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1 Introduction

The qualitative theory of second order elliptic equations received a strong effort
from Harnack inequalities. Here we will make use of this powerful technique to
study continuous viscosity solutions u of fully nonlinear elliptic equations

F (x, u(x), Du(x), D2u(x)) = f(x), x ∈ Ω (F = f)

in unbounded domains Ω of IRn, where F is a real function of x ∈ Ω, t ∈ IR,
p ∈ IRn, X ∈ Sn, the set of n× n real symmetric matrices.
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We recall that F is (degenerate) elliptic if F is nondecreasing in X and uniformly
elliptic if there exist (ellipticity) constants λ and Λ such that 0 < λ ≤ Λ and

λtr(Y ) ≤ F (x, t, p,X + Y )− F (x, t, p,X) ≤ Λtr(Y )

for Y ≥ 0, i.e. Y semidefinite positive, where tr(Y ) denotes the trace of the
matrix Y .
In the class of uniformly elliptic operators there are two extremal ones, well known
as Pucci maximal and minimal operators, resp.:

P+
λ,Λ(X) = Λtr(X+)− λtr(X−), (1.1)

P−λ,Λ(X) = λtr(X+)− Λtr(X−), (1.2)

where X± are the positive and negative part of X, which can be decomposed in
an unique way as X = X+ −X− with X± ≥ 0 and X+X− = 0. Other examples
of fully nonlinear uniformly elliptic operators can be found in [21], [19], [10].
Throughout this paper we will consider elliptic operators with the structure con-
ditions

F (x, t, p,X) ≥ P−λ,Λ(X)− b(x)|p|q, (1.3)

F (x, t, p,X) ≤ P+
λ,Λ(X) + b(x)|p|q, (1.4)

where P± are the extremal Pucci operators, b(x) is a continuous function and
the exponent q ∈ [1, 2], so that the gradient term can have a superlinear, at most
quadratic growth.

Remark 1 The above structure conditions are exactly equivalent to the uniform
ellipticity when F is linear in the variable X ∈ Sn. In the nonlinear case they
allow a slight generalization. Let us consider, for 0 < λ < Λ and t ≥ 0, the
function

h(t) =


Λt if 0 ≤ t ≤ 1

Λ

1 if 1
Λ
< t ≤ 1

λ

λt if t > 1
λ

,

then the operator F = h(tr(X+)) − h(tr(X−)) is elliptic and satisfies both the
conditions (1.3) and (1.4), even that it is not uniformly elliptic.
However, if (1.4) (resp. (1.3)) holds then subsolutions (resp. supersolutions) of
the equation F = f are subsolutions (resp. supersolutions) of uniformly elliptic
equations, and this is needed to prove our results. �
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We will be concerned principally with the following topics in unbounded domains,
see [32], [28], [31] for classical results:

[MP] Maximum Principle for u.s.c. subsolutions w of F = 0 in the viscosity sense
(v.s.), in the form

F ≥ 0 in Ω, w ≤ 0 on ∂Ω, sup
Ω
w < +∞ ⇒ w ≤ 0 in Ω;

[LT] Liouville Theorem for continuous solutions of F = 0 v.s., in the form

F = 0 in IRn, sup
IRn

w < +∞ ⇒ w = constant in IRn.

Concerning MP, it is worth to note that the condition from above on the size of
w can be weakened in the framework of the Phragmén - Lindelöf theory, see e.g.
[40], [16], [18], but not omitted at all, even for classical subsolutions, see e.g. [32],
[6]. It is also well known that MP fails to hold in general in exterior domains.
In fact, due to the boundedness of the fundamental solution u(x) = |x|2−n of the
Laplace equation ∆u = 0, the function w = 1− u provides a counterexample to
MP in Ω = IRn\B1(0). Thus we introduce a local measure-geometric condition
Gσ in Ω at y ∈ IRn , which depends on the real parameter σ ∈ (0, 1):
there exists a ball B = B(y) such that

y ∈ B, |B\Ωy| ≥ σ|B|,

where Ωy is the connected component of B\∂Ω containing y.
If Gσ is satisfied in Ω at all y ∈ Ω, we simply say that Ω is a wG- domain
(with parameter σ). This is a generalization of condition G of Cabrè [6], which
ultimately goes back to Berestycki, Nirenberg and Varadhan [5].

Let R(y) denote the radius of the ball B = B(y) provided by condition wG.
We will call domains of cylindrical and conical type the wG-domains such that
R(y) = O(1) and R(y) = O(|y|) as |y| → +∞, resp. Examples of the first kind are
domains with finite measure, cylinders, slabs, complements of a periodic lattice
of balls, whereas cones, and complements, in the plane, of logarithmic spirals, are
examples of the second kind.

In [42] it is shown that MP holds true in a wG domain for strong solutions of
a linear second-order uniformly elliptic operator F = trA(x)X, see also [7], [38]
for earlier results; in [15] and in [17] for viscosity solutions of a fully nonlinear
operator with linear and quadratic growth in the gradient, i.e. in the case of the
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structure condition (1.4) with q = 1 and q = 2, provided that b(x) = O(1/|x|)
and b(x) = O(1) as |x| → ∞, resp.
With the aim to find conditions on the coefficient b(x) in order that MP holds in
wG domains when 1 ≤ q ≤ 2, our result is the following:

Theorem 1 (MP) Let 0 < σ < 1 and 1 ≤ q ≤ 2. Let Ω be a domain of IRn

satisfying condition wG or alternatively such that, for a closed subset H of IRn:
· MP holds in each connected component of Ω\H;
· condition Gσ is satisfied in Ω at each y ∈ Ω ∩H .
Suppose that w ∈ USC(Ω̄) is a viscosity solution of F (x,w,Dw,D2w) ≥ 0 and
structure condition (1.4) holds with b ∈ C(Ω̄), such that b(x) = O(1/|x|2−q).
If w ≤ 0 on ∂Ω and supw < +∞ in Ω, then w ≤ 0 in Ω.

This yields indeed MP in a wider class of domains than wG, e.g. the cut plane
and more generally the complement of continuous semi-infinite curves in IR2 and
their generalizations to hypersurfaces in IRn.
We also outline that the limit cases q = 1 and q = 2 of the above mentioned
papers are obtained by continuity from the intermediate cases 1 < q < 2, as
it follows from Theorem 1. Nonetheless, there are technical improvements with
respect to the previous works even in the limit cases.
Consider in particular a parabolic shaped domain Ω, satisfying condition wG
with R(y) = O(|y|α), 0 < α < 1, the limit cases α = 0 and α = 1 correspond to
domains of cylindrical and conical type, resp.
Based on an argument of [42], eventually passing to a smaller ry ≤ R(y), we can
suppose that condition Gσ is satisfied with |B\Ωy| = σ|B| exactly. We get the
new following variant of ABP estimate.

Theorem 2 (ABP) Let 0 < σ, τ < 1, τ ′ > 1, R0, β ≥ 0, 1 ≤ q ≤ 2 and N > 0.
Let Ω be a wG domain, such that condition Gσ in Ω is fulfilled at each y ∈ Ω with
R(y) ≤ R0 + β|y|α, 0 ≤ α ≤ 1. Assume that F satisfies the structure condition
(1.4), with b, f ∈ C(Ω̄) and b0 := supΩ |b(x)|(1 + |x|α(2−q)) < +∞.
If w ∈ USC(Ω̄) is a viscosity solution of F (x,w,Dw,D2w) ≥ f such that w ≤ N
in Ω and w ≤ 0 on ∂Ω, then

sup
Ω
w ≤ C lim

ε→0+
sup

y∈Ω; |y|≥εry
ry‖f−‖Ln(Ω∩Bτεry,τ ′ry ), (1.5)

where C is a positive constant depending on n, q, λ, Λ, b0N
q−1, σ, τ , τ ′, R0, β.

Note that in the case of a domain of cylindrical type (α = 0) it is sufficient to
have b(x) = O(1) for all q ∈ [1, 2], as well as in the case of a quadratic growth in
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the gradient variable (q = 2) for all α ∈ [0, 1].
This result extends the previous ones contained in [6], [38], for the linear case,
and [16], [17], dealing with fully nonlinear equations, in the limit situations of
cylindrical/conical domains and linear/quadratic gradient term.

Remark 2 In general, unless q = 1, the above ABP type estimate is different
from the so called ABP Maximum Principles since C depends on the upper bound
N of w if b0 > 0 and q > 1. For ABP type estimates of this kind in bounded
domains we refer to [27]. Counterexamples to the ABP Maximum Principle can
been found in [27], [34] and [26]. �

Consider now Ω = IRn. The classical Liouville Theorem says that harmonic
functions in the entire IRn, which are bounded either above or below, are constant.
This result continues to hold for strong solutions of quasilinear uniformly elliptic
equations, see [36]. For viscosity solutions of fully nonlinear uniformly elliptic
equations with an additive gradient term having linear growth, we refer to [14]
and [20]. Our result is the following:

Theorem 3 (Liouville Theorem) Let w ∈ C(IRn) be such that F (x,w,Dw,D2w) =
0 in the viscosity sense, and assume structure conditions (1.3) and (1.4), with
b ∈ C(IRn) such that b(x) = O(1/|x|2−q) as |x| → +∞. If w is bounded either
above or below, then w is constant.

Remark 3 Under some additional assumptions, Liouville type results also hold
in unbounded domains of IRn containing balls of arbitrary large radius, see [33].

Our main tools are Krylov-Safonov Harnack inequalities and local MP, see [36]
for strong solutions of quasilinear uniformly elliptic equations. For viscosity solu-
tions and F satisfying the structure condition (1.3), they can be found in [10] if
b = 0 and in [37] if q = 2, see also [23]. In the case of linear or superlinear, almost
quadratic, growth in the gradient (1 ≤ q < 2), weak Harnack (wH) inequality
and local MP can be deduced using arguments of [27], in which a (full) Harnack
inequality has been established for Lp viscosity solutions, see also [24].
Nevertheless, for convenience of the reader we believed worth to report system-
atically on this kind of inequalities in Section 3.
As the previous ones, our approach follows the lines of [10], based on the methods
of [25], [8] and on the ABP Maximum Principle for viscosity solutions in bounded
domains, due to Caffarelli [9].
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Remark 4 In deriving wH inequality and local MP we only need the Alexandroff-
Bakelman-Pucci (ABP) estimate with q = 1 and f continuous, so Prop. 2.12 of
[11] or also Thm. 4.1 of [27], in the case of linear growth in the gradient term, are
sufficient to our purpose. But we notice that new ABP type estimates have been
established for Lp-viscosity solutions of equations with discontinuous coefficients
by Koike and Swiech [25], [26] for q ∈ [1, 2] and f ∈ Lp. �

Remark 5 In the case of a superlinear first order term, wH inequality and local
MP are obtained by interpolation between the linear and quadratic case, elimi-
nating the square gradient term by means of an exponential transformation used
before by Trudinger [37], see Lemmas 4 and 5 below. This kind of ideas have
been also considered by Sirakov in [35]. �

What we definitevely need are, for MP, the scaled boundary wH inequality (3.6),
derived in Section 3 by means of typical viscosity methods, and, for technical
reasons, its version in annular regions (3.8), and, for LT, the scaled Harnack
inequality (3.3). Moreover, using the interior wH inequality (3.1) and assuming
the structure condition (1.4), we also state a strong MP Theorem, according
to which a subsolution u of equation F = 0 cannot achieve a positive maximum
inside any domain (open connected set) of IRn unless to be constant, see Theorem
12 below. For a different approach, based on Hopf Lemma, and more general
versions see [1].

The paper is organized as follows: in Section 2 we recall some basic results of
elliptic theory for viscosity solutions of second order fully nonlinear equations
with a linear gradient term; in Section 3 we extend local maximum principle and
weak Harnack inequality, even up to the boundary, to the case of a superlinear
gradient term; these results are applied in Section 4 to get Alexandroff-Bakelman-
Pucci type estimates and Maximum Principles, with the proof of Theorems 1 and
2; finally, a strong Maximum Principle is derived and the proof of the Liouville
Theorem 3 is given in Section 5. In the Appendix, for sake of completeness, we
show the basic weak Harnack inequality and local MP for an uniformly elliptic
operator with an additive first order term having linear growth in the gradient.

2 Basic estimates (linear gradient term)

Let Ω be a domain of IRn, and denote by USC(Ω) and LSC(Ω), resp., the sets of
the upper and lower semicontinuous functions in Ω. The function u ∈ USC(Ω)

6



is said a viscosity subsolution of F = f if

F (x, u(x), Dϕ(x), D2ϕ(x)) ≥ f(x)

at any point x ∈ Ω and for all ϕ ∈ C2(Ω) such that ϕ − u has a local minimum
in x. Similarly, a viscosity supersolution u ∈ LSC(Ω) of F = f satisfies

F (x, u(x), Dϕ(x), D2ϕ(x)) ≤ f(x)

at any point x ∈ Ω and for all ϕ ∈ C2(Ω) such that u − ϕ has a local minimum
in x.
We may also assume that ϕ(x) = u(x) in the above definition, i.e. the graph of
the test function ϕ touches that one of u from above for subsolutions and from
below for supersolutions [10]. Moreover, if F is continuous in the matrix-variable,
as for uniformly elliptic operators, then we may assume that ϕ(x) is a paraboloid,
i.e. a quadratic polynomial.

We will make use of the following version of the ABP estimate, in which Γ+
u

denotes the upper contact set

Γ+
u = {x ∈ Ω / ∃ p ∈ IRn s.t. u(y) ≤ u(x) + p · (y − x) for x ∈ Ω}

of the graph of the function u. Rescaling Prop. 2.12 of [11] or using Thm. 4.1 of
[27], we have:

Lemma 1 (ABP estimate) Let u ∈ LSC(B̄) be a viscosity supersolution of the
equation

P−λ,Λ(D2u)− b0|Du| = f (2.1)

in a ball B of unit radius, such that u ≥ 0 on ∂B, where f ∈ Ln(B) ∩ C(B), for
some constant b0 ≥ 0. Then

sup
B
u− ≤ C‖f+‖Ln(Γ+

u−
), (2.2)

for a positive constant C = C(n, λ,Λ, b0). Similarly, if u ∈ USC(B̄) be a viscosity
subsolution of the equation

P+
λ,Λ(D2u) + b0|Du| = f (2.3)

such that u ≤ 0 on ∂B, then

sup
B
u+ ≤ C‖f−‖Ln(Γ+

u+ ), (2.4)
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¿From Lemma 1, we obtain the following results, see Appendix, which extend
Theorem 4.8, (1) and (2), of [10], see also [15].
Here we denote by Br a ball centered at x0 ∈ IRn of radius r > 0.

Lemma 2 (wH inequality) Let b0 ≥ 0 and 0 < τ < 1. Suppose that u ∈
LSC(B1/τ ) is a viscosity supersolution of equation (2.1), with f ∈ C(B̄1/τ ), and
u ≥ 0 in B1/τ . Then(

1

|B1|

∫
B1

up0
)1/p0

≤ C

(
inf
B1

u+ ‖f+‖Ln(B1/τ )

)
, (2.5)

where C and p0 are positive numbers, depending on n, λ,Λ, b0 and τ .

Lemma 3 (local MP) Let b0 ≥ 0 and 0 < τ < 1. Suppose that u ∈ USC(B1) is
a viscosity subsolution of equation (2.3) with f ∈ C(B̄1). Then for all p > 0

sup
Bτ

u ≤ C

((
1

|B1|

∫
B1

(u+)p
)1/p

+ ‖f−‖Ln(B1)

)
, (2.6)

where C is a positive constant, depending on n, λ,Λ, b0, τ and p.

3 Interior and boundary Harnack estimates and

local MP (superlinear gradient term)

Firstly we extend interior estimates (2.5) and (2.6) to fully nonlinear operators F
with a superlinear first order term, such that, respectively, (1.3) and (1.4) hold.

Lemma 4 (wH inequality) Let b0 ≥ 0, 0 < τ < 1 and 1 ≤ q ≤ 2. Suppose that
u ∈ LSC(B1/τ ) is a viscosity solution of F (x, u,Du,D2u) ≤ f , under structure
condition (1.3) with b ≤ b0, f ∈ C(B̄1/τ ), and 0 ≤ u ≤ 1 in B1/τ . Then (2.5)
holds with positive constants C and p0, depending on n, λ,Λ, b0, τ and q.

Lemma 5 (local MP) Let b0 ≥ 0, 0 < τ < 1 and 1 ≤ q ≤ 2. Suppose that
u ∈ USC(B1) is a viscosity solution of F (x, u,Du,D2u) ≥ f , under structure
condition (1.4), with b ≤ b0, f ∈ C(B̄1), and u ≤ 1. Then (2.6) holds for all
p > 0 with a positive constants C, depending on n, λ,Λ, b0, q, τ and p.
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Proof of Lemmas 4 and 5. We show the proof of Lemma 5, that one of Lemma
4 being similar. By the structure condition (1.4) we have

P+
λ,Λ(D2u) + b0|Du|q ≥ f(x)

and also, in the viscosity sense,

P+
λ,Λ(D2u+) + b0|Du+|q ≥ −f−(x)

¿From this, by Young inequality, it follows that

P+
λ,Λ(D2u+) + b1|Du+|+ b2|Du+|2 ≥ −f−(x)

with

b1 = (2− q)b
1
q

0 , b2 = (q − 1)b
2
q

0 .

Using the transformation u+ = λ
b2

log
(
1 + b2

λ
v
)
, then the USC function v =

λ
b2

(
exp

(
b2
λ
u+
)
− 1
)

satisfies the differential inequality

P+
λ,Λ(D2v) + b1|Dv| ≥ −f−(x)

(
1 +

b2

λ
v(x)

)
in B1/τ . Therefore we can apply Lemma 3 to the subsolution v. To conclude the
proof of Lemma 5, it is sufficient to observe that

u+ ≤ v ≤ λ

b2

(
exp

(
b2

λ

)
− 1

)
u+. �

Rescaling variables and functions, we highlight the dependence on geometric pa-
rameters.

Theorem 4 (scaled wH inequality) Let b0 ≥ 0, 0 < τ < 1, N > 0 and 1 ≤ q ≤ 2.
Suppose that u ∈ LSC(BR/τ ) is a viscosity solution of F (x, u,Du,D2u) ≤ f ,
under structure condition (1.3), with b ≤ b0, f ∈ C(B̄R/τ ), and 0 ≤ u ≤ N in
BR/τ . Then (

1

|BR|

∫
BR

up0
)1/p0

≤ C

(
inf
BR

u+R‖f‖Ln(BR/τ )

)
, (3.1)

with positive constants C and p0, depending on n, λ,Λ, q, τ and b0N
q−1R2−q.
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Proof. Considering, for y ∈ B1/τ , the function v(y), defined by u(x) = Nv(x/R),
we have

P−λ,Λ(D2v)− b0N
q−1R2−q|Dv|q ≤ R2N−1f+(Ry).

Thus, applying Lemma 4, we get(
1

|B1|

∫
B1

vp0
)1/p0

≤ C

(
inf
B1

v +R2N−1‖f+(Ry)‖Lny (B1/τ )

)
,

with C = C(n, λ,Λ, q, τ, b0N
q−1R2−q), from which the assert follows. �

Note that constants p0 and C of the above wH inequality depend in general on
the upper bound N for the supersolution and on the radius R of the ball, but in
the case q = 1 there is no dependence on N and in the case q = 2 no dependence
on R.

In the same manner as in Theorem 4 for wH inequality, we make the dependence
on the geometric constants explicit in the following local MP.

Theorem 5 (scaled local MP) Let b0 ≥ 0, 0 < τ < 1, N > 0 and 1 ≤ q ≤ 2.
Suppose that u ∈ USC(BR) is a viscosity solution of F (x, u,Du,D2u) ≥ f , under
structure condition (1.4), with b ≤ b0, f ∈ C(B̄R), and u ≤ N . Then for all p > 0

sup
BτR

u ≤ C

((
1

|BR|

∫
BR

(u+)p
)1/p

+R‖f−‖Ln(BR)

)
, (3.2)

with a positive constant C, depending on n, λ,Λ, q, τ, b0N
q−1R2−q and p.

Combining Theorems 4 and 5, we get the full Harnack inequality for solutions.

Theorem 6 (Harnack inequality) Let b0 ≥ 0, 0 < τ < 1, N > 0 and 1 ≤ q ≤ 2.
Suppose that u ∈ C(BR/τ ) is a viscosity solution of F (x, u,Du,D2u) = f in
BR/τ , under structure conditions (1.3) and (1.4), with b ≤ b0, f ∈ C(B̄R/τ ), and
0 ≤ u ≤ N . Then

sup
BR

u ≤ C

(
inf
BR

u+R‖f‖Ln(BR/τ )

)
, (3.3)

with a positive constant C = C(n, λ,Λ, q, τ, b0N
q−1R2−q).
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We wish to extend the above extimates up to the boundary, i.e. to balls inter-
secting the boundary of the domain A ⊂ IRn where the solutions are defined.
For this purpose we will need suitable extensions of such solutions outside A.
Precisely, take concentric balls BτR ⊂ BR ⊂ BR/τ such that BτR ∩ A 6= ∅ and
BR/τ\A 6= ∅. For a non-negative viscosity supersolution u ∈ LSC(Ā) of equation
F (x, u,Du,D2u) = f in A, we put

m = inf
BR/τ∩∂A

u; u−m(x) =

{
min(u(x),m), if x ∈ A
m, if x 6∈ A

,

where 0 < τ < 1. Similarly, for a viscosity subsolution u ∈ USC(Ā), we put

M = sup
BR∩∂A

u+; u+
M(x) =

{
max(u+(x),M), if x ∈ A
M, if x 6∈ A

.

Denote also by f+
0 and f−0 the continuations of f+ and f− vanishing outside A,

respectively. Following [10], Prop. 2.8, and using the structure conditions (1.3)
and (1.4), we have

P−λ,Λ(D2u−m)− b0|Du−m|q ≤ f+
0 (3.4)

in BR/τ for a viscosity supersolution u ∈ LSC(Ā), and

P+
λ,Λ(D2u+

τ ) + b0|Du+
τ |q ≥ −f−0 (3.5)

in BR for a viscosity subsolution u ∈ USC(Ā).
Observe that, if f+ = 0 on ∂A, then f+

0 is continuous, and then we can apply
Theorem 4 to get a boundary wH inequality. Similarly, if f− = 0 on ∂A, we can
use Theorem 5 to deduce a boundary local MP.
Nevertheless, even in the general case, when f+

0 and f−0 are not necessarily con-
tinuous, we can get boundary estimates by means of an approximation process,
as shown here below, where we use the notations defined just above.

Theorem 7 (boundary wH inequality) Let b0 ≥ 0, 0 < τ < 1, N > 0 and 1 ≤
q ≤ 2. Suppose that u ∈ LSC(Ā) is a viscosity solution of F (x, u,Du,D2u) ≤ f ,
under structure condition (1.3), with b(x) ≤ b0, f ∈ C(Ā), and 0 ≤ u ≤ N in A.
Then (

1

|BR|

∫
BR

(u−m)p0
)1/p0

≤ C

(
inf
BR∩A

u+R‖f‖Ln(BR/τ∩A)

)
, (3.6)

with positive constants C and p0, depending on n, λ,Λ, q, τ and b0N
q−1R2−q.
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Proof. For ε > 0 set

mε = inf
Iε(∂A)

u, Iε(∂A) = {x ∈ BR/τ ∩ Ā : dist(x, ∂A) ≤ ε},

and, for x ∈ B̄R/τ ,

u−mε(x) =

{
min(u(x),mε), if x ∈ A
mε, if x 6∈ A

,

fε(x) = f+(x) ρ

(
dist(x, IRn\A)

ε

)
,

where

ρ(t) =

{
t, if 0 ≤ t < 1

1, if t ≥ 1
.

It is easy to check that u−mε ∈ LSC(BR/τ ), 0 ≤ u−mε ≤ N , fε ∈ C(B̄R/τ ) and

P−λ,Λ(D2u−mε)− b0|Du−mε |
q ≤ fε(x)

in BR/τ . Therefore we can apply Theorem 4 with u−mε instead of u and fε instead
of f to get (

1

|BR|

∫
BR

(u−mε)
p0

)1/p0

≤ C

(
inf
BR

u−mε +R‖fε‖Ln(BR/τ )

)
. (3.7)

Note that infBR u
−
mε ≤ infBR∩A u, and 0 ≤ fε ≤ f+ in A, fε = 0 outside A. Also

observing that, by lower semicontinuity,

m ≤ lim inf
ε→0

mε

and therefore, by Fatou’s Lemma,∫
BR

(u−m)p0 ≤ lim inf
ε→0

∫
BR

(u−mε)
p0 ,

from inequality (3.7) we get the assert. �

In the sequel we will make also use of a version of boundary wH inequality for
annular regions BεR,R = BR\BεR(0), 0 < ε < 1, which can be deduced by
Theorem 7 reasoning as in [6], Theorem 3.1.
In this case m = inf∂A∩BετR,τ ′R u, where 0 < ε ≤ 1/2, 0 < τ < 1, τ ′ > 1.

12



Corollary 8 (boundary wH inequality) Let 0 < τ < 1, τ ′ > 1, N > 0 and 1 ≤
q ≤ 2. Suppose that u ∈ LSC(Ā) is a viscosity solution of F (x, u,Du,D2u) ≤ f ,
under structure condition (1.3), with f ∈ C(Ā), and 0 ≤ u ≤ N in A. Then(

1

|BεR,R|

∫
BεR,R

(u−m)p0

)1/p0

≤ C

(
inf

A∩BεR,R
u+R‖f‖Ln(A∩BετR,τ ′R)

)
, (3.8)

with positive constants C and p0, depending on n, λ,Λ, q, τ, τ ′ and N q−1R2−q‖b‖L∞(A∩B
ετR,Rτ

).

In a similar manner we extend the local MP up to the boundary.

Theorem 9 (boundary local MP) Let b0 ≥ 0, 0 < τ < 1, N > 0 and 1 ≤ q ≤ 2.
Suppose that u ∈ USC(Ā) is a viscosity solution of F (x, u,Du,D2u) ≥ f , under
structure condition (1.4), with f ∈ C(Ā) and u ≤ N in A. Then for all p > 0

sup
BτR∩A

u ≤ C

((
1

|BR|

∫
BR

(u+
M)p
)1/p

+R‖f−‖Ln(BR∩A)

)
, (3.9)

with a positive constant C, depending on n, λ,Λ, q, τ, b0N
q−1R2−q and p.

4 ABP type estimates and Maximum Principles

Here we use boundary estimates of previous Section to obtain MP in unbounded
domains Ω of IRn for viscosity subsolutions u ∈ USC(Ω̄), bounded above, of
equation F (x, u,Du,D2u) = 0 under structure condition (1.4).
We will make use of the measure-geometric condition Gσ, 0 < σ < 1, given in
the Introduction. By a continuity argument, see [42], eventually passing to a
smaller R, which we will call ry, we can assume that condition Gσ is satisfied
with |B\Ωy| = σ|B| exactly.
We also recall that Ω is a wG domain (with parameter σ) if each point y ∈ Ω
satisfies condition Gσ in Ω. In particular, ifR(y) is the radius of the ballB = B(y)
provided by condition Gσ, we define domains of cylindrical and conical type as
wG domains such that R(y) = O(1) and R(y) = O(|y|), resp.
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4.1 Domains of cylindrical type

We start with the condition G of Cabrè [6]. Let σ < 1, τ < 1 and R0 be positive
real numbers. We say that an open connected set Ω of IRn is a G domain if to
each y ∈ Ω we can associate a ball B = BR(xy) of radius R ≤ R0 such that

y ∈ BτR(xy), |B\Ωy| ≥ σ|B| (Gσ,τ )

where Ωy is the connected component of Ω ∩B containing y.
Since Gσ ≡ Gσ,1, then a G domain of IRn is of cylindrical type, like domains
of finite Lebesgue n-dimensional measure, subdomains of ω × IRn−k where ω has
finite Lebesgue k-dimensional measure, the complement of the spiral of equation
r = θ in polar cohordinates of IR2.
Given a differential operator with structure conditions, like (1.3) and (1.4), Ω will
be called a narrow domain when, for given τ and R0, condition Gσ,τ is satisfied
for σ suitably close to 1, depending on the structure constants and the remaining
geometric constants.
A straightforward application of Theorem 9 yields MP in narrow domains. In-
deed, assume that u ≤ N and F (x, u,Du,D2u) ≥ 0 in Ω. Then, by (1.4), we
have

P+(D2u+) + b0|Du+|q ≥ 0.

Suppose that u ≤ 0 on ∂Ω and set M = supΩ u
+. Applying Theorem 9 in A = Ωy

with p = 1, we obtain

u(y) ≤ sup
Ωy∩BτR(xy)

u ≤ C

|B|

∫
Ωy∩B

u+ ≤ CM
|Ωy ∩B|
|B|

≤ CM(1− σ),

¿From this, taking the supremum over y ∈ Ω, we get M ≤ 0, i.e. u ≤ 0 in Ω,
provided σ > 1− 1

C
, and hence MP holds in this case.

In order to pass from narrow domains to arbitrary cylindrical domains we will
use Theorem 7, from which the following ABP type estimate follows.

Theorem 10 (ABP estimate) Let σ, τ < 1, R0 and N be positive real numbers
and 1 ≤ q ≤ 2. Let Ω be a cylindrical domain such that condition Gσ in Ω is
satisfied at each y ∈ Ω with R(y) ≤ R0.
Suppose that w ∈ USC(Ω̄) is a viscosity solution of F (x,w,Dw,D2w) ≥ f , under
the structure condition (1.4), with b ≤ b0 and f ∈ C(Ω̄).
If w ≤ N in Ω and w ≤ 0 on ∂Ω, then

sup
Ω
w ≤ CR0 sup

y∈Ω
‖f‖Ln(BR(y)/τ (xy)∩Ω), (4.1)
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where C depends on n, λ,Λ, σ, τ and b0R
2−q
0 N q−1.

Proof. It is enough to show the result for τ → 1−.
Set M = supΩw

+ and u = M −w. Let y ∈ Ω and B = BR of radius R, provided
by condition Gσ in y. We choose R = ry in order that |B\Ωy| = σ|B|, see at the
beginning of the Section. We also denote by BτR the concentric ball of radius
τR.
Now we apply Theorem 7 to u in A = Ωy with BτR(xy) instead of BR and τ close
enough to 1 in such a way that |BτR(xy)\Ωy| ≥ σ

2
|B| and |BτR(xy)∩Ωy| ≥ 1−σ

2
|B|.

Since w ≤ 0 on ∂Ω, then m ≥M , hence we get

(σ
2

)1/p0
M ≤

(
1

|BτR(xy)|

∫
BτR(xy)

(u−m)p0

)1/p0

≤ C

(
M − sup

BτR(xy)∩Ωy

w +R‖f‖Ln(B∩Ω)

)
,

from which, for x ∈ BτR(xy) ∩ Ωy, we obtain the pointwise inequality

w(x) ≤ sup
BτR(xy)∩Ωy

w ≤ tM +R‖f‖Ln(B∩Ω), (4.2)

with 0 < t < 1. On the other hand, setting K = tM + R‖f‖Ln(B∩Ω) and
ΩK = {x ∈ Ω / w(x) > K}, by virtue of (4.2) we have B\ΩK ⊃ BτR(xy) ∩ Ωy

and therefore, by our choice of R and τ ,

|B\ΩK |
|B|

≥ |BτR(xy) ∩ Ωy|
|B|

≥ 1− σ
2

.

A further application of Theorem 7 to u = M − w in A = ΩK yields(
1− σ

2

)1/p0

(M −K) ≤
(

1

|B|

∫
B

(u−m)p0
)1/p0

≤ C

(
M − sup

B∩ΩK

w +R‖f‖Ln(BR/τ (xy)∩Ω)

)
,

since in this case m ≤M −K. From this we deduce that, for x ∈ B ∩ ΩK

w(x) ≤ sup
B∩ΩK

w ≤ (1− t′)M + t′K +R‖f‖Ln(BR/τ (xy)∩Ω)

≤ (1− t′ + tt′)M + 2R‖f‖Ln(BR/τ (xy)∩Ω),
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with 0 < t′ < 1. ¿From the definition of ΩK , see also (4.2), it follows that

w(x) ≤ t′′M + 2R‖f‖Ln(BR/τ (xy)∩Ω), (4.3)

with 0 < t′′ < 1, for all x ∈ Ω ∩B and hence also for x = y.
Finally, passing to the supremum over y ∈ Ω, we get the result. �

4.2 General domains

Firstly we consider wG domains Ω, i.e. such that condition Gσ in Ω holds at
each y ∈ Ω without bounds for the radii R(y) of the balls provided by Gσ.
Note that in general the ABP type estimate of Theorem 10 is useless unless b0 = 0,
see [7], since the the constant C of ABP estimate blows up when R→ +∞. This
is why we assume b(x) = O(1/|x|2−q) as |x| → +∞ in the structure condition
(1.4). Moreover, to take advantage from the decay of b(x), it is convenient to
use the boundary wH inequality for annular regions of Corollary 8 rather than
Theorem 7.
Reasoning as in the proof of Theorem 10, but quite more carefully with the aid
of (3.8) instead of (3.6), see [17], we get the following ABP type estimate.

Theorem 11 (ABP) Let σ and N be positive real numbers and 1 ≤ q ≤ 2. Let
Ω be a wG domain (with parameter σ).
Suppose that w ∈ USC(Ω̄) is a viscosity solution of F (x,w,Dw,D2w) ≥ f , under
the structure condition (1.4), with b, f ∈ C(Ω̄) such that

bq := sup
y∈Ω; |y|≥εry

r2−q
y ‖b‖L∞(Ω∩Bτεry,τ ′ry ) < +∞, (4.4)

for all ε > 0 small enough, all τ < 1 sufficiently close to 1 and some τ ′ > 1.
If w ≤ N in Ω and w ≤ 0 on ∂Ω, then

sup
Ω
w ≤ C sup

y∈Ω; |y|≥εry
ry‖f−‖Ln(Ω∩Bτεry,τ ′ry ) + sup

y∈Ω; |y|≤εry
Cy ry‖f−‖Ln(Ω∩Bεry )

(4.5)
for possibly smaller ε > 0 and larger τ < 1, depending on n and σ.
Here C and Cy are positive constants depending on n, q, λ, Λ, bqN

q−1, σ, ε, τ ,
τ ′, while Cy also depends on N q−1r2−q

y ‖b‖L∞(Ω∩Bεry ).

Proof of Theorem 1. In the case of wG domains, Theorem 1 follows at once
letting f = 0 in Theorem 11. Suppose now that Ω can be splitted by a closed set
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H ⊂ IRn in components where MP holds and each y ∈ H satisfies condition Gσ

in Ω. By MP in the components, since we assume that w ≤ 0 on ∂Ω, then for
x ∈ Ω we have

w(x) ≤ sup
(Ω∩H)∪∂Ω

w+ = sup
Ω∩H

w+

Reasoning as above for (4.3), but using Corollary 8 instead of Theorem 7 as before
to obtain Theorem 11, from condition Gσ we deduce for y ∈ Ω ∩H that

w(y) ≤ t sup
Ω
w+,

where t ∈]0, 1[ is independent of y. Inserting this inequality in the former one,
and taking the supremum over Ω, we get the result. �

Examples. Provided that b(x) = O(1/|x|2−q) as |x| → ∞, this last result yields
MP in very general domains:
- wG domains, like a proper cone Ω such that Ω̄ 6= IRn and in general a domain of
conical type, like the complement Ω in IRn of Γ× IRn−2, where Γ is a logarithmic
spiral of equation r = eθ in polar cohordinates, or also complement of a larger
spiral of equation r = s(θ), with s a positive increasing function;
- domains which can be splitted in wG subdomains by a suitable closed set H
of IRn, like the cut plane in IR2 or in general the complement in IRn of a graph
{(x, y) ∈ IRn−1×IR | xi > 0, i = 1, . . . , n−1, y = f(x)} such that |f(x)| ≤ h+k|x|
for positive constants h and k.
As a further example, we show a repeated application of Theorem 1. Look at
the complement Ω in IR2 of a sequence of balls Br(k), k = (kx, 0), kx ∈ IN, with
0 < r < 1

3
. Consider the non-negative x-axis as H, then ΩH = Ω\H is connected.

If K is the half-line of equations y = 1
2
x, x ≥ 0, then we have:

· ΩH\K has two components, which are domains of conical type, where MP holds;
· each point of ΩH ∩K satisfies condition G1/2 in ΩH .
Thus MP holds in Ω\H by Theorem 1. Also, each point of H satisfies condition
Gσ in Ω for some σ ∈]0, 1[ depending on r. Therefore, again by Theorem 1, we
conclude that MP holds in Ω. �

4.3 Parabolic shaped domains

For a parabolic shaped wG domain condition Gσ at y ∈ Ω holds with R(y) =
O(|y|α) as |y| → ∞, for some 0 ≤ α ≤ 1, the limit cases α = 0 and α = 1
representing resp. the cylindrical and the conical case. Hence ry ≤ R(y) ≤
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R0 + β|y|α for all y ∈ Ω with positive constants R0 and β. Then, choosing ε
sufficiently small in Theorem 11, if |y| ≤ εry then

|y| ≤ εR0 + εβ|y|α ≤ ε(R0 + β) + εβ|y|,

so that the supremum in the second term of the right hand side of (4.5) is taken
over a bounded subset of y ∈ Ω, in which ry ≤ R1 for some positive contant R1.
Thus

sup
y∈Ω; |y|≤εry

ry‖f−‖Ln(Ω∩Bεry ) ≤ R1 sup
y∈Ω; ry≤R1

‖f−‖Ln(Ω∩Bεry ). (4.6)

Proof of Theorem 2. Since condition wG holds with ry = O(|y|α), 0 ≤ α ≤ 1,
the assumption b(x) = O(1/|x|α(2−q)) as |x| → +∞ implies the finiteness of bq
in (4.4). Taking account of (4.6), by continuity of f the estimate (1.5) follows
letting ε→ 0. �

5 Strong Maximum Principle and Liouville The-

orem

The weak Harnack inequality of Theorem 4 can be used to show the following
strong MP.

Theorem 12 (strong MP) Let Ω be a domain of IRn. Let w ∈ C(Ω) be such that
F (x,w,Dw,D2w) ≥ 0 in the viscosity sense, and assume structure condition
(1.4), with b ∈ C(Ω̄). If x0 ∈ Ω and M := w(x0) ≥ w(x) for all x ∈ Ω, then
w ≡M in Ω.

Proof. Following [39], set Ω1 = w−1({M}) and Ω2 = Ω\Ω1. By assumption
Ω1 6= ∅. By continuity of w, it turns out that Ω2 = w−1(] −∞,M [) is an open
subset of IRn. Moreover, plainly, Ω = Ω1 ∪ Ω2 and Ω2 ∩ Ω1 = ∅.
Recall that Ω is an open connected set. Thus it is sufficient to show that Ω1 is
in turn an open subset to have Ω = Ω1, as claimed in the statement of Theorem.
Indeed, let x1 ∈ Ω1, i.e. w(x1) = M , and set u = M − w, then u is a non-
negative viscosity solution of F (x, u,Du,D2u) ≤ 0. Applying (3.1) in a ball
BR := BR(x1) ⊂ BR/τ (x1) ⊂⊂ Ω, we get(

1

|BR|

∫
BR

(M − w)p0
)1/p0

≤ C inf
BR

u = 0,
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from which, by continuity, u ≡ M in BR(x1). This shows that Ω1 is an open
subset of IRn and concludes the proof. �

The Liouville type result of Theorem 3 is instead based on Harnack inequality
(3.3) of Theorem 6. It is convenient to consider its version in annular regions
BR,2R = B2R(0)\BR(0)to take advantage of the decay of b(x), obtained in stan-
dard way, using inequality (3.3) in a chain of linked balls. This yields, for continu-
ous solutions u ∈ C(BR/2,4R) of equation F = f , 0 ≤ u ≤ N , under the structure
conditions (1.3) and (1.4), with b, f ∈ C(BR/2,4R), the following inequality:

sup
BR,2R

u ≤ C

(
inf
BR,2R

u+R‖f‖Ln(BR/2,4R)

)
, (5.1)

with a positive constant C = C(n, λ,Λ, q, τ, ‖b‖L∞(BR/2,4R)N
q−1R2−q).

Proof of Theorem 3. By the strong MP of Theorem 12, we know that w
can achieve neither a maximum nor a minimum at a point of IRn unless to be
constant, in which case we should be done.

Suppose for instance that w ≤ M := supw < +∞. Let Rk be an increasing
sequence of positive numbers such that limk→∞Rk = ∞. Set Mk = sup∂BRk

w

and mk = inf∂BRk w. By weak Maximum Principle Mk is increasing and mk is
decreasing; thus

lim
k→∞

Mk = M, lim
k→∞

mk = m ∈ [−∞,+∞[

Then, using Harnack inequality (5.1), with u = M − w, we get

M −mk = sup
∂BRk

(M − w) ≤ C inf
∂BRk

(M − w) = C(M −Mk),

from which
M ≤ C(M −Mk) +mk ≤ C(M −Mk) +mk

and, letting k →∞, we get M = m, as we wanted to show. �

6 Appendix

Although the proof of Lemma 2 is already contained in previous papers also in the
case of an almost-quadratic gradient term, see for instance [27], here, for sake of
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completeness, we give a sketch of the simple version in the case of linear gradient
term, following [10], where the fundamental case of a second order uniformly
elliptic operator is treated, with no lower order terms.
However it seems useless to repeat the nice proof of [10], to which we refer for
the ideas and details. We only outline the steps which are influenced by the first
order term. For this reason we keep the same notations of [10].
Also, for sake of brevity, we will refer to constants depending only on n, λ,Λ, b0

as to structural constants.
Firstly, we introduce a test function, see Lemma 4.1 of [10].

Lemma 6 There exist positive structural constants M , C and a function ϕ ∈
C2(IRn) such that

ϕ ≤ −2 in B 3
2

√
n, ϕ ≥ 0 in IRn\B2

√
n, (6.1)

ϕ ≥ −M in IRn (6.2)

and
P+
λ,Λ(D2ϕ) + b0|Dϕ| ≤ Cξ in IRn, (6.3)

where ξ ∈ C(IRn), 0 ≤ ξ ≤ 1, suppξ ⊂ B 1
2
.

Proof. We search for a function of type ϕ(x) = A1 − A2e
−αr, for r = |x| ≥ 1

4
,

where A1 and A2 are positive constants to be chosen in order that φ(3
2

√
n) = −2

and φ(2
√
n) = 0. Next we extend ϕ to IRn in such a way that ϕ ≥ −M . By

calculations, choosing α = 4Λ(n−1)+1
λ

we have

P+
λ,Λ(D2ϕ) + b0|Dϕ| = αA2e

−αr
(

Λ(n− 1)

r
− αλ+ 1

)
≤ 0

for r ≥ 1
4
. Also, for r ≤ 1

4
,

P+
λ,Λ(D2ϕ) + b0|Dϕ| ≤ C

and therefore (6.3) holds taking a cut-off function ξ ∈ C(IRn) such that ξ = 1 in
B̄ 1

4
and ξ = 0 outside B 1

2
. �

Next we get a lower bound for the size of level sets of supersolutions. Denoting
by Ql a cube of side l, consider a non-negative viscosity solution u ∈ LSC(Q4

√
n)

of the differential inequality P−λ,Λ(D2u)− b0|Du| ≤ f .
Setting w = u+ ϕ and observing that

P−λ,Λ(D2w)− b0|Dw| ≤ P−λ,Λ(D2u) + P+
λ,Λ(D2ϕ)
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−b0|Du|+ b0|Dϕ| ≤ f+ + Cξ,

a positive lower bound
|{u ≤M} ∩Q1| > µ, (6.4)

with a structural positive constant µ < 1, see (6.2), follows, in the same way
as in Lemma 4.5 of [10], using ABP estimate (2.2), provided that infQ3 u ≤ 1
and ‖f+‖Ln(Q4

√
n) ≤ ε0 for a positive structural constant ε0. Moreover, under the

same assumptions, Lemma 4.6 of [10] says that

|{u > Mk} ∩Q1| ≤ (1− µ)k (6.5)

for all k ∈ IN, which for k = 1 agrees with (6.4). Then we point out that (6.5)
follows by an induction process, based on the Calderón-Zygmund decomposition
of the cube Q1, centered at the origin, supposing (6.5) to hold for k − 1.
To perform the induction step it is crucial that, for a supersolution u(x) of (2.1),

the rescaled function ũ(y) = u(x)
Mk−1 , where x = x0 + 2−iy runs in the dyadic cube

Q2−i4
√
n, centered at x0, is in turn a supersolution of (2.1) with a correspondingly

scaled f , namely

P−λ,Λ(D2ũ(y))− b0|Dũ(y)| ≤ f+(x)

22iMk−1

for y ∈ Q4
√
n. From (6.5) it follows that

|{u > t} ∩Q1| ≤ dt−ε (6.6)

for all t > 0, with d and ε positive structural constants. Then, following the
Proof of Theorem 4.8 (1) of [10], we use (6.5) in the identity∫

Q1

up0 = p0

∫ +∞

0

|{u ≥ t} ∩Q1|dt,

see [21], with p0 = ε
2

and, by rescaling, remove the normalization conditions
infQ3 u ≤ 1 and ‖f+‖Ln(Q4

√
n) ≤ ε0 to get

‖u‖Lp0 (Q1) ≤ C

(
inf
Q3

u+ ‖f+‖Ln(Q4
√
n)

)
.

¿From this, with a covering argument as in [6], Theorem 3.1, we obtain (2.5).

We argue in the same manner for Lemma 3. Suppose again that Q1 is centered
at the origin. Following the Proof of Theorem 4.8 (2) of [10], firstly we consider

a subsolution u of (2.3) such that ‖f+‖Ln(Q4
√
n) ≤ ε0 and ‖u+‖Lε(Q1) ≤ d

1
ε to

21



get, even in this case, (6.6). Then, arguing as in Lemma 4.7 of [10], there exist
structural constants M0 > 1 and σ > 0 such that, for all j ∈ IN large enough,

|x0| <
1

4
, u(x0) ≥ νj−1 ⇒ Qj := Qlj(x0) ⊂ Q1, sup

Qj
≥ νjM0, (6.7)

where ν = M0

M0− 1
2

and lj = σM
−ε/n
0 ν−εj/n. As above, to get this result we use

the invariance of equation by scale transformations, namely that the function
v(y) = ν

ν−1
− u(x)

νj−1(ν−1)M0
, where x = x0 + (4

√
n)−1ljy runs in the small cube Qj,

is in turn a supersolution of (2.1) with a correspondingly scaled f , i.e.

P−λ,Λ(D2v(y))− b0|Dṽ(y)| ≤ f−(x)

νj−1(ν − 1)M0

for y ∈ Q4
√
n, provided that j > 1 + log(2−1/M0)

log ν
.

On the base of (6.7), reasoning as in the Proof of Lemma 4.4 of [10], we infer
that supQ1/4

u ≤ C, from which, by rescaling to remove normalization conditions

‖f+‖Ln(Q4
√
n) ≤ ε0 and ‖u+‖Lε(Q1) ≤ d

1
ε , we get

sup
Q1/4

u ≤ C
(
‖u+‖Lε(Q1) + ‖f+‖Ln(Q4

√
n)

)
.

as in the proof of Theorem 4.8 (2) of [10]. By a covering argument, as above for
supersolutions, we get (2.6) for p = ε. Note that (6.6) a fortiori holds replacing
ε with p < ε. Thus (2.6) follows for all 0 < p < ε. Finally, by Hölder inequality,
we obtain (2.6) for all p > 0.
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[6] Cabrè, X. (1995), On the Alexandroff-Bakelman-Pucci estimate and reversed
Holder inequalities for solutions of elliptic and parabolic equations, Comm. Pure
Appl. Math., 48,539-570.

[7] Cafagna, V. and Vitolo A. (2002), On the maximum principle for second-order
elliptic operators in unbounded domains, C.R.Acad.Sci. Paris, Ser. I 334.

[8] Caffarelli, L.A. (1988), Elliptic second order equations, Rend. Semin. Mat. Fis.
Milano 57, 253-284.

[9] Caffarelli, L.A. (1989), Interior a priori estimates for solutions of fully non-linear
equations, Ann. Math. 130, 189-213.
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