
Communications in Mathematical Physics manuscript No.
(will be inserted by the editor)

A numerical study of Arnold diffusion in a priori

unstable systems. ⋆

Massimiliano Guzzo2, Elena Lega1, Claude Froeschlé1
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Abstract This paper concerns the problem of the numerical detection of Arnold
diffusion in a priori unstable systems. Specifically, we introduce a new definition
of Arnold diffusion which is adapted to the numerical investigation of the prob-
lem, and is based on the numerical computation of the stable and unstable
manifolds of the system. Examples of this Arnold diffusion are provided in a
model system. In this model, we also find that Arnold diffusion behaves as an
approximate Markovian process, thus it becomes possible to compute diffusion
coefficients. The values of the diffusion coefficients satisfy the scaling D(ǫ) ≃ ǫ2.
We also find that this law is correlated to the validity of the Melnikov approxi-
mation: in fact, the D(ǫ) ≃ ǫ2 law is valid up to the same critical value of ǫ for
which the error terms of Melnikov approximations have a sharp increment.

1. Introduction

Diffusion in conservative dynamical systems has been a much studied subject in
the last decades. Apart from specific examples, the understanding of the general
mechanisms which can produce drift and diffusion in the phase space of such sys-
tems is an interesting, and still open, problem. The existence of a slow diffusion
of the actions in a specific quasi-integrable system has been proved for the first
time by Arnold [1]. The proof of the Arnold diffusion is based on the existence of
chains of whiskered tori such that, under the effect of a perturbation, the unsta-
ble manifold of one intersects the stable manifold of the next one. The sequence
of such invariant tori is called transition chain and the shadowing argument used
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to prove diffusion through the transition chain is called transition chain mecha-
nism. A non generic feature of Arnold’s example is that the hyperbolic invariant
manifold along which Arnold proves the existence of diffusion is fibered by in-
variant tori for all values of the perturbing parameter. That is, the restriction
of the dynamical system to the invariant manifold is integrable. Generalizations
of Arnold’s example consider normally hyperbolic invariant manifolds such that
the restriction of the dynamics to them is not integrable. As a consequence, the
distribution of the invariant whiskered tori has gaps which correspond to the
resonances of the dynamical system restricted to the invariant manifold. In [6]
the existence of transition chains in regions of the invariant manifold which do
not contain a selected number of main resonances is proved. In [8] transition
chains crossing the main resonances are constructed by including also stable and
unstable manifolds of invariant sets which are topologically different from invari-
ant whiskered tori. The existence of diffusing motions has been proved also in
[2], [3], [4] using different models and techniques, including variational methods
based on Mather theory, and in [26], [27] using the so called separatrix map. The
most important techniques to prove the existence of transitions chains (used in
[6], [8], [26], [27]) are based on the so–called Melnikov theory, which provides
first order approximations of the stable and unstable manifolds.

Arnold’s paper motivated a great debate about the possibility of numeri-
cal detection of Arnold diffusion. Few years after the first numerical detections
of chaotic motions [12], problems related to the numerical detection of Arnold
diffusion were discussed in [7]. In the following decades, many authors studied
numerically the diffusion through resonances, referring to it as Arnold diffusion.
For example, explicit reference to possible interpretations of numerical diffusion
as Arnold diffusion can be found in [17]. Other papers, such as [9], [29], [20], [16],
studied the numerical diffusion of orbits in coupled standard maps by changing
the perturbation parameters and the number of coupled maps (for a review see
also [19] and references therein). Computations of the stable and unstable man-
ifolds of hyperbolic tori related to an Arnold diffusion problem can be found
in [25]. In [18], [11], [10] we studied the diffusion of orbits in quasi–integrable
systems for values of the perturbing parameters for which there is numerical
evidence of applicability of the KAM and Nekhoroshev theorems.

In this paper we study the problem of the numerical detection of Arnold
diffusion for an important class of conservative systems, the so–called a pri-
ori unstable ones following the terminology introduced in [6]. To do this, we
first need to define precisely what is the Arnold diffusion that one can measure
with numerical experiments, that can be repeated for a finite number of initial
conditions and values of the perturbing parameter. We therefore provide a new
definition of Arnold diffusion which is based on the computation of the stable and
unstable manifolds of two whiskered tori (or other invariant hyperbolic objects)
for specific values of the perturbing parameter ǫ. The perturbing parameter is
required to be sufficiently small so that the normally hyperbolic invariant mani-
fold is filled by a large volume of whiskered tori. An ideal verification of Arnold
diffusion would correspond to the detection of heteroclinic transitions among the
stable and unstable manifolds of different whiskered tori. But, the probability
of finding an orbit which passes near a selected number of heteroclinic points is
very small (in [6], based on a prescribed selection of the successive passages, this
is reflected in superexponential estimates of the time of diffusion, in the sense
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used there), and moreover the time needed for an orbit to perform an exact
heteroclinic excursion would be infinite. Therefore, we base our definition on the
detection of approximate heteroclinic transitions, corresponding to the existence
of orbits with initial conditions in a neighbourhood of a whiskered torus which
enter a finite neighbourhood of another whiskered torus in some finite time, with
suitably ’large’ variation of the action variables which are constants of motion
for ǫ = 0. On the one hand, the new notion of Arnold diffusion is weaker than the
usual one, because it refers to finite values of ǫ and to specific neighbourhoods of
the whiskered tori. On the other hand, it provides a numerical verification of the
topological mechanism which is behind the diffusion of the actions, inspired by
the proofs of Arnold diffusion such as [6] and [8]. We provide numerical examples
of this Arnold diffusion, with a control of the numerical errors, including also a
transition among whiskered tori with large gaps between them.

The detection of Arnold diffusion in the sense stated by the new definition
requires the precise detection of one approximate heteroclinic transition. There-
fore, we needed to set the numerical precision to the high value of 400 digits
in the numerical experiments. Relaxing the numerical precision of the computa-
tions (precisely we switched to double precision) we could compute the statistical
properties of many of these transitions. We remark that, while the lower pre-
cision affects drastically the individual integrated orbits after some Lyapunov
times, it affects much less the computation of statistical quantities, such as the
Lyapunov exponents and the diffusion coefficients (see, for example, [23]).

We find that, for small values of ǫ, Arnold diffusion behaves as an approximate
Markovian process (see Section 4 and 5.2 for the precise meaning of ’approxi-
mate’) allowing one to compute diffusion coefficients, and the values of these
diffusion coefficients satisfy a scaling D(ǫ) ≃ ǫ2. For higher values of ǫ, data
cannot be fitted by the ǫ2 law, and we do not try any fit because their statistics
is poor (see Section 4 and the technical Section 5.2 for details). It is remarkable
that the D(ǫ) ≃ ǫ2 law is correlated to the validity of the Melnikov approxima-
tion, in the sense that the D(ǫ) ≃ ǫ2 law is valid up to the same critical value
of ǫ for which the error terms of Melnikov approximations (which increase with
ǫ as well) have a sharp increment.

The paper is organized as follows: in Section 2 we introduce a new definition
of Arnold diffusion suited for numerical experiments; in Section 3 we provide nu-
merical examples of Arnold diffusion; in Section 4 we numerically show that, for
small values of ǫ, Arnold diffusion behaves as an approximate Markovian process
and we discuss the relevance of Melnikov approximations. The technical tools
used through the paper, that is the tools related to normal hyperbolicity, the
computation of the stable and unstable manifolds, the statistical tools and the
computation of Melnikov approximations are reported in Section 5. Conclusions
are provided in Section 6.

2. A definition of Arnold diffusion suited to numerical experiments

We consider dynamical systems defined by a family of smooth symplectic maps:
(I ′, ϕ′) = φǫ(I, ϕ), with the action–angle variables (I, ϕ) defined on a domain
B × T

n, with B ⊆ R
n open bounded. The family φǫ depends smoothly on the

parameter ǫ. We assume that:
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– some actions Ij , . . . , In, with j > 1, are constants of motion of the unper-
turbed map φ0;

– φ0 has an invariant sub–manifold Λ0 which is normally hyperbolic and sym-
plectic (the definition of normal hyperbolicity is recalled in Section 5.1);

– the restriction of φ0 to Λ0 is an integrable anisochronous map1.

We call such maps a priori unstable.
We will consider suitably small |ǫ| such that the map φǫ has an invariant sub-

manifold Λǫ which is normally hyperbolic, symplectic, and canonically smoothly
conjugate to Λ0. Therefore, the KAM theorem for maps applies to the restriction
of φǫ to Λǫ, and ǫ is the small parameter.

For some c0 > 0, and any small ǫ, we require that any orbit (I(t), ϕ(t)) =
φt

ǫ(I(0), ϕ(0)), with (I(0), ϕ(0)) ∈ Λǫ, satisfies:

‖I(t) − I(0)‖ < c0 (1)

for any t ∈ Z. That is, the motions of φǫ with initial conditions on Λǫ are
uniformly bounded in the actions. Therefore, Arnold diffusion concerns the dy-
namics in neighborhoods of Λǫ.

Definition 1. The problem of Arnold diffusion for φǫ consists in proving that,
for any suitably small ǫ 6= 0 and for any neighbourhood V of Λǫ there exist
motions such that for some t ∈ Z it is: (I(0), ϕ(0)), (I(t), ϕ(t)) ∈ V , and

‖I(t) − I(0)‖ > 2c0 . (2)

The above definition of Arnold diffusion is not well suited for the numerical
study of the problem, because numerical integrations cannot span any value of
the perturbing parameter and any small neighbourhood of Λǫ. Therefore, we
give below a definition which is more adapted to the numerical investigation,
and it still contains most of the whole complexity of Arnold diffusion.

Definition 2. The problem of the numerical detection of Arnold diffusion for
φǫ in the subset Λ̃ ⊆ Λǫ consists in the numerical detection of:

• two points x′ = (I ′, ϕ′), x′′ = (I ′′, ϕ′′) ∈ Λ̃ such that the closures C(x′), C(x′′)
of their orbits have empty intersection;

• two vectors ∆x′ = (∆I ′, ∆ϕ′), ∆x′′ = (∆I ′′, ∆ϕ′′) ∈ R
2n;

• a positive t ∈ N and an index k ∈ {j, ..., n};
such that:

• x′ +∆x′ ∈ Wu(x′), where Wu(x′) denotes the unstable manifold of x′;
• φt

ǫ(x
′ +∆x′) +∆x′′ ∈ Ws(x

′′), where Ws(x
′′) denotes the stable manifold of

x′′;
• for any (Ĩ ′, ϕ̃′) ∈ C(x′), (Ĩ ′′, ϕ̃′′) ∈ C(x′′) it is:

∣

∣

∣
Ĩ ′k − Ĩ ′′k

∣

∣

∣
> ck + |∆I ′k| + |∆I ′′k | (3)

where ck is such that any orbit (I(h), ϕ(h)) = φh
ǫ (I(0), ϕ(0)), with (I(0), ϕ(0)) ∈

Λ̃, satisfies:
|Ik(h) − Ik(0)| < ck ∀ h ∈ Z ; (4)

1 The complete integrability of φ0|Λ0
is intended with reference to the symplectic form

dI ∧ dϕ|Λ.
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for some values of the perturbing parameter ǫ such that the KAM theorem applies
to φǫ|Λǫ

and inequality (1) is satisfied.

We remark that Arnold diffusion in the sense of Definition 2 does not exist for the
unperturbed map φ0, because in such a case the actions Ij , . . . , In are constants
of motion.

The above definition is clearly inspired by the proofs of existence of Arnold
diffusion which show that the stable and unstable manifolds of different invariant
tori of Λǫ intersect transversely (for a precise statement we refer to [6]). An ideal
verification of Arnold diffusion would correspond to the detection of an hete-
roclinic intersection among Wu(x′) and Ws(x

′′). But, the probability of finding
an orbit passing near a selected number of heteroclinic points is very small (in
[6], based on a prescribed selection of the successive passages, this is reflected in
superexponential estimates of the time of diffusion, in the sense used there), and
moreover the time needed to perform an exact heteroclinic excursion would be
infinite. Therefore, Definition 2 is based on the detection of approximate hetero-
clinic transitions, corresponding to the existence of orbits with initial conditions
in a neighbourhood of x′ which enter a finite neighbourhood of x′′ in some finite
time, with variation of the action variable Ik as in (3). On the one hand, Def-
inition 2 is weaker than Definition 1 because it refers to finite values of ǫ and
to specific neighbourhoods of the whiskered tori. On the other hand it provides
also a numerical verification of the topological mechanism which is behind the
diffusion of the actions, inspired by the proofs of Arnold diffusion, such as in [6]
and [8].

In Section 3 we provide an example of numerical detection of Arnold diffusion
for which equation (3) is verified within the numerical errors, i.e. we find:

∣

∣

∣
Ĩ ′k − Ĩ ′′k

∣

∣

∣
> ck + |∆I ′k| + |∆I ′′k | + ρ , (5)

where ρ > 0 is an estimator of the numerical errors (see technical Section 5.1 for
details).

3. Arnold diffusion in a model problem

We detect Arnold diffusion in the a priori unstable system defined by the family
of maps:

φǫ : R
2 × T

2 −→ R
2 × T

2

(ϕ1, ϕ2, I1, I2) 7−→ (ϕ′
1, ϕ

′
2, I

′
1, I

′
2) (6)

such that:

ϕ′
1 = ϕ1 + I1
ϕ′

2 = ϕ2 + I2

I ′1 = I1 − a sinϕ′
1 + ǫ

sinϕ′
1

(cosϕ′
1 + cosϕ′

2 + c)2

I ′2 = I2 + ǫ
sinϕ′

2

(cosϕ′
1 + cosϕ′

2 + c)2
, (7)

where a > 0, ǫ and c > 2 are parameters (in all the numerical experiments we
set a = 0.4, c = 2.1). The symplectic structure on R

2 × T
2 is the standard one:
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dϕ1 ∧dI1 +dϕ2 ∧dI2. According to the definitions given in Section 2, the family
(7) indeed defines an a priori unstable system. In fact:

– the action I2 is a first integral of the unperturbed map φ0;
– φ0 has an invariant manifold Λ0 defined by:

Λ0 = {(I1, ϕ1, I2, ϕ2) : such that (I1, ϕ1) = (0, π)} , (8)

which is normally hyperbolic and symplectic. The stable and unstable man-
ifolds of Λ0 are the product of the stable and unstable manifolds of the hy-
perbolic fixed point of the standard map:

ϕ′
1 = ϕ1 + I1 , I ′1 = I1 − a sinϕ′

1

with R × T, domain of (I2, ϕ2).
– the restriction of φ0 to Λ0 is represented by the 2–dimensional map:

ϕ′
2 = ϕ2 + I2 , I ′2 = I2 (9)

while I ′1 = I1, ϕ
′
1 = ϕ1. The 2–dimensional map (9) is integrable anisochronous,

with first integral I2.

The manifold Λ0 is invariant also for the map φǫ for any ǫ, and it is also nor-
mally hyperbolic if ǫ is suitably small. Therefore, according to the notations and
definitions given in Section 2, for all such ǫ it is Λǫ = Λ0 and the restriction of
φǫ to the invariant manifold Λǫ is explicitly represented by the 2–dimensional
map:

ϕ′
2 = ϕ2 + I2 , I ′2 = I2 + ǫ

sinϕ′
2

(cosϕ′
2 + c− 1)2

, (10)

while I ′1 = I1, ϕ
′
1 = ϕ1. The explicit representation of Λǫ = Λ0 and of φǫ|Λǫ

simplifies a lot the technical implementation of the numerical experiments. In
the following, to simplify the notations, we denote φ = φǫ and Λ = Λ0 = Λǫ.

To numerically detect Arnold diffusion for the map φ in the sense provided
by Definition 2 we need to study with some more detail the dynamics of the
restricted map (10). First, we fix an interval D = [0.26, 0.38] of the action I2
and we determine with a numerical method the value ǫc such that the KAM
theorem is valid for any 0 = ǫ ≤ ǫc in some open domain of (I2, ϕ2) containing
D×T. Precisely, because we detected the presence of KAM curves in numerically
computed phase portraits of (10) for 0 ≤ ǫ ≤ 0.002, while we did not detect any
KAM curve for ǫ = 0.0026, we inferred that ǫc ∈ (0.002, 0.0026). Because the
KAM curves of (10) are topological barriers for the variation of the action I2 for
any motion with initial condition on Λ, condition (1) is satisfied for some c0 > 0
for any 0 ≤ ǫ < 0.002.

We numerically find Arnold diffusion for ǫ = 10−6, 10−4 < ǫc (of course,
other values can be investigated with the same techniques). The phase portraits
of the restricted map φ|Λ are reported in Figure 1 top–left panel (ǫ = 10−6) and

bottom–left panel (ǫ = 10−4): in both cases the phase portraits contain several
KAM curves, and for ǫ = 10−4 also an evident resonance. We remark that, in
studies of Arnold diffusion, this kind of resonances are usually called large gaps
in the distribution of invariant tori.
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ǫ c2
˛

˛∆I′′
2

˛

˛ ρ
|Ĩ′

2
−Ĩ′′

2 |
c2+|∆I′

2
|+|∆I′′

2
|+ρ

10−6 4 10−5 < 10−12 < 10−173 > 6

10−4 4 10−3 < 3 10−7 < 10−113 > 1.6

Table 1. Tolerances for the verification of equation (3) and (5). Because the last column has
values bigger than 1, inequalities (3) and (5) are satisfied.

The variations of the action I2 for initial conditions on Λ are bounded by a
constant c2 (see (4)) which can be computed from the phase portraits (see Table
1). The points x′, x′′ that we find to satisfy equations (3) and (5) belong to the
bold KAM curves marked in the two phase portraits (the bottom ones for x′ and
the upper ones for x′′). In both cases ǫ = 10−4, 10−6 we found that the crucial
tolerances for the correction |∆I ′2| , |∆I ′′2 | on the action I2 and the estimator
ρ of the numerical error are respected within many orders of magnitude (see
Table 1 and Figure 1, right panels). Because inequalities (3) and (5) are satisfied
(see Table 1, last column), the two computations are a numerical detection of
Arnold diffusion in the sense stated by Definition 2. We remark (see Figure 1,
bottom–left panel) the presence of an evident resonance between the invariant
tori containing x′ and x′′, and therefore the unstable manifold of x′ has crossed
this large gap before arriving near the stable manifold of x′′. All details of these
numerical computations are reported in Section 5.1.

The above numerical detections of Arnold diffusion are based on the com-
putation of pieces of the stable and unstable manifolds. To give also a global
geometric idea of how the stable and unstable manifolds support Arnold diffu-
sion we computed their parametrization with respect to their arc–length. Figure
2 reports the computation of the unstable manifold of a point on the torus con-
taining x′ for ǫ = 10−6 (see Section 5.1 for the computational details). On the
top right panel it appears clearly that I2 undergoes relatively large fluctuations.
The unstable manifolds, which are contained in a plane of constant I2 for ǫ = 0,
are unrolled along the I2 direction for ǫ > 0, thus supporting diffusion in the
neighborhood of Λ. The (many) returns of Wu(x′) near the manifold Λ can be
well appreciated in the three–dimensional representation (bottom right panel).
To compare the value of the action I2 of these return points with the variation
of I2 along the torus, we represent in the bottom left panel the KAM curve of x′

and the vertical segment which corresponds to the representation on the plane
(I2, ϕ2) of the points of the unstable manifold with |ϕ1 − π| ≤ 0.5 (reducing
the tolerance on ϕ1 decreases the number of points on the figure, but does not
decrease the amplitude of the segment). The amplitude of this segment is larger
than c2, providing indication that these returns ofWu(x′) near Λ support Arnold
diffusion.

4. Statistical properties of Arnold diffusion and Melnikov
approximations

The definitions of Arnold diffusion given in Section 2 characterize it as the possi-
bility of orbits with initial conditions near Λ of returning near Λ with a suitably
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Figure 1. Numerical test of equation (3). On the top–left. Phase plane of the map φ
restricted to Λ for ǫ = 10−6: the invariant tori containing x′ and x′′ are represented by bold
curves. On the top–right. Projection on the space of variables ϕ1−π, I1, I2−I′′

2
of the point

φT (x′+∆x′) in the orbit of x′+∆x′ and of the stable manifold of x′′, for ǫ = 10−6. We remark
that with a correction ∆x′′ characterized by ∆I′′

2
of order 10−13 the point φT (x′+∆x′)+∆x′′

belongs to the stable manifold of x′′. On the bottom–left. Phase plane of the map φ restricted
to Λ for ǫ = 10−4: the invariant tori containing x′ and x′′ are represented by bold curves. We
remark the presence of a large resonance between the two invariant tori. On the bottom–

right. Projection on the space of variables ϕ1 − π, I1, I2 − I′′
2

of the point φT (x′ + ∆x′) in

the orbit of x′ + ∆x′ and of the stable manifold of x′′, for ǫ = 10−4. We remark that with a
correction ∆x′′ characterized by ∆I′′

2
of order 10−8 the point φT (x′ + ∆x′) + ∆x′′ belongs to

the stable manifold of x′′.

large variation of the actions (compared to ck, see (3)). In particular, because
Definition 2 requires the detection of one orbit returning to Λ, we needed to
set the numerical precision to the high number of 400 digits, necessary to detect
precisely that return. Relaxing the numerical precision of the computations (pre-
cisely we switched to double precision) we computed the statistical properties
of many of these returns. We remark that, while the lower precision affects the
individual integrated orbits after some Lyapunov times, it affects much less the
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Figure 2. Computation of a parametrization of the unstable manifold of a point x =

(ϕ1, ϕ2, I1, I2) = φ10
5

(π, 0, 0, 0.324) on a KAM curve, with respect to its arc–lenght s, for
ǫ = 10−6. On the top: Representation of I1(s) (on the left) and I2(s) (on the right). On

the bottom left: The orbit of φ|Λ is on a KAM torus. The vertical segment contains the

projection on the plane (I2 − I2(0), ϕ2) of the points of Wu(x) with |ϕ1 − π| ≤ 0.5 (reduc-
ing the tolerance on ϕ1 decreases the number of points on the figure, but does not decrease
the amplitude of the segment). The fluctuations of Wu(x) along I2 are definitely bigger than
the variation of I2 along the torus. On the bottom right: Representation of the unstable
manifold of x in the three dimensional space ϕ1, I2 − I2(0),I1.
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computation of statistical quantities, such as the Lyapunov exponents and the
diffusion coefficients (see, for example, [23]).

Our statistical study is based on the following considerations. First, we re-
mark that the map (7) depends periodically on all the actions. This property
simplifies the definition of the diffusion process because, in principle, the actions
are allowed to diffuse indefinitely on R

2.
Then, we consider the curve γ ⊆ Λ obtained by fixing all the variables except

for the action I2:

γ = {(ϕ1, ϕ2, I1, I2) with ϕ1 = π, ϕ2 = 0, I1 = 0} , (11)

we choose a neighbourhood W of γ, and perform a statistical analysis on the
variations of I2 for orbits with initial conditions in W , returning to W after
some time. For initial conditions x = (ϕ1, ϕ2, I1, I2) ∈ W\Λ we denote by t(x)
the return time to W and by ψ(x) = φt(x)(x) the return map to W . The set
W∗ on which ψ is defined can be a proper subset of W , but for the Poincaré
recurrence theorem (which applies to the present case because the map φ is
periodic with respect to the actions) it has the same Lebesgue measure as W .

Then, let us denote I2(x) = I2, and ∆Ii
2(x) = I2(ψ

i+1(x)) − I2(ψ
i(x)), i.e.

the action variation occurred in the i–th return. A statistical approach to the
dynamics in W∗, such as the one described in [28], would be justified by the

existence of a set W̃∗ ⊆ W∗ of points x such that the sequence ∆I1
2 , ∆I

2
2 , ... is

a sequence of independent random variables. This is a very strong requirement
that, in our knowledge, can represent only an approximate description of the
dynamics of the system. In this spirit, the traditional statistical approaches, such
as for example those based on random phases approximations, replace first the
true dynamics with an approximate one which behaves as a Markovian process,
and then compute statistical quantities that can be defined precisely via the
Markovian approximation.

Here, we proceed in a different way: instead of performing statistical approxi-
mations on the dynamics, we check that finite sets of initial conditions x1, . . . , xN

and the finite sequence ∆I1
2 , ...., ∆I

T
2 averaged over these initial conditions be-

have as if the process would be approximately Markovian, i.e. we check that the

variable YT =
∆I1

2
+...+∆IT

2

T
is normally distributed within a tolerance admitted

for the central limit theorem convergence (see Section 5.2 for all the technical
details). Then, we compute the diffusion coefficient D, of the initial conditions
x1, . . . , xN , as if the process would be a Markovian one:

D =
1

N

N
∑

j=1

1

T

T
∑

i=1

∆Ii
2(xj)

2

ti(xj)

where ti(xj) = t(ψi−1(xj)) denotes the i–th return time of the j–th initial con-
dition.

We remark that positive diffusion coefficients can be measured only for ǫ 6= 0,
because, for ǫ = 0, it is ∆Ii

2(x) = 0 for all i, for all x ∈W , for any choice of W .
For ǫ 6= 0, the values of the diffusion coefficients depend also on the choice of
W . For example, we expect that the dynamics better approximate a Markovian
process by restricting the neighbourhood W .
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Figure 3. On the left: Computation of the diffusion coefficient for different values of ǫ ∈
(10−13, 10−4) for a set of N = 100 initial conditions in W (the initial conditions are I2 = 0.324,
I1 ∈ [−10−5, 10−5], ϕ1 = π, ϕ2 = 0), using 100 return times to W . Data are very well fitted to
a power law D(ǫ) ≃ ǫ2 for 10−13 ≤ ǫ ≤ 10−6. Data diffusing with regular statistics (precisely,
satisfying (s1), (s2), see Section 5.2) are represented with a cross symbol, while the other data
are represented by squares. On the right: Representation of a zoom of the data of the left
panel with their error bars.

In Figure 3 we report the computation of the diffusion coefficient for different
values of ǫ ∈ (10−13, 10−4) for a set of N = 100 initial conditions in a set W
defined by:

W = {(I1, ϕ1, I2, ϕ2) : max{|I1| , |ϕ1 − π| , |ϕ2|} < 0.01} . (12)

using T = 100 returns to W . We find that the values of the diffusion coefficients
reported in Figure 3 are well fitted by a power law D(ǫ) ≃ ǫ2 for ǫ ≤ 10−6.
For these small values of ǫ, the sets of integrated initial conditions behave as
approximate Markovian processes (that is they satisfy conditions (s1), (s2), see
Section 5.2) allowing us to compute diffusion coefficients, and the values of these
diffusion coefficients satisfy a nice scaling law D(ǫ) ≃ ǫ2.

For higher values of ǫ, that is for ǫ ≥ 10−6, data cannot be fitted by the ǫ2

law, and we do not try any fit because their statistics is poor (i.e. (s1), (s2) are
not satisfied, see Section 5.2).

It is remarkable that the critical value ǫ = 10−6 is close to the value for which
the error terms of Melnikov approximations (which increase with ǫ) have a sharp
increment. Precisely, in Figure 4 we report the computation of a distance (defined
in (28)) between the unstable manifold of a point of an invariant KAM curve and
the unstable manifold computed using the Melnikov approximation (see Section
5.3 for the technical details). The distance between the two manifolds increases
by two orders of magnitude between ǫ = 10−6 and ǫ = 10−4.

5. Technical tools

5.1. Normal hyperbolic invariant manifolds: numerical check of normal hyper-
bolicity and computation of the stable and unstable manifolds. The notion of
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Figure 4. Computation of the d defined in (28) as a function of ǫ. The quantity d represents a
distance between the unstable manifold of a point x and its Melnikov approximation, divided
by ǫ. From the values reported in the figure we can appreciate that d increases by two orders of
magnitude between ǫ = 10−6 and ǫ = 10−4. We also find that d decreases slowly for ǫ < 10−8

(for example, we measured d ∼ 10−7 for ǫ ∼ 10−20).

normally hyperbolic invariant manifolds is extensively studied in [14], and can
be stated as follows (see, for example, [14], [13]):

Definition. Let M be a Cq (q ≥ 1) compact connected manifold; let U ⊆ M
open and let φ : U →M be a Cq embedding; let Λ be a sub-manifold of M which
is invariant by φ. The map φ is said to be normally hyperbolic on Λ (Λ is also
said to be normally hyperbolic invariant manifold) if there exists a Riemannian
structure on M such that for any point x ∈ Λ the tangent space TxM has the
following splitting:

TxM = Es(x) ⊕ TxΛ⊕ Eu(x)

which is continuous, invariant, i.e. the linear spaces Es(x), Eu(x) are invariant
by φ:

DφEs(x) ⊆ Es(φ(x)) , DφEu(x) ⊆ Eu(φ(x)) ,

and there exist constants λ1, λ2, λ3, µ1, µ2, µ3 satisfying:

0 < λ1 ≤ µ1 < λ2 ≤ µ2 < λ3 ≤ µ3 , µ1 < 1 < λ3 , (13)

such that:

λ1 ≤ infξ∈Es(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ supξ∈Es(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ µ1

λ2 ≤ infξ∈TxΛ\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ supξ∈TxΛ\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ µ2

λ3 ≤ infξ∈Eu(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ supξ∈Eu(x)\0
‖Dφ(x)ξ‖

‖ξ‖ ≤ µ3 . (14)

Normally hyperbolic invariant manifolds have stable and unstable manifolds.
Precisely, for any x ∈ Λ there exist the smooth manifolds W loc

s (x),W loc
u (x) (see
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[14]) such that: x ∈ W loc
s (x),W loc

u (x), TxW
loc
s (x) = Es(x), TxW

loc
u (x) = Eu(x)

and for any n ≥ 0:

y ∈W loc
s (x) ⇒ d(φn(x), φn(y)) ≤ C(µ1 + c)nd(x, y)

y ∈W loc
u (x) ⇒ d(φ−n(x), φ−n(y)) ≤ C(λ3 − c)−nd(x, y) (15)

with C, c > 0 suitable constants (c suitably small) and where d(·, ·) denotes a
distance on M . The manifolds Ws(x),Wu(x) are then obtained by iterating the
local manifolds W loc

s (x),W loc
u (x) with φ−1 and φ respectively. The local stable

and unstable manifolds of Λ are defined by:

W loc
s = ∪x∈ΛW

loc
s (x) , W loc

u = ∪x∈ΛW
loc
u (x) , (16)

while the stable and unstable manifolds of Λ are:

Ws = ∪x∈ΛWs(x) , Wu = ∪x∈ΛWu(x) . (17)

Below we describe the numerical methods that we use to compute points of the
stable and unstable manifolds of the map (10), adapting the method of propaga-
tion of sets commonly used for hyperbolic fixed points of two dimensional maps.
A sophisticated version of this method providing high precision computations
and good visualizations of pieces of the manifold can be found in [24]. Different
sophisticated methods can be found in the literature for computing unstable
manifolds for the higher dimensional cases (see [15] for a detailed review with
applications to the visualization of two dimensional manifolds). The common
point of all these methods is that the manifolds are constructed from local linear
approximations (see, for example, [5]). A technique specifically adapted to com-
pute stable manifolds of hyperbolic tori is described in [25]. A numerical study
of the relation between splittings of stable and unstable manifolds and normal
forms is done in [22]. The methods that we used in Section 3 adapt these known
techniques (for example of [24]) to the present case, and consist in the following
steps.

i) Verification that the manifold Λ is normally hyperbolic. We numerically check
that the invariant manifold Λ is normally hyperbolic for ǫ = 0.0001, which is
the largest value of the perturbing parameter used in this paper. Precisely, we
check that a compact invariant region of Λ, delimited by two invariant KAM
curves containing (I2, ϕ2) = (±2, 0), is normally hyperbolic with respect to
the map φN for some integer N . For each point x of a grid of initial conditions
with I2 ∈ [−2, 2], I1 = 0, ϕ1 = π, ϕ2 = 0 we first compute the Lyapunov
exponents of the map φ (up to N = 103 iterations) for initial tangent vectors
in the tangent space TxΛ

ort orthogonal to TxΛ, i.e. for vectors of the form ξ =
(ξϕ1

, 0, ξI1 , 0). We measure a positive Lyapunov exponent bigger than 0.62 for
all the points of the grid, and of course a negative Lyapunov exponent smaller
than −0.62. This is an indication of the hyperbolic splitting of the space
TxΛ

ort as a direct sum of a stable space Es(x) and an unstable space Eu(x).
The numerical algorithm for the computation of the Lyapunov characteristic
exponents provides also an estimate for λ1 = µ1 and λ3 = µ3 related to φN .
It remains to estimate the constants λ2, µ2 for the map φN at the point x.
Because in this case the growth of initial tangent vectors ξ = (0, ξϕ2

, 0, ξI2) ∈
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Figure 5. On the right: Numerical estimates of log λ2/N and log µ2/N , N = 1000, com-
puted on a grid of 1000 initial conditions with I2 ∈ [−2, 2], I1 = 0, ϕ1 = π, ϕ2 = 0 and
ǫ = 10−4. On the left: Test of the numerical precision in the computation of Eu(xk).
The figure reports on logarithmic scale the difference among the slope of Eu(xk′ ) and the
slope of Eu(xk) (on the y axis) versus |xk − xk′ | (on the x axis), for those k′ > k such that
|xk − xk′ | ≤ 10−6. The upper curve refers to the case k = 10, which provides poor precision
of the computation (of order 10−6), the lower curve refers to the case k = 105, which provides
good precision (better than 10−12). The data for k = 105 can be fitted by a straight line of
slope 1. We can therefore infer that, within this precision, Eu(x) is compatible with a Lipschitz
condition in a neighbourhood of x.

TxΛ is not always exponential, we do not compute the Lyapunov character-
istic exponents, but we computed numerically the two dimensional matrix
representing the restriction of DφN (x) to the space TxΛ and the quantities:

λ2 ≤ inf
ξ∈TxΛ\0

‖DφN (x)ξ‖
‖ξ‖ ≤ sup

ξ∈TxΛ\0

‖DφN (x)ξ‖
‖ξ‖ ≤ µ2 .

Figure 5 (left panel) shows the numerical computation of logλ2/N and logµ2/N
for N = 1000. From the comparison of the four computed quantities logλ1,
logλ2, logµ2, logλ3 we infer that they satisfy (13).

ii) Computation of the linear stable–unstable spaces. To compute numerical ap-
proximations of the linear space Eu(x) we can now take advantage of the
hyperbolicity of the dynamics. Precisely, we take a generic initial tangent
vector ξ = (ξϕ1

, 0, ξI1 , 0) ∈ Es(x) ⊕ Eu(x) and we define the sequence:

ξk = Dφk(x)ξ = (ξk
ϕ1
, 0, ξk

I1
, 0) ∈ Es(φk(x)) ⊕ Eu(φk(x)) .

The components (ξk
I1
, ξk

ϕ1
) do not necessarily converge to limit values, but we

know from hyperbolicity that the component of ξk on the space Eu(φk(x))
expands exponentially, while the component of ξk on the space Es(φk(x))
contracts exponentially. Therefore, if k is a suitably high number (compared
to the exponent of the expanding direction), the direction of the unstable
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space Eu(φk(x)) is determined by ξk. For example, for the initial condition
(ϕ1, ϕ2, I1, I2) = (π, 0, 0, 0.324), ǫ = 10−4, after k = 105 iterations we obtain:

xk = φk(x) ∼ (π, 4.070625, 0, 0.324319) , Eu(xk) ∼< (0.652, 0, 0.75749, 0)>

and xj = φj(x), Eu(xj) can be easily computed for any j needed.
A test of the precision reached by these computations is done by computing
Eu(xk′ ) for k′ > k and by analyzing the variation of the slope of Eu(xk′ ) as
xk′ approaches xk. Two computations are reported in Figure 5 (right panel):
one for k = 105 as above, and another one for k = 10. The computation for
k = 105 shows that the slope of Eu(xk′ ) converges to the slope of Eu(xk)
as xk′ approaches xk. This confirms that k = 105 is sufficient to compute
the unstable space with an error smaller than 10−12. Moreover, because the
data in the figure can be fitted by a straight line of slope 1, we can infer that
Eu(x) is compatible with a Lipschitz condition in a neighbourhood of x. In
the figure we report for comparison the same computation for k = 10: in this
case the slope of Eu(xk′ ) does not converge to the slope of Eu(xk) as xk′

approaches xk, but the difference among the slopes converges to a quantity
of order 10−6.

iii) Computation of the stable–unstable manifolds. For any point xj , denoting
by ξj the unit vector generating the unstable space Eu(xj), we use the linear
approximation:

W loc
u (xj) ∼ {xj + s ξj , s ∈ [0, ρ)} , (18)

which is good as soon as ρ is very small (we use ρ = 10−10 in our computa-
tions). Then, we compute finite pieces of the unstable manifold using:

φj(W loc
u (x−j)) ⊆Wu(x) . (19)

The small errors done by using the linear approximation for the local manifold
do not accumulate at successive iterations, because the hyperbolic dynamics
tends to reduce them (see [24]).

iv) Computation of Wu(x′),Ws(x
′′) of Figure 1. To detect Arnold diffusion in

the system (7) we compute points of Wu(x′) using equation (19), with x′ =

φ103

(π, 0, 0, 0.324), ǫ = 10−6, 10−4, with the high numerical precision of 400
digits. Then, we check if some of the computed points of Wu(x′) are good
candidates to satisfy condition (3), that is if they have a variation of the action
I2 bigger than c2, with respect to x′. Then, we choose the correction ∆x′′.
For both cases ǫ = 10−6, 10−4 we found |∆I ′′2 | of many orders of magnitude
smaller than c2 (see Table 1), and |∆I ′2| are even much smaller, because the
I2 component of Eu(x′) is 0 and |∆x′| ≤ 10−10.
The error estimator ρ is computed as follows. We considered a set of 10 points
in a segment of amplitude 10−N aligned to Eu(x′), in a neighbourhood of
x′ + ∆x′. Then, we computed the orbits of these 10 points for the number
of iterations T such that φT (x′ + ∆x′) + ∆x′′ ∈ Ws(x

′′) with a numerical
precision of 2N . We decide that N is sufficiently large, compared to T , when
the map φ separates the 10 points by a quantity ρ which is much smaller than
the precision required to verify equation (3). For example, for ǫ = 10−6 and
T = 1382, we found that ρ < 10−93 for N = 120, ρ < 10−153 for N = 180,
while ρ = 10−173 with the actual precision of 400 digits. For ǫ = 10−4 and
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T = 1951 we found that ρ < 10−33 for N = 120, ρ < 10−93 for N = 180, and
ρ < 10−113 for the actual precision of 400 digits.

v) Computation of the parametrization of the manifold with respect to its arc
length.
To compute a parametrization of the manifold with respect to its arc length
we proceed in two steps. First, we set K such that:

WK(x) = ∪K
j=1φ

j(W loc
u (x−j)) ⊆Wu(x) (20)

can be parametrized by the ϕ1 coordinate, so that we can order the points in
WK(x) with respect to ϕ1. This allows one to construct a parametrization of
WK(x) with respect to its arc–length, that we denote by:

s 7−→ (ϕ1(s), ϕ2(s), I1(s), I2(s)) .

Then, we reconstruct the unstable manifold for an arc–length much longer
than the one obtained at the first step, so that to include many lobes of
the manifold. This can be done by mapping with φK additional points of
the linear approximation of the local manifold, but paying attention to ob-
tain a uniform sampling of the manifold with respect to its arc–length. This
problem was already discussed in [24] and we use a similar procedure for the
choice of the initial conditions on W loc

u (x−K). More precisely, let us denote
by xm, xm+1 the last two points of W loc

u (x−K) used to compute WK(x), by
∆xm = d(xm, xm+1), and by ∆sm = sm+1 − sm the difference between the
arc–lengths of the points φK(xm),φK(xm+1). The choice of the point xm+2

will be done depending on ∆sm as follows:







xm+2 = xm+1 +∆xm if ∆s1 < ∆sm < ∆s
xm+2 = xm+1 + η∆xm if ∆sm > ∆s
xm+2 = xm+1 + 1

η
∆xm if ∆sm < ∆s1

(21)

with ∆s = 10−2, ∆s1 = 10−3 and η = 0.1. The result of the computation is
reported in Figure 2.

5.2. Computation of diffusion coefficients. In this section we describe the method
that we use to estimate the diffusion coefficient related to Arnold diffusion
for the map (7). We consider the curve γ ⊆ Λ defined by (11), a neighbour-
hood W , and we perform a statistical analysis on the variations of I2 for or-
bits with initial conditions in W . We define the return map to W as follows:
if there exists a minimum integer t(x) ≥ 1 such that φt(x)−1(x) /∈ W and
φt(x)(x) ∈ W , we denote ψ(x) = φt(x)(x). Then, let us denote I2(x) = I2,
and by ∆Ii

2(x) = I2(ψ
i+1(x))− I2(ψ

i(x)). A statistical approach to the dynam-
ics in W∗, such as the one described in [28], would be justified by the existence

of a set W̃∗ ⊆W∗ of points x such that the sequence ∆I1
2 , ∆I

2
2 , ... is a sequence

of independent random variables. This is a very strong requirement that, in our
knowledge, can represent only an approximate description of the dynamics of the
system. In this spirit, the traditional statistical approaches, such as for example
those based on random phases approximations, replace first the true dynam-
ics with an approximate one which behave like a Markovian process, and then
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compute statistical quantities that can be defined precisely via the Markovian
approximation.

Here, we proceed in a different way: we fix a set W and then, instead of per-
forming statistical approximations on the dynamics, we check that finite sets of
initial conditions and the finite sequence∆I1

2 , ...., ∆I
T
2 averaged over these initial

conditions behave as if the process would be approximately Markovian. Because
the variables ∆I1

2 , ...., ∆I
T
2 have the same mean and variance, but are not nec-

essarily normally distributed, we check that the variable YT =
∆I1

2
+...+∆IT

2

T
is

normally distributed within a tolerance admitted for the central limit theorem
convergence. Precisely:

s1) denoting by E(YT ) = 1
N

∑N
j=1 YT (xj) the average of the variable YT over

the set of N initial conditions x1, . . . , xN , we require:

|E(YT )| ≤ 1√
N

√

E(Y 2
T ) ; (22)

s2) the cumulative density function ΦT of YT

√
T

σ
satisfies the Berry–Essèen in-

equality (see, form example, [21]):

‖ΦT (X) − Φ(X)‖ ≤ C
ρ

σ3
√
T

, ∀X ∈ R , (23)

with C = 0.8, where:

σ2 =
1

N

N
∑

j=1

1

T

T
∑

i=1

∆Ii
2(xj)

2

is the mean variance of ∆I1
2 , ..., ∆I

T
2 averaged over the N initial conditions,

ρ =
1

N

N
∑

j=1

1

T

T
∑

i=1

∣

∣∆Ii
2(xj)

∣

∣

3
,

and Φ(x) = 1
2

(

1 + erf
(

X√
2

))

is the cumulative normal distribution.

By denoting:

T0 = min
i=1,...,N

(

sup
j=1,...,T

t(ψj(xi))
)

, (24)

we say that a set of N initial conditions has regular statistics in the time interval
[0, T0] if conditions (s1),(s2) are satisfied.

Then, we compute the diffusion coefficient D on the set of N initial conditions
x1, . . . , xN as if the process would be a Markovian one, as the following average:

D =
1

N

N
∑

j=1

1

T

T
∑

i=1

∆Ii
2(xj)

2

ti(xj)

where ti(xj) = t(ψi−1(xj)) denotes the i–th return time of the j–th initial con-
dition.
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Remarks. (i) The quantity D is different from the variance σ2 because it takes
into account the individual return times ti(xj).
(ii) In view of the central limit theorem, the diffusion coefficient and the variance
of the variable YT are computed by averaging over the variables ∆Ii

2, while
their errors are estimated as the normal errors of the normal distribution of Y .
Therefore, the error on D can be estimated by D

√

2/N .
(iii) The results of this statistical analysis depend on the choice of W : on the one
hand, we expect that the dynamics in neighbourhoods of γ better approximates
a Markovian process by restricting the neighbourhood W ; on the other hand,
for ǫ = 0 it is Xi(x) = 0 for all i and for all x ∈ W , for any choice of the
neighbourhood W .

5.3. Melnikov approximations. The Melnikov approximations of a priori unsta-
ble systems are obtained by neglecting the perturbation on the hyperbolic part
of the system, as follows:

Definition. Let us consider the map (7), x = (ϕ1, ϕ2, I1, I2) ∈ Λ and denote
J = I2. The Melnikov approximation of Wu(x) is the unstable manifold of x with

respect to the following simplified map φ̃:

ϕ′
1 = ϕ1 + I1 ϕ′

2 = ϕ2 + J

I ′1 = I1 − a sinϕ′
1 I ′2 = I2 + ǫ

sinϕ′
2

(cosϕ′
1 + cosϕ′

2 + c)2
. (25)

The numerical computation of the Melnikov approximation of Wu(x) is based
on the following representation:

Proposition. Let us consider x = (ϕ̃1, ϕ̃2, Ĩ1, Ĩ2) ∈ Λ and denote J = Ĩ2. The
Melnikov approximation of Wu(x) is represented by all points z = (ϕ1, ϕ2, I1, I2)
such that (ϕ1, I1) is in the unstable manifold W ∗

u of the fixed point (π, 0) of the
standard map:

ϕ′
1 = ϕ1 + I1 , I ′1 = I1 − a sinϕ′

1 , (26)

while ϕ2 = ϕ̃2 and:

I2 = Ĩ2 − ǫ

−∞
∑

k=−1

( sin(ϕ̃2 − kJ)

(cosϕ1(k) + cos(ϕ̃2 − kJ) + c)2
− sin(ϕ̃2 − kJ)

(cos(ϕ̃2 − kJ) + c− 1)2

)

(27)
where (ϕ1(j), I1(j)) denote the orbit with initial condition (ϕ1, I1) ∈ W ∗

u with
respect to the map (26).

The proof of this proposition is reported at the end of this section. In Figure 6
we compare two parametrizations s 7→ (I2(s) − I2(0)) of the manifold Wu(x):
one is obtained with the Melnikov approximation (27), while the other one is
obtained using the full map (7). The left panel shows that for ǫ = 10−6 the two
parametrizations are indeed very close to one another. The right panel shows
that for ǫ = 10−4 the Melnikov approximation is not valid at all. In order to
quantify the relevance of the error terms of the Melnikov approximation we have
computed for 10−8 < ǫ < 10−3 the histograms Hf and HM of (I2(s) − I2(0))/ǫ



A numerical study of Arnold diffusion in a priori unstable systems. 19

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000  1200  1400  1600  1800

(I
2
(s

)-
I2

(0
))

/ε

s

Melnikov
Full map

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0  200  400  600  800  1000  1200  1400  1600  1800
(I

2
(s

)-
I2

(0
))

/ε

s

Melnikov
Full map

Figure 6. Each panel represents two parametrizations s 7→ (I2(s) − I2(0))/ǫ of the manifold

Wu(x), with x = φ105

(π, 0, 0, 0.324) : one is obtained using the Melnikov approximation,
while the other one is obtained using the full map. The left panel is for ǫ = 10−6: the two
parametrizations are close one to the other. The right panel is for ǫ = 10−4: the Melnikov
approximation is not valid.

for the full map and the Melnikov approximation respectively. We consider as
an indicator of the distance between the two distributions the quantity:

d =

∑N
i=1(Hf (i) −HM (i))2

N
(28)

where N = 100 is the number of bins. The quantity d (Figure 4) increases by two
orders of magnitude between ǫ = 10−6 and ǫ = 10−4, while it slowly decreases
for ǫ < 10−8 (not reported in Figure 4).

Proof of the Proposition. Let us denote by z(j) = (ϕ1(j), ϕ2(j), I1(j), I2(j)) the

orbit of z = z(0) = (ϕ1, ϕ2, I1, I2) and by x(j) = (ϕ̃1(j), ϕ̃2(j), Ĩ1(j), Ĩ2(j)) the

orbit of x = x̃(0) = (ϕ̃1, ϕ̃2, Ĩ1, Ĩ2) with respect to the map φ̃. The point z is
in the unstable manifold of x if and only if it is: limj→−∞ ‖z(j) − x(j)‖ = 0.
Therefore, (I1(j), ϕ1(j)) tends to (0, π) as j → −∞ if and only if (I1(0), ϕ1(0))
is in the unstable manifold W ∗

u of the fixed point (π, 0) of the map (26). Let us
now prove (27). For any j ≤ −1 it holds:

I2(j) =

j
∑

k=−1

(I2(k) − I2(k + 1)) + I2(0)

= ǫ

j
∑

k=−1

sinϕ2(k + 1)

(cosϕ1(k + 1) + cosϕ2(k + 1) + c)2
+ I2 , (29)

as well as:

Ĩ2(j) =

j
∑

k=−1

(Ĩ2(k) − Ĩ2(k + 1)) + Ĩ2(0) = ǫ

j
∑

k=−1

sin ϕ̃2(k + 1)

(cos ϕ̃2(k + 1) + c− 1)2
+ Ĩ2 .
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Therefore, limj→−∞ ‖I2(j) − Ĩ2(j)‖ = 0 if and only if (27) holds.

6. Conclusions

We have studied the Arnold diffusion along a normally hyperbolic manifold in a
model of a priori unstable dynamical systems. We have introduced a definition of
Arnold diffusion which is adapted to the numerical investigation of the problem,
and is based on the numerical computation of the stable and unstable manifolds
of the system. We have shown that the numerically computed stable and unstable
manifolds indeed support this kind of Arnold diffusion. We also performed a
numerical statistical study of Arnold diffusion, and we found that, for small
values of ǫ, Arnold diffusion behaves as an approximate Markovian process,
allowing one to compute diffusion coefficients. The dependence of the diffusion
coefficientD on the perturbing parameter satisfies the scalingD(ǫ) ≃ ǫ2 for small
values of ǫ. We also find that this law is correlated to the validity of the Melnikov
approximation, in the sense that it is valid up to the same critical value of ǫ for
which the error terms of Melnikov approximations have a sharp increment. This
suggests that the Melnikov approximation is not only a technical tool which
allows one to compute accurate approximations of the manifolds at small values
of the perturbing parameters, but is related to a dynamical regime, and possibly
it could be used to explain the statistical properties of Arnold diffusion.
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Lega eds., Spinger, 2007.

20. Lichtemberg A. and Aswani M.A.: Arnold diffusion in many weakly coupled mappings.
Phys. Rev. E, 57, 5, 5325–5321, 1998.

21. Manoukian, E.: Modern Concepts and Theorems of Mathematical Statistics. Springer,
1986.

22. Morbidelli A. and Giorgilli A.: On the role of high order resonances in normal forms and
in separatrix splitting. Physica D, vol. 102, 195–207, 1997.

23. Ralston, A. and Rabinowitz, P. A First Course in Numerical Analysis (2nd ed.) McGraw-
Hill, 1978.
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