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Let M be a 1-motive over a base scheme S and M ′ its Cartier dual. We show the existence of a canonical
duality between the de Rham realizations of M and M ′; this generalizes a result in [5]. Furthermore, we study
universal extensions of 1-motives and their relation with \-extensions.

1 Introduction

It is known (cf. [9]) that the Lie algebra of the universal extension A\ of an abelian variety A is canonically
isomorphic to the first de Rham cohomology group of the dual abelian variety A′. Deligne defines in [5] the de
Rham realization TdR(M) of a 1-motive M = [X → G] over a base scheme S as the Lie algebra of G\, where
M \ = [X → G\] is a universal extension of M . In this way he gets a (covariant) functor from the category
of 1-motives to the category of locally free sheaves over S. In the case S is the spectrum of an algebraically
closed field k, Deligne defines a pairing Φ : TdR(M)⊗ TdR(M ′) → k (cf. [5], 10.2.7.3) between the de Rham
realizations of a 1-motive and its Cartier dual M ′ = [X ′ → G′]; for k = C the pairing Φ coincides with an
analogous (perfect) pairing on Hodge realizations (cf. [5], 10.2.8) and hence it is perfect. In the present paper we
construct a pairing Φ between de Rham realizations of dual 1-motives over a general base S and we show that
it is perfect; this fact generalizes also a result of Coleman that shows the perfectness of Φ in the case of abelian
schemes (over a base flat over Z) via the comparison with a second (perfect) pairing (cf. [3], 1.1.1). As the
existing proofs do not extend to the general case, we show directly the perfectness of Φ proving that this pairing
fits in a diagram

ωG′

ι

��

⊗ Lie(G′) // Lie(Gm,S)

Φ: TdR(M)

g

��

⊗ TdR(M ′)

g′

OO

// Lie(Gm,S)

Lie(G) ⊗ ωG //

ι′

OO

Lie(Gm,S)

where the upper (resp. lower) pairing is the usual duality between the Lie algebra of G′ (resp. G) and the sheaf
of invariant differentials of G′ (resp. G). As the maps ι, g′ and ι′, g come out to be transposes of each others, we
get the perfectness of Φ with no restriction on the base.

In the last section we describe the relation between a universal extension v : X → G\ of M and \-extensions
of M ′ showing that there is an exact sequence

X
v // G\ // Ext\(M ′,Gm,S) // 0.
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This result generalizes the fact that the universal extension of an abelian scheme A represents the functor which
assigns to an S-scheme S′ the \-extensions of the dual abelian scheme A′ by the multiplicative group over S′.

2 Universal extensions of 1-motives

Let S be a scheme. Recall that an S-1-motive M = [u : X → G] is a two term complex (in degree −1, 0) of
commutative group schemes over S such that X is an S-group scheme that locally for the étale topology on S
is isomorphic to a constant group of type Zr, G is an S-group scheme extension of an abelian scheme A over S
by a torus T , u is an S-homomorphism X → G. Morphisms of S-1-motives are usual morphisms of complexes.
The category of 1-motives can be seen as a full subcategory of the derived category of bounded complexes of
fppf sheaves on S (cf. [10]).

An extension of an S-1-motive M = [u : X → G] by a group H is an extension E of G by H together with
a homomorphism v : X → E that lifts u. Two extensions (Ei, vi), i = 1, 2, are isomorphic if there exists an
isomorphism ϕ : E1 → E2 (as extension of G by H) such that v2 = ϕ ◦ v1. As usual, Ext1(M,H) denotes the
group of isomorphism classes of extensions of M by H . In the following, we will simply speak of 1-motives
meaning S-1-motives.

A universal extension of M is an extension M \ = [X → G\] of M by a vector group V(M) over S such that
the homomorphism of push-out

ε : HomOS
(V(M),W ) −→ Ext1(M,W ) (1)

is an isomorphism for all vector groups W over S (cf. [5]). Observe that M \ and V(M) are determined up to
canonical isomorphisms (cf. [9], p. 2). Universal extensions of 1-motives exist (see [5], [2]). As explained in [9],
I, 1.7, it is sufficient to show that the following conditions are satisfied:

a) Hom(M,Ga,S) = 0,

b) Ext1Zar(M,Ga,S) is a locally free sheaf of OS-modules of finite rank,

as sheaves for the Zariski topology over S. If this is the case,

Ext1Zar(M,W) = Ext1Zar(M,Ga,S)⊗OS
W

for any locally free OS-module of finite rank W and one takes as V(M) the vector group associated to the dual
sheaf of Ext1Zar(M,Ga,S).

For the torus T and the abelian scheme A condition a) is automatically satisfied. Hence the same holds
for the semi-abelian scheme G and then for M . As Ext1(T,Ga,S) = 0 also condition b) holds for tori. For
abelian varieties the result is proved in [9], 1.10. Moreover, denote by A\ a (fixed) universal extension of A; as
Ext1(G,Ga,S) = Ext1(A,Ga,S) one gets V(G) = V(A) and a universal extension of G is G\ = A\ ×A G (see
[1], 2.2.1).

Lemma 2.1 Let M = [u : X → G] be a 1-motive and W a vector group over S. Then the functor

S′  Ext1(MS′ ,WS′) (2)

is a sheaf for the flat and Zariski topologies. Here MS′ denotes the S′-1-motive obtained via base-change.

P r o o f. Consider the sequence

0 // G // M // [X → 0] // 0 (3)

and recall that the functor S′  Hom(XS′ , QS′) is a sheaf for any S-group scheme Q and that the category
EXT(G,W ) is rigid (cf. [9], I, 1.10 proof).

From (3) we get an exact sequence

0 // X∗ = Hom(X,Ga,S) // Ext1Zar(M,Ga,S) // Ext1Zar(G,Ga,S) // 0 (4)
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that might not be exact on the right. However, it is exact on a suitable affine étale covering of S whereX becomes
constant. Since X∗ and Ext1Zar(G,Ga,S) are locally free of finite rank, the same is Ext1Zar(M,Ga,S) and (4)
is exact on the right. In particular, M admits a universal extension M \. Passing to duals on (4) one gets also a
sequence of vector groups

0 // V(G) i // V(M) τ̄ // X ⊗Ga,S
// 0. (5)

2.1 A description of V(M) via invariant differentials.

It is well known that given an abelian scheme A over S the vector group V(A) corresponds to the locally free
sheaf Lie(A′)∗ = ωA′ of invariant differentials of the dual abelian scheme A′. In the next pages, we will
generalize this result to 1-motives showing that if M ′ = [u′ : X ′ → G′] is the Cartier dual of M , the vector
group V(M) corresponds to the sheaf ωG′ of invariant differentials of the semi-abelian scheme G′. This fact will
be of great use in the following sections.

For the definition of the dual motive M ′ = [u′ : X ′ → G′] of M = [u : X → G] we refer to [5]. Denote
by [X → A] the 1-motive obtained via composition of u with the homomorphism G → A. We recall that by
definition G′ represents the sheaf Ext1fl([X → A],Gm,S), the group X ′ is the group of characters of T and u′

is the boundary homomorphism of the long exact sequence of Ext sheaves obtained applying Hom(−,Gm,S) to
the exact sequence

0 // T // M // [X → A] // 0 . (6)

Furthermore, the sequence

0 // A // [X → A] // [X → 0] // 0 (7)

provides a short exact sequence

0 // T ′ = Hom(X,Gm,S) // G′ = Ext1fl([X → A],Gm,S) // A′ = Ext1fl(A,Gm,S) // 0 (8)

that describes G′ as a semi-abelian scheme. In the case A = 0 and M = [u : X → T ] the dual 1-motive
M ′ = [u′ : X ′ → T ′] is simply obtained via the usual Cartier duality.

We start relating the Lie algebra of a semi-abelian scheme to vector extensions of its Cartier dual.

Lemma 2.2 Let B be a semi-abelian scheme over S. Then

Lie(B) = Lie(Ext1fl(N,Gm,S)) = Ext1fl(N,Ga,S)

where N is the 1-motive Cartier dual of [0 → B]. In particular, if we think Lie(B) as a sheaf for the Zariski
topology then

Lie(B) = Ext1Zar(N,Ga,S).

P r o o f. The last assertion follows from the first via Lemma 2.1. The first isomorphism is obvious be-
cause B is isomorphic to Ext1fl(N,Gm,S) by Cartier duality. It remains to prove that Lie(B) is isomorphic
to Ext1fl(N,Ga,S).

Given a scheme S′, denote by S′ε the fibre product S′ ×Spec(Z) Spec
(
Z[ε]/(ε2)

)
. Recall that by definition of

Lie algebras we have an exact sequence

0 // Lie(BS′) // B(S′ε) = Ext1(NS′
ε
,Gm,S′

ε
)

fB // B(S′) = Ext1(NS′ ,Gm,S′) (9)

where fB is the composition with the closed immersion S′ → S′ε induced by

Z[ε]/(ε2) → Z, ε 7→ 0,
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(or the base-change on exact sequences). Let now <S′
ε/S′(Gm,S′

ε
) be the Weil restriction of Gm,S′

ε
with respect

to the base-change morphism S′ε → S′. For any S′-scheme Z it holds <S′
ε/S′(Gm,S′

ε
)(Z) = Gm,S′

ε
(Zε) =

Gm,S′(Zε). Moreover, there is an exact sequence

0 // Ga,S′ // <S′
ε/S′(Gm,S′

ε
)

f // Gm,S′ // 0 (10)

where the homomorphism f : Gm,S′(Zε) → Gm,S′(Z) is obtained via composition with the closed immersion
Z → Zε. From (10) we deduce an exact sequence

0 // Ext1(NS′ ,Ga,S′) // Ext1(NS′ ,<S′
ε/S′(Gm,S′

ε
))

fN // Ext1(NS′ ,Gm,S′) (11)

where fN is the push-out with respect to f .
In order to prove that Lie(B) = Ext1fl(N,Ga,S), it is sufficient to check that

Lie(BS′) = Ext1(NS′ ,Ga,S′)

for any S-scheme S′. Comparing (9) and (11) we are reduced to see that

Ext1(NS′ ,<S′
ε/S′(Gm,S′

ε
)) = Ext1(NS′

ε
,Gm,S′

ε
)

and that fN coincides with fB . This is not hard using properties of Weil restriction.

Recall that V(M) is the vector group associated to the dual sheaf of Ext1Zar(M,Ga,S). We will prove now
that it corresponds to the sheaf of invariant differentials of G′.

Proposition 2.3 Let M be a 1-motive. It holds

Ext1(M,Ga,S) = Ext1([X → A],Ga,S) = Lie(G′) (12)

for the flat and Zariski topologies. Hence V(M) is (the vector group associated to) the sheaf of invariant differ-
entials ωG′ . Moreover, the sequence of vector groups in (5) is the sequence

0 // ωA′ // ωG′ // ωT ′ // 0 (13)

of invariant differentials of (8).

P r o o f. Denote by MA the 1-motive [X → A]. The first isomorphism Ext1(M,Ga,S) = Ext1(MA,Ga,S)
comes from the exact sequence in (6) using the vanishing Hom(T,Ga,S) = 0 = Ext1(T,Ga,S). The second
isomorphism was proved in the previous lemma for B = G′ and N = MA.

For the second assertion, observe that using the isomorphisms

Ext1Zar(M,Ga,S) = Ext1Zar(MA,Ga,S), Ext1Zar(G,Ga,S) = Ext1Zar(A,Ga,S),

the sequence (4) coincides with the sequence

0 // X∗ = Hom(X,Ga,S) // Ext1Zar(MA,Ga,S) // Ext1Zar(A,Ga,S) // 0 (14)

obtained from (7). Now, the proof of Lemma 2.2 says that (14) is the sequence of Lie algebras

0 // Lie(T ′) // Lie(G′) // Lie(A′) // 0

of the sequence (8). Passing to duals we get the desired result.
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2.2 A description of G\ as push-out

By the universal property of the universal extension ofG and Proposition 2.3, the group scheme G\ is (isomorphic
to) the push-out

0 // V(G) = ωA′ //

i

��

G\
ρ //

��

G // 0

0 // V(M) = ωG′
ι //

τ̄

��

G\ //

τ

��

G // 0

X ⊗Ga,S = ωT ′ ωT ′

(15)

where the vertical sequence on the left is (5) or (13); this fact was firstly observed in [2] (without the contribution
of invariant differentials). There is then a useful criterion to test when a homomorphism X → G\ provides a
universal extension of M :

Lemma 2.4 Let M = [u : X → G] be a 1-motive as above and let G\ be the group scheme defined in
diagram (15). A homomorphism v : X → G\ such that ρ ◦ v = u is a universal extension of M if and only if
τ ◦ v : X → X ⊗Ga,S is a universal extension of the 1-motive [X → 0].

P r o o f. Let W be a vector group over S and consider the following diagram

0 // HomOS
(X ⊗Ga,S ,W ) τ̄∗

//

εX

��

HomOS
(V(M),W ) i∗ //

ε

��

HomOS
(V(G),W )

o
��

0 // Ext1([X → 0],W ) // Ext1(M,W ) // Ext1(G,W ).

where the upper sequence is obtained from (5) and the lower sequence is obtained from (3). Given a morphism
of vector groups f : X ⊗ Ga,S → W , εX(f) is the trivial extension of 0 by W together with the morphism
f ◦ τ ◦ v : X → W ; for a g : V(M) → W the extension ε(g) is the isomorphism class of the push-out with
respect to g of the extension v : X → G\ of M by V(M). The push-out homomorphism on the right is an
isomorphism because of the the universal property of G\. By construction the diagram is commutative.

If v : X → G\ is a universal extension of M , the homomorphism ε is an isomorphism and hence also εX is
an isomorphism. This says that τ ◦ v is a universal extension of [X → 0]. Suppose now that τ ◦ v is a universal
extension of [X → 0], i.e. εX is an isomorphism. This implies that ε is injective. If i∗ is surjective, we can
deduce that also ε is an isomorphism and hence v is a universal extension of M . In general i∗ is surjective Zariski
locally on S. As the functor in (2) is a Zariski-sheaf, as well as U  HomOS|U (V(M)|U ,W|U ), we conclude
that ε is an isomorphism.

Remark 2.5 Observe that if v : X → G\ is a universal extension of M and f : X → V(M) is a homomor-
phism that factors through V(G) then v+f : X → G\ is a universal extension too. However, v+f is isomorphic
to v, as extension of M by V(M), if and only if f = 0 because the extension G\ admits no non-trivial automor-
phisms.

3 \-structures

In order to define Deligne’s pairing for the de Rham realizations of 1-motives, we need to recall first some
definitions and results on \-extensions and \-biextensions. Proposition 3.8 of this section is the key result that
permits to generalize [5], 10.2.7.4.
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3.1 Some definitions

Let S be a fixed scheme, Z an S-scheme, G, Y1, Y2,H1,H2 commutative S-group schemes with G smooth. As
usual GZ means G ×S Z. Denote by ∆1(Z) the first infinitesimal neighborhood of the diagonal Z → Z ×S Z
and by pj : ∆1(Z) → Z, j = 1, 2, the morphisms induced by the usual projections pj : Z ×S Z → Z.

Definition 3.1 ([9]) A \-G-torsor on Z is a torsor (for the étale topology1) P on Z under GZ endowed with
an integrable connection, i.e. an isomorphism ∇ : p∗1P → p∗2P of G∆1(Z)-torsors which restricts to the identity
on Z and has zero curvature.

The trivial \-G-torsor is the trivial torsor GZ endowed with the trivial connection ∇0, i.e. the identity on
G∆1(Z). A trivialization of a \-G-torsor (P,∇) is a section s : Z → P such that the induced isomorphism
ϕs : (P,∇) → (GZ ,∇0) is horizontal. Observe that given a trivialization s of a torsor P on Z under G there is a
unique possible \-structure that makes ϕs horizontal. We describe in details a case that will be needed later.

Example 3.2 Let Z = Gm,S = G, P = G × Z with the trivialization s : Z → P, b 7→ (bn, b). We have an
isomorphism ϕs : P → G2

m,S , (x, y) 7→ (x/yn, y) such that ϕs ◦s is the usual trivialization b 7→ (1, b). Consider
a connection ∇ on P given by a global differential ω on Z. There is a unique possible choice of ∇ that makes
ϕs horizontal with respect to ∇ on P and the trivial connection ∇0 on G2

m,S . More precisely, let t (resp. z) be
the parameter of G (resp. Z); the isomorphism ϕs induces an isomorphism of algebras such that ϕ∗s(z) = z and
ϕ∗s(t) = t/zn, hence an isomorphism ϕ∗s : OZ → OZ , a 7→ a/zn. The horizontality condition says that the
induced connections on sheaves (see [9], I, 3.1.2) ∇,∇0 : OZ → Ω1

Z/S satisfy

0 = ϕ∗s(∇0(1)) = ∇(ϕ∗s(1)) = ∇(1/zn) = −ndz/zn+1 + (1/zn)w

and hence w = ndz/z.

Let in the following Z be a group scheme over S and denote by µZ : Z ×S Z → Z its group law.

Definition 3.3 ([9]) A \-extension of Z by G is a \-G-torsor (P,∇) on Z where P is extension of Z by G and
the usual morphism

ν : p∗1P + p∗2P → µ∗ZP

is horizontal.

Two \-extensions (Pi,∇i), i = 1, 2, of Z by G are isomorphic if there exists an isomorphism (of extensions)
φ : P1 → P2 that is horizontal. The trivial \-extension of Z by G is the trivial extension Z ×S G equipped
with the trivial connection ∇0. A trivialization of a \-extension (P,∇) is a section s : Z → P that provides
an isomorphism of (P,∇) with the trivial \-extension. One denotes by Ext\(Z,G) the group of isomorphism
classes of \-extensions of Z by G. We have an exact sequence (cf. [9], II 4.2)

Hom(Z,G) // Γ(ωZ ⊗ Lie(G)) // Ext\(Z,G)
f // Ext1(Z,G). (16)

Following [4], 0.2, it is easy to describe \-extensions of Z by Gm,S .

Proposition 3.4 Let Z be a commutative group scheme over S and E an extension of Z by Gm,S . There
is a one-to-one correspondence between connections ∇ on E making (E,∇) a \-extension of Z by Gm,S and
normal2 invariant differentials on E.

P r o o f. It is known (see [4], 0.2.1) that there is a one-to-one correspondence between connections on E and
global differentials onE that pull back to dz/z and are invariant under the action of Gm,S . Now, the horizontality
condition in Definition 3.3 requires the global differential of E to be invariant.

We recall now some definitions from [5].

1 Cf. [9], I, 3.1. This hypothesis is needed to defined the curvature form of a connection by descent.
2 Denote by z the standard parameter of Gm,S . An invariant differential on E is said to be normal if it pulls back to dz/z on Gm,S .
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Definition 3.5 Let P be a biextension of (H1,H2) by G and consider the usual morphisms

ν1 : p∗13P + p∗23P → (µ1 × id)∗P, on H1 ×S H1 ×S H2,

ν2 : p∗12P + p∗13P → (id× µ2)∗P on H1 ×S H2 ×S H2.

Here pij are the obvious projections and µi is the group law on Hi. A \-structure on P is a connection ∇ on
the G-torsor P over H1 ×H2 such that ν1, ν2 are horizontal. We will also say that (P,∇) is a \-biextension of
(H1,H2) by G.

A trivialization of a \-biextension (P,∇) is a horizontal isomorphism ofP with the trivial biextension endowed
with the trivial connection.

Definition 3.6 Let P be a biextension of (H1,H2) by G. A \-1-structure on P is a connection on P such that
P becomes a \-extension3 of H1,H2 by GH2 with ν2 horizontal. A \-2-structure on P is a connection on P such
that P becomes a \-extension of H2,H1 by GH1 with ν1 horizontal.

Giving a \-structure to a biextension is equivalent to giving a \-1-structure and a \-2-structure.
Definition 3.7 A biextension of complexes ([Y1 → H1], [Y2 → H2]) by G is a biextension P of (H1,H2) by

G endowed with a trivialization of the pull-back of P to Y1 ×S H2 and a trivialization of the pull-back of P to
H1 ×S Y2 that coincide on Y1 ×S Y2.

A \-extension of a complex [u : Y → H] by a group G is a \-extension (P,∇) of H by G with a trivialization
(as \-biextension) of the pull-back of (P,∇) to Y .

A \-biextension of complexes ([Y1 → H1], [Y2 → H2]) by G is a \-biextension (P,∇) of (H1,H2) by G
endowed with a trivialization (as \-biextension) of the pull-back of (P,∇) to Y1×S H2 and a trivialization of the
pull-back of (P,∇) to H1 ×S Y2 that coincide on Y1 ×S Y2.

3.2 \-structures and biextensions.

It is shown in [9] that the universal extensionA\ of an abelian scheme over S represents the functor that associates
to any S-scheme S′ the group of isomorphism classes of \-extensions of A′

S′ by G′
m,S . See also [4], 0.3.1. We

will prove in Lemma 5.2 that G\ = Ext\([X ′ → A′],Gm,S), or the same, that G\ represents the pre-sheaf for
the flat topology

S′  

{
(g,∇), g ∈ G(S′),∇ a \-structure on the extension P ′

g of
[X ′ → A′] by Gm,S′ associated to g

}
. (17)

Observe that P ′
g is the fibre at g of the Poincaré biextension P ′ of (G, [X ′ → A′]) by Gm,S .

We can generalize the result above to any 1-motive:
Proposition 3.8 Let M be a 1-motive, M ′ its Cartier dual and P the Poincaré biextension of (M,M ′). The

group scheme G\ defined in (15) represents the pre-sheaf for the flat topology

E : S′  
{

(g,∇), g ∈ G(S′),∇ a \-structure on the extension Pg of
M ′ by Gm,S′ associated to g

}
.

Observe that Pg is the fibre at g of the Poincaré biextension P of (M,M ′). The biextension P is also the
pull-back of P ′ (the Poincaré biextension of (G, [X ′ → A′])) to (G,M ′) together with a suitable trivialization
on X ×G′. Hence Pg can be seen as the pull-back to M ′ of P ′

g . In the following we will denote by P (resp. P ′)
also the Gm,S-torsor over G × G′ (resp. over G × A′) underlying P (resp. P ′). In particular, the fibre Pg at a
point g ∈ G(S′) can be read as the pull-back to G′ of the fibre of P ′ at g:

0 // Gm,S′ // Pg //

��

G′
S′

��

// 0

0 // Gm,S′ // P ′
g

// A′
S′ // 0.

(18)

3 Here H2 is seen as base scheme; ν1 is automatically horizontal because of Definition 3.3.
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P r o o f. We will construct a canonical isomorphism

Ψ: G\(S′) → E(S′). (19)

It is immediate to show that E is a sheaf for the flat topology. Hence, we reduce the proof to the case where
S′ = S is affine and the short exact sequence in (13)

0 // ωA′ // ωG′
τ̄ // ωT ′

δ

kk // 0

is split over S. Recall the notations in (15) and that G\ is extension of G by ωG′ = V(M). Let δ be a section of
τ̄ and denote by δ also the induced section of τ : G\ → ωT ′ = X ⊗Ga,S . We identify then G\ with G\ ⊕ ωT ′ .
An S-valued point a of G\ becomes a sum a − δ(τ(a)) ⊕ τ(a) where a − δ(τ(a)) ∈ G\(S) corresponds to a
\-structure on P ′

ρ(a) via the functor in (17); let ηA,a be the corresponding normal invariant differential of P ′
ρ(a)

(cf. Proposition 3.4). Then ηa := ηA,a + δ(τ(a)) is a normal invariant differential of Pρ(a) and hence it provides
a \-structure ∇ηa on Pρ(a). Observe that the definition of ηa makes sense because of diagram (18). We define
then Ψ(a) = (ρ(a),∇ηa

).
For the injectivity of Ψ, let a, b be two S-valued points of G\ such that (ρ(a),∇ηa) = (ρ(b),∇ηb

). Then
ρ(a) = ρ(b) and ηa = ηb. Define ω := a− b ∈ ωG′(S) = (ker ρ)(S). It holds

ηa = ηA,a + δ(τ(a)) = ηA,b + ω − δ(τ(ω)) + δ(τ(b)) + δ(τ(ω))
= ηA,b + δ(τ(b)) + ω = ηb + ω,

because

a− δ(τ(a))− b+ δ(τ(b)) = ω − δ(τ(ω)).

Now, ηa = ηb implies ω = 0 and hence a = b.
For the surjectivity of Ψ, as S is affine, we may assume that the homomorphism ρ : G\ → G is surjective

on S-valued points. Consider then a pair (ρ(a),∇η) ∈ E(S) with a an S-valued point of G\ and η a normal
invariant differential of Pρ(a). We defined Ψ(a) = (ρ(a), ηa) ∈ E(S). Now, as both η and ηa are normal
invariant differentials of Pρ(a) (i.e. they restrict to dz/z on Gm,S) the differential η − ηa equals ω for a suitable
ω ∈ ωG′(S). Define b := a+ ω. It holds ρ(a) = ρ(b) and ηb = ηa + ω = η.

It is also immediate to check that the homomorphism Ψ does not depend on the choice of the section δ.

The definition of Deligne’s pairing for the de Rham realizations of 1-motives over a field uses the fact that
the pull-back of a biextension of 1-motives (M1,M2) by Gm,S to the universal extensions (M \

1 ,M
\
2) admits a

canonical \-structure. The case of Poincaré biextensions can be deduced from Theorem 3.10. However, we prove
it separately because we will use in the next section the explicit description of the canonical \-structure contained
in the proof.

Proposition 3.9 Let P\ be the pull-back to (M \,M ′\) of the Poincaré biextension P of (M,M ′) by Gm,S .
It admits a canonical \-structure, i.e. there is a canonical connection on the underlying torsor that makes P\ a
\-biextension of (M \,M ′\) by Gm,S . This is the unique \-structure onP\ if Hom(G\,Ga) = 0 = Hom(G′\,Ga).

P r o o f. Denote by Pρ the pull-back of P to (M \,M ′) as well its associated Gm,S-torsor on G\ × G′. By
Proposition 3.8 the identity map on G\ provides a \-structure ∇2 on Pρ (viewed as extension of M ′ by the
multiplicative group over G\). To check the horizontality condition on ν1 (see Definition 3.6) one uses the
isomorphism Ψ in the proof of Proposition 3.8. Indeed, the pull-back via

p13 : G\ ×G\ ×G′ → G\ ×G′ (resp. p23, resp. µG\ × idG′)

of (Pρ,∇2) is the image via Ψ of the G\ ×G\-valued point ρ ◦ p1 of G (resp. ρ ◦ p2, resp. ρ ◦ µG\ ) and it holds
p1 + p2 = µG\ . Changing the role of M and M ′ we get a \-1-structure of P\.

To show the uniqueness result it is sufficient to show that any \-structure ∇ on the trivial biextension of
(M \,M ′\) by Gm,S is trivial (cf. [5], 10.2.7.4.). We are considering the trivial Gm,S-torsor on G\ ×G′\ with a
connection∇ such that the morphisms ν1, ν2 in Definition (3.5) are horizontal and the pull-back of∇ to G\×X ′

is trivial as well as the pull-back to X × G′\. The connection ∇ is determined by giving a global differential
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ω = ω1 + ω2 on G\ ×G′\ where the ωi depends on the \- i-structure associated to ∇. Recall now that ω1 has
to be a global invariant differential on G\

G′\ . We may work Zariski locally on S and then assume that the sheaf
of differential forms of G\ over S is free. We can then write ω1 =

∑
j Fjω1j with {ω1,j}j (the pull-back) of

a free basis of invariant differentials of G\ and Fj (the pull-back) of a global section of G′\. The condition on
ν2 requires that Fj is additive, i.e. it corresponds to a homomorphism G′\ → Ga,S . However G′\ is extension
of X ′ ⊗ Ga,S by G′\ and then by hypothesis Fj comes from an additive global section of the vector group
X ′ ⊗Ga,S . It is clear that the pull-back of ω1 to X ×G′\ is trivial because X is étale. Moreover, the condition
that the pull-back of ω1 to G\ ×X ′ has to be trivial implies that Fj = 0. Hence ω1 = 0. In the same way one
sees that ω2 = 0.

More generally:

Theorem 3.10 Let Mi = [ui : Xi → Gi], i = 1, 2, be two 1-motives, P a biextension of (M1,M2) by Gm,S

and P\ its pull-back to (M \
1 ,M

\
2). Then P\ admits a canonical \-structure. This is the unique \-structure on P\

if Hom(G\
i ,Ga) = 0.

P r o o f. This is essentially Deligne’s proof in [5], 10.2.7.4. The uniqueness result can be proved as in the
previous Proposition. For the existence, observe that [7] VIII, 3.5, implies that the pull-back homomorphism

Biext1(G1, [X2 → A2]; Gm,S) −→ Biext1(G1,M2; Gm,S)

is indeed an isomorphism. Hence P is the pull-back of a biextension P̃ of (G1, [X2 → A2]) by Gm,S . Moreover,
P̃ provides a homomorphism

ψ : G1 → Ext1([X2 → A2],Gm,S) = G′
2

(cf. [7], VIII 1.1.4) and P̃ is the pull-back via ψ× id of the Poincaré biextension of (G′
2, [X2 → A2]). We define

now an S-group scheme

C := G′\
2 ×G′

2
G1

via the usual homomorphism G′\
2 → G′

2 and ψ. The group C is extension of G1 by ωG2 . Using Proposition 3.8
one shows that

C(S′) =
{

(g,∇), g ∈ G1(S′),∇ a \-structure on the corresponding
extension Pg of M2 by Gm,S′

}
. (20)

Define now a homomorphism uC : X1 → C, as uC(x) = (u1(x),∇0) where ∇0 denotes the trivial connection
on Pu1(x). Observe that, by definition of biextensions of complexes, the pull-back of P toX1×G2 is isomorphic
to the trivial biextension. In this way uC : X1 → C becomes an extension ofM1 by the vector group ωG2 . Using
the universal property of the universal extension M \

1 = [X1 → G\
1] of M1, uC : X1 → C is the push-out of M \

1

for a suitable homomorphism ωG′
1
→ ωG2 . Denote by Γ the induced homomorphism G\

1 → C. It is clear that
the image via Γ of the identity of G\

1 provides a G\
1-valued point of C that corresponds, because of (20), to a

\-2-structure on the pull-back of P to (G\
1,M2) and hence on P\. In a similar way, one gets a \-1-structure on

P\ and hence the canonical \-structure we are looking for.

Remark 3.11 The uniqueness result in [5], 10.2.7.4 (see also the proof of Propositions 3.9) depends on
the fact that Hom(G\,Ga) = 0. This is not true in general. Indeed Hom(G\,Ga) is the kernel of the push-
out homomorphism Hom(ωA′ ,Ga) → Ext1(G,Ga). This map is an epimorphism because of the universal
property of universal extensions (cf. (1)). It can not be an isomorphism when Hom(ωA′ ,Ga) is bigger than
HomOS (ωA′ ,Ga). As an example, over a field k of characteristic p > 0, for ωA′ = Ga, the homomorphisms of
k-group schemes Ga → Ga correspond to polinomials of the type

∑
i aix

pi

, ai ∈ k, while the homomorphisms
of vector groups Ga → Ga correspond to linear polinomials ax, a ∈ k.
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4 Deligne’s pairing Φ

LetM1,M2 be two S-1-motives, P a biextension of (M1,M2) by Gm,S and P\ the pull-back of P as biextension
of (M \

1 ,M
\
2) by Gm,S . Following Deligne, denote Lie(G\

i) by TdR(Mi). We know from Theorem 3.10 that P\

admits a canonical \-structure. Hence P\ is equipped with a canonical connection∇. Consider now the curvature
form of ∇ (see, for example, [9] I, 3.1.4). It is an invariant 2-form on G\

1 ×G\
2; hence it gives an alternating

pairing R on

Lie(G\
1 ×G\

2) = Lie(G\
1)⊕ Lie(G\

2) = TdR(M1)⊕ TdR(M2)

with values in Lie(Gm,S). As the restrictions of R to Lie(G\
i), i = 1, 2, are trivial it holds

R(g1 + g2, g
′
1 + g′2) = Φ(g1, g′2)− Φ(g2, g′1)

with Φ: TdR(M1) ⊗ TdR(M2) → Lie(Gm,S) a bilinear map. We will show in this section that Φ is a non-
degenerate pairing when M1,M2 are Cartier duals and P is the Poincaré biextension. This result has been
proved by Deligne for S = Spec (C) and by Coleman for abelian schemes and S flat over Z. See also [6], V §4.
Both proofs are based on the comparison with another perfect pairing and do not work in our general case.

Let in the following M = [u : X → G],M ′ = [u′ : X ′ → G′] be Cartier duals, P the Poincaré biextension of
(M,M ′) and

Φ: TdR(M)⊗ TdR(M ′) → Lie(Gm,S) (21)

Deligne’s pairing. Recall that we have vectorial extensions of M and M ′

0 // ωG′
i // M \

ρ // M // 0, 0 // ωG
i′ // M ′\

ρ′ // M ′ // 0, (22)

with M \ = [X → G\], M ′\ = [X ′ → G′\] the universal extensions of M , M ′. Recall that P\ denotes the
pull-back of P to (M \,M ′\) endowed with its canonical \-structure. We showed in Proposition 3.9 that P\ is
the sum of (Pρ,∇2) and (Pρ′ ,∇1) (after suitable pull-backs) where (Pρ,∇2) is the \-extension of M ′ by the
multiplicative group over G\ that corresponds to the identity map on G\ via the isomorphism Ψ in (19). Similarly
for (Pρ′ ,∇1).

Lemma 4.1 Let αG′ be the invariant differential of G′ over ωG′ that corresponds to the identity map on ωG′ .
The restriction of (Pρ,∇2) to ωG′ via i : ωG′ → G\ in (22) is isomorphic to the trivial extension of M ′ by the
multiplicative group over ωG′ equipped with the connection associated to αG′ .

P r o o f. (See also [4], Lemma 2.0 for the case M = [0 → A].) Recall that we have the following arrows

G\(G\) F // G\(ωG′) ωG′(ωG′)Hoo

where the F (f) = f ◦ i and H(h) = i ◦ h. In terms of \-extensions of M ′ by the multiplicative group, the
homomorphism F is the base-change via i, while H associates to a differential η the trivial extension of M ′ by
the multiplicative group over ωG′ endowed with the connection associated to η. As f(id) = i = H(id), the
restriction of (Pρ,∇2) to ωG′ is isomorphic to the trivial extension of M ′ by the multiplicative group over ωG′

equipped with the connection associated to αG′ .

Changing the role of M and M ′, denote by αG the invariant differential of G over ωG that corresponds to
the identity map on ωG. The restriction (Pρ′ ,∇1) to ωG is isomorphic to the trivial extension of M ′ by the
multiplicative group over ωG equipped with the connection associated to αG.

In order to study the curvature forms of the connections∇i we start considering the curvatures of αG and αG′ .
We will use in the following the same notation for a locally free sheaf and its associated vector group.

Lemma 4.2 The curvature of αG provides a perfect pairing

dαG : ωG ⊗ Lie(G) −→ Lie(Gm,S)

that is the usual duality.
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P r o o f. We may work locally. Let ω1, . . . , ωg be a basis of invariant differentials of G. We have ωG =
Spec (OS [x1, . . . , xn]) where xi is the basis of Lie(G) dual to (ωi)i. An S′-valued point of ωG corresponds to a
g-tuple (ai)i ∈ Γ(OS′ , S′)g , hence to the invariant differential

∑
i aiωi of G over S′. Therefore αG =

∑
i xiωi.

In particular, its curvature form dαG =
∑

i dxi ∧ ωi provides a pairing

Lie(ωG)⊗ Lie(G) → OS

that is the usual duality, once identified Lie(ωG) with ωG.

Theorem 4.3 Let M be an S-1-motive. Then Deligne’s pairing in (21) is perfect.

P r o o f. Observe that the biextension Pρ′ can be defined also as the pull-back of the Poincaré biextension of
([X → A], G′) to (M,G′\) and the biextension P\ is the pull-back of Pρ′ via

(ρ× id) : M \ ×G′\ →M ×G′\

together with a suitable trivialization on G\×X ′. Furthermore, we have an exact sequence of G′\-group schemes

0 // ωG′ ×S G′\ // P\ // Pρ′ // 0.

This assures that, after pull-back to ωG′ ×S G′\, the \-1-structure of P\ is the trivial connection because it comes
from the connection ∇1 on Pρ′ . Lemma 4.1 implies that after pull-back to ωG′ ×G′\, the \-2-structure of P\ is
the connection associated to the invariant differential ρ′∗αG′ of G′\. Hence, the restriction of the curvature form
of ∇ to

Lie(ωG′)⊗ Lie(G′\) = ωG′ ⊗ Lie(G′\)

is d(ρ′∗αG′). This says that the homomorphisms ι and g′ in the following sequences of Lie algebras deduced
from (22)

0 // ωG′
ι // Lie(G\)

g // Lie(G) // 0,

0 Lie(G′)oo Lie(G′\)
g′

oo ωG
ι′

oo 0oo

are transposes of each other with respect to the pairing dαG′ and Φ. Changing the role of M and M ′, we get that
ι′ and g are transposes of each other with respect to dαG and Φ. The perfectness of dαG and dαG′ was proved in
Lemma 4.2. Hence also Φ is perfect.

Example 4.4 Case A = A′ = 0 and T, T ′ split. In this case it is possible to give an explicit description of
Deligne’s pairing. Let M be of the form [u : Zr → Gd

m,S ]. Then M ′ is of the form [u′ : Zd → Gr
m,S ] and

M \ = [(ι, u) : Zr → Gr
a,S ×Gd

m,S ], M ′\ = [(ι′, u′) : Zd → Gd
a,S ×Gr

m,S ],

where we write Gi
a,S in place of ωGi

m,S
, for i = r, d, and ι (resp. ι′) sends an r-tuple (resp. a d-tuple) n to n.

Suppose r = 1, d = 0. The pull-back of P to the universal extensions (M \,M ′\) is the trivial biextension of
(Ga,S ,Gm,S) by Gm,S together with two trivializations

τ1 : Z×Gm,S → P\ = Ga,S ×Gm,S ×Gm,S , (n, b) 7→ (n, b, bn),

τ2 : Ga,S × 0 → P\ = Ga,S ×Gm,S ×Gm,S , (a, 0) 7→ (a, 1, 1).

that coincide on Z × 0. Observe that the above biextension of complexes is not trivial. In order to describe
the canonical \-structure on P\, we start constructing the global differential ω on Ga,S × Gm,S associated to a
connection on P\. Let Ga,S = Spec (OS [x]) ,Gm,S = Spec (OS [t, 1/t]) and dx, dt/t be the usual invariant
differentials; it will be

ω = f(x, t)dx+ g(x, t)dt/t with f, g ∈ Γ(S,OS)[x, t, 1/t].
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Recall that ν1, ν2 in Definition 3.5 are asked to be horizontal. An easy computation shows that necessarily f = 0
and g is “additive” in x and does not depend on t. Observe that over a filed of characteristic zero g(x) = ax,
while over a field of characteristic p, we could a priori have the case g(x) = xp. Hence

ω = g(x)dt/t, g(x) ∈ Γ(S,OS)[x].

We use now the hypothesis that the pull-back of P\ to Z × Gm,S is isomorphic to the trivial \-biextension. The
trivialization τ1 restricted to {n} × Gm,S is (n, b) → (n, b, bn) and P\

|{n}×Gm,S
has to be isomorphic to the

trivial \-extension of Gm,S by itself. The pull-back of ω to Gm,S is g(n)dt/t and this has to equal ndt/t (see
Example 3.2). Therefore g(x) = x, the canonical \-structure on P\ is given by the differential xdt/t and its
curvature by dx ∧ dt/t. In particular, Deligne’s pairing

Φ: Lie(Ga,S)⊗ Lie(Gm,S) → Lie(Gm,S)

is non degenerate.
In the general situation one proceed in a similar way and the global differential associated to the canonical

\-structure on P\ is of the form

ω =
r∑

i=1

xidzi/zi +
d∑

j=1

yjdtj/tj

where the parameters xi (resp. yi) refer to Gr
a,S (resp. to Gd

a,S) and the zi (resp. tj) refer to Gr
m,S (resp. to Gd

m,S).
Again the curvature gives rise to a non degenerate pairing whose matrix is built of two blocks, each one involving
a torus and its group of characters.

Remark 4.5 As one expects, Deligne’s pairing is compatible with weight filtration. To see this fact we have
to work locally because, in general, we have no canonical morphisms G\ → A\. We assume then that there exist
sections δ of τ̄ : ωG′ → ωT ′ and δ′ of τ̄ ′ : ωG → ωT as in the proof of Proposition 3.8. We get then a morphism
G\ id−δτ→ G\ → A\ and similar for G′\ so that we have an extension

0 // T × T ′ × ωT ′ × ωT
// G\ ×G′\ // A\ ×A′\ // 0. (23)

Recall now that Deligne’s pairing Φ for M,M ′ is defined via the canonical \-structure ∇ on P\, the pull-back of
the Poincaré biextension of (M,M ′) to (M \,M ′\). Let now PA\ be the pull-back of the Poincaré biextension of
A,A′ to A\, A

′\ and∇A its canonical \-structure. We denote by (PA\,∇A) also its pull-back to G\×G′\. With
the notations of Lemma 4.1, let δ∗αT ′ be the invariant differential ofG′ over G\ associated to δτ ∈ ωG′(G\) and
also its pull-back to G′\. Similarly for δ′∗αT . Following the constructions in the proofs of Propositions 3.8, 3.9,
for idG\ = idG\ − δτ ⊕ δτ , and the “dual” one, we get that

(P\,∇) = (PA\,∇A) + (0, δ∗αT ′ + δ
′∗αT )

as \-biextension of (G\,G′\) by Gm,S . From this decomposition and the sequence of Lie algebras of (23) we get
that Deligne’s pairing for M,M ′ lies in the middle of a diagram where on the right we have Deligne’s pairing for
A,A′ and on the left, after re-ordering the summands, we have Deligne’s pairing for [X → T ], [X ′ → T ′]. The
latter pairing has locally the concrete description given in the previous example.

5 \-extensions of 1-motives

This section contains results on \-extensions of a 1-motive by the multiplicative group that generalize what
happens in the classical case of abelian schemes. In particular, we show that \-extensions are no longer sufficient
to describe universal extensions of 1-motives.

Let notations be as in section 2. Recall that A′ represents the functor S′  Ext1(AS′ ,Gm,S′).

Theorem 5.1 ([9]) The universal extension A′\ of the abelian scheme A′ over S represents the functor
FA : S′  Ext\(AS′ ,Gm,S′).
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As a consequence we can interpret S′-valued points of A′\ as \-extensions of A by Gm over S′.
Lemma 5.2 The pre-sheaf for the flat topology S′  Ext\([XS′ → AS′ ],Gm,S′) is a sheaf represented by

G′\, the universal extension of G′.

P r o o f. It is known (cf. [1], 2.2.1) that G′\ = A′\ ×A′ G′. In particular

G′\(S′) = {(x, y) ∈ A′\(S′)×G′(S′) inducing the same S′-valued point on A′}.

One checks immediately that Ext\([XS′ → AS′ ],Gm,S′) is the group{
(x, y) ∈ Ext\(AS′ ,Gm,S′)× Ext1([XS′ → AS′ ],Gm,S′)

inducing the same extension of AS′ by Gm,S′

}
.

Recalling thatG′ represents the functor S′  Ext1([XS′→AS′ ],Gm,S′), the conclusion follows from Thm. 5.1.

For G a semi-abelian scheme over S with maximal subtorus T , it is no longer true that the pre-sheaf for the
flat topology S′  Ext1(GS′ ,Gm,S′) is a sheaf. Indeed, for G = T the associated sheaf is trivial. However the
functor

FG : S′  Ext\(GS′ ,Gm,S′)

is still a sheaf if we restrict to a suitable site.
Lemma 5.3 Suppose S flat over Z. Let (E1,∇1), (E2,∇2) be \-extensions of the semi-abelian scheme G by

Gm,S . Suppose given two horizontal isomorphisms of extensions f, g : E1 → E2. Then f = g.

P r o o f. The result is trivially true if G = A because g−1f (resp. f−1g) is an automorphism of the extension
E1 (resp. E2) and hence it coincides with the identity map.

Suppose now that the abelian part A is trivial and G = T . We may work (fppf) locally on S an then suppose
that both Ei are the trivial extension E0 = Gm,S ×S T . The isomorphisms f, g correspond, respectively, to
characters a, b : T → Gm,S . Let dz/z+ωi be the normal invariant differential onE0 associated to the connection
∇i, i = 1, 2, where ωi are invariant differentials of T . The horizontality condition says that f∗∇2 = g∗∇2 = ∇1.
Hence

dz/z + da/a+ ω2 = dz/z + db/b+ ω2 = dz/z + ω1, where da/a := a∗(dz/z).

Therefore da/a = db/b and this implies a = b because of the hypothesis on S.4

In the general situation let EiT be the pull-back of Ei via T → G. It is clear that we have exact sequences

0 // EiT
// Ei

// A // 0.

The isomorphisms f, g induce isomorphisms of tori fT , gT : E1T → E2T and fT = gT because of what we
explained above. Hence g−1

T fT = idE1T
and g−1f is an automorphism of the extension E1 that necessarily

coincides with the identity of E1 because there exist no non-trivial homomorphisms of A to E1T .

Let S be a scheme flat over Z, Sch/S the category of S-schemes and Fl/S the full subcategory of Sch/S
consisting of those S-schemes flat over Z. Observe that if S = Spec (k) with k a field of characteristic 0, all S-
schemes are flat over Z, hence, Fl/S and Sch/S coincide. More generally, this is true if the following hypothesis
holds:

(∗) All residue fields of S have characteristic 0.

We prove now that FG is a sheaf on the site (Fl/S)fl.
Proposition 5.4 Let G be a semi-abelian scheme over S and suppose S flat over Z. Then the functor

FG : S′  Ext\(GS′ ,Gm,S′)

is a sheaf on (Fl/S)fl.

4 This proof does not work in positive characteristic p. For example, given characters a, b of T one has da/a = d(abp)/abp.
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P r o o f. We start showing that it is a separated pre-sheaf. Let (E,∇) be a \-extension of G by the multi-
plicative group over S′. Suppose it trivializes over a covering {S′j}j of S′. Hence for any index j we have an
isomorphism ϕj of (ES′

j
,∇) with the trivial \-extension (E0,∇0) of GS′

j
by Gm,S′

j
. Moreover, ϕ−1

i ϕj , ϕ
−1
j ϕi

are horizontal automorphisms of E over S′ij := S′i ×S′ S′j . By the previous lemma we conclude that ϕj = ϕi

over S′ij and hence these isomorphisms descend to a ϕ : E → Gm,S′ ×S′ G and E is isomorphic to the trivial
extension of GS′ by Gm,S′ . Now, ∇ corresponds to a global invariant differential ω on G over S′. By hypothesis
ω = daj/aj over S′j for a suitable homomorphism aj : GS′

j
→ Gm,S′

j
with daj/aj = dai/ai over S′ij . Hence

the ai provides a homomorphism a : GS′ → Gm,S′ and ω = da/a.
We finish the proof invoking [8] II, 1.5. First we show that FG is a sheaf for the Zariski topology and then that

FG(U) // FG(U ′) //// FG(U ′ ×U U ′)

is exact with U,U ′ both affine and U ′ flat over U .
Let {S′j}j be a Zariski-covering of S′ and let (Ej ,∇j) be \-extensions over S′j with isomorphismsϕij between

(Ei,∇i) and (Ej ,∇j) over S′ij . Thanks to Lemma 5.3 the ϕij satisfy the usual cocycle condition and hence the
Ej glue together providing an extension E of GS′ by Gm,S′ . The \-structure can be defined locally on S′ and
hence we are done.

Suppose now U affine and let U ′ be an affine scheme faithfully flat and locally of finite type over U . Let
(EU ′ ,∇′) be a \-extension over U ′ that provides isomorphic \-extensions on U ′ ×U U ′ via the projection mor-
phisms. Again, the cocycle condition is satisfied because of Lemma 5.3 and the effectiveness of descent data in
the affine case permits to conclude that EU ′ descends to an extension E of GU by Gm,U . Because of the affine
hypothesis, E admits a \-structure. Hence we are reduced to see that the \-structure descends in the case when E
is the trivial extension. But this is obvious because ωG is a sheaf.

It is an easy consequence of the above proposition that

Corollary 5.5 Let S be a scheme flat over Z. Then FM : S′  Ext\(MS′ ,Gm,S′) is a sheaf on on (Fl/S)fl.
As we have already remarked, the functor

(Sch/S)0 −→ (Sets), S′ 7→ Ext\(M ′
S ,Gm,S′)

is not, in general, a sheaf for the flat topology. Let denote by Ext\(M,Gm,S) the associated sheaf. Its restriction
to (Fl/S)fl is the sheaf FM in Corollary 5.5.

Let in the following use the short notation H(M) for Hom(M,Gm,S) and H∇(M) for Hom∇(M,Gm,S) =
ker(H(M) → ωG).

The sheaf Ext\(M,Gm,S) fits in the following exact sequence

0 // H∇(M) // H(M) // ωG
j // Ext\(M,Gm,S) // // Ext1(M,Gm,S) (24)

that generalizes the one in (16) and the one in [9], II.4.2. The exactness on the left is assured by definition of the
first sheaf, while the map on the right is an epimorphism because of the commutativity of the following diagram

0 // ωA //

��

G′\ = Ext\([X → A],Gm,S) //

α

��

G′ = Ext1([X → A],Gm,S) //

γ
����

0

ωG
ῑ // Ext\(M,Gm,S) // Ext1(M,Gm,S)

(25)

where the upper sequence is the one describing G′\ as universal extension of G′ by V(G′) = ωA and γ, α are
the pull-back homomorphisms.

The remaining part of this section is devoted to prove the following result:
Proposition 5.6 Let M = [u : X → G] be an S-1-motive. The sequence

0 // H∇(T )
H∇(T ) ∩H(G)

δ̄ // Ext\(A,Gm,S)
α // Ext\(G,Gm,S)

β // Ext\(T,Gm,S) // 0
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is exact, where α, β are the usual pull-back homomorphisms, H∇(T ) ∩ H(G) denotes the pull-back of H∇(T )
to H(G) via the monomorphism Hom(G,Gm,S) → Hom(T,Gm,S).

The morphism δ̄ above is induced by

δ : Hom∇(T,Gm,S) → Ext\(A,Gm,S), x 7→ [(Gx,∇x)]

whereGx is the extension obtained as push-out ofG with respect to the character x : T → Gm,S . The connection
∇x is induced by the canonical invariant differential of Gx that pulls back to dz/z on Gm,S and to 0 on G.

To characterize the kernel of β we will need the following result:

Lemma 5.7 Denote by fx : G→ Gx the push-out of G with respect to a character x : T → Gm,S . Define the
homomorphism σG : G→ Gx ×A G via fx and the identity on G.

0 // T
j //

x

��

G //

fx

��

A // 0

0 // Gm,S
ι // Gx

g // A // 0

0 // Gm,S
ι // Gx ×A G //

pGx

OO

G

σGpp

OO

// 0.

• Given a normal invariant differential ηx on Gx it holds j∗f∗x(ηx) = dx/x.

• Given a normal invariant differential η of Gx ×A G such that j∗σ∗G(η) = dx/x, there exists a normal
invariant differential ηx of Gx such that η = p∗Gx

(ηx).

P r o o f. The first statement is immediate because

j∗f∗x(ηx) = x∗ι∗(ηx) = x∗(dz/z) = dx/x.

For the second statement, let {Sh}h be an affine open covering of S. For any h, let ηx,h be a normal invariant
differential of Gx over Sh. The difference ωh = η − p∗Gx

ηx,h is the pull-back of an invariant differential of G;
moreover, as pGx ◦ σG ◦ j = fx ◦ j, it holds

j∗σ∗Gp
∗
Gx

(ηx,h) = j∗f∗x(ηx,h) = dx/x = j∗σ∗G(η).

Hence ωh is indeed the pull-back of a suitable invariant differential ωA,h of ASh
. Define η̃x,h := ηx,h + g∗ωA,h.

It satisfies p∗Gx
(η̃x,h) = η, at least over Sh. Hence we proved the assertion locally. To show that η̃x,i = η̃x,h on

Si ∩ Sh observe that p∗Gx
η̃x,i = p∗Gx

η̃x,h = η on Si ∩ Sh and p∗Gx
: ωGx → ωGx×AG is injective. Hence the

differentials η̃x,i provide a normal invariant differential ηx of Gx such that η = p∗Gx
ηx.

P r o o f. (Proposition 5.6) By definition of δ, it is α◦δ = 0. Moreover, if x is a character inH∇(T )∩H(G) the
extensionGx is isomorphic to the trivial one and the pull-back of η toA is zero because it becomes zero onG and
ωA → ωG has trivial kernel. Let (E,∇) be a \-extension ofA by the multiplicative group. Suppose that its image
via α is trivial. Hence we may think E as the push-out Gx of G with respect to a character x : T → Gm,S and ∇
as the connection associated to a normal invariant differential η∇ on Gx. It holds ωGx = ωGm,S

×ωT
ωG. The

projection of η∇ on ωGm,S
is dz/z and the projection on ωG is du/u for a suitable homomorphism u : G→ Gm,S

(because the pull-back of (E,∇) to G is isomorphic to the trivial \-extension). Moreover the image of dz/z in
ωT is dx/x and it must coincide with the image of du/u in ωT . As the character x/u|T provides an extension
isomorphic to Gx we may assume that dx/x = 0. Hence (E,∇) lies in the image of δ̄. To show that β ◦ α = 0,
let (E,∇) be a \-extension of A by the multiplicative group and denote by η∇ the normal invariant differential
of E associated to ∇. Let (EG,∇G) be the pull-back of (E,∇) to G. Recall that we have an exact sequence

0 // ωE
p∗E // ωEG

// ωT // 0
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obtained as push-out of

0 // ωA // ωG // ωT // 0. (26)

Let now (ET ,∇T ) be the pull-back of (EG,∇G) to T . Clearly ET is isomorphic to the trivial extension and the
image of p∗E(η∇) in ωT is 0; hence (ET ,∇T ) is isomorphic to the trivial \-extension.

We show now that the monomorphism coker(δ̄) → ker(β) is indeed an isomorphism. Suppose given a
\-extension (EG,∇G) of G by the multiplicative group over an S-scheme S′ such that its image via β is trivial.
We may assume that EG is the pull-back of an extension E of A by Gm,S′ and that S′ is affine. Denote by ηG

the normal invariant differential of EG associated to ∇G and by pE : EG → E the projection homomorphism.
The pull-back of ηG to T is an invariant differential of type dx/x for x a character of T . As S′ is affine, E
admits a \-structure ∇E (associated to a normal invariant differential ηE), so that ω = ηG− p∗EηE is an invariant
differential of G and the restriction of ω to T is dx/x. The second statement of Lemma 5.7 asserts that the trivial
extension with the connection induced by ω is isomorphic to the pull-back of (Gx,∇′) for a suitable connection
∇′, hence its isomorphism class lies in the image of α. In particular

[(EG,∇G)] = α[(E,∇E) + (Gx,∇′)]

and we get the result.
The exactness on the right can be deduced from (26) and (24) for M = T,G.

In a similar way one gets the more general statement:

Proposition 5.8 Let M = [u : X → G] be an S-1-motive. The following sequence

Ext\([X → A],Gm,S)
α // Ext\(M,Gm,S)

β // Ext\(T,Gm,S) // 0

is exact, where α, β are the usual pull-back morphisms and ker(α) =
H∇(T )

H∇(T ) ∩H(M)
.

If S satisfies the hypothesis (∗), α is a monomorphism. More generally, if S is flat over Z, the restriction of
the above sequence to the site (Fl/S)fl is also exact on the left.

We will see in Corollary 5.10 that H∇(T ) ∩H(M) = H∇(M).

5.1 Universal extensions and \-extensions.

Recall that the universal extension A\ of an abelian variety A represents the sheaf Ext\(A′,Gm,S) (cf. [9]). This
does not extend to 1-motives in general.

Proposition 5.9 Let M = [u : X → G] be an S-1-motive and M \ = [u\ : X → G\] its universal extension.
There is a canonical epimorphism

ψM : G\ −→ ωT ′ ×Ext\(T ′,Gm,S) Ext\(M ′,Gm,S)

whose kernel is ker(α′) =
H∇(T ′)

H∇(T ′) ∩H(M ′)
.

P r o o f. By the universal property of the push-out we get from (15) and (25), for G in place of G′, an epimor-
phism ϕM making the following diagram to commute

0 // ωG′
ι // G\

ρ //

ϕM

����

G //

γ
����

0

ωG′
ῑ // Ext\(M ′,Gm,S) // Ext1(M ′,Gm,S) // 0.

(27)
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We show that ϕM fits also in the following diagram

0 // G\ // G\
τ //

ϕM

����

X ⊗Ga,S = ωT ′ //

j
����

0

Ext\([X ′ → A′],Gm,S)
α′

// Ext\(M ′,Gm,S)
β′

// Ext\(T ′,Gm,S) // 0

(28)

where the upper sequence in the one in (15), the lower one comes from Proposition 5.8, j is the map in (24). To
prove that j ◦ τ = β ◦ϕM one proceeds as follows: We may work locally and suppose that the vertical sequences
in (15) are split. Let δ be a section of τ̄ : ωG′ → ωT ′ . Any point in G\ may be written as the sum g + ι(δ(ω))
with g a point of G\ and ω a point of ωT ′ . Now,

β′(ϕM (g + ι(δ(ω))) = β′(α′(g)) + β′(ῑ(δ(ω))) = j(τ̄(δ(ω))) = j(ω) ,
j(τ(g + ι(δ(ω)))) = j(τ(ι(δ(ω)))) = j(τ̄(δ(ω))) = j(ω),

because β′ ◦ α′ = 0 by Lemma 5.8 and β′ῑ = jτ̄ . Diagram (28) assures the existence of ψM whose kernel is
isomorphic to the kernel of α′.

Corollary 5.10 With notations as above, it holds H∇(T ′) ∩H(M ′) = H∇(M ′).

P r o o f. Comparing all the previous constructions we get a cross of exact sequences

kerψM = H∇(T ′)/H∇(T ′) ∩H(M ′)

�� ++WWWWWWWWWWWWWWWWWWWW

H(M ′)/H∇(M ′) = ker ῑ //

++WWWWWWWWWWWWWWWWWWWW
kerϕM

//

��

ker γ = H(T ′)/H(M ′)

ker j = H(T ′)/H∇(T ′)

where the upper diagonal arrow is a monomorphism by construction. Hence also the lower diagonal arrow is a
monomorphism and this happens if and only if H∇(T ′) ∩H(M ′) = H∇(M ′).

Corollary 5.11 Let M be an S-1-motive with S that satisfies hypothesis (∗). The group scheme G\ in (15)
represents the fibre product

ωT ′ ×Ext\(T ′,Gm,S) Ext\(M ′,Gm,S).

Proposition 5.12 LetM be a 1-motive over S andϕM the epimorphism defined in (27). Once fixed a universal
extension [u\

X : X → ωT ′ ] of [X → 0] and G\ as in (15), there exists a canonical universal extension M \ =
[u\ : X → G\] of M such that τ ◦ u\ = u\

X and the sequence

X
u\

// G\
ϕM // Ext\(M ′,Gm,S) // 0

is exact. In particular, the kernel of ϕM is isomorphic to H(T ′)/H∇(M ′).

P r o o f. Uniqueness. Suppose u\
1, u

\
2 are universal extensions such that ϕM ◦ u\

i = 0 and τ ◦ u\
i = u\

X .
Clearly u\

1−u
\
2 factors through ωG′ ; as ϕM ◦ (u\

1−u
\
2) = 0, the morphism u\

1−u
\
2 factors through the subsheaf

ker ι = H(M ′)/H∇(M ′) of ωG′ . Furthermore τ ◦ (u\
1 − u\

2) : X → ωT ′ is the zero map. It follows from
Corollary 5.10, that the composition H(M ′)/H∇(M ′) → H(T ′)/H∇(T ′) → ωT ′ is a monomorphism; then
u\

1 = u\
2.

The uniqueness result assures that we can construct u\ étale locally. We proceed as in [1], 2.3, assuming that
X = H(T ′) = ⊕iZei. Let δ be a section of τ : ωG′ → ωT ′ as in the proof of Proposition 3.8 so that we identify
G\ withG\⊕ωT ′ . If ũ : X → G\ is a lifting of u, u\ : X → G\ can then be defined via u\(ei) = ũ(ei)+δu

\
X(ei).
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Recall that u(ei) is the Gm,S-extension [X → Gei ] of M ′ obtained as the push-out of M ′ with respect to
the character ei. Let fi : G → Gei be the induced map. The section u(ei) lifts to a section ũ(ei) of G\ =
Ext\(MA,Gm,S) as soon as we fix an invariant differential ηi of Gei

; locally this is always possible. Then ϕM ◦
u\(ei) corresponds to the trivial Gm,S-extension of M together with the invariant differential f∗i ηi + δu\

X(ei).
Applying Lemma 5.7 it is immediate to check that ηi can be chosen so that ϕM ◦ u\(ei) = 0.

The previous proposition does not imply that for any universal extension v : X → G\ of M it holds ϕM ◦
v = 0. Indeed, we have seen in Remark 2.5 that v + f is also a universal extension for any homomorphism
f : X → ωA′(→ ωG′ → G\) and clearly ϕM ◦ f is not trivial in general.

Corollary 5.13 Let M be an S-1-motive with S that satisfies hypothesis (∗). Consider the homomorphism

v : X → G\ = ωT ′ ×Ext\(T ′,Gm,S) Ext\(M ′,Gm,S)

whose projection to the first (resp. second) factor is x 7→ dx/x (resp. the 0 map). It is a universal extension of
M . Moreover, there is an exact sequence

0 // X
v // G\

ϕM // Ext\(M ′,Gm,S) // 0.

Observe that the right hand square in (27) is cartesian as soon as Hom(M ′,Gm,S) = 0, for example if T ′ = 0.
Under this hypothesis, we could use the homomorphism ϕM in (27) to prove the result in Proposition 3.9, i.e.
the existence of a \-structure on P\. In the general case however, the homomorphism ϕM looses information
because, if we know the class in Ext\(MS′ ,Gm,S′) of a \-extension (Pg,∇) with Pg the fibre of the Poincaré
biextension of (M,M ′) at g ∈ G′(S′), we can determine ∇ only up to an invariant differential of the type du/u
for u a homomorphism of M ′

S′ → Gm,S′ .
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