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The classification of surfaces with pg = q = 1
isogenous to a product of curves
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Abstract. A smooth, projective surface S is said to be isogenous to a product if there exist two
smooth curves C, F and a finite group G acting freely on C × F so that S = (C × F )/G. In this
paper we classify all surfaces with pg = q = 1 which are isogenous to a product.

Key words. Surfaces of general type, isotrivial fibrations, actions of finite groups.

2000 Mathematics Subject Classification. 14J29 (primary), 14L30, 14Q99, 20F05

0 Introduction

The classification of smooth, complex surfaces S of general type with small birational
invariants is quite a natural problem in the framework of algebraic geometry. For instance,
one may want to understand the case where the Euler characteristic χ(OS) is 1, that is,
when the geometric genus pg(S) is equal to the irregularity q(S). All surfaces of general
type with these invariants satisfy pg ≤ 4. In addition, if pg = q = 4 then the self-
intersectionK2

S of the canonical class of S is equal to 8 and S is the product of two genus 2
curves, whereas if pg = q = 3 then K2

S = 6 or 8 and both cases are completely described
([11], [17], [24]). On the other hand, surfaces of general type with pg = q = 0, 1, 2 are
still far from being classified. We refer the reader to the survey paper [3] for a recent
account on this topic and a comprehensive list of references.

A natural way of producing interesting examples of algebraic surfaces is to construct
them as quotients of known ones by the action of a finite group. For instance Godeaux
constructed in [15] the first example of surface of general type with vanishing geometric
genus taking the quotient of a general quintic surface of P3 by a free action of Z5. In line
with this Beauville proposed in [4, p. 118] the construction of a surface of general type
with pg = q = 0, K2

S = 8 as the quotient of a product of two curves C and F by the
free action of a finite group G whose order is related to the genera g(C) and g(F ) by the
equality |G| = (g(C) − 1)(g(F ) − 1). Generalizing Beauville’s example we say that a
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surface S is isogenous to a product if S = (C × F )/G, for C and F smooth curves and
G a finite group acting freely on C × F . A systematic study of these surfaces has been
carried out in [8]. They are of general type if and only if both g(C) and g(F ) are greater
than or equal to 2 and in this case S admits a unique minimal realization where they are
as small as possible. From now on, we tacitly assume that such a realization is chosen,
so that the genera of the curves and the group G are invariants of S. The action of G
can be seen to respect the product structure on C × F . This means that such actions fall
in two cases: the mixed one, where there exists some element in G exchanging the two
factors (in this situation C and F must be isomorphic) and the unmixed one, whereG acts
faithfully on both C and F and diagonally on their product.

After [4], examples of surfaces isogenous to a product with pg = q = 0 appeared in
[22] and [1], and their complete classification was obtained in [2].

The next natural step is therefore the analysis of the case pg = q = 1. Surfaces of
general type with these invariants are the irregular ones with the lowest geometric genus
and for this reason it would be important to provide their complete description. So far,
this has been obtained only in the cases K2

S = 2, 3 ([7], [9], [10], [25], [12]).
The goal of the present paper is to give the full list of surfaces with pg = q = 1

that are isogenous to a product. Our work has to be seen as the sequel to the article [26],
which describes all unmixed cases with G abelian and some unmixed examples with G
nonabelian. Apart from the complete list of the genera and groups occurring, our paper
contains the first examples of surfaces of mixed type with q = 1. The mixed cases turn
out to be much less frequent than the unmixed ones and, as when pg = q = 0, they
occur for only one value of the order of G. However, in contrast with what happens when
pg = q = 0, the mixed cases do not correspond to the maximum value of |G| but appear
for a rather small order, namely |G| = 16.

Our classification procedure involves arguments from both geometry and computa-
tional group theory. We will give here a brief account on how the result is achieved.

If S is any surface isogenous to a product and satisfying pg = q then |G|, g(C), g(F )
are related as in Beauville’s example and we have K2

S = 8. Besides, if pg = q = 1 then
such surfaces are necessarily minimal and of general type (Lemma 2.1).

If S = (C × F )/G is of unmixed type, then the two projections πC : C × F −→ C,
πF : C × F −→ F induce two morphisms α : S −→ C/G, β : S −→ F/G, whose
smooth fibres are isomorphic to F and C, respectively. Moreover, the geometry of S
is encoded in the geometry of the two coverings h : C −→ C/G, f : F −→ F/G and
the invariants of S impose strong restrictions on g(C), g(F ) and |G|. Indeed we have
1 = q(S) = g(C/G) + g(F/G) so we may assume that E := C/G is an elliptic curve
and F/G ∼= P1. Then α : S −→ E is the Albanese morphism of S and the genus galb
of the general Albanese fibre equals g(F ). It is proven in [26, Proposition 2.3] that 3 ≤
g(F ) ≤ 5; in particular this allows us to control |G|. The covers f and h are determined
by two suitable systems of generators for G, that we call V andW , respectively. Besides,
in order to obtain a free action ofG on C×F and a quotient S with the desired invariants,
V and W are subject to strict conditions of combinatorial nature (Proposition 2.2). The
geometry imposes also strong restrictions on the possibleW and the genus of C, so the
existence of V and W and the compatibility conditions can be verified by a computer
search. It is worth mentioning that the classification of finite groups of automorphisms



Surfaces with pg = q = 1 isogenous to a product 235

acting on curves of genus less than or equal to 5 could have also been retrieved from the
existing literature ([6], [19], [20], [21]).

If S = (C×C)/G is of mixed type, then the index two subgroupG◦ ofG correspond-
ing to transformations that do not exchange the coordinates in C × C acts faithfully on
C. The quotient E = C/G◦ is isomorphic to the Albanese variety of S and galb = g(C)
(Proposition 2.5). Moreover g(C) may only be 5, 7 or 9, hence |G| is at most 64 (Proposi-
tion 2.10). The cover h : C −→ E is determined by a suitable system of generators V for
G◦ and since the action of G on C × C is required to be free, combinatorial restrictions
involving the elements of V and those ofG\G◦ have to be imposed (Proposition 2.6). Our
classification is obtained by first listing those groups G◦ for which V exists and then by
looking at the admissible extensions G of G◦. We find that the only possibility occurring
is for g(C) = 5 so that |G| is necessarily 16 (Propositions 4.1, 4.2, 4.3).

In the last part of the paper we examine the structure of the subset of the moduli space
corresponding to surfaces isogenous to a product with pg = q = 1. It can be explicitly
described by calculating the number of orbits of the direct product of certain mapping
class groups with Aut(G) acting on the set (of pairs) of systems of generators (Propo-
sition 5.1). In particular it is possible to determine the number of irreducible connected
components and their respective dimensions, see the forthcoming article [23].

Our computations were carried out by using the computer algebra program GAP4,
whose database includes all groups of order less than 2000, with the exception of 1024
(see [16]). For the reader’s convenience we included the scripts in the Appendix.

Now let us state the main result of this paper.

Main Theorem. Let S = (C × F )/G be a surface with pg = q = 1, isogenous to a
product of curves. Then S is minimal of general type and the occurrences for g(F ), g(C),
G, the dimension D of the moduli space and the number N of its connected components
are precisely those in Table 1.

In the table IdSmallGroup(G) denotes the label of the group G in the GAP4
database of small groups. The calculation of N is due to Penegini and Rollenske, see
[23], except for the cases marked with (∗), which were already studied in [26]. The cases
marked with (∗∗) also appeared in [26], but the computation of N was missing.

This work is organized as follows. In Section 1 we collect the basic facts about sur-
faces isogenous to a product, following the treatment given by Catanese in [8] and we fix
the algebraic setup. In Section 2 we apply the structure theorems of Catanese to the case
pg = q = 1 and this leads to Propositions 2.2 and 2.6, that provide the translation of our
classification problem from geometry to algebra. All these results are used in Sections 3
and 4, which are the core of the paper and give the complete lists of the occurring groups
and genera in the unmixed and mixed cases, respectively. Finally, Section 5 is devoted to
the description of the moduli spaces.

Notations and conventions. All varieties, morphisms, etc. in this article are defined over
C. By “surface” we mean a projective, non-singular surface S, and for such a surface
KS denotes the canonical class, pg(S) = h0(S,KS) is the geometric genus, q(S) =
h1(S,KS) is the irregularity and χ(OS) = 1− q(S) + pg(S) is the Euler characteristic.
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g(F ) = galb g(C) G IdSmallGroup(G) Type D N

3 3 (Z2)
2 G(4, 2) unmixed (∗) 5 1

3 5 (Z2)
3 G(8, 5) unmixed (∗) 4 1

3 5 Z2 × Z4 G(8, 2) unmixed (∗) 3 2
3 9 Z2 × Z8 G(16, 5) unmixed (∗) 2 1
3 5 D4 G(8, 3) unmixed 3 1
3 7 D6 G(12, 4) unmixed (∗∗) 3 1
3 9 Z2 ×D4 G(16, 11) unmixed 3 1
3 13 D2,12,5 G(24, 5) unmixed 2 1
3 13 Z2 ×A4 G(24, 13) unmixed 2 1
3 13 S4 G(24, 12) unmixed 2 1
3 17 Z2 n (Z2 × Z8) G(32, 9) unmixed 2 1
3 25 Z2 × S4 G(48, 48) unmixed 2 1
4 3 S3 G(6, 1) unmixed (∗∗) 4 1
4 5 D6 G(12, 4) unmixed 3 1
4 7 Z3 × S3 G(18, 3) unmixed 2 2
4 7 Z3 × S3 G(18, 3) unmixed 1 1
4 9 S4 G(24, 12) unmixed (∗∗) 2 1
4 13 S3 × S3 G(36, 10) unmixed 1 1
4 13 Z6 × S3 G(36, 12) unmixed 1 1
4 13 Z4 n (Z3)

2 G(36, 9) unmixed 1 2
4 21 A5 G(60, 5) unmixed (∗∗) 1 1
4 25 Z3 × S4 G(72, 42) unmixed 1 1
4 41 S5 G(120, 34) unmixed 1 1
5 3 D4 G(8, 3) unmixed (∗∗) 4 1
5 4 A4 G(12, 3) unmixed (∗∗) 2 2
5 5 Z4 n (Z2)

2 G(16, 3) unmixed 2 3
5 7 Z2 ×A4 G(24, 13) unmixed 2 2
5 7 Z2 ×A4 G(24, 13) unmixed 1 1
5 9 Z8 n (Z2)

2 G(32, 5) unmixed 1 1
5 9 Z2 n D2,8,5 G(32, 7) unmixed 1 1
5 9 Z4 n (Z4 × Z2) G(32, 2) unmixed 1 1
5 9 Z4 n (Z2)

3 G(32, 6) unmixed 1 1
5 13 (Z2)

2 ×A4 G(48, 49) unmixed 1 1
5 17 Z4 n (Z2)

4 G(64, 32) unmixed 1 2
5 21 Z5 n (Z2)

4 G(80, 49) unmixed 1 2
5 5 D2,8,3 G(16, 8) mixed 2 1
5 5 D2,8,5 G(16, 6) mixed 2 3
5 5 Z4 n (Z2)

2 G(16, 3) mixed 2 1

Table 1.
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Throughout the paper we use the following notation for groups:
• Zn: cyclic group of order n.
• Dp,q,r = Zp n Zq = 〈x, y|xp = yq = 1, xyx−1 = yr〉: split metacyclic group of

order pq. The group D2,n,−1 is the dihedral group of order 2n and it will be denoted
by Dn.

• Sn, An: symmetric, alternating group on n symbols.
• If x, y ∈ G, their commutator is defined as [x, y] = xyx−1y−1.
• If x ∈ G we denote by Intx the inner automorphism of G defined as Intx(g) =
xgx−1.

• IdSmallGroup(G) indicates the label of the group G in the GAP4 database of
small groups. For instance IdSmallGroup(D4) = G(8, 3) and this means that D4
is the third in the list of groups of order 8.

Acknowledgements. The authors wish to thank M. Penegini and S. Rollenske for giving
them a preliminary version of [23] and for kindly allowing them to include their results
in the Main Theorem. Moreover they are indebted to the referee for several valuable
comments and suggestions to improve this article.

1 Basics on surfaces isogenous to a product

In this section we collect for the reader’s convenience some basic results on groups acting
on curves and surfaces isogenous to a product, referring to [8] for further details.

Definition 1.1. A complex surface S of general type is said to be isogenous to a product
if there exist two smooth curves C, F and a finite group G acting freely on C ×F so that
S = (C × F )/G.

There are two cases: the unmixed one, where G acts diagonally, and the mixed one,
where there exist elements of G exchanging the two factors (then C and F are isomor-
phic).

In both cases, since the action of G on C × F is free, we have

K2
S =

K2
C×F
|G|

=
8(g(C)− 1)(g(F )− 1)

|G|
,

χ(OS) =
χ(OC×F )
|G|

=
(g(C)− 1)(g(F )− 1)

|G|
,

(1)

hence K2
S = 8χ(OS).

Let C, F be curves of genus ≥ 2. Then the inclusion Aut(C × F ) ⊃ Aut(C) ×
Aut(F ) is an equality if C and F are not isomorphic, whereas Aut(C × C) = Z2 n
(Aut(C)×Aut(C)), the Z2 being generated by the involution exchanging the two coor-
dinates. If S = (C × F )/G is a surface isogenous to a product, we will always consider
its unique minimal realization. This means that
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• in the unmixed case, we have G ⊂ Aut(C) and G ⊂ Aut(F ) (i.e. G acts faithfully
on both C and F );

• in the mixed case, where C ∼= F , we haveG◦ ⊂ Aut(C), forG◦ := G∩ (Aut(C)×
Aut(C)).

(See [8, Corollary 3.9 and Remark 3.10].)

Definition 1.2. Let G be a finite group and let g′ ≥ 0, and mr ≥ mr−1 ≥ · · · ≥ m1 ≥ 2
be integers. A generating vector for G of type (g′|m1, . . . ,mr) is a (2g′ + r)-tuple of
elements

V = {g1, . . . , gr;h1, . . . , h2g′}

such that: the set V generates G; |gi| = mi and g1g2 . . . gr
∏g′

i=1[hi, hi+g′ ] = 1. If such a
V exists, then G is said to be (g′|m1, . . . ,mr)-generated.

For convenience we make abbreviations such as (4|23, 32) for (4|2, 2, 2, 3, 3) when
we write down the type of the generating vector V .

By Riemann’s existence theorem a finite group G acts as a group of automorphisms
of some compact Riemann surface X of genus g with quotient a Riemann surface Y of
genus g′ if and only if there exist integers mr ≥ mr−1 ≥ · · · ≥ m1 ≥ 2 such that
G is (g′|m1, . . . ,mr)-generated and g, g′, |G| and the mi are related by the Riemann–
Hurwitz formula. Moreover, if V = {g1, . . . , gr;h1, . . . , h2g′} is a generating vector for
G, the subgroups 〈gi〉 and their conjugates are precisely the nontrivial stabilizers of the
G-action ([6, Section 2], [5, Chapter 3], [18]). The description of surfaces isogenous
to a product can be therefore reduced to finding suitable generating vectors. Requiring
that S has given invariants pg and q imposes numerical restrictions on the order of the
group G and the genus of the curves C and F . Our goal is to classify all surfaces with
pg = q = 1 isogenous to a product. The aim of the next section is to translate this
classification problem from geometry to algebra.

2 The case pg = q = 1. Building data

Lemma 2.1. Let S = (C × F )/G be a surface isogenous to a product with pg = q = 1.
Then

(i) K2
S = 8.

(ii) |G| = (g(C)− 1)(g(F )− 1).
(iii) S is a minimal surface of general type.

Proof. Claims (i) and (ii) follow from formulas (1). Now let us consider (iii). Since
C × F is minimal and the cover C × F −→ S is étale, S is minimal as well. Moreover
(ii) implies either g(C) = g(F ) = 0 or g(C) ≥ 2, g(F ) ≥ 2. The first case is impossible
otherwise S = P1 × P1 and pg = q = 0; thus the second case occurs, hence S is of
general type. 2
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2.1 Unmixed case. If S = (C × F )/G is a surface with pg = q = 1, isogenous to
an unmixed product, then g(C) ≥ 3, g(F ) ≥ 3 and up to exchanging F and C one may
assume F/G ∼= P1 and C/G ∼= E, where E is an elliptic curve. Moreover α : S −→
C/G is the Albanese morphism of S and galb = g(F ), see [26, Proposition 2.2]. This
leads to

Proposition 2.2 ([26, Proposition 3.1]). LetG be a finite group which is both (0|m1, . . . ,
mr) and (1|n1, . . . , ns)-generated, with generating vectors V = {g1, . . . , gr} andW =
{`1, . . . , `s;h1, h2}, respectively. Let g(F ), g(C) be the positive integers defined by the
Riemann–Hurwitz relations

2g(F )− 2 = |G|
(
− 2 +

r∑
i=1

(
1− 1

mi

))
,

2g(C)− 2 = |G|
s∑
j=1

(
1− 1

nj

)
.

(2)

Assume moreover that g(C) ≥ 3, g(F ) ≥ 3, |G| = (g(C)− 1)(g(F )− 1) and(⋃
σ∈G

r⋃
i=1

〈σgiσ−1〉

)
∩

(⋃
σ∈G

s⋃
j=1

〈σ`jσ−1〉

)
= {1G}. (U)

Then there is a free, diagonal action ofG onC×F such that the quotient S = (C×F )/G
is a minimal surface of general type with pg = q = 1, K2

S = 8. Conversely, every surface
with pg = q = 1, isogenous to an unmixed product, arises in this way.

Here, condition (U) ensures that the G-action on C × F is free.
Set m := (m1, . . . ,mr) and n := (n1, . . . , ns); if S = (C × F )/G is a surface with

pg = q = 1 which is constructed by using the recipe in Proposition 2.2, it will be called
an unmixed surface of type (G,m,n).

Proposition 2.3 ([26, Proposition 2.3]). Let S = (C × F )/G be an unmixed surface of
type (G,m,n). Then there are exactly the following possibilities:
• g(F ) = 3, n = (22);
• g(F ) = 4, n = (3);
• g(F ) = 5, n = (2).

The following lemma gives a restriction on m instead.

Lemma 2.4. Let S = (C × F )/G be an unmixed surface of type (G,m,n). Then every
mi divides |G|/(g(F )− 1).

Proof. Since 〈gi〉 is a stabilizer for the G-action on F and since G acts freely on C × F ,
the subgroup 〈gi〉 ∼= Zmi

acts freely on C. By the Riemann–Hurwitz formula applied
to the cover C −→ C/〈gi〉 we have g(C) − 1 = mi(g(C/〈gi〉) − 1). Thus mi divides
g(C)− 1 = |G|/(g(F )− 1). 2
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2.2 Mixed case.

Proposition 2.5. Let S = (C×C)/G be a surface with pg = q = 1 isogenous to a mixed
product. Then E := C/G◦ is an elliptic curve isomorphic to the Albanese variety of S.

Proof. We have (see [8, Proposition 3.15])

C = H0(Ω1
S) = (H0(Ω1

C)⊕H0(Ω1
C))G = (H0(Ω1

C)G
◦
⊕H0(Ω1

C)G
◦
)G/G

◦

= (H0(Ω1
E)⊕H0(Ω1

E))G/G
◦
.

Since S is of mixed type, the quotient Z2 = G/G◦ exchanges the last two summands,
whence h0(Ω1

E) = 1. Thus E is an elliptic curve and there is a commutative diagram

C × C
ρ //

π

��

E × E

ε

��
S

ρ̂ //

α

%%JJJJJJJJJJJ E(2)

α̂

��
E

(3)

showing that the Albanese morphism α of S factors through the Abel–Jacobi map α̂ of
the double symmetric product E(2) of E. 2

By Lemma 2.1 we have |G| = (g(C)−1)2. In this case [8, Proposition 3.16] becomes

Proposition 2.6. Assume that G◦ is a (1|n1, . . . , ns)-generated finite group with gener-
ating vector V = {`1, . . . , `s;h1, h2} and that there is a nonsplit extension

1 −→ G◦ −→ G −→ Z2 −→ 1 (4)

which gives an involution [ϕ] in Out(G◦). Let g(C) ∈ N be defined by the Riemann–
Hurwitz relation 2g(C) − 2 = |G◦|

∑s
j=1(1 − 1

nj
). Assume, in addition, that |G| =

(g(C)− 1)2 and that
(M1) for all g ∈ G \G◦ we have {`1, . . . , `s} ∩ {g`1g

−1, . . . , g`sg
−1} = ∅;

(M2) for all g ∈ G \G◦ we have g2 /∈
⋃s
j=1
⋃
σ∈G◦〈σ`jσ−1〉.

Then there is a free, mixed action of G on C ×C such that the quotient S = (C ×C)/G
is a minimal surface of general type with pg = q = 1, K2

S = 8.
Conversely, every surface S with pg = q = 1, isogenous to a mixed product, arises in

this way.

Here, conditions (M1) and (M2) ensure that the G-action on C × C is free.

Remark 2.7. The surface S is not covered by elliptic curves because it is of general type
(Lemma 2.1), so the map C −→ C/G◦ = E is ramified. Therefore condition (M1)
implies that G is not abelian.
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Remark 2.8. The exact sequence (4) is nonsplit if and only if the number of elements of
order 2 in G equals the number of elements of order 2 in G◦.

Proposition 2.9. Let S = (C × C)/G be a surface with pg = q = 1, isogenous to a
mixed product. Then galb = g(C).

Proof. Let us look at diagram (3). The Abel–Jacobi map α̂ gives to E(2) the structure of
a P1-bundle over E ([10]); let f be the generic fibre of this bundle and F ∗ := ρ∗ε∗(f). If
Falb is the generic Albanese fibre of S we have Falb = π(F ∗). Let n = (n1, . . . , ns)
be such that G◦ is (1|n1, . . . , ns)-generated and 2g(C) − 2 = |G◦|

∑s
j=1(1 − 1

nj
). The

(G◦ × G◦)-cover ρ is branched exactly along the union of s “horizontal” copies of E
and s “vertical” copies of E; moreover for each i there are one horizontal copy and one
vertical copy whose branching number is ni. Since ε∗(f) is an elliptic curve that intersects
all these copies of E transversally in one point, by the Riemann–Hurwitz formula applied
to F ∗ −→ ε∗(f) we obtain

2g(F ∗)− 2 = |G◦|2 ·
s∑
j=1

2
(

1− 1
nj

)
.

On the other hand the G-cover π is étale, so we have

2g(Falb)− 2 =
1
|G|

(2g(F ∗)− 2) = |G◦|
s∑
j=1

(
1− 1

nj

)
= 2g(C)− 2,

whence galb = g(C). 2

If S = (C × C)/G is a surface with pg = q = 1 which is constructed by using the
recipe of Proposition 2.6, it will be called a mixed surface of type (G,n). The analogue
of Proposition 2.3 in the mixed case is

Proposition 2.10. Let S = (C × C)/G be a mixed surface of type (G,n). Then there
are at most the following possibilities:
• g(C) = 5, n = (22), |G| = 16;
• g(C) = 7, n = (3), |G| = 36;
• g(C) = 9, n = (2), |G| = 64.

Proof. By Proposition 2.6 we have 2g(C) − 2 = |G◦|
∑s
j=1(1 − 1/nj) and |G◦| =

1
2 (g(C) − 1)2, so g(C) must be odd and we obtain 4 = (g(C) − 1)

∑s
j=1(1 − 1/nj).

Therefore 4 ≥ 1
2 (g(C) − 1) and the only possibilities are g(C) = 3, 5, 7, 9. The case

g(C) = 3 is ruled out because G cannot be abelian by Remark 2.7.
If g(C) = 5 then

∑s
j=1(1− 1/nj) = 1, so n = (22) and |G| = 16.

If g(C) = 7 then
∑s
j=1(1− 1/nj) = 2

3 , so n = (3) and |G| = 36.
If g(C) = 9 then

∑s
j=1(1− 1/nj) = 1

2 , so n = (2) and |G| = 64. 2

We will see in Section 2.10 that only the case g(C) = 5 actually occurs.
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3 The unmixed case

The classification of surfaces of general type with pg = q = 1 isogenous to an unmixed
product is carried out in [26] when the group G is abelian. Therefore in this section we
assume that G is nonabelian.

Following [2, Section 1.2], for an r-tuple m = (m1, . . . ,mr) ∈ Nr we set

Θ(m) := −2 +
r∑
i=1

(
1− 1

mi

)
, α(m) :=

2
Θ(m)

.

If S is an unmixed surface of type (G,m,n) then we have 2 ≤ m1 ≤ · · · ≤ mr and
Θ(m) > 0. Besides, by Proposition 2.2 we have α(m) = |G|

g(F )−1 = g(C) − 1 ∈ N and
by Lemma 2.4 each integer mi divides α(m). Then we get

Proposition 3.1. Let S = (C × F )/G be a surface with pg = q = 1 isogenous to an
unmixed product of type (G,m,n). Then m and α(m), written in the format mα(m), lie
in the set T whose elements are:

(2, 3, 7)84, (2, 3, 8)48, (2, 4, 5)40, (2, 3, 9)36, (2, 3, 10)30, (2, 3, 12)24,
(2, 4, 6)24, (32, 4)24, (2, 52)20, (2, 3, 18)18, (2, 4, 8)16, (32, 5)15,
(2, 4, 12)12, (2, 62)12, (32, 6)12, (3, 42)12, (2, 5, 10)10, (32, 9)9,

(2, 82)8, (43)8, (3, 62)6, (53)5, (23, 3)12, (23, 4)8,
(23, 6)6, (22, 32)6, (22, 42)4, (34)3, (25)4, (26)2.

Proof. This follows combining [2, Proposition 1.4] with Lemma 2.4. 2

By abuse of notation, we write m ∈ T instead of mα(m) ∈ T .
Now we analyze the three cases in Proposition 2.3 separately, according to the value

of g(F ). Note that if g(F ) = 3, 4, 5 then |Aut(F )| ≤ 168, 120, 192, respectively ([5,
p. 91]).

Proposition 3.2. If g(F ) = 3 we have precisely the following possibilities.

G IdSmallGroup(G) m

D4 G(8, 3) (22, 42)
D6 G(12, 4) (23, 6)

Z2 ×D4 G(16, 11) (23, 4)
D2,12,5 G(24, 5) (2, 4, 12)

Z2 ×A4 G(24, 13) (2, 62)
S4 G(24, 12) (3, 42)

Z2 n (Z2 × Z8) G(32, 9) (2, 4, 8)
Z2 × S4 G(48, 48) (2, 4, 6)
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Proof. Since n = (22) it follows that G is (1|22)-generated and by the second relation
in (2) we have |G| = 2(g(C) − 1). So we must describe all unmixed surfaces of type
(G,m,n) with m ∈ T , n = (22) and |G| = 2α(m). By a computer search through the r-
tuples in Proposition 3.1 we can list all possibilities, proving our statement. See the GAP4
script 1 in the Appendix to see how this procedure applies to an explicit example. 2

Proposition 3.3. If g(F ) = 4 we have precisely the following possibilities.

G IdSmallGroup(G) m

S3 G(6, 1) (26)
D6 G(12, 4) (25)

Z3 × S3 G(18, 3) (22, 32)
Z3 × S3 G(18, 3) (3, 62)
S4 G(24, 12) (23, 4)

S3 × S3 G(36, 10) (2, 62)
Z6 × S3 G(36, 12) (2, 62)

Z4 n (Z3)2 G(36, 9) (3, 42)
A5 G(60, 5) (2, 52)

Z3 × S4 G(72, 42) (2, 3, 12)
S5 G(120, 34) (2, 4, 5)

Proof. Since n = (3) it follows that G is (1|3)-generated and by the second relation in
(2) we have |G| = 3(g(C) − 1). Therefore our statement can be proven searching by
computer calculation all unmixed surfaces of type (G,m,n) with m ∈ T , n = (3),
|G| = 3α(m) and α(m) ≤ 40. 2

Proposition 3.4. If g(F ) = 5 we have precisely the following possibilities.

G IdSmallGroup(G) m

D4 G(8, 3) (26)
A4 G(12, 3) (34)

Z4 n (Z2)2 G(16, 3) (22, 42)
Z2 ×A4 G(24, 13) (22, 32)
Z2 ×A4 G(24, 13) (3, 62)

Z8 n (Z2)2 G(32, 5) (2, 82)
Z2 nD2,8,5 G(32, 7) (2, 82)

Z4 n (Z4 × Z2) G(32, 2) (43)
Z4 n (Z2)3 G(32, 6) (43)
(Z2)2 ×A4 G(48, 49) (2, 62)
Z4 n (Z2)4 G(64, 32) (2, 4, 8)
Z5 n (Z2)4 G(80, 49) (2, 52)
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Proof. Since n = (2), it follows that G is (1|2)-generated and by the second relation
in (2) we have |G| = 4(g(C) − 1). Therefore our statement can be proven searching
by computer calculation all unmixed surfaces of type (G,m,n) with m ∈ T , n = (2),
|G| = 4α(m) and α(m) ≤ 48. 2

4 The mixed case

In this section we use Proposition 2.6 in order to classify the surfaces with pg = q = 1
isogenous to a mixed product. By Proposition 2.10 we have g(C) = 5, 7 or 9. Let us
consider the three cases separately.

4.1 The case g(C) = 5, |G| = 16.

Proposition 4.1. If g(C) = 5, |G| = 16 we have precisely the following possibilities.

G◦ IdSmallGroup(G◦) G Group(G)

D4 G(8, 3) D2,8,3 G(16, 8)
Z2 × Z4 G(8, 2) D2,8,5 G(16, 6)

(Z2)3 G(8, 5) Z4 n (Z2)2 G(16, 3)

Proof. In this case n = (22), so our first task is to find all nonsplit sequences of type (4)
for which G◦ is a (1|22)-generated group of order 8. The three abelian groups of order 8
and D4 are (1|22)-generated whereas the quaternion group Q8 is not.

Since Z8 has only one element ` of order 2, condition (M1) in Proposition 2.6 cannot
be satisfied for any choice of V . By Remark 2.7 we are left to analyze the possible
embeddings of Z2 × Z4, D4 and (Z2)3 in nonabelian groups of order 16. The groups
Z2 × Z4, D4 and (Z2)3 have 3, 5 and 7 elements of order 2, respectively. Therefore if n2
denotes the number of elements of order 2 in G, by Remark 2.8 we must consider only
those groups G of order 16 with n2 ∈ {3, 5, 7}. The nonabelian groups of order 16 with
n2 = 3 are D2,8,5,Z2 ×Q8 and D4,4,−1 and they all contain a copy of Z2 × Z4. The only
nonabelian group of order 16 with n2 = 5 is D2,8,3 and it contains a subgroup isomorphic
to D4. The nonabelian groups of order 16 with n2 = 7 are Z4 n (Z2)2 = G(16, 3) and
Z2 nQ8, and only the former contains a subgroup isomorphic to (Z2)3 (cf. [28]).

Summarizing, we are left with the following cases:

G◦ G

D4 D2,8,3
Z2 × Z4 D2,8,5
Z2 × Z4 Z2 ×Q8
Z2 × Z4 D4,4,−1
(Z2)3 Z4 n (Z2)2

Let us analyze them separately.
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• G◦ = D4, G = D2,8,3 = 〈x, y|x2 = y8 = 1, xyx−1 = y3〉.
We consider the subgroup G◦ := 〈x, y2〉 ∼= D4. Set `1 = `2 = x and h1 = h2 = y2.
Condition (M1) holds because CG(x) = 〈x, y4〉 ⊂ G◦. Condition (M2) is satisfied
because the conjugacy class of x inG◦ is contained in the coset x〈y2〉while for every
g ∈ yG◦ we have g2 ∈ 〈y〉. Therefore this case occurs by Proposition 2.6.

• G◦ = Z2 × Z4, G = D2,8,5 = 〈x, y|x2 = y8 = 1, xyx−1 = y5〉.
We consider the subgroupG◦ := 〈x, y2〉 ∼= Z2×Z4. Set `1 = `2 = x and h1 = h2 =
y2. Conditions (M1) and (M2) are verified as in the previous case, so this possibility
occurs.

• G◦ = Z2 × Z4, G = Z2 ×Q8 and G◦ = Z2 × Z4, G = D4,4,−1.
All elements of order 2 in G are central, so condition (M1) cannot be satisfied and
these cases do not occur.

• G◦ = (Z2)3, G = Z4 n (Z2)2 = 〈x, y, z|x4 = y2 = z2 = 1, xyx−1 = yz, [x, z] =
[y, z] = 1〉.
We consider the subgroup G◦ := 〈y, z, x2〉 ∼= (Z2)3. Set `1 = `2 = y and h1 =
z, h2 = x2. Condition (M1) holds as G◦ is abelian and [x, y] 6= 1. Condition (M2) is
satisfied because if g ∈ xG◦ then g2 ∈ 〈z, x2〉. Therefore this case occurs. 2

4.2 The case g(C) = 7, |G| = 36.

Proposition 4.2. The case g(C) = 7, |G| = 36 does not occur.

Proof. In this case n = (3), so G◦ is a group of order 18 which is (1|3)-generated. There
are five groups of order 18 up to isomorphism. By computer search or direct calculation
we see that the only one which is (1|3)-generated is Z3 × S3 = G(18, 3). Thus G would
fit into a short exact sequence

1 −→ Z3 × S3 −→ G −→ Z2 −→ 1. (5)

A computer search shows that the only groups of order 36 containing a subgroup isomor-
phic to Z3 × S3 are G(36, 10) = S3 × S3 and G(36, 12) = Z6 × S3 (see GAP4 script 2
in the Appendix). They contain 15 and 7 elements of order 2, respectively. On the other
hand Z3 × S3 contains 3 elements of order 2, so by Remark 2.8 all possible extensions of
the form (5) are split and this case cannot occur. 2

4.3 The case g(C) = 9, |G| = 64.

Proposition 4.3. The case g(C) = 9, |G| = 64 does not occur.

The proof will be a consequence of the results below. First notice that, since n = (2),
the group G◦ must be (1|2)-generated.

Computational Fact 4.4. There exist precisely 8 groups of order 32 which are (1|2)-
generated, namely G(32, t) for t ∈ {2, 4, 5, 6, 7, 8, 12, 17}. The number n2 of their ele-
ments of order 2 is given in the following table:
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t 2 4 5 6 7 8 12 17
n2(G(32, t)) 7 3 7 11 11 3 3 3

Proof. Slightly modifying the first part of GAP4 script 1 in the Appendix we easily find
that the groups of order 32 which are (1|2)-generated are exactly those in the statement.
The number of elements of order 2 in each case are found by a quick computer search:
see again the Appendix, GAP4 script 3. 2

Computational Fact 4.5. Let t ∈ {2, 4, 5, 6, 7, 8, 12, 17}. A nonsplit extension of the
form

1 −→ G(32, t) −→ G(64, s) −→ Z2 −→ 1 (6)

exists if and only if the pair (t, s) is one of the following:
(2, 9), (2, 57), (2, 59), (2, 63), (2, 64), (2, 68), (2, 70), (2, 72), (2, 76), (2, 79), (2, 81),
(2, 82),
(4, 11), (4, 28), (4, 122), (4, 127), (4, 172), (4, 182),
(5, 5), (5, 9), (5, 112), (5, 113), (5, 114), (5, 132), (5, 164), (5, 165), (5, 166),
(6, 33), (6, 35),
(7, 33),
(8, 37),
(12, 7), (12, 13), (12, 14), (12, 15), (12, 16), (12, 126), (12, 127), (12, 143), (12, 156),
(12, 158), (12, 160),
(17, 28), (17, 43), (17, 45), (17, 46).

Proof. Assume t = 2. Using the GAP4 script 4 in the Appendix we find that the
groups of order 64 containing a subgroup isomorphic to G(32, 2) are G(64, s) for s ∈
{8, 9, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82}. By Remark 2.8 and Computational Fact 4.4, in order to detect all the groupsG(64, s)
fitting in some nonsplit extension of type (6) with t = 2, it is sufficient to select from the
previous list the groups containing exactly n2 = 7 elements of order 2. This can be done
with the GAP4 script 5 in the Appendix, proving the claim in the case t = 2. The proof
for the other values of t may be carried out exactly in the same way. 2

Let us denote by [G,G]2 and [G◦, G◦]2 the subsets of elements of order 2 in [G,G]
and [G◦, G◦], respectively.

Lemma 4.6. Assume g(C) = 9 and that one of the following situations occurs:
• [G,G]2 ⊆ Z(G);
• there exists some element y ∈ G \G◦ commuting with all elements in [G◦, G◦]2.

Then given any generating vector V = {`1;h1, h2} of type (1|2) for G◦, condition (M1)
in Proposition 2.6 cannot be satisfied.

Proof. Since `1 ∈ [G◦, G◦]2 ⊆ [G,G]2, in any of the above situations CG(`1) is not
contained in G◦, so (M1) cannot hold. 2
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Computational Fact 4.7. Let G = G(64, s) be one of the groups appearing in the list of
Computational Fact 4.5. Then [G,G]2 is not contained in Z(G) if and only if s = 5, 33,
35, 37.

Proof. See the GAP4 script 6 in the Appendix. 2

Computational facts 4.5, 4.7 and Lemma 4.6 imply that we only need to analyze the
following pairs (G◦, G):

G◦ G

G(32, 5) G(64, 5)
G(32, 6) G(64, 33)
G(32, 7) G(64, 33)
G(32, 6) G(64, 35)
G(32, 8) G(64, 37)

Proposition 4.8. The case G◦ = G(32, 5) does not occur.

Proof. A presentation for the group G◦ is

G◦ = 〈x, y, z | x8 = y2 = z2 = 1, [y, z] = [x, z] = 1, [x, y] = z〉.

Its derived subgroup contains exactly one element of order 2, namely z. It follows that if
{`1;h1, h2} is any generating vector of type (1|2) for G◦, then `1 = z. Since [G◦, G◦]
is characteristic in G◦, condition (M1) cannot be satisfied for any embedding of G◦ into
G. 2

By using the two instructions P:=PresentationViaCosetTable(G) and
TzPrintRelators(P) and setting in the output

x := f1, y := f2, z := f3, w := f4, v := f5, u := f6

one obtains the following presentations for G(64, 33), G(64, 35) and G(64, 37).

G(64, 33) = 〈x, y, z, w, v, u | z2 = w2 = v2 = u2 = 1, x2 = w, y2 = u,

[x, zy] = z, [x, vz] = v, [x, vu] = u,

[y, z] = [y, v] = [z, v] = [w, v] = [x, u] = 1〉,
(7)

G(64, 35) = 〈x, y, z, w, v, u | w2 = v2 = u2 = 1, z2 = y2 = u, x2 = w,

[y, z] = [z, w] = u, [x, yz] = z, [x, z] = uv,

[y, v] = [z, v] = [w, v] = [x, u] = 1〉,
(8)

G(64, 37) = 〈x, y, z, w, v, u | v2 = u2 = 1, w2 = z2 = y2 = u, x2 = w,

[y, z] = [z, w] = u, [x, yz] = z, [x, z] = uv,

[y, v] = [z, v] = [w, v] = 1〉.
(9)
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Computational Fact 4.9. Referring to presentations (7), (8) and (9), we have the follow-
ing facts.
• The group G(64, 33) contains exactly one subgroup N1 isomorphic to G(32, 6) and

one subgroup N2 isomorphic to G(32, 7), namely

N1 := 〈x, z, w, v, u〉, N2 := 〈xy, z, w, v, u〉.

• The groupG(64, 35) contains exactly two subgroupsN3,N4 isomorphic toG(32, 6),
namely

N3 := 〈x, z, w, v, u〉, N4 := 〈xy, z, w, v, u〉.

• The groupG(64, 37) contains exactly two subgroupsN5,N6 isomorphic toG(32, 8),
namely

N5 := 〈x, z, w, v, u〉, N6 := 〈xy, z, w, v, u〉.

In addition, for every i ∈ {1, . . . , 6} we have

(a) [Ni, Ni] = 〈v, u〉 ∼= Z2 × Z2.
(b) y /∈ Ni and y commutes with all elements in [Ni, Ni].

Proof. See the GAP4 script 7 in the Appendix. 2

Proposition 4.10. The cases G◦ = G(32, 6), G(32, 7), G(32, 8) do not occur.

Proof. By Lemma 4.6 and Computational Fact 4.9 it follows that, given any nonsplit
extension of type (6) with G◦ as above, condition (M1) in Proposition 2.6 cannot be
satisfied. 2

Summing up, we finally obtain

Proof of Proposition 4.3. It follows from Propositions 4.8 and 4.10. 2

5 Moduli spaces

Let Ma,b be the moduli space of smooth minimal surfaces of general type with χ(OS) =
a,K2

S = b; by an important result of Gieseker, Ma,b is a quasiprojective variety for all
a, b ∈ N (see [14]). Obviously, our surfaces are contained in M1,8 and we want to describe
their locus there. We denote by M(G,m,n) the moduli space of unmixed surfaces of type
(G,m,n) and by M(G,n) the moduli space of mixed surfaces of type (G,n). We know
that n = (22), (3) or (2) in the unmixed case, whereas n = (22) in the mixed one. By a
general result of Catanese ([8]), both M(G,m,n) and M(G,n) consist of finitely many
irreducible connected components of M1,8, all of the same dimension. More precisely,
we have

dim M(G,m,n) = r + s− 3, dim M(G,n) = s.
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Consider the mapping class groups in genus zero and one:

Mod0,[r] := 〈σ1, . . . , σr | σiσi+1σi = σi+1σiσi+1,

σiσj = σjσi if |i− j| ≥ 2,

σr−1σr−2 . . . σ
2
1 . . . σr−2σr−1 = 1〉,

Mod1,1 := 〈tα, tβ , tγ | tαtβtα = tβtαtβ , (tαtβ)3 = 1〉,
Mod1,[2] := 〈tα, tβ , tγ , ρ | tαtβtα = tβtαtβ , tαtγtα = tγtαtγ ,

tβtγ = tγtβ , (tαtβtγ)4 = 1,
tαρ = ρtα, tβρ = ρtβ , tγρ = ρtγ〉.

One can prove that

Mod0,[r] := π0 Diff+(P1 − {p1, . . . , pr}),
Mod1,1 := π0 Diff+(Σ1 − {p}),

Mod1,[2] := π0 Diff+(Σ1 − {p, q}),

where Σ1 is the torus S1×S1 ([27], [13]). This implies that we can define actions of these
groups on the set of generating vectors for G of type (0|m1, . . . ,mr), (1|n) and (1|n2),
respectively.

If V := {g1, . . . , gr} is of type (0|m1, . . . ,mr) then the action is given by

σi :


gi −→ gi+1

gi+1 −→ g−1
i+1gigi+1

gj −→ gj if j 6= i, i+ 1.

IfW := {`1;h1, h2} is of type (1|n) then

tα :


`1 −→ `1

h1 −→ h1

h2 −→ h2h1,

tβ :


`1 −→ `1

h1 −→ h1h
−1
2

h2 −→ h2.

IfW := {`1, `2;h1, h2} is of type (1|n2) then

tα :


`1 −→ `1

`2 −→ `2

h1 −→ h1

h2 −→ h2h1,

tβ :


`1 −→ `1

`2 −→ `2

h1 −→ h1h
−1
2

h2 −→ h2,

tγ :


`1 −→ `1

`2 −→ h1h
−1
2 h−1

1 `2h1h2h
−1
1

h1 −→ h−1
2 `1h1

h2 −→ h2,

ρ :


`1 −→ h−1

2 h−1
1 `2h1h2

`2 −→ h−1
1 h−1

2 `1h2h1

h1 −→ h−1
1

h2 −→ h−1
2 .



250 Giovanna Carnovale and Francesco Polizzi

These are called Hurwitz moves and the induced equivalence relation on generating vec-
tors is the Hurwitz equivalence (see [1], [2], [26]).

Now let B(G,m,n) be the set of pairs of generating vectors (V,W) such that the as-
sumptions in Proposition 2.2 are satisfied; then we denote by R the equivalence relation
on B(G,m,n) generated by Hurwitz moves on V , Hurwitz moves onW and the simul-
taneous action of Aut(G) on V and W . Similarly, let B(G,n) be the set of generating
vectors V such that the assumptions of Proposition 2.6 are satisfied; then we denote by R
the equivalence relation on B(G,n) generated by the Hurwitz moves and the action of
Aut(G) on V .

Proposition 5.1. The number of irreducible components in M(G,m,n) equals the num-
ber of R-classes in B(G,m,n). Analogously, the number of irreducible components in
M(G,n) equals the number of R-classes in B(G,n).

Proof. We can repeat exactly the same argument used in [2, Propositions 5.2 and 5.5]; we
must just replace, where it is necessary, the mapping class group of P1 with the mapping
class group of the elliptic curve E. 2

Proposition 5.1 in principle allows us to compute the number of connected compo-
nents of the moduli space in each case. In practice, this task may be too hard to be
achieved by hand, but it is not out of reach if one uses the computer. Recently, M. Penegini
and S. Rollenske developed a GAP4 script that solves this problem in a rather short time.
We put the result of their calculations in the Main Theorem (see Introduction), referring
the reader to the forthcoming paper [23] for further details.

6 Appendix

In this appendix we include, for the reader’s convenience, some of the GAP4 scripts that
we have used in our computations; all the others are similar and can be easily obtained
modifying the ones below.

Let us show how the procedure in the proof of Proposition 3.2 applies to an explicit
example, namely mα(m) = (2, 4, 12)12. First we find all the nonabelian groups of order
24 that are (0|2, 4, 12)-generated. This is done using GAP4 as below; the output tells us
that there is only one such a group, namely G = G(24, 5).

gap> # -------------- SCRIPT 1 ------------------
gap> s:=NumberSmallGroups(24);; set:=[1..s];
[1..15]
gap> for t in set do
> c:=0; G:= SmallGroup(24,t);
> Ab:=IsAbelian(G);
> for g1 in G do
> for g2 in G do
> g3:=(g1*g2)ˆ-1;
> H:= Subgroup(G, [g1,g2]);
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> if Order(g1)=2 and Order(g2)=4 and Order(g3)=12 and
> Order(H)=Order(G) and
> Ab=false then
> c:=c+1; fi;
> if Order(g1)=2 and Order(g2)=4 and Order(g3)=12 and
> Order(H)=Order(G) and
> Ab=false and c=1 then
> Print(IdSmallGroup(G)," ");
> fi; od; od; od; Print("\n");
[24,5]

By using the two instructions P:=PresentationViaCosetTable(G) and
TzPrintRelators(P) we see that G has the presentation 〈x, y|x2 = y12 = 1, xyx−1

= y5〉, hence it is isomorphic to the metacyclic group D2,12,5.
In order to speed up further computations, we define the sets G2, G4 given by the

elements of G having order 2 and 4, respectively.

gap> G:=SmallGroup(24,5);;
gap> G2:=[];; G4:=[];;
gap> for g in G do
> if Order(g)=2 then Add(G2,g); fi;
> if Order(g)=4 then Add(G4,g); fi; od;

Then we check whether G is actually (1|22)-generated; if not, it should be excluded.

gap> c:=0;;
gap> for l2 in G2 do
> for h1 in G do
> for h2 in G do
> l1:=(l2*h1*h2*h1ˆ-1*h2ˆ-1)ˆ-1;
> K:=Subgroup(G, [l2, h1, h2]);
> if Order(l1)=2 and Order(K)=Order(G) then
> Print(IdSmallGroup(G), " is (1 | 2,2)-generated", "\n");
> c:=1; fi;
> if c=1 then break; fi; od;
> if c=1 then break; fi; od;
> if c=1 then break; fi; od;
[24,5] is (1 | 2,2)-generated

We finish the proof by checking whether the surface S actually exists; the procedure
is to look for a pair (V,W) of generating vectors for G satisfying the assumptions of
Proposition 2.2.
gap> c:=0;;
gap> for g1 in G2 do
> for g2 in G4 do
> g3:=(g1*g2)ˆ-1;
> H:=Subgroup(G, [g1, g2]);
> for l2 in G2 do
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> for h1 in G do
> for h2 in G do
> l1:=(l2*h1*h2*h1ˆ-1*h2ˆ-1)ˆ-1;
> K:=Subgroup(G, [l2, h1, h2]);
> Boole1:=l1 in ConjugacyClass(G, g1);
> Boole2:=l1 in ConjugacyClass(G, g2ˆ2);
> Boole3:=l1 in ConjugacyClass(G, g3ˆ6);
> Boole4:=l2 in ConjugacyClass(G, g1);
> Boole5:=l2 in ConjugacyClass(G, g2ˆ2);
> Boole6:=l2 in ConjugacyClass(G, g3ˆ6);
> if Order(g3)=12 and Order(l1)=2 and
> Order(H)=Order(G) and Order(K)=Order(G) and
> Boole1=false and Boole2=false and Boole3=false and
> Boole4=false and Boole5=false and Boole6=false then
> Print("The surface exists "); c:=1; fi;
> if c=1 then break; fi; od;
> if c=1 then break; fi; od;
> if c=1 then break; fi; od;
> if c=1 then break; fi; od;
> if c=1 then break; fi; od; Print("\n");
The surface exists

The script above can be easily modified in order to obtain the list of all admissible
pairs (V,W); for instance, one of such pair is given by

g1 = x, g2 = xy−1, g3 = y,

`1 = xy2, `2 = xy2, h1 = y, h2 = y.

Finally, here are the GAP4 scripts used in Section 4.

gap> # -------------- SCRIPT 2 ------------------
gap> s:=NumberSmallGroups(36);; set:=[1..s];
[1..14]
gap> for t in set do
> c:=0; G:=SmallGroup(36,t);
> N:=NormalSubgroups(G);
> for G0 in N do
> if IdSmallGroup(G0)=[18,3] then
> c:=c+1; fi;
> if IdSmallGroup(G0)=[18,3] and c=1 then
> Print(IdSmallGroup(G), " ");
> fi; od; od; Print("\n");
[36,10] [36,12]

gap> # -------------- SCRIPT 3 ------------------
gap> set:=[2,4,5,6,7,8,12,17];;
gap> for t in set do
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> n2:=0;
> G0:=SmallGroup(32,t);
> for g in G0 do
> if Order(g)=2 then
> n2:=n2+1; fi; od;
> Print(IdSmallGroup(G0), " "); Print(n2, " ");
> od; Print("\n");
[32,2] 7 [32,4] 3 [32,5] 7 [32,6] 11 [32,7] 11
[32,8] 3 [32,12] 3 [32,17] 3

gap> # -------------- SCRIPT 4 ------------------
gap> s:=NumberSmallGroups(64);; set:=[1..s];
[1..267]
gap> for t in set do
> c:=0; G:=SmallGroup(64,t);
> N:=NormalSubgroups(G);
> for G0 in N do
> if IdSmallGroup(G0)=[32,2] then
> c:=c+1; fi;
> if IdSmallGroup(G0)=[32,2] and c=1 then
> Print(IdSmallGroup(G), " ");
> fi; od; od; Print("\n");
[64,8] [64,9] [64,56] [64,57] [64,58] [64,59] [64,61]
[64,62] [64,63] [64,64] [64,66] [64,67] [64,68]
[64,69] [64,70] [64,72] [64,73] [64,74] [64,75]
[64,76] [64,77] [64,78] [64,79] [64,80] [64,81]
[64,82]

gap> # -------------- SCRIPT 5 ------------------
gap> set:=[8,9,56,57,58,59,61,62,63,64,66,67,68,69,70,
>72,73,74,75,76,77,78,79,80,81,82];;
gap> for t in set do
> n2:=0; G:=SmallGroup(64,t);
> for g in G do
> if Order(g)=2 then n2:=n2+1;
> fi; od;
> if n2=7 then
> Print(IdSmallGroup(G), " ");
> fi; od; Print("\n");
[64,9] [64,57] [64,59] [64,63] [64,64] [64,68] [64,70]
[64,72] [64,76] [64,79] [64,81] [64,82]

gap> # -------------- SCRIPT 6 ------------------
gap> set:=[5,7,9,11,13,,14,15,16,28,33,35,37,43,45,46,
>57,59,63,64,68,70,72,76,79,81,82,112,113,114, 122,126,
>127,132,143,156,158,160,164,165,166,172,182];;
gap> for t in set do
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> c:=0; G:=SmallGroup(64,t);
> D:=DerivedSubgroup(G);
> for d in D do
> B:=d in Center(G);
> if Order(d)=2 and B=false then
> c:=c+1; fi;
> if Order(d)=2 and B=false and c=1 then
> Print(IdSmallGroup(G), " ");
> fi; od; od; Print("\n");
[64,5] [64,33] [64,35] [64,37]

gap> # -------------- SCRIPT 7 ------------------
gap> s:=[33, 35, 37];; I:=[1, 2, 3];;
gap> r:=[ [[32,6], [32,7]], [[32,6]], [[32,8]] ];;
> for i in I do
> G:=SmallGroup(64, s[i]); Print(IdSmallGroup(G), "\n");
> for N in NormalSubgroups(G) do
> if IdSmallGroup(N) in r[i] then
> Print(N, "="); Print(IdSmallGroup(N), " ");
> Print(DerivedSubgroup(N), "\n");
> fi; od; Print("\n"); od;
[64,33]
Group( [ f1*f2, f3, f4, f5, f6 ] )=[32,7]
Group( [ f5, f6 ] )
Group( [ f1, f3, f4, f5, f6 ] )=[32,6]
Group( [ f5, f6 ] )

[64,35]
Group( [ f1*f2, f3, f4, f5, f6 ] )=[32,6]
Group( [ f5, f6 ] )
Group( [ f1, f3, f4, f5, f6 ] )=[32,6]
Group( [ f5, f6 ] )

[64,37]
Group( [ f1*f2, f3, f4, f5, f6 ] )=[32,8]
Group( [ f5, f6 ] )
Group( [ f1, f3, f4, f5, f6 ] )=[32,8]
Group( [ f5, f6 ] )
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