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Abstract. We investigate the occurrence of bound states in the continuum (BICs) in serial structures
of quantum dots coupled to an external waveguide, when some characteristic length of the system is
changed. By resorting to a multichannel scattering-matrix approach, we show that BICs do actually occur
in two-dimensional serial structures, and that they are a robust effect. When a BIC is produced in a two-
dot system, BICs also occur for several coupled dots. We also show that the complex dependence of the
conductance upon the geometry of the multi-dot system allows for a simple picture in terms of the resonance
pole motion in the multi-sheeted Riemann energy surface. Finally, we show that in correspondence to zero-
width states for the open system one has a multiplet of degenerate eigenenergies for the associated closed
serial system, thereby generalizing results previously obtained for single dots and two-dot structures.

PACS. 73.63.Nm Quantum wires – 73.23.Ad Ballistic transport – 73.21.La Quantum dots –
73.21.Cd Superlattices

1 Introduction

Since the seminal paper by von Neumann and Wigner [1],
the occurrence of isolated discrete eigenvalues embedded
in the continuum of scattering states has been the sub-
ject of several studies. The existence of bound states in
the continuum (BICs) was proved in reference [1] for
one-dimensional potentials exhibiting oscillations as x →
±∞, and decaying no faster than |x|−1. As such, these
potentials have been regarded as mathematical curiosi-
ties, and the quest started for more realistic situations
supporting BICs. Herrick and Stillinger suggested that
alternating sequences of rectangular wells and barriers
supporting one or more BICs could be realized through
GaAs–AlxGa1−xAs superlattices [2,3]. Direct evidence of
such states has been provided in the early nineties by
Capasso et al. through infrared absorption measurements
on epitaxial heterostructures [4]. More recently, it has been
shown that zero-width states in the continuum might exist
when potential surfaces for the nuclear motion are coupled
in polyatomic molecules, and the Born-Oppenheimer ap-
proximation breaks down [5].

Coupled-channel problems offer interesting possibili-
ties for BICs. They have been found by Fonda and New-
ton for a model two-channel system with square poten-
tials many years ago [6], and subsequently by Friedrich
and Wintgen for the hydrogen atom in a uniform magnetic
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field [7]. On more general grounds, resorting to Feshbach’s
theory of resonances, Friedrich and Wintgen were able to
prove that BICs can occur because of the interference of
resonances belonging to different channels [8]. When the
relative position of the resonances changes as a function of
a continuous parameter of the system, their interference
produces an avoided crossing of the resonance positions;
at the same time, a dramatic change in their widths oc-
curs, and for a given value of the parameter one of the
resonances acquires an exactly vanishing width, thereby
becoming a BIC.

More recently, the existence of BICs have been proved
for quantum dots coupled to reservoirs. Zero-width states
have been found in serial structures of dots or loops within
simple, one-dimensional models of mesoscopic systems [9].
That BICs are a general phenomenon of quantum dots has
been shown by Sadreev et al., by modeling a quantum dot
as a single billiard of variable shape attached to an ex-
ternal lead [10]. By resorting to an effective Hamiltonian
approach to electron scattering through the open sys-
tem [11,12], the resonance features of the transmission
probability have been related to the spectral properties
of the closed quantum billiard. In particular, it has been
found that zero-width states appear in the continuum of
the open system, near the points of degeneracy or quasi-
degeneracy of the closed-system eigenenergies. Two-dot
systems have been studied as well, either through analyt-
ically soluble models allowing for a small number of dis-
crete states in each dot [13], or through direct numerical
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solution of the two-dimensional Schrödinger equation via
the contour integration method [14]. In the former case,
BICs appear again when the eigenenergies of the closed
system cross the transmission zeros, with the electrons be-
ing trapped within the waveguide [13]. In reference [14],
zero-width resonances have been analyzed in terms of the
motion of the corresponding S-matrix poles in the com-
plex energy plane. In analogy to what has been found
for the usual coupled-channel problem [7,8], the onset of
zero-width states is associated to couples of poles, moving
counterclockwise in the energy plane as the bridge length
increases, one of the poles touching the real energy axis at
critical values of this parameter. Moreover, BICs appear
at nearly periodic distances between the dots, when the
length of the connecting bridge is varied.

The aim of the present paper is to extend the anal-
ysis of resonances, and of their evolution into BICs as
some continuous parameter of the system varies, to two-
dimensional serial structures of dots. As is well-known,
when several identical elements, such as dots, rings or
constrictions, are connected in series, a band structure
emerges in the transmission coefficient. In the same way
as a band structure for electrons appears in solid-state
physics [15,16], one has alternating regions of allowed and
of essentially zero transmission as a function of energy.
A noteworthy feature of periodic mesoscopic systems is
that this “miniband” structure appears even for a rela-
tively small number (3 ÷ 5) of components [15]. We nu-
merically solve the two-dimensional Schrödinger equation
by a combination of mode-matching and S-matrix tech-
niques, the total scattering operator for the system be-
ing obtained from the S-matrices referring to its various
segments through the �-product composition rule [17–19].
This approach provides numerically stable results for both
physical and complex values of the energy, even when some
dimension of the system is large [19], and has been already
employed by us to investigate Fano resonances and thresh-
old phenomena in ballistic transmission through dots with
impurities [19,20]. In studying zero-width states in serial
systems, three issues will be of particular concern to us;
(i) how robust these trapped states are when the number
of segments increases; in other words, given the occurrence
of a BIC in, say, a two-dot system for a given configura-
tion, there is a similar state for the analogous several-dots
system?; (ii) whether and to what extent the close rela-
tionship among zero-width states and the eigenstates of
the closed system found for a single dot (or a coupled-
dot pair) extends to serial structures; (iii) what happens
when the translational symmetry of the system is broken
in correspondence to a BIC configuration by varying the
dimensions of the central dot.

The paper is organized as follows. In Section 2 we re-
call the main characteristics of our approach, and present
the results for serial systems of dots coupled to a common
waveguide. The non-trivial changes of the transmission
coefficients as some parameter is varied will be given a
simple, transparent interpretation in the light of the mo-
tion of the resonance poles in the complex energy plane.
Our main conclusions will be summarized in Section 3.

2 Zero-width states in multi-mode serial
structures

We shall consider the multi-dot structure illustrated in
Figure 1. The quantum dots are modeled as rectangular
cavities of total width c and length ld, connected through
bridges of width b and length lb. The whole system is
coupled to a uniform guide of indefinite length, having
the same width as the connecting necks. In the ballis-
tic regime, the electronic transport can be described as a
scattering process, and the conductivity of the quantum
circuit can be expressed in terms of the transmission coef-
ficients of the system [17,18]. To evaluate these quantities,
we start from the two-dimensional Schrödinger equation

{
− �

2

2m∗∇2
2

}
Ψ(x, y) = EΨ(x, y), (1)

where ∇2
2 represents the two-dimensional Laplace opera-

tor, E is the total energy, and m∗ is the electron’s effec-
tive mass in the conduction band. Equation (1) has been
solved by a suitable combination of mode-matching and
S-matrix techniques, as detailed in references [19,20], to
which we refer the reader for details. Expanding the to-
tal wave-function into complete sets of transverse-mode
eigenfunctions in the various segments (dots and bridges)
of the system, equation (1) is reduced to a set of one-
dimensional Schrödinger equations for the expansion co-
efficients, which depend upon the propagation variable x
only. These coefficients are written in terms of forward
and backward propagating waves, with amplitudes which
can be related to one another matching the wave function
and its first derivative at the various interfaces delimiting
the necks from the dots and the whole system from the
external ducts. The scattering operator for each segment
is given once the amplitudes of the waves leaving an in-
terface are expressed linearly in terms of the coefficients
of the incoming waves. The total S-matrix

S =

(
S11 S12

S21 S22

)
(2)

is finally obtained from the partial scattering operators
through a recursive application of the �-product composi-
tion rule [17,19]. In so doing, a different number of modes
can be introduced in the various segments, to improve
convergence, and evanescent modes can be taken into ac-
count while preserving the numerical accuracy of the cal-
culation, even when some dimension of the system gets
large. The transmission coefficients are contained in the
matrix blocks S12 and S21; more precisely, (S21)nm repre-
sents the transmission coefficient to mode n on the right
of the system for an electron impinging from the left in
mode m, whereas (S12)nm is the transmission coefficient
to the final mode n on the left from the initial mode m on
the right. The sub-matrices S11 and S22 contain, on the
other hand, the corresponding reflection coefficients to the
left and to the right.

The scattering problem has been solved for an elec-
tron impinging from the left, with outgoing reflected and
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Fig. 1. A serial structure of Nd quantum dots coupled to an
infinite external lead.

transmitted waves in all the open channels, and the to-
tal conductance G (in units 2e2/h) has been evaluated
through the two-probe Büttiker formula [17,18]

G =
∑
m,n

k
(l)
n

k
(l)
m

|(S21)nm|2 , (3)

where the sum is restricted to the open channels only, and
the propagation wave numbers k

(l)
n in the external leads

are related to the total energy E by [19]

k(l)
n ≡

√
2m∗

�2
E −

(nπ

b

)2

.

As in our previous papers [19,20], convergence is fully
achieved when four channels are included in the leads, and
up to 10 channels are taken into account in the dots. For
the evanescent modes, the propagation wave-numbers are
taken as purely imaginary quantities, with a positive co-

efficient, namely k(l)
n = i

√
(nπ/b)2 − 2m∗E/�2. Although

fairly good results may be in general obtained with 2 and
5 modes in the lead and in the dots, respectively, we have
been particularly careful to convergence near the energies
where zero-width states occur. Indeed, evanescent modes
affect the coupling of the dots among themselves and with
the leads, and concur to determine the non-trivial fea-
tures of these states, as we shall show below. Here, we are
mainly concerned with the energies within the first sub-
band, which implies that up to three evanescent modes
are taken into account in the leads and in the connecting
bridges.

In Figure 2 we plot the conductance as a function
of the energy for various serial structures, with an in-
creasing number Nd of dots. For the sake of simplicity,
we have limited ourselves to the first subband, where
only one propagating mode is active. To have the re-
sults independent from the actual size of the system, we
measured all lengths in terms of the waveguide width b,
and energies with respect to the waveguide fundamen-
tal mode ε

(l)
1 ≡ �

2

2m∗
(

π
b

)2. Adimensional quantities will
be denoted with the “tilde” symbol, so that the various
thresholds ε

(l)
n = n2ε

(l)
1 are simply given by ε̃

(l)
n = n2, with

n = 1, 2, 3, . . .. The calculations reported in Figure 2 refer
to a bridge length l̃b ≡ lb/b = 3.9. The dots are modeled
by square cavities with c̃ = l̃d = 2, symmetrically coupled
to the bridges as well as to the waveguide.

As Nd increases from 2 to 5, one sees 1, 2, 3, 4 peaks
on each side of the transmission zero at Ẽ ∼ 3.3. One
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Fig. 2. Total transmission as a function of the adimensional
energy for increasing number of dots. From bottom to top Nd =
1, 2, 3, 4, 5. Consecutive curves are vertically offset for clarity.

moreover observes a more and more structured conduc-
tance profile at the upper edge of the band, and a smooth
plateau of maximum transmission in the low-energy part
of the considered energy region. The most interesting fea-
ture of Figure 2 is the multiplet of peaks around the trans-
mission zero at Ẽ ∼ 3.3, having a position almost indepen-
dent upon the number of coupled dots. The increase in the
number of oscillations is due to the more and more com-
plex interference pattern among the waves reflected and
transmitted at the dots, and has been previously found
both in one-dimensional serial structures [9,21,22], and in
periodic, two-dimensional waveguides with stubs and con-
strictions [23–25].

In Figure 3 we plot (from bottom to top) the conduc-
tance of a 5-dot system in the first energy subband, for l̃b
increasing from 3.3 up to 3.9, in steps of 0.1. As l̃b gets
longer, the resonance peaks move towards lower energies,
the typical binding effect one observes when some char-
acteristic length of the system increases [19]. At the same
time, the four peaks on the right of the transmission zero
(numbered from 1 to 4 in Fig. 3) approach each other
and the transmission minimum, until they disappear for
l̃b = 3.6, where a zero-width structure is produced. For
longer bridge lengths, they appear again on the left of
the transmission minimum, with increasing relative dis-
tances. The four peaks on the left of the transmission zero
for l̃b = 3.3, on the other hand, have in the mean time
merged into the low energy background discernible in Fig-
ure 3. One observes also peaks moving down in energy,
coming from the second scattering threshold, at Ẽ = 4.
For l̃b = 3.9 a conductance profile quite similar to the ini-
tial one can be observed. The same trend is observed for a
different number of dots, with the BIC occurring more or
less at the same energy position and almost for the same
value of the bridge length.

As Figure 3 exhibits, the behavior of the conductance
as a function of energy with varying bridge length is by far
non trivial. A simpler picture emerges, when one consid-
ers the motion of the S-matrix poles in the multi-sheeted
energy Riemann surface. For the present purposes, one
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Fig. 3. Total conductance of 5 square dots symmetrically cou-
pled to a waveguide as a function of the adimensional energy.
Each dot has c̃ = l̃d = 2.0. From bottom to top the bridge
length l̃b increases from l̃b = 3.3 up to l̃b = 3.9 with Δl̃b = 0.1.
The numbers 1, . . . , 8 label the peaks to which we refer in the
text. Consecutive curves are vertically offset for clarity.

can limit oneself to the Riemann sheet where Imk
(l)
1 < 0

whereas Imk
(l)
j > 0 for j > 1; there, one has exponen-

tially diverging waves in the open channel, and exponen-
tially decreasing waves in the other channels. A pole at
Ep ≡ E(R) − iΓ can be associated to a resonance in the
conductance G around E ∼ E(R), of width 2Γ , provided
that E(R) is in between the first and second scattering
threshold [20,26]. We applied our approach to solve the
Schrödinger equation for complex energies and channel
momenta, so as to locate the S-matrix poles in the relevant
sheet. The results are given in Figures 4 and 5. In the lower
panel of the former we give the four poles corresponding
to peaks 1 ÷ 4 in Figure 3, while in the latter we plot
the poles associated to peaks 5 ÷ 8. As l̃b increases from
l̃b = 3.3 up to l̃b = 3.6, the poles of Figure 4 rotate coun-
terclockwise in the fourth quadrant of the energy plane
approaching the real energy axis. For l̃b = 3.6 they touch
the energy axis in the region of the transmission zero, and
correspond to zero-width states in the continuum. A closer
inspection of the BICs reveals that they form a miniband
at slightly different energies (see inset in Fig. 4). This ef-
fect may be attributed to the presence of evanescent modes
in the bridges and in the leads, which affect the coupling
of the dots among themselves and with the continuum.
Evanescent modes have been advocated already in refer-
ences [10,27], to explain the mismatch between the BICs’
positions and the degenerate eigenenergies of the closed
system in quantum billiards or Aharonov-Bohm rings cou-
pled to a waveguide. Because of the evanescent modes, the
BIC function has exponentially small tails in the leads,
which are obviously absent when the closed dot or ring
is considered. In a periodic structure, these exponential
tails are present in the connecting bridges also, and pro-
duce the miniband of BICs observed herein, much in the
same way as the inter-atomic coupling gives rise to a band

Fig. 4. Lower panel: counterclockwise motion of the poles
associated to the peaks 1, 2, 3, 4 of Figure 3 in the complex
energy plane for l̃b increasing from 3.3 up to 3.9. The solid,
dashed, short-dashed, and dotted lines correspond to poles 1,
2, 3, and 4, respectively. The inset gives a detailed view of the
region where BICs reside. Upper panel: the associated eigenen-
ergies of the corresponding closed system in the (Ẽ, l̃b) plane.

of states for the electron moving in the periodic potential
of the crystal. As the bridge length increases further, the
four poles move away from the energy axis, so that the
corresponding peaks are again discernible in the conduc-
tance at lower and lower energies. As for the poles at the
upper edge of the transmission band, they move monoton-
ically downwards in the energy plane towards the energy
axis until they produce peaks 5 ÷ 8 at the right of the
transmission minimum, which can be seen in Figure 3 for
l̃b = 3.9. In the mean time, new poles come into play
through the second scattering threshold, coming from the
higher energy region. As far as these poles have E(R) > 4,
however, they cannot produce observable effects on the
conductance; indeed, transmission resonances above the
second scattering threshold are due to poles residing on
other, different sheets of the energy Riemann surface [20].
Stated in the language of dispersion theory, as the bridge
length increases one observes that some of the S-matrix
poles undergo a transition from a “shadow” state to a
“dominant” role [20,28]. We verified also that the low en-
ergy plateau in the conductance corresponds to a group of
closed packed poles in the energy plane. As l̃b increases,
the four poles producing the peaks on the left of the trans-
mission zero for l̃b = 3.3 join these low energy poles so that
the corresponding peaks disappear in the background.

For greater bridge lengths zero-width states appear
again at Ẽ ∼ 3.3 in the conductance spectrum. This is
exhibited in the left-most part and in the inset of Fig-
ure 5, where we give also the pole positions for l̃b ≥ 3.9.
For l̃b = 4.22 the four poles form again a miniband of zero-
width states in the region of the transmission zero. Note
that the four poles associated to the BICs at l̃b = 3.6 have
in the meantime moved downward in energy towards the
structureless background. It is finally worth to mention
what happens in terms of the S-matrix poles when the
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Fig. 5. Counterclockwise motion of the poles 5, 6, 7, 8 of Fig-
ure 3 in the complex energy plane with l̃b increasing from 3.3
up to 4.5. The solid, dashed, short-dashed, and dotted lines
correspond to poles 5, 6, 7, and 8, respectively. The full dots
mark the pole positions for l̃b = 3.9. The inset gives a detailed
view of the BIC region.

number of dots increases for a given bridge length. With
reference to Figure 1, the dip in conductance one observes
for Nd = 1 is due to a pole at Ep � 3.31−0.072i; no other
pole is found near the energy axis in the considered energy
region. Things are already quite different when passing to
the two-dot case; the smooth plateau of maximum trans-
mission at low-energy is associated to four closed-packed
poles with 2.03 < E(R) < 3.02 and 0.303 < Γ < 0.379. As
Nd increases, more and more strongly coupled poles ap-
pear in the low-energy part of the first transmission band.
At the same time, more and more poles appear very near
the energy axis, on both sides of the transmission zero. In
all instances, the transmission zero occurs at Ẽ � 3.32.

For coupled-channel problems in Atomic Physics, the
dynamics underlying the occurrence of BICs has been in-
vestigated by Friedrich and Wintgen in the framework
of a three-channel model [7,8]. Assuming one open and
two closed channels, where the wave function is taken to
be proportional to the bound-state solutions of the corre-
sponding uncoupled Schrödinger equations, one can solve
for the scattering component so as to obtain explicit ex-
pressions for the resonance positions and widths. Friedrich
and Wintgen were able to show that, as the bound state
energies E1 and E2 were tuned varying some characteris-
tic parameter, the interference effects lead to an avoided
crossing of the resonance positions. At the same time, one
observes dramatic changes in the resonance widths, one
of them vanishing when E1 = E2 and the bound states
in the uncoupled closed channels become degenerate. A
strict connection between the occurrence of zero-width
resonances and the presence of degenerate eigenenergies
for the corresponding two-dimensional closed system has
been also found for a quantum billiard of variable shape
by Sadreev et al. [10]. The two-dot case has been con-
sidered in reference [13]. There too, the trapping of the
particle in the internal bridge occurs in correspondence to

the crossing of the transmission zero by the eigenenergies
of the closed system. We ascertained whether this sim-
ple relation between the occurrence of zero-width states
and the eigenenergies of the closed system still holds in
the serial structures under consideration. To this end, one
has to solve the Dirichlet boundary-value problem for pe-
riodic domains such that of Figure 1. We accomplished
this through a modification of the S-matrix approach. The
condition that the full wave-function vanishes on the left-
most and rightmost edge of the closed system implies that
the amplitudes of the forward and backward propagating
waves have to be related by

−→c (1)
n = −←−c (1)

n
−→c (Nd)

n = −e−2ik̃(d)
n l̃d←−c (Nd)

n , (4)

where −→c (1)
n and ←−c (1)

n are the amplitudes for the waves
propagating in the first dot to the right and to the left, re-
spectively, and −→c (Nd)

n ,←−c (Nd)
n the corresponding quantities

in the last dot on the right. By k̃
(d)
n we denote the adimen-

sional propagation wave numbers in the various channels
inside the dots [19]. Note that, even if these relations have
been written for an open channel, they apply in the closed
channels also, so that convergence with respect to the ex-
pansion into transverse basis functions is guaranteed when
solving the Dirichlet problem in the domain. Now, by def-
inition of the S-matrix, one can write in obvious matrix
notation ( ←−c (1)

−→c (Nd)

)
=

(
S11 S12

S21 S22

)( −→c (1)

←−c (Nd)

)
. (5)

Combining equations (4) and (5) one obtains

B−→c (Nd) = 0, (6)

where

B ≡ S21 (1 + S11)
−1 S12Ω− S22Ω− 1, (7)

with Ωmn ≡ e2ik̃(d)
m l̃dδmn. Equation (6) represents a sys-

tem of homogeneous equations for the amplitudes −→c (Nd)
n ,

which has a non-trivial solution if and only if the condition
detB = 0 is satisfied. This condition can be regarded as the
secular equation fixing the eigenenergies of the standing
waves in the closed, periodic domain under consideration.
Since the energy enters in a highly non-trivial way in the
secular equation through the channel wave-numbers, we
actually evaluated detB for varying energies, and looked
for the zeros of its modulus through a minimization pro-
cedure. We tested our approach for a rectangular domain,
whose eigenenergies are known analytically, and for the
quarter square Sinai billiard, which has been studied by
different means in reference [29]. We found excellent agree-
ment in both cases when the same number of basis func-
tions as in the scattering calculations were included.

In the upper panel of Figure 4 we exhibit the results
of our calculations for the 5-stub case. The eigenenergies
are plotted in the (Ẽ, l̃b) plane, and refer to the states
associated with peaks 1 ÷ 4, occurring when the system
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Fig. 6. Position of the resonances 1 and 5 as a function of l̃b
for the 5-dot system of Figure 3 near the BIC configuration
(lower panel). The same graph is given for resonances 2 and 6
in the upper panel.

is coupled to the waveguide. From a comparison with the
motion of the corresponding S-matrix poles (lower panel)
one sees that, as the resonance poles move towards the
energy axis and approach the transmission zero in cor-
respondence to the BICs, the eigenenergies of the closed
system become closer and closer to each other, until one
has four degenerate eigenvalues for l̃b = 3.6. We verified
that for three or four coupled dots one has a pair or a
triplet of degenerate eigenenergies of the closed structure
in correspondence to the BICs. The zero-width configura-
tion occurs moreover practically at the same value of l̃b.
Overall, our findings show that the occurrence of trapped
states with zero width is a robust effect in serial structures.

We looked also for possible avoided crossings between
the resonance positions. In Figure 6 we give the real part
of the pole energies Ẽp for the pairs of poles (1, 5) and
(2, 6) in the (Ẽ, l̃b) plane. The avoided crossing is clearly
discernible for the lowest-energy resonances, as can be
inferred from the lower panel of Figure 6; for l̃b = 3.6,
where the width of one of the resonances is zero, the rel-
ative distance among the corresponding resonance posi-
tions reaches a minimum, and then increases again. This
behavior is less evident for the other resonance, as the
upper panel of Figure 6 shows, and deteriorates further
as one considers the resonance poles at higher energies.
This effect can be attributed to the presence of other,
nearby poles at the upper edge of the transmission band.
In particular, as the bridge length increases, more poles
come into play from higher energies through the second
scattering threshold, and may perturb the motion of the
high-lying resonance poles of the upper multiplet.

We finally investigated the effect of a symmetry break-
ing of the system on the BICs. To be definite, we refer
again to the 5-dot case with l̃b = 3.6. When the central
dot is made different from the lateral ones, the quadruplet
of poles near the transmission zero acquire a finite width.
This removal of the BICs when the symmetry among the

various dots is slightly broken is consistent with the results
of reference [13] for the two-dot case. The general rule ac-
cording to which there is an anti-binding effect, and the
poles move in a counterclockwise way as some character-
istic length of the system increases, is still obeyed. The
four poles, however, move in the complex energy plane
with different velocities, producing a multiplet of narrow
peaks which depend in a rather complex way upon the
bridge length. In particular, when the central dot is made
shorter with respect to the external ones, two poles move
faster towards higher energies leaving the BIC position,
until they give rise to peaks strongly coupled to the reso-
nances residing at the upper edge of the conduction band.
The other two poles of the quadruplet, on the contrary, do
not leave the region of the transmission zero, and give rise
to very narrow peaks in the limiting situation of a central
dot of the same height as the connecting bridge, so that
one has two couples of dots connected by a central bridge
with l̃b = 9.2.

3 Conclusions

In this paper we have considered the occurrence of zero-
width states in the continuum of periodic systems of sev-
eral coupled dots opened into an external waveguide. The
present analysis can be therefore considered as the exten-
sion to serial devices of what has been done for two-dot
systems [13,14]. We studied how the transmission prop-
erties change as the length l̃b of the connecting bridges
varies, and found that the BIC phenomenon is a rather
robust effect with respect to the number of dots Nd. When
a BIC is produced for a suitable value of l̃b in a two-dot
system, a miniband of zero-width states is observed for a
larger number Nd of dots. Even if we limited ourselves to
present detailed results for a 5-dot device, we verified that
our conclusions still hold up to ten coupled dots. Over-
all, with varying l̃b the conductance profile varies in a
non-trivial way. A much simpler picture emerges, however,
when one looks at the trajectories of the resonance poles
on the relevant sheet of the complex energy plane. As l̃b
increases, the poles move counterclockwise in the energy
plane; for critical values of l̃b a multiplet of poles touches
the energy axis near a transmission zero, the electron is
trapped inside the device and zero-width states emerge.
We have also shown that the present S-matrix approach
can be modified so as to treat the Dirichlet boundary-value
problem for the closed system. In close analogy with what
has been found for a single [10], or two coupled dots [13],
we found that in correspondence to BICs a whole mul-
tiplet of eigenenergies of the closed system is degenerate
with the transmission minimum. One may finally won-
der whether and to what extent signals of the zero-width
states considered here can be found in real systems. When
the translational symmetry of the system is broken, the
BICs acquire a finite, even if small width, and become nar-
row resonances moving in the region of minimum trans-
mission as the bridge’s length changes. One ought obvi-
ously ascertain how electron-electron and electron-photon
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interactions modify the resonance features of the serial
system with respect to the present mean-field picture.
From this point of view, an interesting alternative is of-
fered by the strict correspondence between the quan-
tum mechanical description of single-electron transmission
through quantum dots, and the transmission of electro-
magnetic waves through microwave billiards [30]. In this
case, it is easy to vary the length of the internal waveg-
uide connecting the resonant cavities, so as to control the
transmission properties of the whole system. Serial struc-
tures can be also realized through photonic crystals. Ac-
tually, the possibility of BICs has been recently proved for
electromagnetic waves propagating inside photonic waveg-
uides with defects [31].

One of us (PL) would like to acknowledge the Physics Depart-
ment of Padua University for hospitality and support.
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