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1. Introduction

Consider the following ordinary differential equation:

(1) u′′ + bu′ + cu = 0, in R,

where b and c are constants. Obviously, the above equation admits positive (ex-
ponential) solutions if and only if b2 − 4c ≥ 0. Therefore, if 4c − b2 > 0 then the
unique nonnegative solution of (1) is u ≡ 0, even if we replace R with an unbounded
interval.

The paper [2], which deals with semilinear elliptic problems in RN , contains a
generalization of the above result to partial differential equations of the type

(2) −∆u− b ·Du− cu = 0, in RN ,

with b ∈ RN and c ∈ R. Indeed, Berestycki, Hamel and Nadirashvili implicitly
proved that if 4c − |b|2 > 0, then the unique nonnegative solution of (2) is u ≡ 0.
We will review the results of [2] and other related in the next section. In the joint
work [4] with Berestycki and Hamel, we have extended the results of [2] to elliptic
equations with non-constant coefficients. The arguments of [4] imply that, if A(x)
is a smooth uniformly elliptic matrix field, b : RN → RN and c : RN → R are
bounded and smooth and the following condition holds:

(3) lim inf
|x|→∞

(4λ(x)c(x)− |b(x)|2) > 0,

where

λ(x) := min
|ξ|=1

A(x)ξ · ξ,

then the only nonnegative function u satisfying

−tr(A(x)D2u)− b(x) ·Du− c(x)u ≥ 0, x ∈ RN ,

in the classical sense is u ≡ 0. Hence, roughly speaking, the condition 4c− |b|2 > 0
which guarantees the uniqueness result in the case of constant coefficients is only
required at infinity.
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2. Main results

In the present paper, we improve the previous uniqueness result to lower semi-
continuous functions u satisfying in the viscosity sense

F (x, u,Du,D2u) ≥ 0, x ∈ Ω,

that is to viscosity super-solutions of the fully nonlinear equation

(4) F (x, u,Du,D2u) = 0, x ∈ Ω,

(see Definition 4.1 below) where Ω is an unbounded domain in RN satisfying some
conditions we will precise later. We do not require any boundary condition. We will
always assume that the function F (x, t, p,M) : Ω×R×RN ×SN → R is measurable
and (uniformly) elliptic, in the sense that there exist two constants 0 < λ ≤ Λ such
that

λtr(Q) ≤ F (x, t, p,M)− F (x, t, p,M +Q) ≤ Λtr(Q),

for all x ∈ Ω, t ∈ R, p ∈ RN and M,Q ∈ SN , Q nonnegative definite.
An important example of fully nonlinear second order elliptic operator is the

Bellman operator, which arises in the control theory of diffusion processes (see [10]
for a comprehensive treatment of the subject). It is defined by

(5) F (x, u,Du,D2u) := sup
α∈A

(−Lαu(x)),

where (−Lα)α∈A is a family of linear elliptic operators of the form

Lαu(x) := tr(Aα(x)D2u) + bα(x) ·Du+ cα(x)u,

such that

(6) ∀ α ∈ A, x ∈ Ω, λ ≤ λα(x) := min
|ξ|=1

Aα(x)ξ · ξ ≤ max
|ξ|=1

Aα(x)ξ · ξ ≤ Λ.

It is quite natural to ask if the uniqueness result for linear operators mentioned
in the introduction holds true for the Bellman operator, provided that all the Lα
satisfy the assumption (3). We will show that the answer is affirmative if (3) holds
uniformly in α ∈ A, in the sense that

(7) lim inf
|x|→∞

(
inf
α∈A

(
4λα(x)cα(x)− |bα(x)|2

))
> 0.

Furthermore, this is true not only for super-solutions in the whole space, but also
in domains Ω containing balls of arbitrary large radius, i.e. such that

(8) sup
x∈Ω

dist(x, ∂Ω) = +∞.

Condition (8) is fulfilled for example by (domains containing) the half-space, open
cones, but also more general domains, such as the following spiral domain in R2:

{(ρ cos θ, ρ sin θ) | θ > 0, θ2 < ρ < θ2 + θ}.

Other assumptions we need on the coefficients of the operators Lα are

(9) sup
x∈Ω
α∈A

|bα(x)| < +∞, inf
x∈Ω
α∈A

cα(x) > −∞.

Theorem 2.1. Let F be the Bellman operator given by (5) and assume that (7)-(9)
hold. Then the only nonnegative viscosity super-solution of (4) is u ≡ 0.



NON-EXISTENCE OF POSITIVE SOLUTIONS ... 3

Another classical example of fully nonlinear operator - arising in differential
games - is the Isaacs operator

F (x, u,Du,D2u) := inf
β∈B

sup
α∈A

(−Lα,βu(x)),

where the −Lα,β are linear elliptic operators, with the same elliptic parameters.
Since F = infβ∈B Fβ , with Fβ Bellman operators, any super-solution of F = 0 is
also a super-solution of Fβ = 0, ∀ β ∈ B. Therefore, the conclusion of Theorem 2.1
holds for the Isaacs operator provided that the assumptions there are satisfied at
least by one of the Fβ .

In order to extend the uniqueness result to more general fully nonlinear elliptic
operators F , we first require that

(10)

{
(p,M) 7→ F (x, t, p,M) is continuous in (0, 0),
uniformly in x ∈ Ω, t ∈ R+,

(11) ∀ t > 0, sup
x∈Ω
s≥t

F (x, s, 0, 0) < 0.

Condition (11) yields that (4) does not admit positive constant super-solutions.
We need to translate condition (3) to fully nonlinear operators. A way to do it is
to assume that there exist two bounded functions b, c : RN → R and a positive
constant δ such that

(12) ∀ (x, t, p) ∈ Ω× [0, δ]× [−δ, δ]N , F (x, t, p, 0) ≤ b(x)|p| − c(x)t,

and

(13) lim inf
x∈Ω
|x|→∞

(
4λ(x)c(x)− b2(x)

)
> 0,

where

(14) λ(x) := inf
t∈R, p∈RN
M,Q∈SN
Q>0

F (x, t, p,M)− F (x, t, p,M +Q)

trQ
.

Notice that, since λ(x) ≥ λ for every x ∈ Ω, we could simplify condition (13) by
replacing λ(x) with the elliptic parameter λ. We use λ(x) instead because we want
to obtain a stronger result which contains that for linear operators (as well as that
of [4] for semilinear operators, cfr. Remark 2 below). Indeed, if F is a linear elliptic
operator of the type F (x, t, p,M) = −tr(A(x)M)− b(x) · p− c(x)t, then (12) holds
with b(x) = |b(x)|, λ(x) coincides with the smallest eigenvalue of the matrix A(x)
and (13) reduces to (3). Instead, the result we obtain in the general setting does
not contain that for Bellman operators - Theorem 2.1 - because condition (7) is
weaker than (12)-(13) (see Proposition 2 below).

In this general setting, we are not able to deal with any positive super-solution
u of (4), but only with those satisfying a prescribed maximal growth condition at
infinity, which depends on the geometry of Ω. This condition reads:

(15) inf
x∈Ω

u(x) + 1

dist(x, ∂Ω)
= 0.

Since the function x 7→ dist(x, ∂Ω) grows at most as |x|, it follows that u satisfies
(15) only if it is strictly sublinear in an unbounded subset of Ω, in the sense that
lim inf |x|→∞ u(x)/|x| = 0. On the other hand, if Ω contains an open cone, then
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it is possible to find a sequence (xn)n∈N in Ω and a constant α > 0 such that
dist(xn, ∂Ω) ≥ α|xn|. Therefore, in this case (15) holds for any strictly sublinear
function u. Our result is

Theorem 2.2. Assume that Ω satisfies (8) and F satisfies (10)-(13). Let u be
a nonnegative viscosity super-solution of (4) satisfying (15). Then u ≡ 0 and
F (x, 0, 0, 0) = 0 for x ∈ Ω.

A particular class of elliptic operators satisfying assumptions (12)-(13) is F (x, t, p,M) =
H(x,M) + b(x) ·p− c(x)t, with H uniformly elliptic (with parameters λ,Λ) and b, c
bounded and such that H(x, 0) = 0 and lim inf |x|→∞(4λc(x)− |b(x)|2) > 0. Under

these assumptions, the equation H(x,D2u) + b(x) ·Du− c(x)u = 0 does not admit
positive super-solutions in a domain Ω satisfying (8) (see Remark 3 below).

If Ω = RN we have that, for any x ∈ Ω, dist(x, ∂Ω) = +∞ and then - at least
formally - condition (15) is always fulfilled. Indeed, when Ω = RN we are able to
prove the uniqueness of nonnegative viscosity super-solutions u without requiring
any growth condition of the type (15). Furthermore, we can relax (10)-(11) by

(16)

{
(p,M) 7→ F (x, t, p,M) is continuous in (0, 0),
uniformly in x ∈ Ω, locally uniformly in t ∈ R+,

(17) ∃ T > 0, ∀ t ∈ (0, T ), sup
x∈Ω
s∈[t,T ]

F (x, s, 0, 0) < 0.

Theorem 2.3. Assume that Ω = RN and that F satisfies (12)-(13) and (16)-(17).
Let u be a viscosity super-solution of (4) such that infRN u ∈ [0, T ). Then u ≡ 0
and F (x, 0, 0, 0) = 0 for x ∈ RN .

If Ω 6= RN then conditions (16)-(17) do not yield the non-existence of positive
super-solutions of (4), but only of those lying in (0, T ]. The following result extends
those of [2] and [4] for semilinear equations (see Section 3).

Proposition 1. Assume that Ω satisfies (8) and F satisfies (12)-(13) and (16)-
(17). Let u be a viscosity super-solution of (4) such that 0 ≤ u ≤ T . Then u ≡ 0
and F (x, 0, 0, 0) = 0 for x ∈ Ω.

The assumption u ≤ T in Proposition 1 is sharp. Consider in fact the following
operator in dimension one:

F (x, u, u′, u′′) = −u′′ − 2ex

coshx
u(1− u), x ∈ (0,+∞).

The domain Ω = (0,+∞) satisfies (8), F is elliptic with parameters λ = Λ = 1 and

conditions (12)-(13) hold with δ = 1/2, b ≡ 0 and c(x) = ex

cosh x . Since the function
u(x) = tanhx is a positive solution of F (x, u, u′, u′′) = 0 in Ω, the uniqueness result
does not hold. Indeed, we are not under the hypotheses of Proposition 1 because
(17) holds for any T ∈ (0, 1), but does not hold for T = 1 = supΩ u.

Remark 1. Let us show that condition (8) in Theorem 2.2 is necessary and that the
non-existence of positive super-solutions (even bounded) does not hold in general
unbounded domains. Consider the domain Ω = {x = (x, y) ∈ R2 | x ∈ R, y ∈ (0, 1)}
and the operator

F (x, t, p,M) = −trM − 2t

2− y2
, ∀ x = (x, y) ∈ Ω.
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It is easily seen that F is elliptic and satisfies (10)-(13), but the function u(x, y) =
1− y2/2 is a positive bounded solution of F (x, u,Du,D2u) = 0.

3. Previous results

In this section, we review some of the known results concerning the uniqueness
of nonnegative solutions of elliptic equations. When one considers only bounded
solutions, this type of results are often called Liouville type results, in analogy to
the classical Liouville theorem for harmonic functions.

The result of [2] about semilinear equations mentioned in Section 1 is the follow-
ing: assume that b ∈ RN and f : R → R satisfies f(0) = f(1) = 0, f > 0 in (0, 1).
If 4f ′(0)− |b|2 > 0 then the unique solutions of

(18) −∆u− b ·Du− f(u) = 0, in RN ,

satisfying 0 ≤ u ≤ 1 are u ≡ 0 and u ≡ 1. Conversely, under the additional assump-
tion 0 < f(s) ≤ f ′(0)s, if 4f ′(0) − b2 ≤ 0 then a classical result of Kolmogorov,
Petrovskĭı and Piskunov [13] asserts that the equation −u′′ − bu′ − f(u) = 0 in
R admits infinite many heteroclinic solutions with values in (0, 1). Therefore, the
result of [2] is sharp.

A first generalization of the previous Liouville type result to semilinear equations
with non-constant coefficients has been given in [3]. There, the authors showed that
the existence and uniqueness of positive bounded solutions of

−D · (A(x)Du)− f(x, u) = 0, x ∈ RN ,

with A(x) and x 7→ f(x, t) periodic, with the same period, depend on the sign of
the periodic principal eigenvalue of an associated linear operator.

In [4], we have extended the result of [2] to semilinear operators in non-divergence
form with non-constant coefficients, without any periodicity assumptions. We con-
sidered the equation

(19) − tr(A(x)D2u)− b(x) ·Du− f(x, u) = 0, x ∈ RN ,

with A, b and f smooth. One of our results is that if

(20) ∀ x ∈ RN , f(x, 0) = f(x, 1) = 0, ∀ t ∈ (0, 1), inf
x∈RN

f(x, t) > 0,

and (3) holds with c(x) := ft(x, 0), then the only classical super-solutions u of (19)
satisfying 0 ≤ u ≤ 1 in RN are u ≡ 0 and u ≡ 1 (cfr. Theorem 3.7 in [4]). Actually,
the hypothesis f(x, 1) = 0 was only needed to have the solution u ≡ 1.

Remark 2. Proposition 1 above completely extends Theorem 3.7 in [4], and then
the result of [2]. Indeed, the equation (19) is a particular case of (4) with

F (x, t, p,M) = −tr(A(x)M)− b(x) · p− f(x, t).

If f(x, ·) ∈ C1(R+), uniformly in x ∈ Ω, and (3) holds, then there exist δ, ε > 0
such that (12)-(13) hold with c(x) = ft(x, 0) − ε. Conversely, it is easy to check
that (12)-(13) imply (3).

The first Liouville type results for viscosity solutions of fully nonlinear elliptic
equations are due to Cabré and Caffarelli [5], in the case of equation F (D2u) = f(x)
in the whole space. Under the assumption F (x, 0) = 0, Cutr̀ı and Leoni [9] proved
that the Liouville property still holds if we add a lower order perturbation term to
the operator. More precisely, they showed that there exists p0 > 1, depending on
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λ/Λ and the dimension N , such that the only nonnegative viscosity super-solution
u of

F (x,D2u)− uα ≥ 0, in RN ,
with α ∈ (0, p0), is u ≡ 0. In order to deal with general operators F (x, u,Du,D2u),
Capuzzo Dolcetta and Cutr̀ı introduced in [6] the following sublinear first-order
dependence assumption on F :

(21) ∀ (x, t, p) ∈ RN × R× RN , F (x, t, p, 0) ≤ b(|x|)|p|,

with b bounded and such that

(22)
−Λ(N − 1)

|x|
≤ b(|x|) ≤ λ− Λ(N − 1)

|x|
, for |x| large.

The authors proved that, under these assumptions, any nonnegative viscosity super-
solution of (4) must be constant.

Our results are independent from those of [6]. Indeed, (21) yields (12) with c ≡ 0,
but (13) holds only if c > 0. On the other hand, since we require (12) only for t, p
small, (12) does not imply (21). Furthermore, (22) yields lim|x|→∞ b(|x|) = 0, while
on the contrary (13) may hold even if b does not vanish at infinity - provided that
c is big enough.

4. Plan of the paper and preliminary results

In order to prove the above results we establish, in the next section, a version of
the strong maximum principle (see [12], [1] for related results). This result yields
that, under our assumptions, any nonnegative viscosity super-solution u of (4) is
either identically equal to zero, or it is strictly positive. Then, we proceed following
the same ideas as in [4]. In Section 6, we explicitly construct a family of C2 sub-
solutions ψ which are strictly positive in a ball and vanish on its boundary. Using
the functions ψ as test functions, we are able to show that u has a positive infimum
in a suitable subset of Ω. Finally, with the aid of other test functions and using the
definition of viscosity super-solution, we get a contradiction with (11). The proofs
of our main results - Theorems 2.2, 2.3 and 2.1 - are essentially based on the same
ideas and are presented in the last three sections.

The starting point of our study is that, thanks to (12), we can replace the operator
F with the following fully nonlinear operator:

(23) F+(x, t, p,M) :=M+
λ(x),Λ(M) + b(x)|p| − c(x)t,

where M+
λ(x),Λ denotes the Pucci’s maximal operator associated with λ(x),Λ. The

Pucci’s maximal operator is a fundamental tool in the viscosity solutions theory. It
is defined by:

∀M ∈ SN , M+
λ,Λ(M) := −λ

∑
ei>0

ei − Λ
∑
ei<0

ei,

where e1, . . . , eN are the eigenvalues of the matrix M . The operator M+
λ,Λ is, in

some sense, the “biggest” elliptic operator with parameters λ,Λ. Consider an elliptic
operator F and the associated function λ(x) defined by (14). Then, we have that
(24)
∀ (x, t, p,M) ∈ Ω× R× RN × SN , F (x, t, p,M) ≤ F (x, t, p, 0) +M+

λ(x),Λ(M).
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This is easily seen by decomposing M in the following way: M = M+−M−, where
M+,M− ≥ 0 and M+M− = 0 (this decomposition exists for every M ∈ SN and it
is unique).

Throughout the paper, we will always denote with F+ the operator given by
(23), associated with an elliptic operator F satisfying (12). From (24), it follows
that if the elliptic operator F satisfies (12), then

(25) ∀ (x, t, p,M) ∈ Ω× [0, δ]× [−δ, δ]N × SN , F (x, t, p,M) ≤ F+(x, t, p,M).

Therefore, any classical super-solution u of (4) is also a super-solution of F+ =
0 in the set where u and Du are small, and this property extends to viscosity
super-solutions. The advantage of using the operator F+ instead of F is that
F+(x, kt, kp, kM) = kF+(x, t, p,M), for any k > 0.

Let us recall the definition of viscosity solution, which is the standard notion of
weak solution for fully nonlinear elliptic equations.

Definition 4.1. We say that a function u : Ω→ R is a viscosity super-solution (resp.
sub-solution) of (4) if it is lower (upper) semi-continuous and, for any φ ∈ C2(Ω)
and x0 ∈ Ω such that u− φ has a local minimum (maximum) in x0 one has:

F (x0, u(x0), Dφ(x0), D2φ(x0)) ≥ 0 (≤ 0).

If u is both a viscosity super- and sub-solution of (4), then we say that it is a
viscosity solution of (4).

The definition of (continuous) viscosity solution dates back to Crandall and Lions
[8]. The Definition 4.1 for semi-continuous functions can be found for instance in
[11] and [7].

5. The strong maximum principle

The first step for proving our results consists in the derivation of a strong max-
imum principle for viscosity super-solutions of (4). We state it in a generic (even-
tually bounded) domain Ω ⊂ RN , requiring that the following property holds:

(26) ∀ (x, t, p) ∈ Ω× [0, δ]× [−δ, δ]N , F (x, t, p, 0) ≤ k|p|+ lt,

for some constants k, l ≥ 0. Since F (x, t, p,M) is not assumed to be Lipschitz-
continuous in t, p, we can not apply standard strong maximum principles for viscos-
ity solutions such as the one of Kawohl and Kutev [12]. Nevertheless, the Lipschitz-
continuity of F (t, p, 0, 0) at (0, 0) given by (26) suffices to prove our result.

Note that, if one requires (26) with δ = ∞, then any viscosity super-solution
of (4) is also a super-solution of M+

λ,Λ(M) + k|p| + lt. Then, one could apply the

strong maximum principle of [12], or of Bardi and Da Lio [1].

Lemma 5.1. Let Ω be a general domain and assume that F is an elliptic operator
satisfying (26). Let u be a nonnegative viscosity super-solution of (4). If there exists
x ∈ Ω such that u(x) = 0, then u ≡ 0 and F (x, 0, 0, 0) = 0.

Proof. It is quite similar to the classical proof of the strong maximum principle for
C2 functions. Suppose, by a contradiction, that u is not identically equal to zero
and that there exists x ∈ Ω such that u(x) = 0. Since the set {x ∈ Ω | u(x) = 0} can
not be open (otherwise Ω would be disconnected) we infer that there exists x0 ∈ Ω
such that u(x0) = 0 and Bγ(x0) ∩ {u > 0} 6= ∅ for all γ > 0. Call η := dist(x0, ∂Ω)
and consider a point x1 ∈ Bη/3(x0) such that u(x1) > 0. Define

β := max{γ > 0 | u > 0 in Bγ(x1)}.



8 LUCA ROSSI

Clearly β ≤ η/3 and then Bβ(x1) ⊂ Ω. Furthermore, by the lower semi-continuity
of u, we have that there exists y ∈ ∂Bβ(x1) such that u(y) = 0. Set now ρ := β/2

and z := (x1 + y)/2. Then, y ∈ ∂Bρ(z) and Bρ(z) \ {y} ⊂ Bβ(x1). Resuming, we
have that

(27) u(y) = 0, u > 0 in Bρ(z) \ {y}.

Define the function

ζ(x) := e−α|x−z|
2

− e−αρ
2

, x ∈ RN ,

where α > 0 will be chosen later. Consider k, l given by (26) and set H(x, t, p,M) :=
M+

λ,Λ(M) + k|p|+ lt, for (x, t, p,M) ∈ Ω×R×RN ×SN . By expressing the matrix

D2ζ(y) in any orthonormal basis containing the unit vector (y − z)/|y − z|, one

finds that it has one eigenvalue equal to (4α2ρ2 − 2α)e−αρ
2

, and the others equal

to −2αe−αρ
2

. Consequently,

H(y, ζ,Dζ,D2ζ) ≤ 2αe−αρ
2[
− 2ρ2λα+NΛ + kρ

]
,

and then we can choose α big enough in order to have H(y, ζ,Dζ,D2ζ) < 0. Since
H is continuous, there exists τ > 0 such that Bτ (y) ⊂ Ω and

(28) H(x, ζ,Dζ,D2ζ) < 0, x ∈ Bτ (y).

Call K := ∂Bτ (y) ∩Bρ(z) and

m := min
{

min
K

u , δ
}
,

where δ is the positive constant in (26). By (27) we know that u is positive in the
compact set Kand then m > 0. Take ε > 0 such that

(29) ∀ x ∈ Bτ (y), εζ(x) < m, εDζ(x) ∈ [−δ, δ]N .

Since εζ < 0 < u in ∂Bτ (y) \ K, we have that εζ < u in ∂Bτ (y). Moreover,
u(y) = 0 = εζ(y) and then there exists x̃ ∈ Bτ (y) such that

(u− εζ)(x̃) = min
Bτ (y)

(u− εζ) ≤ 0.

Thus, the fact that u is a viscosity super-solution of F = 0 in Ω implies that
F (x̃, u(x̃), εDζ(x̃), εD2ζ(x̃)) ≥ 0. Finally, by (24) and (26), we know that

∀ (x, t, p,M) ∈ Ω× [0, δ]× [−δ, δ]N × SN , F (x, t, p,M) ≤ H(x, t, p,M).

Consequently, from (29), the fact that εζ(x̃) ≥ u(x̃) ≥ 0 and that H(x, t, p,M) is
increasing in t, it follows

0 ≤ H(x̃, εζ(x̃), εDζ(x̃), εD2ζ(x̃)) = εH(x̃, ζ(x̃), Dζ(x̃), D2ζ(x̃)),

which is in contradiction with (28). Therefore, u ≡ 0 and then F (x, 0, 0, 0) ≥ 0.
Since the reverse inequality also holds, by (26), we find that F (x, 0, 0, 0) = 0. �
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6. Construction of a family of positive sub-solutions of F+ = 0

This section is devoted to the construction of a family of functions ψ ∈ C2(Ω)
which are strictly positive inside a ball, where they satisfy F+(x, ψ,Dψ,D2ψ) < 0,
and vanish outside. The inequality (25) yields that the functions ψ - once oppor-
tunely normalized - are sub-solutions of (4). In the next sections, we will compare
them to the super-solutions u in order to prove our uniqueness results.

We first construct a function in dimension one, then we rotate it and obtain
the desired function ψ. This construction is essentially the same as in [4] (see the
Appendix there), even if here we deal with the Pucci’s maximum operator instead
of a linear one.

For us, the symbol M+
λ,Λ represents the Pucci’s maximal operator in the N -

dimensional case as well as in the 1-dimensional case, depending on the fact that
its argument is a N ×N matrix or a real number. Thus, if a ∈ R,

M+
λ,Λ(a) =

{
−λa if a ≥ 0
−Λa if a < 0.

Lemma 6.1. Let Λ, ξ, µ be three positive constants. Then there exist a nonnegative
function h ∈ C2(R;R) and a positive number τ such that

h(ρ) = 0 for ρ ≤ 0,
h′(ρ) > 0 for 0 < ρ < τ,
h(ρ) = 1 for ρ ≥ τ,

and

∀ ρ ∈ R+, M+
η,Λ(h′′(ρ)) +Bh′(ρ)− Ch(ρ) < 0,

for any positive constants η,B,C satisfying

(30) η ≤ Λ, B ≤ ξ, 4ηC −B2 ≥ µ.

Proof. We will explicitly construct the desired function h. We start with defining
it on the interval (−∞, r]:

h(ρ) =

{
0 for ρ ≤ 0
ρn for ρ ∈ (0, r]

where the integer n ≥ 3 and the real r > 0 are to be chosen. Let η,B,C be three
positive numbers satisfying (30). Consider the operator H : R3 → R defined by
H(t, p,m) :=M+

η,Λ(m) +Bp− Ct. For ρ ∈ (0, r], we have that

H(h(ρ), h′(ρ), h′′(ρ)) =
[
η(n− n2) +Bnρ− Cρ2

]
ρn−2

≤
[
η(n− n2) +

B2

4C
n2

]
ρn−2

=

(
η − 4ηC −B2

4C
n

)
nρn−2.

From (30) it follows that, if B2 < ηC, then the last quantity is less than(
η − 4ηC − ηC

4C
n

)
nρn−2 ≤

(
1− 3

4
n

)
ηnρn−2 < 0,

else it is less than or equal to (
1− µ

4ξ2
n

)
ηnρn−2.
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In both cases, choosing n ∈ N big enough (dependently only on ξ and µ) we have
that H(h, h′, h′′) < 0 in (0, r]. Now that we have fixed n, choose r > 0 in such a
way that the following inequalities hold:

(31)
(
ξn− µ

4Λ
r
)
rn−1 ≤ −Λ− 1,

(32) h′′(r) = n(n− 1)rn−2 > 1.

We then extend h in (r, s] by setting h′′(ρ) = h′′(r) − a(ρ − r) and requiring that
h ∈ C2((−∞, s)). Again, the positive constants s, a will be chosen later. We impose

h′′(s) = −1, which yields s = r + h′′(r)+1
a . The function h′ reaches its maximum in

[r, s] at the point r + h′′(r)/a. Then,

∀ ρ ∈ [r, s], h′(ρ) ≤ h′
(
r +

h′′(r)

a

)
= h′(r) +

[h′′(r)]2

2a
.

Furthermore, h′(s) = h′(r) + h′′(r)+1
2a (h′′(r) − 1) > h′(r), by (32), and then the

concavity of h′ in the interval [r, s] yields h′ ≥ h′(r) > 0 in [r, s]. Consequently, h is
strictly increasing in [r, s]. Using these inequalities, together with 4ηC ≥ µ+B2 ≥ µ,
we derive, for ρ ∈ (r, s],

H(h(ρ), h′(ρ), h′′(ρ)) ≤ Λ + ξ

(
h′(r) +

[h′′(r)]2

2a

)
− µ

4η
h(r)

≤ Λ +
(
ξn− µ

4Λ
r
)
rn−1 +

ξ

2a
[h′′(r)]2.

Therefore, by (31), H(h, h′, h′′) ≤ −1 + ξ
2a [h′′(r)]2 in (r, s], and then we can choose

a big enough to have H(h, h′, h′′) < 0 in (r, s]. Finally, for ρ ∈ (s, τ ], we set
h′′(ρ) = −1 + d(ρ− s), with

τ = s+ 2h′(s) , d =
1

2h′(s)
.

It follows that h′(τ) = h′′(τ) = 0. Since h′′ < 0 in (s, τ), we have that h′ is
decreasing and positive in (s, τ), and then h is increasing in (s, τ). This allows to
conclude that, for ρ ∈ (s, τ ],

H(h(ρ), h′(ρ), h′′(ρ)) = −Λh′′(ρ) +Bh′(ρ)− Ch(ρ)

≤ −Λh′′(s) +Bh′(s)− Ch(s)

= H(h(s), h′(s), h′′(s))

< 0.

Extending h by h(ρ) := h(τ) for ρ > τ , we have that h ∈ C2(R). Therefore, to
obtain the desired function it only remains to divide h by h(τ). �

Now, turn to the N-dimensional case. By use of Lemma 6.1, we prove the fol-
lowing

Lemma 6.2. Let F be an elliptic operator satisfying (12)-(13). There are then
three positive constants R0, ρ, γ such that, for every R ≥ R0 and y ∈ Ω such that
BR(y) ⊂ Ω \ Bρ, there exists ψ ∈ C2(Ω) satisfying

ψ = 0 in Ω \ BR(y), ψ = 1 in BR/2(y), ‖ψ‖C1(Ω) ≤ γ,

F+(x, ψ,Dψ,D2ψ) < 0 in BR(y).
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Proof. By (13), we can find two positive constants ρ and µ such that

(33) ∀ x ∈ Ω \ Bρ, 4λ(x)c(x)− b2(x) ≥ 2µ.

Consider the function h and the constant τ > 0 given by Lemma 6.1, associated to
the positive constants Λ, µ and ξ := supx∈Ω |b(x)|+ 1. Let R0 > 2τ be such that

(34)
N − 1

R0
Λ ≤ 1

2
, 4

N − 1

R0
Λ

(
N − 1

R0
Λ + ξ

)
≤ µ.

Suppose that there exist R ≥ R0 and y ∈ Ω such that BR(y) ⊂ Ω \ Bρ. For x ∈ Ω
define

ψ(x) := h(R− |x− y|).
The function ψ belongs to C2(Ω) because h = 1 in (τ,+∞) and R > τ . Moreover,
‖ψ‖C1(Ω) is less than a positive constant γ only depending on ‖h‖C1(R) and N , and

not on R and y. Let us compute F+(x, ψ,Dψ,D2ψ). For x ∈ BR/2(y), we have

that R − |x − y| > τ and then ψ(x) = 1. Hence, F+(x, ψ,Dψ,D2ψ) = −c(x) < 0,
because, by (33), c > 0 in BR/2(y) ⊂ Ω \ Bρ. Fix now x ∈ BR(y) \ BR/2(y) and
denote for brief ρ := R− |x− y|. We have that ρ > 0 and

ψ(x) = h(ρ), Dψ(x) = − x− y
|x− y|

h′(ρ),

D2ψ(x) =

(
(x− y)⊗ (x− y)

|x− y|2
− I
)

h′(ρ)

|x− y|

+
(x− y)⊗ (x− y)

|x− y|2
h′′(ρ),

where ⊗ denotes the vector direct product and I the N ×N identity matrix. The
matrix D2ψ(x) can be diagonalized by expressing it in any orthonormal basis con-
taining the vector (x − y)/|x − y|. This shows, after some computations, that one
of its eigenvalues is equal to h′′(ρ) and the others N −1 are equal to −h′(ρ)/|x−y|.
Consequently,

F+(x, ψ,Dψ,D2ψ) ≤M+
λ(x),Λ(h′′(ρ))

+

(
|b(x)|+ N − 1

|x− y|
Λ

)
h′(ρ)

− c(x)h(ρ).

Set η := λ(x), C := c(x) and

B := |b(x)|+ N − 1

|x− y|
Λ.

We have that

|b(x)| ≤ B ≤ |b(x)|+ 2
N − 1

R
Λ.

Furthermore, from (33) it follows that

4ηC −B2 ≥ 2µ− 4
(N − 1)2

R2
Λ2 − 4ξ

N − 1

R
Λ.

Therefore, by (34), we have that B ≤ |b(x)|+ 1 ≤ ξ and 4ηC −B2 ≥ µ, that is (30)
holds. Lemma 6.1 then yields

F+(x, ψ,Dψ,D2ψ) ≤M+
η,Λ(h′′(ρ)) +Bh′(ρ)− Ch(ρ) < 0.

�
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7. The case Ω 6= RN

Lemma 7.1. Let Ω be an unbounded domain satisfying (8) and F an elliptic oper-
ator satisfying (12)-(13). Let u be a positive viscosity super-solution of (4). Then,
there are two positive constants R0 and ε such that

inf
BR/2(y)

u ≥ ε,

for every R ≥ R0 and y ∈ Ω satisfying BR(y) ⊂ Ω.

Proof. Consider the positive constants R0, ρ and γ given by Lemma 6.2. To prove
the statement, consider first y ∈ Ω and R ≥ R0 such that BR(y) ⊂ Ω \ Bρ. We
claim that infBR/2(y) u ≥ δ/γ, where δ is the positive constant in (12). In order
to prove this, consider the function ψ given by Lemma 6.2, associated to y and R.
Define

k∗ := sup{k ≥ 0 | kψ ≤ u in BR(y)}.
We assume, by a contradiction, that k∗ < δ/γ. From the definition of k∗, the lower
semi-continuity of u and the fact that ψ = 0 on ∂BR(y), it follows that u−k∗ψ ≥ 0
and there exists x ∈ BR(y) such that u(x) = k∗ψ(x). Since u is a viscosity super-
solution of (4), it follows that F (x, k∗ψ(x), k∗Dψ(x), k∗D2ψ(x)) ≥ 0. Hence, we
can apply (25), because

∀ x ∈ BR(y), k∗ψ(x) ∈ [0, δ], k∗Dψ(x) ∈ [−δ, δ]N ,
and we get

0 ≤ F+(x, k∗ψ(x), k∗Dψ(x), k∗D2ψ(x)) = k∗F+(x, ψ(x), Dψ(x), D2ψ(x)).

This is a contradiction, because F+(x, ψ,Dψ,D2ψ) < 0 in BR(y). Therefore, k∗ ≥
δ/γ, that is u ≥ δ

γψ in BR(y). Then the claim is proved, because ψ = 1 in BR/2(y).

Consider now an arbitrary ball BR(y) ⊂ Ω, with R ≥ R0. Set K := {x ∈
Ω∩Bρ+3R0

| dist(x, ∂Ω) ≥ R0/2}. Since K ⊂⊂ Ω and u is positive and lower semi-
continuous, it follows that µ := minK u > 0. If |y| ≥ R + ρ then BR(y) ⊂ Ω \ Bρ.
Hence, we are in the case considered before and then infBR/2(y) u ≥ δ/γ. If |y| <
R + ρ, consider x ∈ BR/2(y). If x ∈ Bρ+3R0

then x ∈ K, because dist(x, ∂Ω) ≥
R/2 ≥ R0/2. Hence, in this case u(x) ≥ µ. If, on the contrary, x /∈ Bρ+3R0

then
we have

R

2
> |x− y| ≥ |x| − |y| > 3R0 −R.

Thus, R0 < R/2 and then BR0
(x) ⊂ (BR(y) \ Bρ) ⊂ (Ω \ Bρ). It follows that

u(x) ≥ δ/γ. The statement is then proved, with ε = min{δ/γ, µ}. �

Remark 3. In the proof of Lemma 7.1, we have shown that - with the same
assumptions and notation as there - there exists a positive constant γ such that
any nonnegative viscosity super-solution u of (4) is either identically equal to zero,
or satisfies infBR/2(y) u ≥ δ/γ, for any R ≥ R0 and y such that BR(y) ⊂ Ω \ Bρ.
Consequently, if Ω satisfies (8), F is elliptic and satisfies (12)-(13) with δ = +∞,
then the unique nonnegative viscosity super-solution of (4) is u ≡ 0. Thus, in
this case, the conclusion of Theorem 2.2 holds for any nonnegative viscosity super-
solution u without prescribing any maximal growth.

Proof of Theorem 2.2. Suppose that u vanishes at some point in Ω. By (12), we
have that (26) holds with k = ‖b‖∞ and l = ‖c‖∞. Hence, we can apply Lemma
5.1 and infer that u ≡ 0 and F (x, 0, 0, 0) = 0 in Ω.
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Assume, by a contradiction, that u is strictly positive. Let us denote with σ :
Ω→ R+ the distance function from ∂Ω, that is σ(x) := dist(x, ∂Ω). By (15), there
exists a sequence (xn)n∈N in Ω such that

(35) |xn| → ∞, lim
n→∞

u(xn)

σ(xn)
= 0, lim

n→∞
σ(xn) = +∞.

Let n0 ∈ N be such that σ(xn) ≥ R0 for n ≥ n0, where R0 is the positive constant
in Lemma 7.1. Then, Lemma 7.1 yields:

∀ x ∈
⋃
n≥n0

Bσ(xn)/2(xn), u(x) ≥ ε > 0.

For n ∈ N, define

φn(x) := −4u(xn)
|x− xn|2

σ2(xn)
.

Since (u−φn)(xn) = u(xn) and, for x ∈ ∂Bσ(xn)/2(xn), (u−φn)(x) = u(x)+u(xn) ≥
u(xn), we infer that there exists a point zn ∈ Bσ(xn)/2(xn) of local minimum for
the function u− φn. Therefore,

(36) F (zn, u(zn), Dφn(zn), D2φn(zn)) ≥ 0.

For n ≥ n0 we have that

u(zn) ≥ ε, |Dφn(zn)| ≤ 4u(xn)

σ(xn)
, D2φn(zn) = 8

u(xn)

σ2(xn)
I.

Consequently, letting n go to infinity in (36) and using (10) and (35), we find that
sup x∈Ω

s≥ε
F (x, s, 0, 0) ≥ 0, which is in contradiction with (11). �

Proof of Proposition 1. As in the proof of Theorem 2.2, we have that the strong
maximum principle implies that either u ≡ 0, or u > 0 in Ω. In the second case,
Lemma 7.1 yields the existence of two positive constants ε,R0 such that

inf
BR/2(y)

u ≥ ε,

for every R ≥ R0 and y ∈ Ω satisfying BR(y) ⊂ Ω. For n ∈ N let xn ∈ Ω be
such that dist(xn, ∂Ω) ≥ 2n. Then, consider the family of paraboloids φn(x) =
−u(xn)|x−xn|2/n2. We have that (u−φn)(xn) = u(xn) and, for any x ∈ ∂Bn(xn),

(u− φn)(x) = u(x) + u(xn) ≥ u(xn).

Hence, u − φn admits a local minimum at some point zn ∈ Bn(xn). Applying the
definition of viscosity super-solution we get

F (zn, u(zn), Dφn(zn), D2φn(zn)) ≥ 0.

Notice that u(zn) ≥ ε for n ≥ R0/2 and that Dφn(zn), D2φn(zn) go to zero as n
goes to infinity. Consequently, from (16) it follows that

inf
x∈Ω

t∈[ε,supu]

F (x, s, 0, 0) ≥ 0,

which contradicts (17). �
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8. The case Ω = RN

The proof of Theorem 2.3 is similar to that of Theorem 2.2, and relies on the
same result, Lemma 7.1. Here, no growth condition on the viscosity super-solution
u is needed because, roughly speaking, the fact that Ω = RN allows to focus our
attention on the points where u is small. More precisely, Lemma 7.1 implies that
any positive viscosity super-solution of (4) is bounded from below away from zero.
Then, we can apply the same arguments of the proof of Theorem 2.2, using a family
of test functions (φ)n∈N given by paraboloids centered at a minimizing sequence of
u.

Proof of Theorem 2.3. Let u be a viscosity super-solution of (4) such that inf u ∈
[0, T ). The strong maximum principle (Lemma 5.1) yields that either u is strictly
positive, or u ≡ 0 and F (x, 0, 0, 0) ≡ 0. Assume, by a contradiction, that u > 0
in RN . We apply Lemma 7.1 that, in the case Ω = RN , yields infRN u ≥ ε. Set
m := infRN u > 0 and let (yn)n∈N be such that limn→∞ u(yn) = m. For n ∈ N,
define the functions

φn(x) := u(yn)− 1

n
|x− yn|2.

For every n ∈ N, we have that (u − φn)(yn) = 0 and lim|x|→∞(u − φn)(x) =

+∞. Hence, there exists zn ∈ RN minimum point for u − φn in RN . Therefore,
F (zn, u(zn), Dφn(zn), D2φn(zn)) ≥ 0. Moreover, since

0 ≥ u(zn)− φn(zn) = u(zn)− u(yn) +
1

n
|zn − yn|2,

it follows that u(zn) ≤ u(yn) and, for n large enough, |zn − yn| ≤
√
n(m+ 1).

This shows that u(zn) → m and Dφn(zn), D2φn(zn) → 0 as n goes to infinity. In
particular, there exists n0 ∈ N such that u(zn) ∈ [m,T ) for any n ≥ n0. Then, the
continuity assumption (16) yields that for any ε > 0 there exists n = n(ε) ≥ n0

such that F (zn, u(zn), 0, 0) ≥ −ε. Consequently,

sup
x∈RN
s∈[m,T )

F (x, s, 0, 0) ≥ 0,

which contradicts (17). �

9. The Bellman operator

In this section, we deal with the Bellman operator (5) and we give the proof of
Theorem 2.1. To do that, we follow exactly the same ideas of the proofs of Theorems
2.2 and 2.3.

Theorem 2.1 is not contained in Theorems 2.2 and 2.3 for two reasons. First,
we do not assume that the Bellman operator satisfies condition (13), but only that
(13) holds for all the operators −Lα, uniformly in α ∈ A (which is a weaker as-
sumption, see Proposition 2 below). Second, using the fact that F (x, kt, kp, kM) =
kF (x, t, p,M) for any k > 0, we are able to prove the uniqueness result in any
unbounded domain Ω satisfying (8) without prescribing any maximal growth of the
super-solutions.

Throughout this section, F will denote the Bellman operator, as we defined it in
Section 2.
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Proof of Theorem 2.1. Let u be a nonnegative viscosity super-solution of (4). For
x ∈ Ω, t ∈ R+ and p ∈ RN , we have that

F (x, t, p, 0) ≤ sup
α∈A
|bα(x)||p| − inf

α∈A
cα(x)t ≤ sup

z∈Ω
α∈A

|bα(z)||p| − inf
z∈Ω
α∈A

cα(z)t.

Then, thanks to (9), we can apply Lemma 5.1 and infer that either u > 0 in Ω, or
u ≡ 0 and F (x, 0, 0, 0) ≡ 0.

In order to prove that u can not be strictly positive, we construct a function ψ
which is positive in a ball and is a sub-solution of (4). The construction is almost
the same as in Lemma 6.2. By (7), there exist two constants ρ, µ > 0 such that

(37) ∀ x ∈ Ω \ Bρ, ∀ α ∈ A, 4λα(x)cα(x)− |bα(x)|2 ≥ 3µ.

Consider the function h and the positive constant τ given by Lemma 6.1, associated
to Λ, ξ := supα∈A

x∈Ω
|bα(x)|+ 1 and µ. Let R ≥ 2τ be such that

(38) 2
N − 1

R
Λ ≤ 1, 4

N − 1

R
Λ

(
N − 1

R
Λ + ξ

)
≤ µ,

and y ∈ Ω be such that BR(y) ⊂ Ω \ Bρ. Define the function ψ(x) := h(R−|x−y|).
We claim that

F (x, ψ,Dψ,D2ψ) < 0, x ∈ BR(y).

Take x ∈ BR/2(y). We have that

F (x, ψ,Dψ,D2ψ) = − inf
α∈A

cα(x) ≤ − 3µ

4Λ
,

where the last inequality follows from (37) and (6). Consider now x ∈ BR(y) \
BR/2(y). For any γ > 0 there exists α = αγ,x such that F (x, ψ,Dψ,D2ψ) ≤
(−Lα + γ)ψ(x). Then, after the usual computations, we find:

F (x, ψ,Dψ,D2ψ) ≤M+
η,Λ(h′′(R− |x− y|)) +Bh′(R− |x− y|)−Cγh(R− |x− y|),

with η = λα(x),

B = |bα(x)|+ 2
N − 1

R
Λ

and Cγ = cα(x) − γ. By (38) and (37), we have that B ≤ ξ and 4ηCγ − B2 ≥
2µ− 4Λγ. Therefore, for γ ≤ µ

4Λ , the quantities η, B and C = Cγ satisfy (30) and

then Lemma 6.1 yields F (x, ψ,Dψ,D2ψ) < 0. The claim is then proved.
Now, we assume by a way of contradiction that u > 0. Since the Bellman

operator F satisfies F (x, kt, kp, kM) = kF (x, t, p,M), for any positive constant k,
we can use the functions kψ as test functions as we did in the proof of Lemma 7.1,
with F+ replaced by F . Indeed, set

k∗ := inf
x∈BR(y)

u(x)

ψ(x)
.

Clearly, k∗ > 0 and u − k∗ψ ≥ 0 in BR(y). Furthermore, since ψ = 0 on ∂BR(y),
there exists x ∈ BR(y) such that (u− k∗ψ)(x) = 0. Hence,

0 ≤ F (x, k∗ψ(x), k∗Dψ(x), k∗D2ψ(x)) = k∗F (x, ψ(x), Dψ(x), D2ψ(x)).

This is in contradiction with the fact that F (x, ψ,Dψ,D2ψ) < 0 for x ∈ BR(y). �

Let us conclude with showing that the assumption (7) is weaker than (12)-(13).
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Proposition 2. If the Bellman operator F satisfies (12)-(13) then (7) holds. On
the contrary, there are examples of Bellman operators satisfying (7) but not (12)-
(13).

Proof. Assume that F satisfies (12), that is

∀ (x, t, p) ∈ Ω× [0, δ]× [−δ, δ]N , sup
α∈A

(−bα(x) · p− cα(x)t) ≤ b(x)|p| − c(x)t.

It follows that

c(x) ≤ inf
α∈A

cα(x), b(x) ≥ sup
α∈A
|bα(x)|.

Moreover, we claim that λ(x) ≤ infα∈A λα(x), for x ∈ Ω, where λ(x) is given by
(14) and λα(x) is the smallest eigenvalue of Aα(x). Indeed, we have that

λ(x) ≤ inf
M,Q∈SN
Q>0

supα∈A(−tr(Aα(x)M))− supα∈A(−tr(Aα(x)(M +Q)))

trQ
.

Thus, if we take in particular M = Q, we obtain

λ(x) ≤ inf
Q∈SN
Q>0

− infα∈A tr(Aα(x)Q) + 2 infα∈A tr(Aα(x)Q)

trQ

= inf
Q∈SN, Q>0

α∈A

tr(Aα(x)Q)

trQ

= inf
α∈A

λα(x).

Therefore, if F satisfies (13) then (7) holds.
Consider now the Bellman operator

F (x, u, u′, u′′) = sup(−L1u,−L2u), in R,

with −L1u = −u′′ − u and −L2u = −u′′ + 3u′ − 3u. We have that F satisfies (7).
Assume that (12) holds for some b, c ∈ L∞(R). Thus, taking t = 1 and p = 0 in
(12), we derive

c(x) ≤ − sup(−1,−3) = 1,

while, taking t = 0 and p = 1,

b(x) ≥ sup(0, 3) = 3.

Since λ(x) ≡ 1, it follows that 4λ(x)c(x)− b2(x) ≤ −5, i. e. (13) does not hold. �
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