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Abstract

In this paper we present a formal characterization of the engineering concepts of behavior and function of technical artifacts.
We capture the meanings that engineers attach to these concepts by formalizing, within the formal ontology DOLCE, the five
meanings of artifact behavior and the two meanings of function that Chandrasekaran and Josephson identified in 2000 within
the functional representation approach. We begin our formalization by reserving the term “behavior” of a technical artifact as
“the specific way in which the artifact occurs in an event.” This general notion is characterized formally, and used to provide
definitions of actual behaviors of artifacts, and the physically possible and physically impossible behaviors that rational agents
believe that artifacts have. We also define several other notions, for example, input and output behaviors of artifacts, and then
show that these ontologically characterized concepts give a general framework in which Chandrasekaran and Josephson’s
meanings of behavior can be explicitly formalized. Finally we show how Chandrasekaran and Josephson’s two meanings
of artifact functions, namely, device-centric and environment-centric functions, can be captured in DOLCE via the
concepts of behavioral constraint and mode of deployment of an artifact. A more general goal of this work is to show that
foundational ontologies are suited to the engineering domain: they can facilitate information sharing and exchange in the
various engineering domains by providing concept structures and clarifications that make explicit and precise important
engineering notions. The meanings of the terms “behavior” and “function” in domains like designing, redesigning, reverse
engineering, product architecture, and engineering knowledge bases are often ambiguous or overloaded. Our results show
that foundational ontologies can accommodate the variety of denotations these terms have and can explain their relationships.
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1. INTRODUCTION

In this paper we focus on providing uniform and rigorous char-
acterizations of the engineering concepts of the behavior and
function of technical artifacts in terms of a series of formalized
definitions grounded in a foundational ontology. This formal-
ization is motivated by two observations that can be taken as
commonplace within the context of this special issue on engi-
neering ontologies. The first is that these two notions are key
concepts in engineering; behavior and, especially, function,
play pivotal roles in the descriptions of artifacts in designing,
redesigning, reverse engineering, product architecture, and en-
gineering knowledge bases. Yet, despite this importance, con-
sensus on what is meant by artifact behavior and function has
not yet been achieved in the technological domain (Chittaro &

Kumar, 1998; Chandrasekaran & Josephson, 2000; Chandra-
sekaran, 2005; Kitamura et al., 2005/2006). Engineers may at-
tach different meanings to these key concepts, depending on
their different disciplinary backgrounds, or the tasks at hand,
and this conceptual freedom hampers the reliable storage, re-
trieval, and communication of functional and behavioral de-
scriptions of artifacts as needed in, say, redesigning or in the
use of engineering knowledge bases.

The second observation that motivates our formalization is
that the emerging field of engineering ontology provides an
excellent means to overcome this lack of conceptual consen-
sus within the engineering community (Chandrasekaran
et al., 1999; Kitamura et al., 2005/2006). Generally speaking,
two basic elements set the quality and reliability of knowl-
edge and information exchange: one, the adoption of a
suitable communication language, and two, the existence of
a shared conceptual “view” (framework) on reality, that is,
an agreement on existing types of objects, properties, and so
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forth. We elaborate our theory using the language of formal
logic because it is at the basis, either explicitly or implicitly, of
every scientific language, thus including engineering, and fo-
cus our attention on the framework engineers use to understand
their domain of study. This framework can be seen as an im-
plicit ontology that engineers work with, one that is only partly
explicit. Indeed, the difficulties engineers register in the use of
notions like behavior and function show that this implicit on-
tology should be further analyzed by explicitly recognizing and
formalizing existing and new conceptual distinctions. This is,
after all, the role of an ontology: to classify types of entities,
properties, relationships, and their dependences, and to make
explicit the conceptual differences and related interconnections
needed to make sense of the domain of interest.
Just spelling out the implicit ontology of engineers will not

do the job. When looking into engineering activity one sees
that engineers use distinct ontologies depending on the field
in which they work, and we must recognize that developing
and using engineering ontologies, as such, will not provide
conceptual consensus per se. It is common knowledge that dif-
ferent perspectives may lead to different results: what makes
sense from one perspective may not have a precise correspon-
dence or even be false in another. Although not recognized as
clearly, this also happens for ontologies. Where the layman
sees lights and sounds, an engineer sees a variety of wave-
lengths, more than the layman can imagine within his limited
everyday ontology. Engineers use different ontologies depend-
ing on the domain in which they work. For example, a civil
engineer deals with objects in Newtonian space, whereas an
engineer specialized in GPS technology adopts general relativ-
istic space–time; and for a civil engineer a specificmaterial will
have different properties than it has for a chemical engineer.
The problem of making explicit the ontologies adopted by
practitioners is common to many areas and motivated in part
the rise of the domain of applied ontology (Staab & Stuber,
2004). There are several notions of ontology, ranging from ter-
minological to foundational (Borgo, 2007), and a variety of
ways to apply them. Because we aim at a rigorous foundation
for engineering terminology, we based our work on the ap-
proach called foundational ontology. The crucial characteris-
tics of foundational ontologies can be summarized as follows:

† they are general in the sense that they are limited to the
most reusable and widely applicable concepts leaving to
the user to populate the ontology with more specific
concepts;

† they are reliable because they are logical theories with
rich axiomatizations and carefully analyzed formal con-
sequences (theorems); and

† they are well organized, because the construction of a
foundational ontology is based on explicitly motivated
philosophical principles.

Our goal in this paper is to present formalizations of the en-
gineering concepts of behavior and function of technical arti-
facts that capture the informal meanings these terms have in

engineering practice and that are ontologically motivated.
In this formalization, we adopt the meanings provided by do-
main experts without doubting their adequacy and without
trying to reduce or modify them. Once the formalizations
are in place, we can see that the relationships among these
meanings are clear and can be expressed formally. The anal-
ysis was carried out within the framework of the DOLCE on-
tology (Masolo et al., 2003), the Descriptive Ontology for
Linguistic and Cognitive Engineering.1 DOLCE is a founda-
tional ontology, that is, a knowledge system developed to
characterize explicitly a general viewpoint on reality or, at
least, a relevant part thereof: the aim is to provide a structure
for knowledge of very general concepts and to constrain their
intended meaning formally. Foundational ontologies com-
prise, as said, only concepts and relations that are independent
from application domains, and, to be applied to a specific do-
main, they need to be enriched with the appropriate domain-
dependent concepts and relations. Hence, by incorporating
the engineering notions of behavior and function in DOLCE,
we arrive at an ontological assessment of these notions and at
an extension of DOLCE that can be used in the different en-
gineering domains. The current paper builds on previous
work (Borgo et al., 2006), in which the focus is limited to
the concept of behavior.
Yoshinobu Kitamura and Riichiro Mizoguchi have ad-

vanced a similar line of research with their recent contribution
(Kitamura et al., 2005/2006). In it they constructed an upper
level ontology in which they embed their earlier results of
ontological analysis of artifactual functions. In brief, the
core model developed in their approach, namely, the func-
tional concept ontology (Kitamura et al., 2002), is based on
the ontology of device and function, which in turn, is based
on a simple upper level ontology. The whole framework is
an extension of the functional modeling language FBRL
(Function and Behavior Representation Language).
A (base-)function of a device is defined as a role performed

by a certain behavior of this device in a fixed teleological con-
text, whereas a behavior is understood as the objective, that is,
independent from designers’ intentions, interpretation of the
input/output relations that connects the device to its environ-
ment. Besides modeling base functions, Kitamura and Mizo-
guchi define function types and metafunctions, which repre-
sent the interdependencies among base functions. Other
important notions employed in their theory comprise the no-
tion of operand, conduit and medium. All these entities are
categorized within the upper level ontology.
The methodology advanced by Kitamura and Mizoguchi

adorns this notion of function with a rich conceptual structure
that hinges upon two relationships: “is-a,” that is, the relation
of subsumption, and “is-part-of,” that is, the relation of part-
hood. Thus, within their approach one is able to classify func-
tions within certain domains and to perform functional
decompositions of these functions. The notion of “way of
function achievement” they introduce, allows them to

1 http://www.loa-cnr.it/DOLCE.html
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explicate the background knowledge on functional decompo-
sition. This type of knowledge consists of physical principles
and theories that explain why a given organization of sub-
functions compose the overall function to be decomposed.
The whole ontological system of Kitamura and Mizoguchi
is available by means of an ontology editor in an environment
for building/using ontologies named Hozo (Mizoguchi
et al., 2007).
The plan of our paper is as follows. In Section 2 we re-

view how engineers characterize the concepts of artifact be-
havior and artifact function, focusing on the informal mean-
ings of behavior and function of domain experts. We go on
to outline two general approaches to the characterization of
behavior and function and present the functional represen-
tation approach of Chandrasekaran and Josephson (2000)
as the one we aim to formalize. We introduce DOLCE in
Section 3, collecting the elements we need for our formal-
ization of behavior and function. These formalizations are
then given in Sections 4 and 5, respectively. We conclude,
in Section 6, with some observations, including a discus-
sion on the formalization of function in the functional
modeling approach, which is the rival to the functional rep-
resentation approach.

2. ARTIFACT BEHAVIORS AND ARTIFACT
FUNCTIONS IN ENGINEERING

The importance of the concepts of behavior and function in
engineering and the lack of consensus on their meaning is
vividly illustrated by the existence of a number of design mod-
els that already by their names refer to these concepts but give
different definitions of behavior and function. Examples of
such models are the function–behavior–structure (FBS) model
of John S. Gero (Gero, 1990; Rosenman&Gero, 1998; Gero &
Kannengiesser, 2004), the function– behavior–state model of
Yasushi Umeda and collaborators (Umeda et al., 1996, 2005;
Umeda & Tomiyama, 1997), and the structure–behavior–
function (SBF) model of Ashok Goel (Goel, 1991; Bhatta
et al., 1994; Bhatta & Goel, 2002). These models share an
analysis of the design process as one in which the engineers’
reasoning can be reconstructed as reasoning from functions,
via functional, to physical descriptions of artifacts that are as-
sumed to be able to perform these functions. In Gero’s FBS
model the functions of technical artifacts are typically taken
as the “purposes of the design” but are also on some occasions
equated with the “results of the behavior” of the artifact. Be-
havior is, in turn, characterized by how the structure of an ar-
tifact achieves its functions, the artifact’s actions or processes
in the given circumstances of the natural environment, or as
attributes that can be derived from the structure of the artifact
(Vermaas & Dorst, 2007). In the FBS model of Umeda and
collaborators, function and behavior have more stable mean-
ings: a function is defined as “a description of behavior
abstracted by human through recognition of the behavior in
order to utilize it,” and a behavior is defined as “a transition
of states along time,” where states consist of “entities, their

attributes and their structure” (Umeda et al., 2005). In the
work ofGoel, the function of an artifact is defined as “a behav-
ioral abstraction” represented by a schema that gives the input
and output behavioral states of the function and a reference to
the causal mechanism internal to the device that achieves the
function, and an (internal causal) behavior is represented by
sequences of state transitions (Bhatta et al., 1994).At first sight
it may seem that some conceptual consensus can be derived
from these proposals. The second and third seem fairly similar,
but then one has to ignore Goel’s inclusion of the responsible
internal causal mechanisms in his definitions of behavior and
function. Gero’s characterizations may seem consistent with
the resulting conceptual unity, but this appearance is mainly
due to the fact that Gero’s characterizations are divergent.
The possibilities for singling out conceptual consensus be-
come even slimmer if one takes into account other models
of designing, models that may diverge from the three men-
tioned by, for instance, denying that the concept of behavior
has a role to play in designing. An example of such a model
is the functional basis model of designing proposed by
Stone and Wood (2000) in which a function is defined as
the general input/output relationships of an artifact that have
the purpose of performing an overall task, and in which de-
signing is taken as a process in which customer needs are
directly mapped to structural design solutions via functional
descriptions.

To some extent conceptual consensus also seems not to be
a prime value in engineering. Different ways of laying down
the meaning of behavior and function exist and coexist, and
engineers and design methodologists like Gero, seem to
make use of the available conceptual flexibility, say by adopt-
ing new definitions when there is reason for that, instead of
being concerned about this flexibility. Conceptual uniformity
is not a good in itself; effectiveness of design is, and it has
been argued that the lack of common meanings is helpful in
designing as it provides room for creativity when engineers
with different (conceptual) backgrounds collaborate in design
processes (Bucciarelli, 1994).

The disadvantage of a lack of conceptual consensus sur-
faces, however, when functional and behavioral descriptions
have to be shared: when, for instance, designing is modeled as
a procedure in which, in part, existing knowledge about the
relations between the functions, behavior, and physical struc-
ture of artifacts is retrieved from knowledge bases,2 then hav-
ing a common set of definitions is essential. This sharing of
descriptions among engineers forces engineers to come out
of their disciplinary and local conceptual “niches,” and de-
fines the task of resolving conceptual differences. One way
of taking up this task is to continue our discussion of existing
models and to arrive at a set of definitions for behavior and

2 The FBS models of Gero and of Umeda et al., and the functional basis
model all incorporate such steps in which knowledge about functions, behav-
iors, and structure is drawn from knowledge bases. In the functional basis
model the retrieved knowledge concerns physical design solutions for func-
tions only, thus ignoring behavioral descriptions (Bryant et al., 2006).
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function that integrates the different proposals advanced in
these models. This integration may be possible: in Vermaas
and Dorst (2007) the different proposals by Gero are merged
into one; in Garbacz (2006) and Vermaas (2007) it is argued
that the concept of behavior also has a place in Stone and
Wood’s functional basis model, but it would eventually result
in a reconstruction and/or rejection of existing proposals.
In this paperouraim is to formalize themeanings that the terms
“behavior” and “function” have in engineering practice,
accepting, as said, the meanings provided by domain experts
without questioning their adequacyor trying to reduce ormodify
them. The task of resolving the conceptual differences then
becomes one of making meanings precise and finding the
relationships between them, in this way extending and complet-
ing the seminal work of Chandrasekaran and collaborators
(e.g.,Chandrasekaranet al., 1999;Chandrasekaran&Josephson,
2000; Chandrasekaran, 2005), and Yoshinobu Kitamura and
Riichiro Mizoguchi (e.g., Kitamura et al., 2002, 2005/2006).
More specifically, we follow the analyses of Chandra-

sekaran, first distinguishing between two general approaches
toward defining functions of technical artifacts, called the
functional representation approach and the functional mod-
eling approach (Chandrasekaran, 2005), and then formalize
the different meanings of behavior and function that
Chandrasekaran and Josephson (2000) identified within
the functional representation approach. In the functional
representation approach definitions of artifact functions
typically refer to the concept of artifact behavior; the FBS
and SBF models, described above, are all instances of the
functional representation approach. This is not the case
in functional modeling, where the functional basis model
of Stone and Wood is a prime instance. Our focus on the
functional representation approach implies that we do not
formalize all engineering meanings of, in particular, the
concept of function. We, however, occasionally also con-
sider the functional modeling approach.

2.1. Behavior and function in the functional
representation approach

In their analysis of the concepts of behavior and function as
used by engineers, Chandrasekaran and Josephson (2000)
isolated five meanings of behavior and two of function. The
meanings of behavior are characterized using the primitive
notion of state variable:

1. Behavior as the value of some state variable of the arti-
fact or a relation between such values at a particular in-
stant.
Example: the car rattled when the driver hit the curve.

2. Behavior as the value of a property of the artifact or a
relation between such values.
Example: a lintel distributes load to two sides.

3. Behavior as the value of some state variable of the arti-
fact over an interval of time.

Example: the BHP3 increased for awhile, but then
started to decrease.

4. Behavior as the value of some output state variable of
the artifact at a particular instant or over an interval.
Example: the amplifier is behavingwell, the output volt-
age is constant.

5. Behavior as the values of all the described state variables
of the artifact at a particular instant or over an interval.
(No example given.)

Note that, for all five meanings, a behavior of a technical
artifact is partially objective and partially subjective. Behavior
has an objective aspect because it eventually depends on the
properties or features of the artifact. Yet, the very same behav-
ior also has a subjective aspect: it depends on the designer(s)
and, for the choice of the state variables, indirectly on engi-
neering practice. The underlying intuition of Chandrasekaran
and Josephson for this subjective twist is that a state variable of
an artifact represents some feature or aspect of this artifact that
might be relevant only from a specific point of view (Chandra-
sekaran, 1994). It is important to emphasize that the behavior
of a technical artifact is different from the value of its state
variable(s). Behavior is somehow characterized by this val-
ue(s) in a sense to be explicated. Thus, if the value of the input
voltage of an amplifier is 10 mV at a particular instant, then
this value (10 mV) is not identical with any behavior of this
amplifier. Rather, part of the behavior of the amplifier consists
of the situation that its input voltage is 10 mV.
The two meanings of function that Chandrasekaran and

Josephson distinguish are called the device-centric and
environment-centric meanings. Without going into detail
(see Section 5), a device-centric function of an artifact is a
behavior of the artifact that is selected and intended by some
agent. It is a function that is described in terms of the proper-
ties and behaviors of the artifact only; an example of a device-
centric function is “making sound” in the case of an electrical
buzzer. An environment-centric function is, in turn, an effect
or an impact of this behavior of the artifact on its environment,
provided this effect or impact is selected and intended by some
agent. This kind of function is conceptually separated from the
artifact that performs or is expected to perform this function;
“enabling a visitor to a house to inform the person inside the
house that someone is at the door” is an environment-centric
function of the buzzer.

2.2. Function in the functional modeling approach

The functional representation approach, as defined by the
work of Chandrasekaran and collaborators, covers an impor-
tant part of engineering modeling of functions of technical ar-
tifacts. The rival approach of functional modeling covers an-
other part, and includes the functional basis model by Stone
andWood (2000), which has received a substantial amount of

3 BHP stands for brake horse power, and it is described as the amount of
real horsepower going to the pump.
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attention in recent years. In this paper we will not attempt to
formalize the informal meanings of function as they occur in
this second approach; however, to allow us to sketch how our
results apply to these remaining meanings, we now briefly
discuss how Stone and Wood define functions.
Stone and Wood model overall product functions of tech-

nical artifacts from especially the electromechanical and
mechanical domain as sets of connected elementary sub-
functions. In line with the design 10 methodology of Pahl
and Beitz (1988) an overall product function of an artifact
is defined as a general input/output relationship of the arti-
fact having the purpose of performing an overall task, and is
represented by a black-boxed operation on flows of materi-
als, energies, and signals. A subfunction performs a part of
that overall task and is represented by a well-defined basic
operation on well-defined basic flows of materials, ener-
gies, and signals, which are laid down in libraries that list
all possible basic operations and basic flows. These libraries
are called a functional basis and can be found in Hirtz et al.
(2002).

3. DOLCE

We choose to use the DOLCE ontology to formalize the
engineering notions of behavior and function. This ontol-
ogy is part of the WonderWeb project.4 The vision of this
project is to have a library of foundational ontologies re-
flecting different ontological choices, and the WonderWeb
designers’ intentions are to make the different alternatives
underlying ontological choices as explicit as possible. For
this reason they pay extensive attention to carefully isolating
the ontological options and their formal relationships:
DOLCE’s ontology is the first module of this library to be
developed.
DOLCE is a foundational ontology of particulars with a

clear cognitive bias. Its aim is to capture the ontological cat-
egories underlying natural language and human common-
sense, and the categories introduced in DOLCE are therefore
thought of by its developers as “cognitive artifacts ulti-
mately depending on human perception, cultural imprints
and social conventions” (Masolo et al., 2003, p. 13). The cat-
egories in DOLCE are based on an analysis of the surface
structure of language and cognition. A first consequence
of this approach is that DOLCE’s categories are placed at
the mesoscopic level of middle-sized objects that we, as hu-
mans, perceive. Middle-sized objects is an expression
equivalent to “commonsensical objects,” and standard arti-
facts are examples thereof. A second consequence is that
there is not a claim of any special robustness against the state
of the art in scientific knowledge: DOLCE’s categories are
just descriptive notions that assist in making already formed
conceptualizations explicit.

3.1. A general introduction to DOLCE

DOLCE’s taxonomic structure is pictured in Figure 1. Each
node in the graph is a category of the ontology. A category
that is a direct subcategory of another is depicted by drawing
the latter higher in the graph and linking them with an edge.
PARTICULAR is the top category. The set of direct subcate-
gories of a given category forms a partition except where dots
are inserted.

As said above, we want to extend DOLCE to capture cru-
cial notions in the area of engineering design to allow us to
use this ontological framework to analyze, extend, and pos-
sibly improve the work in this area. Here we provide a mini-
mal introduction to the whole ontology, the interested reader
can read (Masolo et al., 2003), where the underlying motiva-
tions and a throughout discussion of technical aspects of
DOLCE are given.

From the graph in Figure 1, it is clear that the DOLCE on-
tology concentrates on particulars as opposed to universals.
Roughly speaking, a universal is an entity that is instantiated
or concreted by other entities, for example, “human” and
“being taller than.” A particular is an entity that is not instan-
tiated by other entities, as, for example, the Eiffel Tower in
Paris. Particulars comprise physical or abstract objects,
events, and qualities. It seems to us that the DOLCE ontology
provides a good framework for the needs of engineering de-
sign: it adopts the distinction between objects (e.g., products)
and events (e.g., operations); and it includes a differentiation
among individual qualities (such as the weight of a specific
material item), quality types (e.g., weight and color), quality
spaces (e.g., spaces to classify weights and colors), and qual-
ity positions or qualia (e.g., informally, locations in quality
spaces). These together with measure spaces, where the qual-
ity positions are associated with a measure system and thus to
numbers, are important for describing and comparing devices
and will be described below. Indeed, an important element
among the motivations to use DOLCE was its robustness
and flexibility that allows us to capture, in a natural way,
the views proper of engineering practice.

The DOLCE ontology category (class) ENDURANT
comprises objects, for example, a hammer, and amounts of
matter, for example, an amount of water, an amount of gold,5

whereas the category PERDURANT comprises events like
making a hole or a soccer game, that is, things that happen
in time. The term “object” is used in the ontology to capture
a notion of unity as suggested by the partition of the class
PHYSICAL ENDURANT into classes AMOUNTOFMAT-
TER, FEATURE, and PHYSICAL OBJECTS (see Fig. 1).

4 http://wonderweb.semanticweb.org

5 Amounts of matter are endurants in DOLCE because they have a loca-
tion in space and time and do not depend on other entities as qualities do.
The reason they are distinct from objects, for example, an amount of gold
is distinct from the wedding ring it forms, is that these two types of entities
have different identity criteria: the wedding ring has necessarily a round
shape, whereas the amount of gold has it accidentally (the wedding ring is
destroyed by a change of shape, the amount of gold is not), the wedding
ring indicates a marital status, whereas the amount of gold does not, and
so forth.
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Both endurants and perdurants are associated with a collec-
tion of qualities. The exact list of qualities may depend on
the entity: shape and weight are usually taken as qualities
of endurants, duration and direction as qualities of perdur-
ants. An individual quality, for example, the weight of
your newest car is a quality associated with one and only
one entity; it can be understood as the particular way in which
the entity instantiates the corresponding property, for exam-
ple, the general property of “having weight.” For example,
the endurant hammer_#321 (a token) has its own individual
instantiation of property “having weight.”6 This instantiation
is the individual weight quality of hammer_#321. The change
of an endurant in time is explained through changes in some
of its individual qualities. For example, if a component of
hammer_#321 is substituted for another, the hammer may
change its weight. This means that the individual weight qual-
ity of this entity was first associated with, or classified in, a
position a and later to (in) a position b of a given weight qual-
ity space. Note that a and b should not be considered weight
measures, for example, not an amount of weight such as 5 kg.
Instead, they are elements of, positions in, a quality space
whose primary role is to partition individual qualities in
equivalent, or similar, depending on the space, entities before
committing to numeric values and units of measure. Thus, the
same amay be associated with 5 kg in one measure space and
with 11.1 lb. in another. Finally, note that the hammer cannot
exist without its individual qualities: DOLCE forces a strict

existential dependence between individual qualities and their
hosts.
The example of the hammer makes clear that the position as-

sociated with an individual quality can change over time.
DOLCE calls such positions qualia, quale in singular form.
A quality space is the collection of all possible qualia, that
is, distinct positions, that an individual quality can assume.
The notion of quality space is quite flexible: for example, if
in an application it is important to classify endurants as heavier,
equal, or lighter than a given endurant a, then the adopted
weight quality space could have just three distinguished posi-
tions: the position corresponding to individual weight qualities
of endurants (whose weight quality is) lighter than a, the posi-
tion of those not distinguishable from that of a, and the position
of the individual weight qualities heavier than a.

3.2. DOLCE categories and relations

In this section we present the categories of Figure 1 that are
relevant to our work. Note that the terminology adopted de-
parts sometimes from usage in engineering design, knowl-
edge representation, or conceptual modeling areas, because
it has been affected, in part, by discussions presented in the
philosophical literature.

1. ED(x) stands for “x is an endurant.”7 An endurant is an
entity that is wholly present at any time it is present. It is

Fig. 1. The DOLCE basic categories according to Masolo et al. (2003).

6 The codes we use to refer to artifacts are nonsense codes. They are used,
however, to emphasize that we refer thereby to particular instances of artifacts
and not to the types thereof.

7 In DOLCE one uses abbreviated names, like ED, for both the class, that
is, ENDURANT, and the predicate “being an endurant.” Because it does not
cause confusion, we also follow this practice.
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physical if located in space and time: a hammer_#321, a
mover machine_#111, an amount of plastic, and the
cavity in which a piston moves. Endurants may lack a
spatial or temporal location. Intentions, beliefs, desires,
laws, plans, and so forth, are examples of nonphysical
endurants.

† PED(x) stands for “x is a physical endurant.” PED is
a subcategory of ED. A hammer, a mover machine,
an amount of plastic, and the cavity in which a piston
moves, are all examples of physical endurants.8

† APO(x) stands for “x is an agentive physical object,”
that is, endurants that have spatial and temporal loca-
tion and such that we are justified in ascribing inten-
tions, beliefs, or desires to them. People and organi-
zations fall into this category while hammers and
engines do not.

† NAPO(x) stands for “x is a nonagentive physical ob-
ject,” that is, endurants that have spatial and temporal
location but do not entertain intentions, beliefs, or
desires. Hammers and engines fall into this category
while people and organizations do not.

2. PD(x) stands for “x is a perdurant,” that is, an entity that
is only partially present at any time that it is present. For
instance, consider the perdurant producing an item of
type #234 that consists of attaching two metal pieces to-
gether with screws and painting the resulting piece. Al-
though the painting goes on, the (temporal) part corre-
sponding to attaching the two pieces is no longer
present and when this is present, the painting still has
to come. Perdurants can also have spatial parts. The cat-
egory of perdurants is divided in four subcategories:
achievements and accomplishments, the eventive perdur-
ants, and states and processes, the stative perdurants.9

† ACHIEVEMENT (ACH) is the class of perdurants
characterized by anticumulativeness, that is, the
sum of two achievements of, say, kind A is not an
achievement of kind A, and atomicity, that is, they
do not have temporal subparts. The guiding idea is
that an achievement is an instantaneous change: the
moment in which a window is closed is an event clas-
sified as achievement, but the whole event of closing
the window is not.

† ACCOMPLISHMENT (ACC) is the class of anticu-
mulative perdurants that have temporal parts, that is,
nonatomic perdurants. For example, the perdurant
closing the window is composed of subevents like
pushing the window and turning the handle. Accom-
plishments are anticumulative: consider two perdur-
ants regarding the selling of a house, say, two differ-

ent houses. Then, the sum of these two perdurants is
not a perdurant regarding the selling of a house.

† STATE (ST) is the class of cumulative perdurants;
thus, it is closed under mereological sum in the sense
that the sum of two perdurants, for example, two dril-
ling events, is a perdurant of the same kind (a dril-
ling). These perdurants are homeomeric. Events
like drilling, moving, and sitting are perdurants in
this class.

† PROCESS (PRO) is the class of cumulative perdu-
rants that also are nonatomic and nonhomeomeric.
We have seen that sitting is classified as a state; in-
stead running is classified as a process: there are
short temporal subparts of a running that are not
“runnings.”

In the engineering domain, one needs to deal with a variety
of processes and operations. In DOLCE these are events, that
is, specific perdurants (tokens) and not types. The distinction
among perdurants is driven by such properties as temporal
subdivision. Consider an operation like amachine configura-
tion. It requires the completion of a process that is obtained
once a specific state is reached. If this does not happen, the
configuration does not occur. Thus, if a configuration opera-
tion is divided in two temporal parts, only one of the two sub-
operations is a configuration operation (if any). We refer the
reader to Masolo et al. (2003) and (Borgo & Leitao, 2007)
for more information on these aspects.

A different type of entities finds a place in the QUALITY
category.

† Q(x) stands for “x is an individual quality.” Recall that in
DOLCE qualities are particulars and should not be con-
fused with properties, which are universals. Note that
informally, one can think of an individual quality as
an instantiated property. Qualities can be seen as instan-
tiations of basic aspects of endurants or perdurants.
Usually they can be perceived or measured, for example,
weight, shape, or energy. The term “individual” is used
to mark the essential relationship between the entity and
its qualities.

We have seen that qualities are associated with quality
spaces where comparisons like “truck A and truck B have a
different weight” can be carried out. In the study of engineer-
ing behavior some qualities, like duration of perdurants, are
central. For this reason, we will make use of the DOLCE re-
lation qlT;PD. Expression qlT;PD(t, x) means that t is the tem-
poral location of a perdurant x. For instance, if a process of
cooling a combustion chamber lasts 60 s, then the temporal
location of this process corresponds to a temporal interval
which, when evaluated in the standard measure system for
time, corresponds to 60 s.

Another important relation for our analysis is the parthood
relation: x is part of y, written P(x, y). The formal theory based

8 Because it has a spatiotemporal location, a hole is physical, and, of
course, nonmaterial.

9 We present these types of perdurants only for explicatory purposes as we
do not use them in what follows.
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on parthood is called mereology (Simons, 1987). It consists
of the proper part and overlap relations, both defined in terms
of P. In DOLCE the parthood relation applies to pairs of en-
durants, for example, to state that an object is part of another,
and to pairs of perdurants, for example, to state that an event is
part of another. For instance, if a¼ “writing the paper ABC”
and b ¼ “writing the introduction to the paper ABC,” then
P(b, a) holds. For pairs of endurants, the relation of parthood
is temporalized because an endurant may loose and gain parts
throughout its existence. The relation P(e, e0, t) represents the
fact that an endurant e is part of an endurant e0 at time interval,
possibly atomic, that is, possibly at an instant t. For the sake
of simplicity, in what follows we will assume that the time
interval for all mereological relations among endurants that
we consider is fixed. Consequently, the temporal relativi-
zation of mereological parthood between endurants will be
neglected.
We will now give a number of auxiliary mereological

definitions together with some examples. Again, recall that
we neglect the temporal parameter. Note that throughout
the paper the symbol W is reserved to indicate definitions.

PP(x, y) W P(x, y) ^ :P( y, x): (1)

A perdurant is a proper part (formally PP) of another if the
first is part of the second and not vice versa.
Example: reading this section is a proper part of reading the

whole paper.

O(x, y) W 9z(P(z, x) ^ P(z, y)): (2)

Two perdurants overlap (formally O) if an entity exists
which is simultaneously part of both.
Example: “My fastening a screw in my toaster” and “the

fixing of my toaster,” these perdurants overlap because “the
changing of the screw position” is part of both.
Sum (þ) and fusion (s) are two special operators. The sum

of x and y is a perdurant z such that each part of x and each part
of y are parts of z, and if a perdurant w overlaps z, then w also
overlaps x (or y). Finally, the fusion operation is a direct ex-
tension of the binary sum to all the perdurants that exhibit a
property f (Simons, 1987).

xþ y W iz 8w(O(w, z) $ (O(w, x) _ O(w, y))) (3)

Example: closing a window is the sum of moving the window
and turning the handle.

sxf(x) W iz 8y(O( y, z) $ 9w(f(w) ^ O( y, w))) (4)

Example: my staying in Paris is the fusion of all the days
I spend in Paris.
We draw the reader’s attention to the fact that definition 3 is

functional, indicated formally by “iz,” that is, the assumption
is made that exactly one z exists such that the formula

“8w(O(w, z) $ (O(w, x) _ O(w, y)))” is satisfied. An analo-
gously remark can be made for definition 4.
We use the following theorems (Simons, 1987) of mere-

ology extensively without further remarks:

P(x, xþ y) (5)

f(x) ! P(x, syf( y)) (6)

P( y1, x) ^ P( y2, x) ! P( y1 þ y2, x) (7)

The main relation involving both endurants and perdurants
is called participation, formally PC. This relation captures
the simple fact that an endurant “lives” in time by participat-
ing in some perdurant. For example, a machine (endurant)
may participate in a production process (perdurant).
A car’s “life” is also a perdurant in which that car partici-
pates throughout the duration of its life, that is, the time
span between the construction of the car untill its destruc-
tion. If endurant a participates in perdurant e at each instant
of period t, we write PC(a, e, t) which reads “a participates
in e during all of t,” note: here tmay be just a part of the dura-
tion of e and participation and parthood are distinct rela-
tions. An endurant is never part of a perdurant, only perdur-
ants can be parts of perdurants, analogously, only endurants
can be parts of endurants. Participation is also time indexed
in order to account for the varieties of participation in time
like temporary participation, constant participation and so
on (see Masolo et al., 2003).

4. DEFINING ARTIFACT BEHAVIORS IN DOLCE

Our approach to formalizing artifact behavior is to model it as
a quality of artifacts that relates the artifact, that is, an endur-
ant, and the perdurants to which the artifact participates. In-
formally, we take behavior to mean the specific way in which
an artifact participates in some perdurant. The relationship
between the artifact and the perdurant is twofold: it captures
the inherent contribution that the artifact brings to the perdur-
ant at hand, which explains, at least in part, why the latter hap-
pens in the way it does, and it also reveals the effects that the
perdurant brings to the artifact. However, a formal description
of this relationship is extremely hard to provide in its general-
ity. In our alternative approach we view behavior as a primi-
tive quality and study it within an ontological framework.
In this setting, the properties of the artifact and the perdurant
can be exploited to characterize and constrain this primitive.
It follows that to talk of the behavior of an artifact, we need to
refer to a perdurant, perhaps for as long as the life of the arti-
fact itself. We point out from the start that our formalization of
behavior is not limited to actual perdurants; it is customary,
especially in the engineering domain, to discuss of the behav-
ior of an object in nonactual situations, that is, situations that
are merely possible and, as we will see, sometimes even
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physically impossible.10 To account for these cases, our no-
tion of perdurant will be quite general.
Perdurants can be actual, that is, events in the real world, or

just possible, that is, events in some imagined world. The lat-
ter category is very broad as it contains all perdurants that are
logically possible, including those that are physically impos-
sible, for example, transmitting information at triple the speed
of light. This broad category of perdurants is used to make
room for all perdurants that could be considered by (rational)
engineers. We assume that a (rational) engineer may be falli-
ble as far as the laws of physics are concerned, but he or she is
not fallible with respect to such basic laws of thought as
logical principles. Thus, the perdurant that is the mereological
fusion of rotating and nonrotating is assumed to be outside the
scope of our considerations as it is meaningless from the
logical perspective. We will make a similar distinction in
the class of behaviors.
Technically, all notions we define are provided in first-order

logic (Lemmon, 1965). That is, although in informal explana-
tions we may speak of sets and classes, and their elements, we
made a significant effort to avoid second-order terms in the for-
malization. The choice to adopt first-order logic is motivated
by two considerations: one, DOLCE, is a first-order theory
so we have no reason to constrain ourselves to weaker logical
systems; two, the metalogical properties of richer logics, like
second-order logics, make their implementation in information
systems highly problematic.
Finally, we add a proviso: in DOLCE the most specific

category for technical artifacts is that of nonagentive phys-
ical objects (NAPO) which is, admittedly, too general be-
cause it includes nonartificial entities like human bodies
and planets. Unfortunately, a category comprising technical
artifacts only has not been characterized in DOLCE.
Fortunately, our theory does not depend on the specific
characterization of technical artifacts. All we need to as-
sume is that there is a way to distinguish a technical artifact
from other entities. Clearly, this is a reasonable assumption
in engineering applications. Then we can develop the
theory by assuming that a specific category of technical
artifacts, here called TechArt, has been given. In princi-
ple, the category TechArt may be part of a future exten-
sion of the DOLCE ontology (e.g., along the lines of Borgo
& Vieu, in press) or can be defined by practitioners accord-
ing to their specific interests.

4.1. A formal definition of artifact behavior

Let a be a technical artifact, that is, TechArt(a).11 Let e be a
perdurant, that is, PD(e). As anticipated, we take the behavior
b of a in a perdurant e to be the specific way in which a occurs
in e. In this view, behavior depends on the chosen a and e and
is seen as a qualification of the participation relation. For in-
stance, if a is a capacitor, then the way in which a occurs or
exists in a given process of storing electric energy is a behav-
ior of precisely this capacitor a.12 Our definition of behavior
links behaviors with two categories of entities: endurants and
perdurants. Consequently, we are able to take into account in-
herent conceptual connections between behaviors and the en-
tities to which we ascribe behaviors. We are also in a position
to say that two different endurants behave differently in the
same perdurant. For instance, if two capacitors in an electrical
circuit participate in a process, we can say that they exhibit
different behaviors, despite referring to the very same pro-
cess. Formally, we take behavior b to be an element of a
new quality category B, that is, a new subcategory of Q: it
does not hold for a single endurant or perdurant, but for pairs
of endurants and perdurants.13 In this way, it captures the spe-
cial relationship between the artifact and the event in which it
“behaves.”

To formalize this relationship, we introduce a ternary rela-
tion

Beh(a, e, b)

which reads “b is the behavior of the technical artifact a in
event e” and is taken as primitive in our theory. It will be help-
ful later on to use the following binary and unary definitional
reductions:

Beh(a, b) W 9eBeh(a, e, b) (8)

Beh(b) W 9e, aBeh(a, e, b) (9)

The expression “Beh(a, b)” means that b is a behavior of a
TechArt entity a, whereas the expression “Beh(b)” means
that b is a behavior of some unspecified entity in TechArt. Sim-
ilar definitions may be constructed for all other types of behav-
ior we provide below. In particular, Beh(b) if and only if B(b).

We talk of the behavior of a in a perdurant e if and only if a
participates in e for all the duration of e, and in the logic we
impose that, for a pair endurant–perdurant satisfying this con-
dition, the corresponding behavior b exists. A behavior b is
uniquely identified by the pair endurant–perdurant, although
a perdurant e may have several participants and an entity a
may participate in several perdurants.

10 The notion of impossible perdurant may look strange. We take the per-
spective of the engineering science and consider “impossible” any perdurant
that does not comply to natural, and in particular, physical, laws. As it hap-
pens, a single or a group of engineers can erroneously consider that some per-
durant may happen because the available knowledge of data and of natural
laws does not prevent it. Indeed, knowledge may be imprecise, erroneous,
or even lacking in some aspect so that someone cannot rule out in his or
her reasoning, an event that is, to all effect, impossible. Of course, these “im-
possible perdurants,” although not part of reality, are part of the spectrum of
engineering activity, and we must include them in our formalization. Below
we will qualify these as physically impossible perdurants to distinguish them
from logically impossible perdurants.

11 The formal predicates and relations introduced by the theory are written
ABC orabc. The predicates and relations already in DOLCE arewritten ABC
or abc.

12 Indeed, we begin by looking at capacitor instances (tokens) and do not
address the behavior of a type of capacitors.

13 The ontological classification of “behavior” is still an open problem in
the literature. As far as we know, the approach we follow in this paper is new.
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Given a perdurant e, let us write tm for the function that
takes as argument a perdurant and returns the period of
time that it spans, that is, the temporal location of the perdur-
ant (see Section 3.2). In other words, tm(e) is the whole of the
period during which perdurant e occurs.
Using i, the iota operator, we can formally define tm as fol-

lows

tm(e) W itqljT,PD(t, e) (10)

Using these notions, we capture our initial observations via
the following axioms

Beh(a, e, b) ! PC(a, e, tm(e)) (11)

Beh(a, e, b) ^ Beh(a, e, b0) ! b ¼ b0 (12)

Beh(a, e, b) ^ Beh(a0, e0, b) ! a ¼ a0 ^ e ¼ e0 (13)

PC(a, e, tm(e)) ! 9b Beh(a, e, b) (14)

These axioms have the following informal readings, respec-
tively: if b is the behavior of a in e, then a participates in e
during all the time spanned by e; if b and b0 are the behavior
of a in e, then b and b0 must be the same behavior; if b is the
behavior of a in e and of a0 in e0, then a, a0 (e, e0) must be the
same artifact (perdurant, respectively); and, if a participates
in e during all the time e spans, then b exists, which is the
behavior of a in e.

4.2. Formal definitions of actual, possible, desired,
and input/output behaviors

Looking at engineers’ activities, we need to distinguish dif-
ferent kinds of behavior. Although an “actual behavior” of
an artifact is what it actually does during (a part of) its life,
the more general notion of “possible behavior” deals with
what an artifact can possibly do. A pen may be destroyed be-
fore it happens to write; still, the pen could have participated
to a writing event, that is, writing is part of its behavior al-
though not of its “actual” behavior. Furthermore, although
a pen may possibly not write because of a design flaw, still
engineers, not aware of the flaw, talk about its writing behav-
ior. Now we will look at how to make room for these cases in
the formalism.
As we have seen, perdurants can be divided in actual, phys-

ically possible, and physically impossible perdurants.
The last class includes all the perdurants believed possible

by rational agents, in particular, engineers, but in which the
artifacts at stake, designed or constructed, cannot do what is
assumed of them. The above three subclasses of the PD cat-
egory are not explicitly defined in DOLCE because the on-
tology is not restricted to the contingent laws, namely, those
of physics, which are at the core of these distinctions.
For this reason, we introduce the class GEPD of general-

ized engineering perdurants, that is, the large class of perdur-

ants in PD that can be relevant to engineers regardless of their
physical possibility.14 This subcategory of PD collects all ac-
tual, physically possible, and physically impossible perdur-
ants. We exclude from GEPD only those perdurant that cannot
be believed by rational agents, like the logically impossible
perdurants, which do not comply with the laws of logic.
We write APD and EPD for the subclasses of actual and phy-
sically possible perdurants respectively. Then,

APD # EPD # GEPD # PD (15)

We add three constraints (16)–(18) revealing the mereologi-
cal structure of perdurants with respect to their modal status:

APD(e) ^ P(e0, e) ! APD(e0) (16)

This constraint says that any part of an actual perdurant is
actual.

APD(e) ^ APD(e0) ! APD(eþ e0) (17)

This constraint say that the sum of two actual perdurants is
actual. Notice that although the sum of any two actual perdur-
ants is always actual, the sum of two possible perdurants need
not be possible; for example, a process of neutralizing an acid,
at a given spatiotemporal location, and a process of neutraliz-
ing an alkali, at the same spatiotemporal location. Moreover,
we do not assume either that the sum of two generalized per-
durants is a generalized perdurant. The reason is that although
the domain of generalized perdurants contains entities that
defy physical laws, it does not contain entities that defy
logical principles. Thus, if we consider the perdurant of writ-
ing of a pen, at a certain spatiotemporal location, and a per-
durant of nonwriting of the same pen, at the same spatiotem-
poral location, then their sum, that is, the perdurant of writing
and nonwriting the pen, is logically impossible and therefore
is not a generalized perdurant.

EPD(e) ^ P(e0, e) ! EPD(e0) (18)

This axiom says that any part of a possible perdurant is pos-
sible. We can now constrain the domain of Beh.

Beh(a, e, b) ! TechArt(a) ^ GEPD(e) ^ B(b) (19)

Some combinations of perdurants are meaningless in engi-
neering practice. It is possible that an air-conditioning system
cools the room, at a given time, and it is also possible that the

14 Of course, we do not claim that each of these perdurants is considered
by engineers, yet the class itself is important in engineering and in particular
in engineering design. An engineer may not know if perdurant “this pen can
write and also unwrite” is possible or not, yet she can conceive the perdurant
itself (it is not logically inconsistent) and consider it in her design activity: she
would not prevent herself to think about it just because now she does not
know how to build such a device. Similarly, there might not be enough ma-
terial in the universe to build a designed device, yet engineers can describe in
detail how the device would work if it were to exist.
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same system heats the room, at the same time. However, these
two perdurants cannot “belong to the content” of the real
world. To account for this condition, we say that two or
more perdurants are coherentwhen their sum is a (physically)
possible perdurant.

Coh(e, e0) W EPD(eþ e0) (20)

Because of (5), axiom 18 implies that only possible perdur-
ants are coherent

Coh(e, e0) ! EPD(e) ^ EPD(e0) (21)

Note that the relation of coherence is reflexive and symmetric
in the class of possible perdurants, but in general, it need not
be transitive. Also, all actual perdurants turn out to be
coherent:

APD(e) ^ APD(e0) ! Coh(e, e0)

It follows from (7) and (18) that all parts of any possible
perdurant are coherent:

EPD(x) ^ P( y1, x) ^ P( y2, x) ! Coh( y1, y2) (22)

We say that two perdurants are cotemporal if they occur at
the same time period, for example, the perdurants “Paulo’s
attending Robert’s talk today” and “Robert’s giving a talk
today.”
For any a in NAPO, let Ca be the class of all generalized

perdurants e such that PC(a, e, tm(e)). From DOLCE, it fol-
lows that Ca is nonempty. Fix a perdurant e in Ca for some
fixed a. We say that e is minimal in Ca if for each perdurant
e0 in Ca cotemporal with e, not PP(e0, e). For instance, a “soc-
cer game” and the “playing of agent a in the soccer game” are
two perdurants in the same classCa but only the latter is mini-
mal in the class.
To define this notion formally, we first introduce the rela-

tion of “wholly participation”

PCWH(a, e) W GEPD(e) ^ PC(a, e, tm(e)) (23)

Given a NAPO a, the predicate PCWH characterizes the class of
all (generalized) perdurants in which a participates through-
out all of its life. When PCWH (a, e), we will say that a wholly
participates in e. Let awholly participate in some perdurant e,
then we define a new relation

MIN(a, e) W PCWH(a, e) ^ 8e0(PCWH(a, e
0) ^ tm(e)

¼ tm(e0) ! :PP(e0, e)) (24)

Informally, MIN(a, e) means that e is a minimal perdurant in
Ca with respect to parthood. Note: e does not need to cover
the whole life of a.

We use this notion and the previous classification of per-
durants to specialize the DOLCE relation lf(x, a), which reads
“perdurant x is the life of endurant a”:

1. Alf(e, a) stands for “perdurant e is the actual life of en-
durant a” and is formally defined as the fusion of the ac-
tual perdurants that are minimal in Ca;

2. Plf(e, a) stands for “perdurant e is a possible life of en-
durant a” and is formally defined as the fusion of a max-
imal class, with respect to inclusion, of coherent engi-
neering possible perdurants which are minimal in Ca;

3. Glf(e, a) stands for “perdurant e is a generalized life of
endurant a” and is formally defined as the fusion of a
maximal class, with respect to inclusion, of logically
consistent engineering generalized perdurants that are
minimal in Ca.

Alf is easily stated once we ensure the endurant partici-
pates in an actual perdurant.

Alf(e, a) W 9e0(APD(e0) ^ PCWH(a, e
0)) ^ e

¼ sy(APD( y) ^ MIN(a, y)) (25)

it follows that a NAPO, and thus a technical artifact, has at
most one actual life.

Alf(e1, a) ^ Alf(e2, a) ! e1 ¼ e2 (26)

Assuming that a perdurant e exists such that APD(e) and
PC(a, e), we write Alf(a) to denote “the actual life of a.”

To define “a possible life” of an endurant awemust be able
to identify a maximal class of perdurants that are globally
coherent. To this goal, we first define a coherent fusion of
engineering possible perdurant for a

X

Coh
(a, e, s) W EPD(e) ^ EPD(s) ^ PCWH(a, e)

^ 8e0((PCWH(a, e
0) ^ :P(tm(e0), tm(e)))

! :EPD(eþ e0)) ^ P(s, sy(EPD( y) ^ MIN(a, y)

^ Coh(e, y))) ^ 8z((EPD(zþ s) ^ MIN(a, z)

^ Coh(e, z)) ! P(z, s)) (27)

This definition says that endurant awholly participates in the
engineering possible perdurant e but not to any longer per-
durant, that is, e spans the possible life we are considering,
and that s is a maximally coherent part of the fusion of all mini-
mal perdurants that are compatible to e. In particular, all perdur-
ants that compose s are coherent with one another. Then,

Plf(e, a) W 9e0
X

Coh
(a, e0, e) (28)

It remains to define Glf, that is, “a generalized life” of an
endurant a. We proceed by defining Plf. Define consistent
fusion,

P
Cons, to identify fusions of maximal consistent

classes of (minimal) generalized perdurants that are pair
wise logically compatibles. In this way, we avoid to sum
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logically inconsistent perdurants like “the drill works at t” and
“the drill does not work at t.” Recall that PCWH(a, c) ensures
GEPD(c) and so does MIN(a, c).

X

Cons
(a, e, s)W PCWH(a, e)^ 8e0(PCWH(a, e

0)

! P(tm(e0), tm(e)))^ P(s, sy(MIN(a, y)

^GEPD(eþ y)))^ 8z((GEPD(zþ s)^MIN(a, z))

! P(z, s)) (29)

Then, the definition of Glf is

Glf(e, a) W 9e0
X

Cons
(a, e0, e) (30)

Note that, in general, an entity in NAPO may have more than
one possible, or generalized, life. In the case of technical ar-
tifacts different possible lives may be determined, among
other things, by imagining the different ways in which the
users of artifacts may use them.
An actual behavior of a is the way in which a occurs in

some actual perdurant. The maximal actual behavior of a is
the way in which a occurs in its actual life.

ActBeh(a, e, b) W Beh(a, e, b) ^ APD(e) (31)

ActBehmax(a, b) W Beh(a, Alf(a), b) (32)

Given (11) and Alf(a), it can be shown that definition (32)
is consistent, that is, that there exists a unique b for which it is
the case that Beh(a, Alf(a), b).
A possible behavior of a is the way in which a occurs in

some possible perdurant. A maximal possible behavior of a
is the way in which a occurs in one of its possible lives.

PossBeh(a, e, b) W Beh(a, e, b) ^ EPD(e) (33)

PossBehmax(a, e, b) W Beh(a, e, b) ^ Plf(e, a) (34)

Note: a maximal possible behavior need not be unique, that
is, it is possible that

PossBehmax(a, e1, b1) ^ PossBehmax(a, e2, b2) ^ b1 = b1

An engineering impossible behavior of a is the way in
which a occurs in some engineering impossible perdurant.

ImBeh(a, e, b) W Beh(a, e, b) ^ GEPD(e) ^ :EPD(e) (35)

A general behavior of a is the way in which a occurs in
some generalized engineering perdurant. A maximal general
behavior of a is the way in which a occurs in a generalized
life.

GenBeh(a, e, b) W Beh(a, e, b) ^ GEPD(e) (36)

GenBehmax(a, e, b) W Beh(a, e, b) ^ Glf(e, a) (37)

All types of perdurants and behaviors discussed so far con-
stitute objective parts of the real world, that is, they do not
depend in the existence of mental attitudes for any agent. Still,
engineering practice heavily depends on beliefs and desires.
To incorporate this dependence into our framework, we as-
sume two primitive notions of agent-related perdurants.
Given an agent, or group of agents,15 G we write PDG(e) to
state that G believes that e is a possible perdurant. Similarly,
we write INTG(e) to state that G desires perdurant e to be
actual. Of course, G is an agentive physical endurant, that
is, APO(G). The former will be called G-possible perdurants
and the latter will be called G-desired perdurants. The
following two axioms establish the ontological categories
of G-possible and G-desired perdurants.

PDG(e) ! GEPD(e) (38)

INTG(e) ! GEPD(e) (39)

We use these notions to define the behavior of a technical artifact for
a group G. Let G be an agent. A G-behavior is a generalized engi-
neering behavior believed by G to be possible.

BehG(a, e, b) W Beh(a, e, b) ^ PDG(e) (40)

Roughly speaking, a maximal G-behavior of a is a general-
ized engineering behavior that involves the fusion of a coher-
ent class of G-possible perdurants, which is maximal with re-
spect to inclusion. As before (cf. 27), we first define the
fusion of a coherent class of G-possible perdurants that are in-
volved in behaviors (G-coherent fusion)

X

G#Coh
(a, e, s) W PDG(e) ^ PDG(s) ^ PCWH(a, e)

^ 8e0(PCWH(a, e
0) ! P(tm(e0), tm(e)))

^ P(s, sy(PDG( y) ^ MIN(a, y) ^ Coh(e, y)))

^ 8z((PDG(zþ s) ^ MIN(a, z)

^ Coh(e, z)) ! P(z, s)) (41)

As in case (27), because of equation (22), if
P

G#Coh (a, e, s),
then all perdurants that compose s are coherent with one
another, that is, s is the fusion of a coherent class of
perdurants.

MaxBehG(a, e, b) W BehG(a, e, b) ^ 9e0
X

G#Coh
(a, e0, e) (42)

Obviously, MaxBehG(a, e, b) means that b is a maximal
G-behavior of a. Notice that a NAPO may exhibit more than
one maximal G-behavior with respect to the same agent G.
One of Chandrasekaran’s definition of behavior mentions the

notion of output state variable. In order to model it in our

15 We allow that any belief of this kind may exhibit collective aspects, but
for the sake of simplicity we neglect these aspects and avoid speaking about
groups of agents.
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framework we need the notion of output, respectively, input,
behavior. These notions are also of crucial importance for other
engineering models of artifact functions (e.g., Pahl & Beitz,
1998; Stone & Wood, 2000). Here we define them with the
help of two primitive, that is, undefined, notions of input/
output perdurant. It is assumed that the, actual or possible or
generalized, life of any artifact contains two perdurants such
that one of them corresponds to the class of input variables
and the other corresponds to the class of output variables.
For instance, the input perdurant of a thermostat (we discuss
this example later on in more detail) can be the thermostat’s
detecting of a decline in temperature, and the output perdurant
can be its closing of an electrical circuit connecting the ther-
mostat and the furnace. Each such pair of input and output
perdurants is selected by an agent involved in an engineering
process, for example, in conceptual design. Then an input/
output behavior is a behavior that involves such input/output
perdurants. Let InPDG(a, e) mean that e is an input perdurant
of an artifact a from the engineering perspective of an agent G;
similarly, OutPDG(a, e) means that e is an output perdurant of
an artifact a from the engineering perspective of G.

InPDG(a, e) ! P(e, Glf(a)) ^ PDG(e) (43)

OutPDG(a, e) ! P(e, Glf(a)) ^ PDG(e) (44)

Using the standard mereological technique we can also de-
fine the maximal input and output perdurants as fusions of,
respectively, input and output perdurants.
An input behavior as seen from the engineering perspec-

tive of an agent G, is any G-behavior that involves some input
perdurant. The maximal input behavior is such behavior that
involves the maximal input perdurant. An output behavior as
seen from the engineering perspective of an agent G, is any
G-behavior that involves some output perdurant. The maxi-
mal output behavior is such behavior that involves the max-
imal output perdurant.

InBehG(a, e, b) W BehG(a, e, b) ^ InPDG(a, e) (45)

OutBehG(a, e, b) W BehG(a, e, b) ^ OutPDG(a, e) (46)

MaxInBehG(a, e, b) W InBehG(a, e, b) ^ 8e0(InPDG(a, e
0)

! P(e0, e)) (47)

MaxOutBehG(a, e, b) W OutBehG(a, e, b) ^ 8e0(OutPDG(a, e
0)

! P(e0, e)) (48)

4.3. Formalizing the fivemeanings of artifact behavior

Now we use the above ontological framework to formalize
the five meanings of behavior and their examples, described
by Chandrasekaran and Josephson (2000), as presented in
Section 2.1. Here, state variables are indirectly captured
through the given G-behavior b, where G is an agent involved
in some engineering task.

1. The behavior b of an artifact a from the engineering per-
spective of G is a G-behavior such that if Beh(a, e, b),
then the duration of e is an instant.16

Chandrasekaran and Josephson’s example of “the car
rattled when the driver hit the curve”: let e be the event
described by the sentence “the car rattled when the
driver hit the curve” and Inst a predicate correspond-
ing to the property “being an instant” in the adopted the-
ory of time, then

Beh(car, e, b) ^ PDG(e) ^ Inst(tm(e)): (49)

2. The behavior b of an artifact a from the engineering
perspective of G is a G-behavior such that Beh(a, e, b)
implies ST(e).
The example: let e be the event described by “the lintel’s
distributing the load to two sides,” then

Beh(lintel, e, b) ^ PDG(e) ^ ST(e) ^ P(e, Alf(a)) (50)

3. The behavior b of an artifact a from the engineering per-
spective of G is a G-behavior such that if Beh(a, e, b),
then tm(e) is a period of positive length.
The example: let e ¼ “the increasing of the BHP of
the artifact for a while and its decreasing afterwards,”
then17

Beh(artifact, e, b) ^ PDG(e) ^ jtm(e)j.0 (51)

4. The behavior b of an artifact a from the engineering per-
spective of an agent G is a G-behavior that is an output
behavior of a.
The example: let e be the event described by “the ampli-
fier performing its function,” then

Beh(amplifier, e, b) ^ PDG(e) ^ 8t, t0(P(t, tm(e))
^ P(t0, tm(e)) ! 8r, r0(ql(r, b, t) ^ ql(r0, b, t0) ! r ¼ r0) (52)

5. The behavior b of an artifact a from an engineering per-
spective of an agent G is a maximal G-behavior of a, re-
stricted to the given period of time.

16 What counts as an instant depends on the notion of time adopted in
the application domain. It can be, for instance, an atomic period, a period
of length zero, a period of positive length that satisfies some minimal con-
straint. These cases are all compatible to both the DOLCE ontology and
our theory.

17 This formalization does not capture the specific nature of the example
given by Chandrasekaran and Josephson. Namely, we abstract from the
fact that some parameter first increases and then decreases. The reason for
this abstraction is that our goal is to identify a notion of behavior, not the par-
ticularities of this specific behavior b. For the interested reader, the change of
the BHP, its increasing or decreasing, can be formalized by using the relations
that occur in example 4. Contrary to example 3, in 4 these relations are ex-
plicitly used because they are necessary to capture the notion of behavior
as discussed there.
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Chandrasekaran and Josephson did not give an exam-
ple. But if e is the perdurant involved in this case, then

MaxBehG(a, e, b) (53)

Admittedly, the formalization of the examples from Chan-
drasekaran and Josephson does not do justice to the richness
of our framework and its advantages. For this reason, we will
now formalize another example taken from Dretske (1988).
Consider a mechanical thermostat in a room and assume
that the room temperature drops to 178C. The thermostat re-
sponds by turning the furnace on. This event characterizes a
behavior of the thermostat: a fall in a room’s temperature
causes a bimetal strip in the thermostat to bend. When the bi-
metal strip bends to a certain angle A, here associated with
178C, it closes an electrical circuit that connects the furnace
to the thermostat and the furnace ignites. The event sequence
can be illustrated in the following way:

1. The temperature drops to 178C.
2. The strip bends to angle A.
3. The switch closes.
4. Current flows to the furnace,
5. The furnace ignites.

“The thermostat’s behavior,” Dretske observes, “is the
bringing about of furnace ignition by events occurring in the
thermostat; in this case, the closure of a switch by the move-
ment of a temperature-sensitive strip” (Dretske, 1988, p. 86).
In our framework we represent the thermostat behavior as

Beh(thermostat, e, b) where b is the general behavior of the
thermostat for the event e corresponding to the sequence
1–5 above. If we want to model the behavior for a subevent
e0, say 3, we write Beh(thermostat, e0, b0) where e0 is “Switch
closes.” Instead, the behavior of the switch at e0 is introduced
by writing Beh(switch, e0, b00).
Finally, note that we have not characterized the relationship

between the behavior b of an artifact in an event e and its be-
havior b0 in a subevent of e. There is an obvious dependence
between the two that can be modeled according to well-
known ontological approaches (e.g., Simons, 1987; Fine,
1995; Thomasson, 1999).

5. DEFINING ARTIFACT FUNCTIONS IN DOLCE

Besides distinguishing different meanings of behavior,
Chandrasekaran and Josephson (2000) define the notion of
artifact function. They assume a theoretical perspective in
which artifact functions are construed as intended behaviors
and define two concepts: device-centric function and envi-
ronment-centric function. We will show in this section to
what extent the ontological approach outlined above is
suitable for grasping these concepts. Leaving aside some
minor aspects, this section is intentionally very close to
the approach of Chandrasekaran and Josephson. Admittedly,

the formalization we obtain can be further elaborated and,
perhaps, simplified. However, our goal here is to show how
to translate the engineering work of Chandrasekaran and Jo-
sephson into a formal ontological system maintaining a clear
link between the engineering and the formal approaches.

5.1. A formal definition of device-centric artifact
function

To characterize both notions of functions, Chandrasekaran
and Josephson start with the definition of behavioral con-
straint. Let X be a class of technical artifacts. It is stated in
(Chandrasekaran & Josephson, 2000) that a behavioral con-
straint in X is any constraint on the behaviors of the elements
of X. As their examples suggest, a behavioral constraint may
be absolute, that is, unconditional, for example, that the value
of output voltage is greater than 5 V, or conditional, for exam-
ple, if the input voltage is above 5 V, the output voltage is a
sinusoid.
We define the notion of behavioral constraints for entities

in the class TechArt by making use of the mereological no-
tion of fusion (see Section 3.2). Namely, given a subclass X of
TechArt, we consider the element a, which is the fusion of
all elements of X, that is, a ¼ sx(x [ X). We will call a the
environment for the behavioral constraint. Formally, we de-
fine a behavior environment as follows

BehEnv(a) W 9X(X # TechArt ^ a ¼ sx(x [ X)) (54)

Following the arguments presented in Chandrasekaran and
Josephson (2000), we formalize behavioral constraints in
environment a as pairs of behaviors. If pair ,b0, b1. is
one of such constraints, then we say that b0 is a condition
for b1 provided that two entities exist, a0 and a00, for which
P(a0, a), P(a00, a) with b0 a behavior of a0 and b1 a behavior
of a00. For the sake of homogeneity, we also use pair ,b0,
b0. to represent an unconditional constraint b0. Thus, to
summarize, when b0 ¼ b1, pair ,b0, b1. indicates that be-
havior b0 is an unconditional constraint on a and when
b0 ¼ b1, ,b0, b1. indicates a conditional constraint on a,
namely, that behavior b0 is a condition for behavior b1.
Let us express the relationship “being a condition” using

the primitive predicate Cond. We do not formally character-
ize this notion here besides requiring that its arguments are
behaviors.

Cond(b, b0) ! Beh(b) ^ Beh(b0) (55)

Formally, we define a behavioral constraint in environment a,
where a is a fusion of elements in TechArt, by

CrBeh(a, b0, b1) W BehEnv(a) ^ (b0 ¼ b1 ! 9a0(P(a0, a)

^ Beh(a0, b0))) ^ (b0 = b1 ! 9a0, a00(P(a0, a)

^ P(a00, a) ^ Cond(b0, b1) ^ Beh(a0, b0)

^ Beh(a00, b1))) (56)
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The notion of behavioral constraint is introduced to capture
intended states of the world. As a result, any such constraint
may, or may not, be satisfied. Such a conceptual category is
crucial if onewants to allow for the possibility that some engi-
neering models are not realizable because of various possible
flows or oversimplifications. In other words, the predicate
Cond does not express the objective relationship between be-
haviors but only an intended relationship. Therefore, within
the domain of behavioral constraints we need to distinguish
those constraints that are satisfied. At first blush, a behavioral
constraint is satisfied when it corresponds to an objective reg-
ularity in the real world. To define this notion, we introduce
the predicate SatCrBeh for satisfied behavioral constraint.

SatCrBeh(a, b0, b1)WCrBeh(a, b0, b1)^9a0, a00, e0, e00(P(a0, a)

^P(a00, a)^PossBeh(a0, e0, b0)

^PossBeh(a00, e00, b1))

^ (b0 ¼ b1 !9eActBeh(a0, e, b0))

^ (b0 = b1 ^9eActBeh(a0, e, b0)

!9e0ActBeh(a00, e0, b1)) (57)

We are now in a position to grasp the device-centric notion
of function defined in Chandrasekaran and Josephson
(2000): “Let F be a class of behavioral constraints defined
on, and satisfied by, an object D. If F is intended or desired
by an agent A, then D has function F for A” (Chandra-
sekaran & Josephson, 2000, p. 172).
Note that D plays the role of the environment X and it is

seen as a single object. In our terminology, the informal char-
acterization given above tell us that a function of a, fusion of
a, technical artifact, say a, for an agent G is a behavioral con-
straint on a, provided that this behavioral constraint is satis-
fied and is desired by G. Thus, we need a notion of behavioral
constraint desired by an agent. To this end, we will define the
predicate DESG behaviors. The expression “DESG(a, b0, b1)”
means either that a behavioral constraint b0 in environment a
is desired by an agent G (when b0 ¼ b1) or that a behavioral
constraint ,b0, b1. (in a) is desired by G (when b0 = b1).
Recall that unconditional constraints are simply behaviors

and that BehG expresses the fact that a behavior is desired by
G (see definition 40). Thus, we already possess the formal
concepts to describe an unconditional behavioral constraint
desired by an agent. We say that ,b0, b1. for environment
a is desired by an agent G if there are a0, a1 in a such that
for any e0 and e1 such that Beh(a0, e0, b0) and Beh(a1, e1,
b1), then e0 and e1 are G-desired perdurants. Formally,

DESG(a, b0, b1) WCrBeh(a, b0, b1) ^ 9a0, a00(P(a0, a)

^ P(a00, a) ^ 8e0, e1((b0 = b1
^ Beh(a0, e0, b0) ^ Beh(a00, e1, b1))

! INTG(e0) ^ INTG(e1))

^ 8e((b0 ¼ b1 ^ Beh(a0, e, b0))

! BehG(a
0, e, b0)) (58)

Now we have all the conceptual tools we need to define the
notion of device-centric function. The particular feature of

this definition is the fact that a function of a technical artifact
is a behavioral constraint imposed in an environment that co-
incides with the artifact.

DevFuncG(a, b0, b1) W SatCrBeh(a, b0, b1) ^ DESG(a, b0, b1)

(59)

5.2. A formal definition of environment-centric
artifact function

To define the environment-centric notion of function we need
to introduce the notion of mode of deployment. According to
Chandrasekaran and Josephson’s explanation, a mode of de-
ployment for an artifact a consists of what they call “the spec-
ifications of the ways in the causal interactions” between a
and some objects from its environment. More perspicuously
speaking, a mode of deployment for an artifact a consists of
the structural relationships between a and the objects in the
environment and the actions in which a and these objects
are involved. We represent such modes of deployment using
our notion of perdurant. As for behavioral constraints, we de-
fine the notion of model of deployment in relation to a single
entity, that is, the fusion of the given environment. Then a
mode of deployment of a technical artifact a in an environ-
ment a0 is a perdurant in which both a and a0 wholly partici-
pate, note: a is always included in the environment, thus P(a,
a0). To be more specific, a mode of deployment for an artifact
a in an environment a0 is any generalized perdurant e such
that there exists a1 with P(a1, a0) and a = a1 and both a
and a1 participate in e. Informally, we capture the relation-
ships between a and elements in the environment, as well
as the actions among them, via a perdurant in which they
all participate. Note that it suffices to change the perdurant
to select different sets of entities, actions and relationships.

MD(e, a, a0) W TechArt(a) ^ BehEnv(a0)

^ P(a, a0) ^ 9a1(P(a1, a0) ^ a = a1
^ PCWH(a, e) ^ PCWH(a1, e)) (60)

Then, a feasible mode of deployment is an (engineering)
possible perdurant which is a mode of deployment

FMD(e, a, a0) W EPD(e) ^ MD(e, a, a0) (61)

Chandrasekaran and Josephson define environment-centric
functions as follows: “Let F be a class of behavioral con-
straints that an agent, say A, desires or intends to be satisfied
in some W [i.e., in some world W ]. Let D be an object intro-
duced intoW, in a mode of deploymentM(D,W). If D causes
F to be satisfied inW, we say thatD has, or performs, the func-
tion F in W” (Chandrasekaran & Josephson, 2000, p. 171).

We chose to formalize these functions, because as one can
represent the causal relations at stake in various ways, there
was not need to employ any particular theory of causality
except to assume that the relation of causality is a binary
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relation that relates perdurants (cf. Lehmann et al., 2004). Let
Cause(e0, e1) mean that a perdurant e0 causes a perdurant e1,
that is,

Cause(e0, e1) ! GEPD(e0) ^ GEPD(e1) (62)

In our framework we may add that the domains of actual
perdurants and possible perdurants are closed downward
and upward with respect to the relation of causality. Note:
causality is not a bridge between these domains. More specif-
ically,

† all causes of actual perdurants are actual,
† all results of actual perdurants are actual,
† all causes of engineering possible perdurants are engi-

neering possible, and
† all results of engineering possible perdurants are engi-

neering possible.

In formal terms these constraints have the following form:

Cause(e, e0) ! (APD(e) $ APD(e0)) (63)

Cause(e, e0) ! (EPD(e) $ EPD(e0)) (64)

Given this interpretation of causality, instead of saying that
a technical artifact in a certain mode of deployment causes a
behavioral constraint to be satisfied, we will say that a mode
of deployment, that is, a perdurant, in which an artifact is in-
volved causes a behavioral constraint to be satisfied. Let
CrBeh(a, b0, b1) express a behavioral constraint in some
environment a and let e be a feasible mode of deployment,
of some artifact, in this environment.Wewill say that e causes
a behavioral constraint ,b0, b1., to be satisfied in a, if and
only if

1. ,b0, b1. is satisfied in a, and
2. e causes both perdurants involved in b0 and b1.

Formally,

CauseMD(a, e, b0, b1)WSatCrBeh(a, b0, b1)

^8a0, e0(Beh(a0, e0, b0)!Cause(e, e0))

^8a1, e1(Beh(a1, e1, b1)!Cause(e, e1))

(65)

A behavioral constraint is said to be a function of a tech-
nical artifact in a certain environment relative to a mode of de-
ployment e if e causes the behavioral constraint and there is an
agent G that desires this behavioral constraint. Then, an envi-
ronment-centric function is defined as follows

EnvFunc(b0, b1, a, a
0, e)W CauseMD(a, e, b0, b1)^FMD(e, a, a0)

^9GDESG(a
0, b0, b1) (66)

6. CONCLUSIONS

In this paper we have presented a formal characterization of
the engineering concepts of behavior and function of tech-
nical artifacts. The goal of our formalization was to capture
the informal meanings these concepts have in the engineering
practice and to characterize them as part of a foundational on-
tology. Of the various informal meanings of behavior and
function that can be found in the engineering and design
methodology literature, we formalized the five meanings
of artifact behavior and the two meanings of function that
Chandrasekaran and Josephson (2000) identified as part of
what they call the functional representation approach. We
used the DOLCE ontology (Masolo et al., 2003) to formalize
these meanings.
More specifically, in Section 4 we introduced general con-

cepts of artifact behavior in DOLCE. The basic idea of our
formalization is that a behavior b of a technical artifact a in
a perdurant e, where a perdurant is an entity that is only par-
tially present at any time it is present, is the specific way in
which a occurs in e. For example, if a is a capacitor, then
the way in which a occurs or exists in a given process of stor-
ing electric energy is a behavior of this capacitor a. Looking
at engineering we distinguished different classes of behavior.
Engineers consider in, for instance, designing, artifact behav-
iors in actually, in physically possible, and in physically im-
possible perdurants, which lead us to define actual behaviors
of artifacts, possible behaviors of artifacts, and behaviors that
are believed to be artifacts behaviors. Moreover, engineers
can isolate input and output behaviors of artifacts, and we
captured these concepts using twoprimitive notions. In Sec-
tion 4.3 we then used these general concepts to formalize
Chandrasekaran and Josephson’s five identified engineering
meanings of behavior.
In Section 5 we moved to the task of introducing the con-

cept of artifact function in DOLCE. In Section 5.1 we de-
fined, using DOLCE, the notions of behavioral constraint
and behavioral constraint desired by an agent, and then cap-
tured Chandrasekaran and Josephson’s notion of a device-
centric function of a technical artifact function. Finally, in
Section 5.2 we defined the notion of mode of deployment
of an artifact in DOLCE and captured Chandrasekaran and
Josephson’s second notion of an environment-centric func-
tion of a technical artifact.
We have shown that an ontological characterization of ar-

tifact behavior and function, using a foundational ontology,
can provide the means to make precise and formalize the in-
formal meaning these concepts have in engineering. These
meanings may be used ambiguously in engineering design-
ing, redesigning, reverse engineering, and knowledge bases,
yet they can be accommodated and distinguished in a founda-
tional ontology such as DOLCE. Our results thus bring us
closer to the ideal that engineers from different disciplinary
backgrounds, and working with different engineering mod-
els, can share and exchange their behavioral and functional
descriptions of technical artifacts without getting caught in
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conceptual misunderstanding. This idea is, however, still an
ideal. Our formalizations have not yet been implemented as
engineering tools for facilitating the sharing and exchanging
of descriptions of the behavior and functions of artifacts, and
information about their practical use is still required. The
DOLCE ontology has already been applied by a variety of in-
dependent organizations in several projects covering a variety
of areas like, for example, e-commerce, manufacturing, social
cooperation, linguistics, and the Semantic web.18 In addition,
the ontology has been positively evaluated in independent
multipurpose surveys and comparison studies like theMITRE
Technical Report,19 the Ontospace Project,20 and the Smart-
Web Project,21 just to name a few. Our formalization of be-
havior and function in DOLCE is fairly direct and did not
brought up the need to changes in the DOLCE ontology.
The formalization we have provided fits thus quite naturally
with the DOLCE structure and, because pivoted by engineer-
ing studies, its implementation is expected by us to obtain a
positive evaluation.
In this paper we have formalized, using DOLCE, the en-

gineering meanings of behavior and functions as identified
by Chandrasekaran and Josephson (2000), and as acknowl-
edged, these meanings are part of what they call the func-
tional representation approach. The engineering meanings
of artifact behavior and functions as they figure in the rival
functional modeling approach still need to be accommo-
dated in our framework. The results of our current analysis
provide us with the means to achieve this task. In the func-
tional basis model of designing of Stone and Wood (2000),
which may be taken as one of the more important represen-
tatives of the functional modeling approach, functions are,
as discussed in Section 2.2, defined as general input/output
relationships between flows of materials, energies, and sig-
nals. Now, taking these relationships as relationships be-
tween input and output behaviors of artifacts, we arrive at
a first approach to accommodate also this concept of func-
tion in DOLCE. The question of whether this can be done
has still to be answered and this defines our next project.
If it can be done, a foundational ontology as DOLCE will
prove its value by allowing us to make unambiguous com-
munications about the behaviors and functions of technical
artifacts possible in engineering.
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APPENDIX A: FORMAL TERMINOLOGY

Table A.1 contains the most important notions of our formal on-
tology of artifact behaviors and functions. Some auxiliary notions
that occur in the text above have been neglected. If a given term is
not defined in this paper, we label it “primitive,” irrespective of
whether it is primitive or defined in DOLCE.

Table A.1. Formal terminology

Term Explanation Status

Foundation

ED(x) x is an endurant Primitive (DOLCE)
PED(x) x is a physical endurant Primitive (DOLCE)
APO(x) x is an agentive physical endurant Primitive (DOLCE)
NAPO(x) x is a nonagentive physical endurant Primitive (DOLCE)
PD(x) x is a perdurant Primitive (DOLCE)
APD(x) x is an actual perdurant Primitive
EPD(x) x is an engineering possible perdurant Primitive
tm(e) The period of time spanned by the perdurant e Defined by (10)
Inst(e) The perdurant e is an instant Primitive
Coh(e, e0) e is coherent with e0 Defined by (20)
Q(x) x is a quality Primitive (DOLCE)
qlT;PD(t, x) t is the temporal location of a perdurant x Primitive (DOLCE)
PC(a, e, t) a participates in e through t Primitive (DOLCE)
PCWH(a, e) a wholly participates in e Defined by (23)
MIN(a, e) e is a minimal perdurant for a Defined by (24)
P(x, y) x is part of y Primitive (DOLCE)
PP(x, y) x is a proper part of y Defined by (1)
O(x, y) x overlaps y Defined by (2)
x þ y The mereological sum of x and y Defined by (3)
sxf(x) The mereological sum of all entities that satisfy f Defined by (4)
P

Coh(a, e, s) s is the fusion of a’s perdurants coherent with e Defined by (27)
P

Cons(a, e, s) s is the fusion of a’s perdurants consistent with e Defined by (29)P
G"Coh (a, e, s) s is the fusion of a’s G-possible perdurants coherent with e Defined by (41)

Alf(e, a) e is the actual life of a Defined by (25)
Plf(e, a) e is a possible life of a Defined by (28)
Glf(e, a) e is the generalized life of a Defined by (30)
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Behavior

Cause(e0, e1) e0 is a cause of e1 Primitive
Beh(a, e, b) b is the behavior of a in e Primitive
Beh(a, b) b is the behavior of a in some perdurant Defined by (8)
Beh(b) b is the behavior of an artifact in some perdurant Defined by (9)
B(x) x is an (individual quality) behavior Primitive
ActBeh(a, e, b) b is the actual behavior of a in e Defined by (31)
ActBehmax(a, b) b is the maximal actual behavior of a Defined by (32)
PossBeh(a, e, b) b is a possible behavior of a in e Defined by (33)
PossBehmax(a, e, b) b is a maximal possible behavior of a in e Defined by (34)
ImBeh(a, e, b) b is an impossible behavior of a in e Defined by (35)
GenBeh(a, e, b) b is a generalized behavior of a in e Defined by (36)
GenBehmax(a, e, b) b is a maximal generalized behavior of a for e Defined by (37)
PDG(e) e is a G-possible perdurant Primitive
INTG(e) e is a G-desired perdurant Primitive
BehG(a, e, b) b is a G behavior of a in e Defined by (40)
MaxBehG(a, e, b) b is a maximal G behavior of a in e Defined by (42)
InPD(e, a) e is an input perdurant of a Primitive
OutPD(e, a) e is an output perdurant of a Primitive
InBehG(a, e, b) b is an input G behavior of a in e Defined by (45)
OutBehGða; e; bÞ b is an output G behavior of a in e Defined by (46)
MaxInBehG(a, e, b) b is the maximal input G behavior of a in e Defined by (47)
MaxOutBehGða; e; bÞ b is the maximal output G behavior of a in e Defined by (48)

Function

BehEnv(a) a is a behavior environment Defined by (54)
Cond(b, c) b is a condition of c Primitive
CrBeh(a, b, c) ,b, c. is a behavioral constraint in a Defined by (56)
SatCrBeh(a, b, c) ,b, c. is a satisfied behavioral constraint in a Defined by (57)
DESG(a, b, c) ,b, c. is a behavioral constraint in a desired by G Defined by (58)
DevFuncG(a, b, c) ,b, c. is a device-centric function of a for G Defined by (59)
MD(e, a, a0) e is a mode of deployment of a in a0 Defined by (60)
CauseCrBehMD(e, b, c) e causes ,b, c. Defined by (65)
EnvFunc(b, c, a, a0, e) ,b, c. is an environment-centric function of a in a0 under e Defined by (66)
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