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Alcohol is an important risk factor for upper aerodigestive
cancers and is principally metabolized by alcohol
dehydrogenase (ADH) enzymes. We have investigated six ADH
genetic variants in over 3,800 aerodigestive cancer cases and
5,200 controls from three individual studies. Gene variants
rs1229984 (ADH1B) and rs1573496 (ADH7) were significantly
protective against aerodigestive cancer in each individual study
and overall (P ¼ 10�10 and 10�9, respectively). These effects
became more apparent with increasing alcohol consumption
(P for trend ¼ 0.0002 and 0.065, respectively). Both gene
effects were independent of each other, implying that
multiple ADH genes may be involved in upper aerodigestive
cancer etiology.

The alcohol dehydrogenase (ADH) pathway includes seven distinct
ADH genes, a key candidate gene group for aerodigestive cancers1–3.

Studies of aerodigestive cancer in populations of European origin have
focused on ADH1C with little evidence of any effect4. We previously
reported an association for ADH1B R48H (rs1229984) in a central
European (CE) population5 and now consider the effect of this and
five other ADH variants in an expanded study comprising
809 aerodigestive cancer cases and 2,586 controls from the CE study
as well as a further 3,067 aerodigestive cancer cases and 2,692 controls
from two other studies in Europe (ARCAGE study) and Latin America
(LA study) (total of 3,876 cases and 5,278 controls). All three studies
were coordinated by the International Agency for Research on Cancer
(IARC) and followed a similar protocol (Supplementary Methods
online). Of the 3,876 cases, 1,790 were cancers of the oral cavity or
pharynx, 1,659 were cancers of the hypopharynx or larynx and
427 were cancers of the esophagus (Supplementary Table 1 online).
Cases with a histology other than squamous cell were excluded.

The HapMap Consortium has genotyped 163 SNPs in the vicinity
of the ADH gene cluster with a minor allele frequency (MAF) of 4% or
more in the CEPH Utah (CEU) population6. Inspection of the linkage
disequilibrium (LD) pattern across this region indicates that ADH1A,
ADH1B, ADH1C, ADH4, ADH5 and ADH6 are relatively highly
correlated, whereas ADH7 showed little correlation with the remaining
six (Supplementary Fig. 1a online). From all verified missense SNPs
in the seven ADH genes found in both the NCBI SNP and SNP500
databases7, we selected eight that had a MAF 4 4% in the CEU
population. Three missense SNPs in ADH4 (rs1126671, rs1126673 and
rs1042364) were in strong LD, and thus were genotyped by the highly
correlated tagging SNP rs1984362 (r2 4 0.89). In total, we genotyped
six genetic variants (five missense SNPs and one tagging SNP) in all
three studies (Table 1 and Supplementary Table 2 online).

In the pooled analysis on all 3,876 cases and 5,278 controls, four
variants reported a significant association (Supplementary Table 3
online). The most prominent was with rs1229984 (in ADH1B; OR for
codominant model ¼ 0.59 (95% CI ¼ 0.50–0.69); P under codomi-
nant model ¼ 8 � 10�10). This variant was significant in each of the
three individual studies (CE: P ¼ 5 � 10�5; ARCAGE: P ¼ 1 � 10�4;
LA: P ¼ 0.002). A second strongly significant finding in the pooled
analysis was with rs1573496 (in ADH7; OR ¼ 0.69 (0.61–0.78); P ¼
3 � 10�9), a new potential susceptibility gene for this cancer. This
variant was also significant in each of the three individual studies
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(CE: P ¼ 1 � 10�7; ARCAGE: P ¼ 0.015; LA: P ¼ 0.008). Signi-
ficant effects were also observed for both ADH1C variants: rs1693482
(OR ¼ 1.17 (1.09–1.26); P ¼ 2 � 10�5) and rs698 (OR ¼ 1.14
(1.06–1.23); P ¼ 3 � 10�4). These two variants were highly correlated
in all three studies (D¢ 4 0.99, r2 4 0.97, Supplementary Fig. 1b),
so we considered only rs1693482 for further analysis. A mode-
rate increase in risk for this variant was observed in each of the
three individual studies (CE: P ¼ 0.02; ARCAGE: P ¼ 0.002; LA:
P ¼ 0.04).

Both rs1229984 (ADH1B) and rs1693482 (ADH1C) were in LD,
with D¢ 4 0.75 in all three studies (Supplementary Fig. 1b). In order
to determine the independence of each SNP, we repeated analysis of
rs1693482 (ADH1C) excluding rs1229984[A] (ADH1B) carriers and
vice versa (Supplementary Table 4a online). This indicated that the
effect of rs1229984 (ADH1B) was not influenced by rs1693482
(ADH1C) and that the effect observed with rs1693482 (ADH1C)
could not be explained solely by LD with rs1229984 (ADH1B). In
contrast, there was little LD between rs1573496 (ADH7) and
rs1229984 (ADH1B), with D¢ o 0.21 in all three studies (Supple-
mentary Fig. 1b). To illustrate their independence, we repeated
analysis of rs1229984 (ADH1B) excluding carriers of rs1573496[C]
(ADH7) and vice versa. As expected considering the lack of LD
between these two SNPs, the risk estimates remained very similar to
those based on the complete dataset (Supplementary Table 4b).

Subsequently, we focused on the effects of rs1229984[A] (ADH1B)
and rs1573496[C] (ADH7) after stratifying by site of cancer, age,

alcohol consumption, tobacco smoking and study (Fig. 1). Significant
heterogeneity (P ¼ 0.001) for rs1229984 (ADH1B) was observed by
cancer site with a reduction in risk of between two- and threefold
for oral and pharyngeal cancer (OR ¼ 0.45 (0.35–0.57)) and esopha-
geal cancer (OR ¼ 0.34 (0.20–0.56)), as opposed to a 30% decrease in
risk for larynx cancer (OR ¼ 0.71 (0.57–0.88)). We observed sig-
nificant heterogeneity by site for rs1573496 (ADH7) (P ¼ 0.023),
with the most pronounced protective effect being for esophageal
cancer (OR ¼ 0.45 (0.32–0.64)). For both gene variants, there was
an increasing protective effect with increasing alcohol consumption.
For rs1229984 (ADH1B), we did not observe any effect among never
drinkers (OR ¼ 1.02 (0.66–1.56)), whereas we observed an over
twofold effect among those who drank above the median level of
alcohol in each study (OR ¼ 0.42 (0.31–0.56); P for trend ¼ 0.0002).
Similarly, for rs1573496 (ADH7), no effect was detected among never
drinkers and a 40% decrease in risk was observed for heavy drinkers
(OR ¼ 0.61 (0.50–0.75); P for trend ¼ 0.065). The effect of rs1229984
(ADH1B) was consistent across the three studies, whereas the effect of
rs1573496 (ADH7) varied from OR ¼ 0.54 (0.43–0.69) in the CE
study to 0.79 (0.64–0.98) for the ARCAGE study (P for heterogeneity
¼ 0.08). Any potential heterogeneity seemed to be explained by a
higher proportion of esophageal cancer cases in the CE study (21%) as
opposed to the LA study (9%) and the ARCAGE study (8%). When
esophageal cancer cases were excluded from this analysis, no between-
study heterogeneity was apparent for rs1573496 (ADH7) (P for
heterogeneity ¼ 0.38).

Table 1 Minor allele frequency (%) of six ADH candidate variants within each recruitment center

Gene ADH1B G/A ADH1B A/T ADH1C G/A ADH1C A/G ADH4 C/T ADH7 G/C

rs number rs1229984 rs6413413 rs1693482 rs698 rs1984362 rs1573496

Coding change R48H T60S R272Q I350V Tagging G92A

Number of cases

and controls

Ca Co Ca Co Ca Co Ca Co Ca Co Ca Co Ca Co

Central Europe

Overall 809 2,586 3.44 5.94 0.56 0.36 43.69 42.16 43.30 41.12 29.72 30.16 7.67 12.77

Moscow 365 797 4.03 5.41 0.69 0.52 46.91 44.69 47.47 46.02 31.22 30.82 7.12 12.42

Lodz 204 804 3.19 5.79 0.49 0.39 44.74 41.74 45.05 42.50 31.19 30.56 8.50 13.60

Bucharest 142 178 4.35 9.66 0.71 0.29 32.09 29.36 32.37 30.18 24.64 30.70 8.03 11.11

Olomouc 58 614 0.86 5.19 0.00 0.18 41.96 40.19 42.86 41.15 23.68 29.23 6.25 12.76

Banska Bystrica 40 193 0.00 7.59 0.00 0.27 43.75 37.50 43.75 38.25 35.53 28.00 9.21 12.30

ARCAGE

Overall 1,356 1,407 3.74 6.55 1.06 1.05 41.45 37.90 41.61 37.66 31.71 29.34 8.10 10.67

Paris 215 128 2.40 4.40 1.19 1.56 41.51 40.23 41.35 40.00 26.67 25.20 6.76 6.75

Prague 100 124 3.80 8.70 1.05 1.27 53.80 36.55 54.76 37.38 33.85 36.07 9.38 9.24

Athens 187 160 11.41 16.01 0.27 1.28 33.33 28.57 32.97 27.63 32.88 32.91 11.62 10.78

Aviano 138 140 3.26 6.72 0.75 1.80 40.46 31.02 41.54 31.85 35.71 29.50 7.14 10.22

Padova 110 118 2.29 4.70 1.89 0.43 36.79 32.91 37.62 32.89 32.11 29.74 6.25 13.56

Torino 144 178 7.09 11.78 1.41 0.28 39.36 27.62 38.32 27.51 32.75 28.74 10.71 14.00

Oslo 109 135 0.48 0.38 0.92 0.37 45.24 49.62 44.29 49.62 31.60 24.63 5.19 10.74

Edinburgh 47 51 0.00 3.00 3.19 1.00 54.35 52.94 54.26 52.94 34.04 27.00 4.35 7.84

Manchester 127 156 0.83 1.94 1.19 1.30 46.64 45.21 46.34 46.47 27.64 27.81 8.20 10.26

Newcastle 61 95 0.00 2.20 0.00 1.60 45.76 44.21 44.17 45.11 31.36 24.21 8.20 7.53

Barcelona 77 80 1.30 6.96 0.66 1.25 34.46 36.25 35.06 35.44 40.54 32.69 6.67 11.88

Zagreb 41 42 1.22 4.76 1.28 0.00 43.75 47.62 43.75 47.44 23.75 38.75 8.75 15.00

Latin America

Overall 1,711 1,285 3.91 6.89 0.56 0.39 29.90 27.06 29.56 26.11 22.23 21.68 5.72 8.09

Cuba 150 132 7.27 7.45 0.00 0.45 29.09 23.63 29.69 26.67 23.91 23.12 8.62 7.65

Bueno Aires 292 203 4.07 6.71 0.38 0.00 35.55 30.74 37.43 31.50 24.07 25.96 5.29 8.81

Goianna 414 205 3.59 5.99 0.29 0.30 30.38 26.67 30.29 29.11 21.27 20.51 5.87 7.42

Pelotas 169 222 5.07 7.33 0.00 0.48 32.09 29.30 36.07 30.68 20.65 20.83 7.14 9.66

Rio de Janeiro 389 208 3.62 6.70 1.00 0.82 26.54 19.74 26.45 20.10 23.65 20.54 5.25 7.25

Sao Paulo 297 315 2.66 7.17 1.06 0.33 26.88 26.43 26.77 26.79 20.28 21.03 4.58 7.77

Ca, cases; Co, controls.
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We also analyzed the effect of carrying the rs1693482 (ADH1C) G/A
or A/A variant after stratifying by site of cancer, age, alcohol con-
sumption, tobacco smoking and study (Supplementary Fig. 2 online).
No notable heterogeneity by any of these factors was observed.

Finally, we assessed the combined effect of carrying either one or
both of the rare gene variants from rs1229984 (ADH1B) and
rs1573496 (ADH7). For those who possessed only rs1229984[A]
(ADH1B), the OR for aerodigestive cancer was 0.56 (0.45–0.70), and
for those who possessed only rs1573496[C] (ADH7), the OR was 0.70
(0.61–0.82), whereas for those who possessed both rare gene variants,
the OR was 0.45 (0.34–0.60; P for trend in possessing zero, one or two
variants ¼ 10�16).

These results provide strong evidence that both ADH1B and ADH7
have an important association with susceptibility to aerodigestive
cancer. The strong similarity of the results from different studies
argues against population stratification or other biases. These effects
seem to be relevant for all aerodigestive tract subsites, although they
may be more prominent for esophageal cancer, and they both seem to
be dependent on alcohol consumption—that is, among nondrinkers,
the gene variants have little or no effect on disease risk, whereas
among alcohol drinkers, the protective effect is more apparent at
higher alcohol intake. Furthermore, neither gene variant seemed to be
consistently associated with the amount of alcohol consumed in
controls (data not shown), indicating that any protective effect from
these gene–environment interactions is likely to be due to their role in
changing the carcinogenic effect of alcohol beverages.

Whether we have studied the causal variants in these two genes or
whether our associations are secondary to other causal variants is
unknown. rs1229984 (ADH1B) G/A heterozygotes and A/A homo-
zygotes are known to metabolize ethanol up to 100 times quicker than
the common rs1229984 (ADH1B) G/G homozygote4, providing sup-
port that quick eradication of ethanol, and therefore lower local
exposure, may be protective5. The potential role of ADH7 is unclear,
however, although variants in this gene may also influence ethanol
metabolism8. Given the limited association between ADH7 and other
ADH genes (Supplementary Fig. 1a), it would be expected that the
causal association for this variant resides in the region of ADH7.

In summary, our analysis of six ADH genetic variants in over 3,800
cases and 5,000 controls has identified two that are independently and
strongly associated with aerodigestive cancers. Elucidation of these
findings and further detailed characterization of this pathway in a
large series of subjects seems warranted.

Note: Supplementary information is available on the Nature Genetics website.
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Figure 1 Odds ratio (OR) of upper aerodigestive cancer by rs1229984 (ADH1B) and rs1573496 (ADH7) genotypes. Rare allele carriers (dominant model)

versus common allele homozygous genotype. ORs are standardized by age, sex, center, cumulative alcohol consumption and, when relevant, smoking. ORs

and 95% CI are derived from fixed effects models.
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