Chfu: ð6Þ

In our case, the operator C is a matrix with elements of
either zero or one. The matrix projects the model output
onto the observation space. Using this notation, the final
nudging equation can be written as (see Appendix A)

hauþ1 ¼ Fu huð Þ þ G houþ1 ' Ch
f
uþ1

% &

¼ Fu huð Þ þ G duþ1 ð7Þ

where we assume that m time steps of equation (4) are
performed between times tu and tu+1, possibly encompass-
ing several stress periods. The operator Fu and matrix G (-)
can be derived from equation (4) (see Appendix A) and
includes the sink term vector qu updated in the previous
nudging steps. Note that the forecast appears on the right-
hand side of (7) while the analysis appears on the left-hand
side, both evaluated at the same time tu+1. Hence the actual
DA algorithm described by (7) proceeds sequentially in
exactly two steps. In the first step, the forecast hu+1

f is
calculated by solving (4) using the previously estimated
pumping rates, i.e., without any contribution from the
nudging term. In the second step, the forecast is used to
determine the innovation residual du+1 and evaluate the
pumping mismatch, i.e., the updated nudging term, and
finally the analysis hu+1

a is obtained from equation (7).

2.3. Evaluation of the Nudging Term

[14] We start from the formulation known as ‘‘observation
nudging,’’ in which each grid point is nudged using a
weighted average of residuals calculated from observations
that are within a specified radius of influence defined in
both space and time. In contrast to weather prediction
models and because of the dissipative nature of the ground-
water flow equation, we are not concerned about the
danger of introducing sudden discontinuities into the
forcing function, as these discontinuities (if any) will be
dissipated exponentially in time and will not generate
spurious solutions.
[15] Before discussing the derivation of the approach, we

note that the nudging vector Gdu+1 physically represents an
additional sink term introduced in the governing equation.
Thus the innovation residual can be thought of as the
cumulative drawdown due to the (unaccounted) pumping

rates at the pumping wells. We thus need to transform this
additional drawdown into pumping rates that, when added
to the sink term, will drive the analysis closer to the
measurements. Because observations and pumping wells
are not located within the same computational cell, the
definition of the nudging term requires a double spatial
interpolation: first we need to separate the contributions of
the different pumping wells from the observed drawdown,
and then we must apportion the pumping evaluated from the
drawdown to the different pumping wells. The innovation
residual at observation well i is thus represented as

duþ1;i ¼ houþ1:i '
X

n

s¼1

ci;sh
f
uþ1;s ¼

X

nw

j¼1

Dhi;j ð8Þ

where ci,s is equal to one if cell s contains the observation
well, and zero otherwise. The value Dhi,j (where for
simplicity we have omitted the subscript u + 1) represents
the fraction of the total drawdown, measured at observation
well i , that is caused by pumping well j. We evaluate Dhi,j
by interpolation using a distance-weighted function so that
the drawdown observed at observation well i is assumed to
be caused only by the pumping wells that are located within
a specified radius of influence, i.e., Dhi,j = w0

i,j du+1,i,
where w0

i,j is the value of the interpolation coefficient, or
distribution ratio, calculated using the coordinates of wells
i and j. The total observed drawdown mismatch at ob-
servation well i is caused by all the pumping wells located
within its radius of influence and can be written as

duþ1;i ¼
X

nw

j¼1

Dhi;j ¼
X

nw

j¼1

w0
i;j ) duþ1;i

% &

: ð9Þ

Note that the distribution ratios must be nonnegative and
sum up to one, i.e.,

X

nw

j¼1

w0
i;j ¼ 1 and 0 * w0

i;j * 1: ð10Þ

The fraction Dhi,j is transformed into a pumping rate using
the influence coefficient method [Becker and Yeh, 1972;
Yeh, 1986]:

Dqi;j ¼
1

ri;j
Dhi;j ¼

@qj
@hi

Dhi;j ð11Þ

where we make use of the inverse of the influence
coefficient ri,j = @hi/@qj, which indicates the response of
the head at cell i because of a unit change of the specific
discharge at cell j. The influence coefficient ri,j, also
known as the response coefficient or Jacobian sensitivity
coefficient, can be obtained by a sensitivity analysis [Yeh,
1986]. The quantity Dqi,j is thus the estimate of the
pumping rate increment (or decrement) of pumping well j
responsible for the portion of the drawdown mismatch
Dhi,j at observation i. As a consequence, each portion of
the drawdown mismatch of an observation well is
converted to the corresponding pumping rate increment
(or decrement) for each of the pumping wells located
within the radius of influence. Accordingly, multiple
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observation wells, located within the radius of influence
of a pumping well, will generate the same number of
pumping estimations for the pumping well. The final
estimate Dq0u+1,j of the pumping rate mismatch at well j is
calculated by an additional weighted average with weights
wi,j* to integrate all pumping estimations into one value:

Dq0uþ1;j ¼
X

no

i¼1

wi;j*Dqi;j: ð12Þ

This nw-dimensional vector of updated pumping rates
Dq0u+1,j needs to be projected back to the state space to
yield the final expression of the nudging vector of
equation (4):

Gduþ1 ¼ gCTDq0uþ1 ð13Þ

where the scalar g is the scalar gain relaxation time as
defined previously.
[16] We present an example to demonstrate the concept

of pumping estimation. Figure 1 shows a hypothetical
MODFLOW grid with three pumping wells and two obser-
vation wells. We assume that the pumping rates of all three
pumping wells are unknown. The drawdown at observation
wells O1 and O2 is due to the extraction from pumping wells
P1, P2, and P3. The extraction of each pumping well
contributes a portion of the drawdown at the two observa-
tion wells. The innovation residual at observation wells O1

and O2 can be expressed as

dO1 ¼ DhO1;P1 þDhO1;P2 þDhO1;P3

¼ w0
O1;P1 ) dO1 þ w0

O1;P2 ) dO1 þ w0
O1;P3 ) dO1 ð14Þ

dO2 ¼ DhO2;P1 þDhO2;P2 þDhO2;P3

¼ w0
O2;P1 ) dO2 þ w0

O2;P2 ) dO2 þ w0
O2;P3 ) dO2 ð15Þ

where Dhi,j is the estimated portion of drawdown mismatch
at observation well i due to pumping well j. Note that

w0
O1,P1 + w0

O1,P2 + w0
O1,P3 = 1 and w0

O2,P1 + w0
O2,P2 +

w0
O2,P3 = 1(

P

nw

j¼1

w0
i,j = 1). The estimated pumping rate Dqi,j

that causes Dhi,j is calculated by equation (11).

DqO1;P1 ¼
1

rO1;P1
) w0

O1;P1 ) dO1 ð16Þ

DqO1;P2 ¼
1

rO1;P2
) w0

O1;P2 ) dO1 ð17Þ

DqO1;P3 ¼
1

rO1;P3
) w0

O1;P3 ) dO1 ð18Þ

DqO2;P1 ¼
1

rO2;P1
) w0

O2;P1 ) dO2 ð19Þ

DqO2;P2 ¼
1

rO2;P2
) w0

O2;P2 ) dO2 ð20Þ

DqO2;P3 ¼
1

rO2;P3
) w0

O2;P3 ) dO2 ð21Þ

Each observation well provides a pumping estimation for
each pumping well. For example, equations (16) and (19)
provide a pumping estimation for pumping well P1 using
observations at O1 and O2, respectively. Each estimated
pumping rate increment (or decrement) now must be inte-
grated into a particular well:

Dq0P1 ¼ g ) wO1;P1* DqO1;P1 þ wO2;P1* DqO2;P1
! "

ð22Þ

Dq0P2 ¼ g ) wO1;P2* DqO1;P2 þ wO2;P2* DqO2;P2
! "

ð23Þ

Dq0P3 ¼ g ) wO1;P3* DqO1;P3 þ wO2;P3* DqO2;P3
! "

ð24Þ

We accomplish this by using the weight wi,j*, which is
calculated using the radius of influence of the pumping well
instead of the observation well. The result then is multiplied
by the scalar strength factor g.

2.4. Distribution Ratios and Weighting Coefficients

[17] It is well known that the drawdown caused by a
pumping well tends to approach zero logarithmically with
the distance from the well. We approximate this behavior by
defining the distribution ratio w0

i,j and the weighting coef-
ficient wi,j* using Cressman-type (distance-weighted) func-
tions [Stauffer and Seaman, 1990; Houser et al., 1998;
Paniconi et al., 2003]. If we let Xi = [xi, yi, zi]

T represent the
spatial coordinate of observation well i and Xj = [xj, yj, zj]

T

represent the spatial coordinate of pumping well j, we can
write the following expressions for w0

i,j and wi,j*:

wi;j ¼ w Xi;Xj; t
! "

¼ w1 Di;j

! "

w2 zi; zj
! "

w3 tð Þ ð25Þ

Figure 1. Illustration of pumping wells and observation
wells.
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w1 Di;j

! "

¼ R2
i ' D2

i;j

% &

= R2
i þ D2

i;j

% &

; D2
i;j * R2

i

w1 Di;j

! "

¼ 0; D2
i;j > R2

i

(

ð26Þ

D2
i;j ¼ xi ' xj

! "2þ yi ' yj
! "2 ð27Þ

w2 zi; zj
! "

¼ 1; zi ¼ zj
w2 zi; zj

! "

¼ 0; zi 6¼ zj:

'

ð28Þ

w3 tð Þ ¼ 1; t ¼ tu
w3 tð Þ ¼ 0; Otherwise

'

ð29Þ

w0
i;j ¼

wi;j

P

nw

j¼1

wi;j

ð30Þ

wi;j* ¼
wi;j

P

no

i¼1

wi;j

ð31Þ

where Ri (L) is the radius of influence for observation well i,
and zi and zj are the aquifer layers where the pumping wells
and observation wells are located. The definition of w3 (t)
shows that the nudging term is active only at the update
time.

2.5. Schematic Representation of the Nudging Update
Procedure

[18] The nudging update procedure is illustrated graph-
ically in Figure 2 for a case in which the end of each stress
period coincides with the update time. The symbol T in each
rectangular box denotes the stress period between two
successive updates tu and tu+1. The update time tu+1 is at
the end of each stress period T. For example, the update
time tu = 2 is at the end of stress period T = 2. We note that
each stress period generally contains multiple numerical
integration time steps. We assume that the observation
data are available at the end of each stress period, or at the
update time. One update process includes two steps. The
first step estimates the unknown pumping rate Q0

T for
the previous stress period T using observation data obtained
at the update time tu+1. The second step reruns the simula-
tion model using the estimated pumping rate Q0

T (treated as

an additional sink term in equation (4); see also equations (A3)
and (A5)) to evaluate the analysis, i.e., the updated hydrau-
lic head distribution at update time tu+1, and the forecast for
the next stress period T + 1. In our implementation, the
pumping rate estimation is performed offline and at the
end of each stress period. Note that nudging can also be
carried out in real time once new observations are available.
Below we provide a step-by-step procedure for the proposed
nudging algorithm.
[19] Step 0 is to calculate influence coefficients, distri-

bution ratios and weighting factors. The distribution ratio
w0

i,j and weighting factor wI,j* can be calculated with
equations (30) and (31) using the given radius of influence
and the distance between observation well i and pumping
well j. The influence coefficient, ri,j (=@hi/@qj), can be
obtained from a sensitivity analysis. For a nonlinear system,
the influence coefficients should be updated at each update
time. With the linearity assumption, the influence coeffi-
cients remain constant for each stress period and updating is
not necessary. In this case, the sensitivity analysis only has
to be carried out once. The influence coefficients can be
expressed as

ri;j ¼ @hi;tu¼1=@qj;T¼1 ¼ @hi;tu¼2=@qj;T¼2 ¼ . . . ¼ @hi;tu¼e=@qj;T¼e

ð32Þ

where e is the total number of stress periods during the
planning horizon. The influence coefficient for a given
stress period (T ) is the head response at observation well i at
the end of stress period (tu+1) due to a unit change in the
discharge rate at pumping well j during the stress period.
[20] Step 1 is to forecast hydraulic head at observation

well for the next update time. The forecast run is conducted
with a simulation run using the known pumping data as well
as the estimated pumping data. For the first stress period,
the initial pumping estimation for the unknown pumping
rate is set to zero. The forecast run provides head distribu-
tion estimates for the study area.
[21] Step 2 is to calculate the innovation residual.

Equation (8) calculates the innovation residual, the head
difference between observation and forecast, at observation
wells at the update time.
[22] Step 3 is to estimate pumping rates. Using informa-

tion obtained from the previous steps, step 3 estimates the
nudging term, i.e., the new pumping rate correction, using
equation (13).
[23] Step 4 is to update hydraulic head at the update time

(the analysis). Step 4 performs a simulation run using the

Figure 2. Illustration of sequential simulation model runs and the updating processes.
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estimated pumping rates (for the previous stress period) to
update the hydraulic head distribution at the update time.
Steps 1–4 are repeated until the end of the planning
horizon.

3. Application of the Nudging Technique
to the Las Posas Groundwater Basin, California

[24] We apply the proposed nudging method to a realistic
case study associated with the Las Posas groundwater basin
in southern California. We seek to estimate the unknown
pumping rates from a set of private wells in the basin. The
basin is managed by the Calleguas Municipal Water District
(CMWD). Although we select a real groundwater basin in
our case study, we use numerical experiments to validate the
proposed methodology and demonstrate the rate of conver-
gence and utility of the proposed nudging algorithm. Well
locations and pumping rates are imposed on the real aquifer
geometry to generate the ‘‘true’’ head distribution that
provides the observed head data for the case study. Identi-
fication errors can be obtained by calculating the difference
between the analysis and the true solution so that the
performance of the proposed algorithm can be analyzed.
A key advantage of using synthetically generated data on a
real system to test the proposed algorithm is that it avoids
model errors and other uncertainties that may exist. The
results should provide practical information and confidence
in real-world applications.

3.1. Model Problem

[25] The Calleguas Municipal Water District (CMWD)
operates a conjunctive use project in the Las Posas Basin,

located near the city of Moorpark, California (Figure 3).
The Las Posas Aquifer Storage and Recovery (ASR) Project
stores treated surplus water in a 300 m deep confined
aquifer system, which is then used as a strategic reservoir
for dry periods. The operational plant is equipped with
several dual-purpose injection and extraction wells that are
clustered in two different well fields. The CMWD utilizes a
calibrated MODFLOW model of the basin to manage its
ASR project under a variety of pumping and injection
scenarios.
[26] The Las Posas Groundwater Basin is about 32 km

long (east–west) and 11 km wide (north–south) (Figure 3).
It partially underlies the Las Posas Valley, located in
southern Ventura County, California. The basin is bounded
to the south by the Camarillo and Las Posas Hills, to the
north by the South Mountain and Oak Ridge chains, to the
east by the Santa Susana Mountains, and to the west by
the Oxnard subbasin of the Santa Clara River Valley.
Ground surface elevations range from about 60 m above
mean sea level (AMSL) on the western boundary to about
215 m AMSL toward the eastern boundary. Average annual
precipitation in this area ranges between 300 and 400 mm/a.
The water-bearing geological formations that are of interest
for this study include the alluvium, where recharge occurs,
the San Pedro formation and the Santa Barbara formation.
Productive aquifers include an upper unconfined unit, only
sparsely exploited and coinciding with the alluvium, and
two deeper confined aquifers that extend throughout the
basin [California State Water Resources Board, 1956,
Hanson et al., 2003] known as the Fox Canyon aquifer
and the Grimes Canyon aquifer (Figure 4). These two

Figure 3. Planar view of the Las Posas Basin.
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aquifers are separated by a small, unnamed aquifer. In the
confined formations, well yield ranges between 1.5 (
10'2 m3/s and 4.8 ( 10'2 m3/s [California State Water
Resources Board, 1956; Hanson et al., 2003]. A southwest
to northeast trending fault (the central Las Posas fault)
practically subdivides the aquifer into two distinct subsys-
tems: the Eastern and the Western Las Posas basins. A
distinct change in groundwater levels in the western-central
part of the basin is noticeable in the wellhead data, and is
likely due to a further buried and unnamed fault. Recharge
to the basin comes predominantly from percolation of
precipitation water across the outcrops of the Fox Canyon
and Grimes Canyon gravels that are located at the northern
and southern border of the basin, and from infiltration of
imported water released into the Arroyo Las Posas by
treatment plants.
[27] The simulation model consists of three confined

layers and is defined aerially by 51 ( 104 square cells,
each with an area of 305.4 ( 305.4 m2. Fixed head
boundary conditions are set on the east and west boundaries
for the first layer, while no flow conditions are imposed on
the east and west boundaries for the second and third layers
as well as the north and south boundaries for all three layers.
The first (shallowest) layer is a leaky aquifer, simulated by
means of the general head boundary condition package
provided by MODFLOW. In addition to leakage, surface
recharge areas are positioned at the north and south bound-
aries at the location of the aquifer outcrops (Figures 3 and 4).
The central Las Posas fault is represented as a horizontal-
flow barrier with a hydraulic characteristic determined
during model calibration. The computational domain con-
tains 14 zones (values) of calibrated hydraulic conductivi-
ties, characterized by a vertical anisotropy ratio of 1/10. The
top layer contains 14 zones of hydraulic conductivities.
There are three zones in the second layer and two zones
in the third layer. The values of conductivities in the second
and third zones coincide with zones in the top layer. This
model is a subset of a larger model of the Santa Clara–

Calleguas basin developed by Hanson et al. [2003], to
which the reader is referred for more details.

3.2. Setup of the Test Cases

[28] We distribute six well clusters (P1 to P6) and four
observation wells (O1 to O4) on both sides of the fault and
use nine 6-month stress periods as the simulation horizon.
Figure 5 shows the spatial locations of the pumping and
observation wells as well as the ASR well field (a cluster of
wells) within the calibrated MODFLOW model. The
northeast–southwest line represents the fault which, as
noted, acts as a hydraulic barrier practically separating the
aquifer system into two parts. The radius of influence for
the nudging algorithm is set at R = 7620 m (equivalent to
25 cells). This setting implies that the identification of the
pumping rates for private wells P1, P2, and P3 is based on
the measurements taken at observation wells O1 and O2,
while the measurements from O3 and O4 are used for
identifying the pumping rates for wells P4 to P6. From
the spatial distribution of the wells we see that in the western
part of the domain the two observation wells (O1 and O2)
are spaced uniformly away from the pumping wells: O1 is
approximately equidistant from wells P1 and P2, while O2 is
located approximately the same distance from wells P2 and
P3. To the east of the fault, observation well O3 is centrally
located with respect to all wells, but observation well O4 is
situated at the edge of one of the outcrops, where the recharge
rate is highest and thus potentially may interfere with well
dynamics. In fact, we anticipate that the poorly designed
location of this observation well may have a negative impact
on the accuracy of identification for all wells in the eastern
Las Posas basin, but especially for P4 and P6, the farthest
away from O4.
[29] We designed four hypothetical test cases. Case A

implements a constant pumping rate for all wells. Cases B
and C address spatially and temporally varying pumping
rates, respectively. Finally, Case D considers measurement
errors within the case A scenario.
[30] Here are the details of the four test cases.

Figure 4. Cross section of the Las Posas Basin.
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[31] 1. Case A has a constant pumping rate. All the
wells (including the ASR) are pumping at a constant rate
of 2832 m3/d.
[32] 2. Case B has a spatially varying pumping rates. The

ASR and the P1 wells are pumping at a rate of q = 2832 m3/d.
Pumping rates assigned to wells P2 to P6 range from
90% (P2) to 50% (P6) of q with four intervals of 10% q.
[33] 3. Case C has a temporally varying pumping rates.

In this case the ASR well is pumping at a constant rate of
2832 m3/d, while the pumping rates of the other six wells
vary in time starting from 2832 m3/d during the first stress
period, decreasing uniformly at each stress period by
283 m3/d (10% of the initial value) until period 5. During
period 6 the pumping rates start to increase by the same
amount and reach the initial value at the end of the simulation
(stress period 9).
[34] 4. Case D has errors in the observed heads. This

scenario is the same as in Case A, but we add measurement
errors to the observations. Specifically, we corrupt the
observations with Gaussian noise with zero mean and
standard deviations of 0.03 m and 0.3 m, respectively. Note
that a standard deviation of 0.3 m is unusually large when in
practice the head measurement error seldom exceeds 0.03 m
[Prinos et al., 2004].

3.3. Numerical Results

[35] We evaluate the results of the numerical experiments
by measuring the difference between the analysis and the
true solution by means of the root mean square error
(RMSE) and the average error in percentage, defined for
the uth stress period as

RMSE tuð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

j¼1

f aj;u ' f tj;u
f tj;u

 !2
v

u

u

t ð33Þ

e fð Þ tuð Þ ¼ 1

n

X

n

j¼1

f aj;u ' f tj;u

f tj;u

)

)

)

)

)

)

)

)

)

)

( 100 ð34Þ

where f can be hydraulic head (f = h) or drawdown (f = s =
h ' h, with h being the reference head), in which case the
summation runs over the observation wells with n = no; or
f can represent pumping rates (f = q), in which case the
summation encompasses the pumping wells with n = nw. To
better highlight the error reduction achieved by the nudging
algorithm, in the case of drawdown we plot the average
error in percentage terms before and after the update for
each stress period. When considering the pumping rate
identification errors, we also look at the global pumping
error (eT(q) (tu)), calculated using equation (34) but without
the absolute value. The nudged simulations consider the
ASR pumping rates as known and seek to estimate the
unknown rates at the six pumping wells using head
measurements from the four observation wells. The initial
guess for the pumping rate at the six pumping wells
always is assumed to be zero. The total simulation time is
54 months and is divided into nine stress periods.
[36] Figure 6 shows the RMSE as a function of time for

both the analyzed drawdowns at the observation wells and
the identified pumping rates of the pumping wells. In
Figure 7, we show the behavior of the average drawdown
error before and after the update step. Finally, Figure 8 (top)
shows the temporal behavior of the average error in per-
centage for the identified pumping rate for each well, while
Figure 8b indicates the total pumping error.
[37] The results show that the errors in the drawdown

decrease drastically after the first update for Cases A, B and
C, both in terms of the RMSE and the average relative error
(Figures 6 (top) and 7 (bottom)). For Case D, where
residuals are bounded by the imposed measurement errors,
the successive updates continue to show slow but steady
improvement, with relative errors approaching 1%. Corre-

Figure 5. Planar view of the active cells (white color) of the Las Posas Basin model.
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spondingly, the errors in the identified pumping rates show
a similar behavior, but display larger values in both the
RMSE and the relative errors. This is due to the fact that
nudging minimizes observation errors, but the pumping
rates are estimated indirectly via the influence coefficient.
The overall results clearly show that the proposed approach
works as well as expected in recovering the head distribu-
tion at the observation wells, but in some instances may
produce a relatively larger error in pumping rate identifica-

tion. This may be due to data insufficiency or using
predefined and fixed spatial interpolation ratios of w0

i,j and
wi,j* to estimate the dynamically changing, unknown pump-
ing. The errors also can be attributed in part to the accuracy
of the influence coefficient, particularly in certain areas of
the domain where the h-q relationship is nonlinear (e.g.,
close to the recharge zones). This situation can be improved
by performing iterations within each stress period [Lorenc,
1986; Yeh, 1986], or by increasing the time interval in the

Figure 7. Temporal behavior of average percentage error for the drawdowns (top) before and (bottom)
after the update for all test cases.

Figure 6. Temporal behavior of RMSE (top) for the drawdowns and (bottom) for the identified
pumping rates for all test cases.

10 of 13

W08434 CHENG ET AL.: DATA ASSIMILATION AND PUMPING IDENTIFICATION W08434



weighting functions from one to two or more stress periods.
Note that nudging achieves greater accuracy in the identi-
fication of the total pumping rate (sum over all wells), as
shown in Figure 8 (bottom), where the total error percentage
remains consistently below five percent, except again for

the high variance of Case D, where the measurement errors
obviously affect the accuracy of the identification.
[38] Finally, Figure 9 shows the single well pumping rate

identification error (equation (34)) for Cases A, B, and C.
As expected, the performance of the proposed nudging
algorithm is not optimal for pumping wells P4 and P6

Figure 8. Temporal behavior of average percentage error (top) in the identified pumping rates and
(bottom) for the global pumping for all test cases.

Figure 9. Temporal behavior of average percentage error in the identified pumping rates for each single
well P1 to P5, for cases A, B, and C.
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because of their relatively poor spatial location away from
the observation wells, thus showing the importance of
selecting observation well locations [Yeh, 1992]. Optimal
experimental design algorithms, such as those discussed by
McPhee and Yeh [2006], could be employed to define the
optimal location of the observation wells.

4. Conclusions

[39] We have proposed a Newtonian relaxation (nudging)
approach for estimating unknown pumping in a groundwater
basin using observed hydraulic heads at a number of selected
locations. The method of nudging relaxes the model state
(hydraulic head) toward the observed state by adding an
artificial sink term in the governing equation so that the
model solution is nudged toward individual observations at
each update time when new observations on the state variable
are available. For purposes of pumping identification, the
sink term corresponds to the unknown pumping. This
formulation provides a consistent physical interpretation
for identifying pumping rates without solving the inverse
problem.
[40] We applied the proposed approach to the Las Posas

Groundwater Basin in southern California in order to iden-
tify pumping from private wells. We utilized a calibrated
MODFLOW model for flow simulation and numerical
experiments. The influence coefficient method was used
to calculate the incremental drawdown due to a unit change
in pumping. With a linearity assumption, the influence
coefficients are fixed constants for each stress period. We
also assumed that there is no other recharge or discharge
in the aquifer system except for the specified wells. This
assumption simplifies algorithm development and avoids
the distraction of other forcing terms. If needed, inclusion
of these terms into the simulation model is easy and
straightforward.
[41] We modified the observation nudging procedure to

add forcing terms only at pumping well locations using a
weighted average of residuals calculated from observation
wells located within a predefined radius of influence. We
tested the robustness of the proposed methodology under
four different scenarios. The case studies show that the
proposed approach is (1) efficient for estimating the unknown
pumping from private wells, (2) able to distinguish different
pumping rates from different pumping wells, and (3) able to
provide accurate estimation of total extraction from private
wells. Additionally, because of nudging and accurate esti-
mation of pumping, the simulation model produces a more
accurate solution for head distribution. In this study, obser-
vations are available at the end of each stress period. It is
worthwhile to further explore the approach in order to
consider the case in which whether observations at different
locations are available at different times.

Appendix A

[42] The derivation of equation (7) from equation (4)
follows. Algebraic manipulation of (4) leads to

1

Dt
P ' L

* +

hkþ1 ¼
1

Dt
Phk þ qkþ1 ðA1Þ

where for simplicity we assume a constant Dt, but variable
step sizes can be accommodated with no difficulties. Since

the system matrix M = (
1

Dt
P ' L) is positive definite and

thus invertible, we can stipulate

hkþ1 ¼
1

Dt
M'1Phk þM'1qkþ1 ¼ Ahk þ Bqkþ1: ðA2Þ

Let m be the number of time steps between times tu and tu+1.
To advance the time of the previous nudging update tu to the
time when the next observation is available, tu+1, we need to
perform m MODFLOW time steps, so that tu+1 = tu + mDt.
The forecast head at tu+1, which is the solution of (A2) for
the m time steps, is formally represented as

h
f
uþ1 ¼ Amhu þ

X

m

b¼1

Ab'1Bqb ¼ Fu huð Þ ðA3Þ

where the operator Fu characterized as

Fu xð Þ ¼ Amxþ
X

m

b¼1

Ab'1Bqb: ðA4Þ

The analysis vector thus is formulated as:

hauþ1 ¼ Fu huð Þ þ G houþ1 ' hfuþ1

% &

¼ Fu huð Þ þ G duþ1 ðA5Þ

where matrix G is dimensionless. We use the subscript u in
Fu to indicate that m is a function of the current update
interval [tu, tu+1].
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