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Abstract. Abstraction refinement-based model checking has become a standard
approach for efficiently verifying safety properties of hardware/software systems.
Abstraction refinement algorithms can be guided by counterexamples generated
from abstract transition systems or by fixpoints computed in abstract domains.
Cousot, Ganty and Raskin recently put forward a new fixpoint-guided abstraction
refinement algorithm that is based on standard abstract interpretation and improves
the state-of-the-art, also for counterexample-driven methods. This work presents
a new fixpoint-guided abstraction refinement algorithm that enhances the Cousot-
Ganty-Raskin’s procedure. Our algorithm is based on three main ideas: (1) within
each abstraction refinement step, we perform multiple forward-backward abstract
state space traversals; (2) our abstraction is a disjunctive abstract domain that is
used both as an overapproximation and an underapproximation; (3) we maintain
and iteratively refine an overapproximation M of the set of states that belong to
some minimal (i.e. shortest) counterexample to the given safety property so that
each abstract state space traversal is limited to the states in M .

1 Introduction

Abstraction techniques are widely used in model checking to blur some properties of the
concrete model and then to design a reduced abstract model where to run the verification
algorithm [3]. Abstraction provides a successful solution to the state-explosion problem
that arises in model checking systems with parallel components [4]. CounterExample-
Guided Abstraction Refinement (CEGAR), pionereed by Clarke et al. [5], is become
the standard methodology for applying abstraction to model checking. The basic idea
of the CEGAR approach is as follows: if the abstract model checker return “YES”
then the system satisfies the property; otherwise the abstract model checker returns an
abstract counterexample to the property, that is checked to determine whether it cor-
responds to a real counterexample or not; it it does then return “NO” otherwise refine
the abstract model in order to remove that spurious counterexample. Many different
algorithms that implement the CEGAR approach have been suggested. Most CEGAR-
based model checkers — like BLAST [16,17], MAGIC [5,2] and SLAM [1] — deal
with counterexamples that are paths of abstract states, i.e. paths in an abstract transi-
tion system defined by an abstract state space and an abstract transition relation. Most
often, model checkers aim at verifying so-called safety properties, i.e., states that can
be reached from an initial state are always safe. Hence, safety verification consists in
automatically proving that systems cannot go wrong.
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Recently, Cousot, Ganty and Raskin [10] (more details are given by the PhD the-
sis [12]) put forward a new fixpoint-guided abstraction refinement algorithm, here
called CGR, for checking safety properties. The CGR algorithm is based on a num-
ber of interesting features. (1) CGR maintains and refines generic abstract domains that
are defined within the standard abstract interpretation framework, as opposed to most
other CEGAR-based algorithms that consider as abstract models a partition of the state
space. (2) The refinement of the current abstract domain A is driven by the abstract
fixpoint computed within A and not by a path-based counterexample. (3) CGR com-
putes overapproximations of both least and greatest fixpoints, and these two analyses
are made iteratively synergic since the current abstract fixpoint computation is limited
by the abstract value provided by the previous abstract fixpoint computation.

We isolated a number of examples where the behavior of the CGR algorithm could
be improved, in particular where one could abstractly conclude that the system is safe
or unsafe without resorting to abstraction refinements. This work puts forward a new
fixpoint-guided abstraction refinement algorithm for safety verification, called FBAR
(Forward-Backward Abstraction Refinement), that is designed as an enhancement of
the CGR procedure that integrates some new ideas.

(i) FBAR maintains and refines a disjunctive abstract domain μ that overapproxi-
mates any set S of states by μ(S) ⊇ S. While a generic abstract domain can be
viewed as a set of subsets of states that is closed under arbitrary intersections, a
disjunctive abstract domain must also be closed under arbitrary unions. The ad-
vantage of dealing with a disjunctive abstraction μ is given by the fact that μ can
be simultaneously used both as an over- and under-approximating abstraction. As
an additional advantage, it turns out that disjunctive abstractions can be efficiently
represented and refined, as shown in [20].

(ii) FBAR computes and maintains an overapproximation M of the set of states that
occur in some minimal safety counterexample. A safety counterexample is simply
a path from an initial state to an unsafe state. However, counterexamples may be
redundant, namely may contain shorter sub-counterexamples. A counterexample
is thus called minimal when it cannot be reduced. It can be therefore helpful to
focus on minimal counterexamples rather than on generic counterexamples. In
FBAR, abstract fixpoints are always computed within the overapproximation M
and other than being used for safety checking they are also used for refining M .

(iii) Each abstraction refinement step in FBAR consists of two loops that check
whether the system can be proved safe/unsafe by using the current abstraction.
The safety loop is based on a combined forward-backward abstract exploration
of the portion of the state space limited by M . This combined forward-backward
abstract computation was first introduced by Cousot [6]. The unsafety loop relies
on an iterated combination of two abstract fixpoints: the first one is an overap-
proximation of the states in M that are globally safe and is computed by using the
current abstraction μ as an overapproximation; the second one is instead an under-
approximation of the states in M that can reach an unsafe state and is computed
by viewing μ as an underapproximating abstraction.

We prove that FBAR is a correct algorithm for safety verification and that, analo-
gously to CGR, it terminates when the concrete domain satisfies the descending chain
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condition. We formally compare FBAR and CGR by showing that FBAR improves
CGR in the following sense: if CGR terminates on a given disjunctive abstraction μ
with no refinement then FBAR also terminates on μ, while the converse is not true.

Related Work. We discussed above the relationship with the CGR algorithm in [10].
Gulavani and Rajamani [15] also describe a fixpoint-driven abstraction refinement algo-
rithm for safety verification. This algorithm relies on using widening operators during
abstract fixpoint computations. When the abstract fixpoint is inconclusive, this algo-
rithm does not refine the abstract domain but determines which iteration of the abstract
fixpoint computation was responsible of the loss of precision so that widening is re-
placed with a concrete union and the abstract computation is re-started from that iter-
ation. Manevich et al. [18] put forward an abstraction refinement algorithm for safety
verification that runs over disjunctive abstract domains. However, this algorithm does
not compute abstract fixpoints but instead computes paths of abstract values so that the
abstraction refinement is based on counterexamples defined as sequences of abstract
values.

2 Background

Notation and Orders. Let Σ be any set. If S ⊆ Σ then ¬S denotes the complement
set Σ � S when Σ is clear from the context. A set S of one-digit integers is often
written in a compact form without brackets and commas like S = 1357 that stands for
{1, 3, 5, 7}. Part(Σ) denotes the set of partitions of Σ. If R ⊆ Σ × Σ is any relation
then R∗ ⊆ Σ×Σ denotes the reflexive and transitive closure of R. Posets and complete
lattices are denoted by P≤ where ≤ is the partial order. A function f between complete
lattices is additive (co-additive) when f preserves least upper (greatest lower) bounds.
If f : P → P then lfp(f) and gfp(f) denote, resp., the least and greatest fixpoints of
f , when they exist.

Abstract Domains. In standard Cousot and Cousot’s abstract interpretation, abstract
domains (or abstractions) can be equivalently specified either by Galois connection-
s/insertions through α/γ abstraction/concretization maps or by upper closure operators
(uco’s) [7]. These two approaches are equivalent, modulo isomorphic representations of
domain’s objects. The closure operator approach has the advantage of being indepen-
dent from the representation of domain’s objects and is therefore appropriate for rea-
soning on abstract domains independently from their representation. Given a state space
Σ, the complete lattice ℘(Σ)⊆, i.e. the powerset of Σ ordered by the subset relation,
plays the role of concrete domain. Let us recall that an operator μ : ℘(Σ) → ℘(Σ) is a
uco on ℘(Σ), that is an overapproximating abstract domain of ℘(Σ), when μ is mono-
tone, idempotent and extensive (i.e., overapproximating:X ⊆ μ(X)). Each closure μ is
uniquely determined by its image img(μ) = {μ(X) ∈ ℘(Σ) | X ∈ ℘(Σ))} as follows:
for any X ⊆ Σ, μ(X) = ∩{Y ∈ img(μ) | X ⊆ Y }. On the other hand, a set of subsets
A ⊆ ℘(Σ) is the image of some closure on ℘(Σ) iff A is closed under arbitrary inter-
sections, i.e. A = Cl∩(A) def= {∩S | S ⊆ A} (in particular, note that Cl∩(A) always
contains Σ = ∩∅). This makes clear that an abstract domain μ guarantees that for any
concrete set of states X , μ(X) is the best (i.e., more precise) overapproximation of X
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in μ. We denote by Abs(Σ) the set of abstract domains of ℘(Σ)⊆. Capital letters like
A, A′ ∈ Abs(Σ) are sometimes used for denoting abstract domains. By a slight abuse
of notation, a given abstract domain A ∈ Abs(Σ) can be viewed and used both as a set
of subsets of Σ and as an operator on ℘(Σ) when the context allows us to disambiguate
this use. If A1, A2 ∈ Abs(Σ) then A1 is more precise than (or is a refinement of) A2
when A1 ⊇ A2. Abs(Σ)⊇ is called the (complete) lattice of abstract domains of ℘(Σ).

Let f : ℘(Σ) → ℘(Σ) be a concrete semantic function, like a predicate trans-
former, and, given an abstraction μ ∈ Abs(Σ), let f � : μ → μ be a correspond-
ing abstract function on μ. Then, f � is a correct approximation of f in μ when for
any X ∈ ℘(Σ), μ(f(X)) ⊆ f �(μ(X)). The abstract function fμ : μ → μ defined as
fμ def= μ ◦ f is called the best correct approximation of f in μ because for any correct

approximation f �, for any X ∈ μ, fμ(X) ⊆ f �(X) always holds.

Disjunctive Abstract Domains. An abstract domain μ ∈ Abs(℘(Σ)) is disjunctive
(or additive or a powerset abstract domain) when μ is additive, i.e. μ preserves arbi-
trary unions. This happens exactly when the image img(μ) is closed under arbitrary
unions, i.e., μ = Cl∪(μ) def= {∪S | S ⊆ μ} (in particular, note that Cl∪(μ) always con-
tains ∅ = ∪∅). Hence, a disjunctive abstract domain is a set of subsets of states that
is closed under both arbitrary intersections and unions. The intuition is that a disjunc-
tive abstract domain does not loose precision in approximating concrete set unions. We
denote by dAbs(℘(Σ)) ⊆ Abs(℘(Σ)) the set of disjunctive abstract domains. A dis-
junctive abstraction μ can be specified just by defining how any singleton {x} ⊆ Σ is
approximated by μ({x}), because the approximation of a generic subset X ⊆ Σ can
be obtained through set unions as μ(X) = ∪x∈Xμ({x}). We exploit this property for
representing disjunctive abstractions through diagrams. As an example, the following
diagram:

1 2 3 4 5 6

denotes the disjunctive abstract domain μ that is determined by the following behaviour
on singletons: μ(1) = 1, μ(2) = 12, μ(3) = 123, μ(4) = 4, μ(5) = 45, μ(6) = 6, so
that μ is the closure under unions of the set {1, 12, 123, 4, 45, 6}.

Underapproximating Abstract Domains. It turns out that a disjunctive abstract do-
main μ ∈ Abs(℘(Σ)⊆) can be also viewed as an underapproximating abstract domain,
namely an abstraction of the concrete domain ℘(Σ)⊇ where the approximation order is
reversed. Formally, this is specified by the closure μ̃ ∈ Abs(℘(Σ)⊇) that is defined as
the adjoint of μ as follows: for any X ⊆ Σ, μ̃(X) def= ∪{Y ⊆ Σ | Y = μ(Y ) ⊆ X}.
An underapproximating abstraction is thus determined by the behaviour on the sets
¬x

def= Σ � {x} because, for any X ⊆ Σ, μ̃(X) = ∩x 
∈X μ̃(¬x). For example, for
the above disjunctive abstraction μ, we have that μ̃(¬1) = 456, μ̃(¬2) = 1456,
μ̃(¬3) = 12456, μ̃(¬4) = 1236, μ̃(¬5) = 12346 and μ̃(¬6) = 12345.

Transition Systems. A transition system T = (Σ, R) consists of a set Σ of states and
a transition relation R ⊆ Σ × Σ, that is also denoted in infix notation by � . As usual
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in model checking, we assume that the relation R is total, i.e., for any s ∈ Σ there
exists some t ∈ Σ such that s � t. The set of finite and infinite paths in T is denoted by
Path(T ). For any Π ⊆ Path(T ), states(Π) ⊆ Σ denotes the set of states that occur
in some path π ∈ Π . If π ∈ Path(T ) is finite then first(π), last(π) ∈ Σ denote, resp.,
the first and last states of π.

Standard predicate transformers pre, p̃re, post, ˜post : ℘(Σ) → ℘(Σ) are defined as
usual:

– pre(X) def= {a ∈ Σ | ∃b ∈ X. a � b};

– post(X) def= {b ∈ Σ | ∃a ∈ X. a � b};

– p̃re(X) def= ¬pre(¬X) = {a ∈ Σ | ∀b. a � b ⇒ b ∈ X};

– ˜post(X) def= ¬post(¬X) = {b ∈ Σ | ∀a. a � b ⇒ a ∈ X}.

Let us remark that pre and post are additive while p̃re and ˜post are co-additive. We
use the notation pre∗, p̃re∗, post∗, ˜post∗ when the reflexive-transitive closure R∗ is
considered instead of R. Let us recall the following standard fixpoint characterizations:

pre∗(X) = lfp(λZ.X ∪ pre(Z)); post∗(X) = lfp(λZ.X ∪ post(Z));

p̃re∗(X) = gfp(λZ.X ∩ p̃re(Z)); ˜post∗(X) = gfp(λZ.X ∩ ˜post(Z)).

Safety Verification Problems. Let Init ⊆ Σ be a set of initial states and Safe ⊆ Σ a
set of safe states. We denote by NInit def= ¬Init the set of noninitial states and by Bad =
¬Safe the set of bad (i.e. unsafe) states. The set of reachable states is post∗(Init).
The set of states that are globally safe is p̃re∗(Safe). The set of states that can reach
a bad state is pre∗(Bad ). The set of states that can be reached only from noninitial
states is ˜post∗(NInit). Note that pre∗(Bad) = ¬p̃re∗(Safe) and ˜post∗(NInit) =
¬post∗(Init).

A system T is safe when any reachable state is safe, i.e. post∗(Init) ⊆ Safe , or,
equivalently, when one of the following equivalent conditions holds: Init ⊆ p̃re∗(Safe)
⇔ pre∗(Bad) ⊆ NInit ⇔ Bad ⊆ ˜post∗(NInit). A safety verification problem is then
specified by a transition system T = 〈Σ, R, Init ,Safe〉 that also defines initial and safe
states and consists in checking whether T is safe (OK) or not (KO).

3 Cousot-Ganty-Raskin’s Algorithm

The Cousot-Ganty-Raskin’s algorithm, here denoted by CGR, is recalled in Fig. 1. In
each abstraction refinement step i ≥ 0, CGR abstractly computes two overapproxima-
tions Ri and Si of least/greatest fixpoints and a concrete value Zi+1 that is added to the
current abstract domain μi for the purpose of refining it. The correctness of CGR fol-
lows from the following three main invariants: for all i ≥ 0: (1) Zi+1 ⊆ Si ⊆ Ri ⊆ Zi;
(2) if the system is safe then post∗(Init) ⊆ Ri, i.e. Ri overapproximates the reachable
states; (3) Ri ⊆ p̃rei(Safe), i.e. Ri underapproximates the states that remain inside
Safe along paths of length ≤ i.

CGR admits a dual version, denoted by CGR�, where the transition relation is re-
versed, namely where R is replaced by R−1, Init by Bad and Safe by NInit (so that
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Data: Init initial states, Safe safe states such that Init ⊆ Safe
Data: μ0 ∈ uco(℘(Σ)) initial abstract domain such that Safe ∈ μ0

begin1
Z0 := Safe;2
for i := 0, 1, 2, ... do3

Ri := lfp(λX.μi(Zi ∩ (Init ∪ post(X))));4
if μi(Init ∪ post(Ri)) ⊆ Zi then return OK;5
else6

Si := gfp(λX.μi(Ri ∩ fpre(X));7

if μi(Init) �⊆ Si then return KO;8
else9

Zi+1 := Si ∩ fpre(Si);10

μi+1 := Cl∩(μi ∪ {Zi+1});11

end12

Fig. 1. CGR Algorithm

post and p̃re become, respectively, pre and ˜post). Thus, while CGR performs a forward
abstract exploration of the state space through post, CGR� proceeds instead backward
through pre.

3.1 Where CGR Could Be Improved

We isolated a number of examples where the CGR algorithm could be improved.

Example 3.1. Let us consider the safety problem represented by the following diagram
that also specifies a disjunctive abstract domain μ0 ∈ Abs(℘(Σ)).

Init Bad

0 1 2 3

CGR computes the following sequence: Z0 = 012, R0 = 012, S0 = 012, Z1 =
01, R1 = 01 and then outputs OK. Let us observe that S0 = 012 because μ0(R0 ∩
p̃re(R0)) = μ0(01) = 012. Thus, CGR needs to refine the abstraction μ0 by adding
the singleton {1} to μ0. However, one could abstractly conclude that the system is safe
already through the abstraction μ0. In fact, one could abstractly explore backward the
state space by computing the following fixpoint: T0 = lfp(λX.μ0(NInit ∩ (Bad ∪
pre(X)))). Thus, T0 = 23 and since μ0(Bad ∪ pre(T0)) ⊆ T0 one can conclude that
the system is safe. Thus, the dual algorithm CGR� is able to conclude that the system
is safe with no abstraction refinement.

Along the same lines, it turns out that CGR even does not terminate when applied to
the following infinite state system, although the abstraction is finite, while a backward
abstract exploration would allow to conclude that the system is safe.
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Init Bad

i 1 · · · 4 3 2 b

In fact, CGR does not terminate because it would compute the following infinite se-
quence: Z0 = i ∪ 12345..., R0 = i ∪ 12345..., S0 = i ∪ 12345..., Z1 = i ∪ 1345...,
R1 = i ∪ 1345..., S1 = i ∪ 1345..., Z2 = i ∪ 145.... Instead, one could proceed back-
ward by computing the following abstract fixpoint: T0 = lfp(λX.μ0(NInit ∩ (Bad ∪
pre(X)))) = b ∪ 2345.... Hence, since μ0(Bad ∪ pre(T0)) ⊆ T0 we can conclude that
the system is safe. Thus, here again, CGR� is able to infer that the system is safe with
no abstraction refinement.

Let us consider now the following infinite state system.

Init Bad

i

2′

1

3′

· · ·

4′

4

· · ·

3

1′

2

b

In this case, it turns out that neither CGR nor CGR� terminate. In fact, similarly to the
above examples, it is simple to check that both CGR and CGR� would compute infinite
sequences of abstract values. However, it is still possible to derive that the system is
safe with no abstraction refinement. In fact, we can first compute the following forward
abstract fixpoint U0 = lfp(λX.μ0(Safe ∩ (Init ∪ post(X)))) = i ∪ 1234... ∪ 2′3′4′....
Then, we can explore backward starting from Bad but remaining inside U0 ∪ Bad ,
namely we compute the following backward abstract fixpoint V0 = lfp(λX.μ0((U0 ∪
Bad) ∩ (Bad ∪ pre(X)))) = b ∪ 234.... We can now conclude that the system is safe
because μ0(Bad ∪ pre(V0)) ⊆ V0. ��

Example 3.2. Let us consider the following safety problem and disjunctive abstract do-
main μ0 ∈ Abs(℘(Σ)).

Init Bad

0 1 2 3

In this case, CGR computes the following sequence: Z0 = 012, R0 = 012, S0 = 012,
Z1 = 01, R1 = 01, S1 = ∅ and then outputs KO. Thus, CGR needs to refine the ab-
straction μ0 by adding the singleton {1} to μ0. However, one could abstractly conclude
that the system is not safe already through the abstraction μ0 by viewing μ0 as an un-
derapproximating abstraction, i.e. by considering the underapproximating abstraction
μ̃0. In fact, one could abstractly explore the state space backward by computing the
following abstract fixpoint: T0 = lfp(λX.μ̃0(Bad ∪ pre(X))) = 0123. Since T0 is an
underapproximation of the set of states that can reach a bad state and T0 contains some
initial state we can conclude that the system is unsafe. ��
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These examples suggested us to design an abstraction refinement algorithm that im-
proves the CGR algorithm by integrating a combined forward-backward abstract explo-
ration of the state space and by using disjunctive abstract domains that can be exploited
both as overapproximating and underapproximating abstractions.

4 Restricted Predicate Transformers

Let M ⊆ Σ be a fixed set of states of interest. In our context, M will play the role of
a portion of the state space that limits the abstract search space of our abstraction re-
finement algorithm. Let us define the following restricted (to the states in M ) predicate
transformers preM , postM , p̃reM , ˜postM : ℘(Σ) → ℘(Σ) as follows:

– preM (X) def= M ∩ pre(M ∩ X);

– postM (X) def= M ∩ post(M ∩ X);

– p̃reM (X) def= ¬preM (¬X) = ¬M ∪ p̃re(¬M ∪ X)
= {a ∈ Σ | ∀b. (a � b & a, b ∈ M) ⇒ b ∈ X};

– ˜postM (X) def= ¬postM (¬X) = ¬M ∪ ˜post(¬M ∪ X)
= {b ∈ Σ | ∀a. (a � b & a, b ∈ M) ⇒ a ∈ X}.

Thus, M -restricted predicate transformers only consider states that belong to M . In
fact, if preM , postM , p̃reM , ˜postM are viewed as mappings ℘(M) → ℘(M) — i.e.,
both the argument and the image of the M -restricted transformers are taken as subsets
of M — then they coincide with the corresponding standard predicate transformers on
the M -restricted transition system T/M = 〈M, R/M 〉. Let us remark that, analogously
to the unrestricted case, preM , postM are additive functions and p̃reM , ˜postM are co-
additive functions. We also consider the following fixpoint definitions:

– pre∗M (X) def= lfp(λZ. (X ∩ M) ∪ preM (Z))
= {x ∈ Σ | ∃y ∈ X. x�

∗ y & states(x�
∗ y) ⊆ M};

– post∗M (X) def= lfp(λZ. (X ∩ M) ∪ postM (Z))
= {y ∈ Σ | ∃x ∈ X. x�

∗ y & states(x�
∗ y) ⊆ M};

– p̃re∗M (X) def= gfp(λZ. (X ∪ ¬M) ∩ p̃reM (Z))
= {x ∈ Σ | ∀y. (x�

∗ y & states(x�
∗ y) ⊆ M) ⇒ y ∈ X};

– ˜post∗M (X) def= gfp(λZ. (X ∪ ¬M) ∩ ˜postM (Z))
= {y ∈ Σ | ∀x. (x�

∗ y & states(x�
∗ y) ⊆ M) ⇒ x ∈ X}.

Hence, we have that x ∈ pre∗M (X) iff x may reach X through a path inside M ,
while x ∈ p̃re∗M (X) iff x inside M can only reach states in X . Let us note that,
analogously to the unrestricted case, p̃re∗M (¬X) = ¬pre∗M (X) and ˜post∗M (¬X) =
¬post∗M (X). Moreover, pre∗M (X) ⊆ pre∗(X) and post∗M (X) ⊆ post∗(X) while
p̃re∗(X) ⊆ p̃re∗M (X) and ˜post∗(X) ⊆ ˜post∗M (X).

Example 4.1. Consider the safety verification problem depicted in Fig. 2 where the gray
states determine the restricted space M = 0134568. It turns out that post∗M (Init) =
013468, pre∗M (Bad) = 01368, ˜post∗M (NInit) = 2579 and p̃re∗M (Safe) = 24579.
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Init Bad

2

1

0

5

4

3

7

6

9

8

Fig. 2. Restricted predicated transformers

Note, for example, that 9 ∈ post∗(Init) = 0134689 but 9 �∈ post∗M (Init). Also,
4 ∈ p̃re∗M (Safe) but 4 �∈ p̃re∗(Safe) = 257 because there is no path that begins with 4
and remains inside M . ��

Thus, when using a M -restricted predicate transformer instead of a standard (i.e. unre-
stricted) predicate transformer it is enough to consider only the states belonging to M .
It should be clear that when M is much smaller than the whole state space Σ such a
restriction to states in M may induce space and time savings.

5 Minimal Counterexamples

One main idea of our abstraction refinement algorithm consists in overapproximating
the set of states that belong to some safety counterexample, i.e. a finite path from an
initial state to a bad state. However, a counterexample π may be redundant, namely π
might contain a shorther sub-path that still is a safety counterexample. For example, in
the transition system in Fig. 2, the path π = 103688 is a safety counterexample because
it begins with an initial state and ends with a bad state although π is redundant because
it contains a sub-path π′ = 0368 that is a counterexample. Our algorithm will compute
and maintain an overapproximation of the states that belong to counterexamples that
are not reducible. Such counterexamples are called minimal counterexamples.

Let us formalize the above notions. Let T = 〈Σ, R, Init ,Safe〉 specify a safety
problem. A (safety) counterexample is a finite path π ∈ Path(T ) such that first(π) ∈
Init and last(π) ∈ Bad . A minimal counterexample is a counterexample π ∈ Path(T )
such that states(π)� {first(π), last(π)} ⊆ Safe ∩NInit . We define MinCex def= {π ∈
Path(T ) | π is a minimal counterexample}.

Assume that M is an overapproximation of the states that occur in some minimal
counterexample, i.e. states(MinCex) ⊆ M . Then, we provide a characterization of
safe systems that only considers states in M : it turns out that a system is safe iff any
state that is reachable from an initial state through a path inside M is safe.

Lemma 5.1. If states(MinCex) ⊆ M and Init ⊆ Safe then the system T is safe iff
post∗M (Init) ⊆ M ∩ Safe iff pre∗M (Bad) ⊆ M ∩ NInit .
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6 A Forward-Backward Abstraction Refinement Algorithm

The Forward-Backward Abstraction Refinement algorithm FBAR is defined in Fig. 3.
FBAR takes as input a safety verification problem T = 〈Σ, R, Init ,Safe〉 and a dis-
junctive abstraction μ0 ∈ dAbs(℘(Σ)). The main ideas and features of FBAR are
summarized in the following list.

Data: Init initial states, Safe safe states such that Init ⊆ Safe
Data: Bad = Σ � Safe bad states, NInit = Σ � Init noninitial states
Data: μ0 ∈ dAbs(℘(Σ)) initial disjunctive abstract domain such that

Safe,Bad , Init ,NInit ∈ μ0

begin1
M := Σ; U := Safe; V := NInit ; X := Safe; Y := Bad ;2
for i := 0, 1, 2, ... do3

while true do4
U ′ := lfp(λZ.μi(M ∩ U ∩ (Init ∪ post(Z))));5
if μi(M ∩ (Init ∪ post(U ′))) ⊆ U then return OK;6
M := U ′ ∪ μi(V ∩ Bad ∩ post(U ′));7
V ′ := lfp(λZ.μi(M ∩ V ∩ (Bad ∪ pre(Z))));8
if μi(M ∩ (Bad ∪ pre(V ′))) ⊆ V then return OK;9
M := V ′ ∪ μi(U ′ ∩ Init ∩ pre(V ′));10
if (U ′ = U and V ′ = V ) then break;11
U, V := U ′, V ′;12

X := M ∩ X; Y := M ∩ Y ;13
while true do14

X := X ∩ μi(M � Y );15
X ′ := gfp(λZ.μi(X ∩ fpreM (Z)));16

if Init ∩ M �⊆ X ′ then return KO;17
Y := Y ∪ eμi(M � X ′);18
Y ′ := lfp(λZ.eμi(Y ∪ preM (Z)));19
if Y ′ �⊆ NInit then return KO;20
if (X ′ = X and Y ′ = Y ) then break;21
X, Y := X ′, Y ′;22

X := X ∩ fpreM (X);23

if X = X ′ then return OK;24
μi+1 := Cl∩,∪(μi ∪ {X});25

end26

Fig. 3. FBAR Algorithm

(A) The loop at lines 4-12 computes and maintains an overapproximation M of the
states that occur in some minimal counterexample by relying on a combined for-
ward-backward abstract exploration of the state space. Such a combined forward-
backward abstract computation was first described by Cousot [6] and further
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investigated and applied in [8,9,19]. The following procedure is iterated: we start
from M ∩ Init and abstractly go forward within M through postM (line 5); then,
we come back by starting from M ∩ Bad and abstractly going backward within
M through preM (line 8). The abstract sets U and V are the results of these,
resp., forward and backward abstract fixpoint computations. The following invari-
ant properties hold (cf. Lemma 6.2 (1)): U is an overapproximation of the safe
states that can be reached through a path within M , while V is an overapproxi-
mation of the noninitial states that can reach a bad state through a path within M .
The combined forward-backward computation of U and V allows us to iteratively
refine the overapproximation M of states(MinCex) (lines 7 and 10).

(B) The OK condition at line 6 implies that post∗M (Init) ⊆ U , so that post∗M (Init) ⊆
M ∩ Safe , and therefore, by Lemma 5.1, the system is safe. Analogously, for the
“backward” OK condition at line 9.

(C) The loop at lines 14-22 computes iteratively the abstract sets X and Y as fol-
lows. X is an overapproximation of the states in M that are globally safe and
is computed at line 16 as a greatest fixpoint of the best correct approximation in
μi of p̃reM . On the other hand, Y is an underapproximation of the states in M
that can reach a bad state and is computed at line 19 as a least fixpoint of the
best correct approximation of preM w.r.t. the underapproximating abstraction μ̃i.
This is formally stated by Lemma 6.2 (3). While the sequence of computed X’s
forms a descending chain of abstract sets, the Y ’s give rise to an ascending chain
of abstract sets. These abstract computations are iterated because the abstract set
Y may help in refining X and, vice versa, X may help in refining Y . In fact,
observe that the states in M � Y form a superset of the states in M that are glob-
ally safe, so that the overapproximation X can be refined by intersection with the
abstract set μi(M � Y ). A dual reasoning holds for Y , where we exploit the
fact that μi is a disjunctive abstraction and therefore μ̃i is an underapproximating
abstraction.

(D) Since X ′ ⊇ M ∩ p̃re∗(Safe), the KO condition at line 17 implies that Init ∩M �⊆
M ∩ p̃re∗(Safe), namely that Init �⊆ p̃re∗(Safe), so that the system is unsafe.
Analogously, for the “underapproximating” KO condition at line 20.

(E) At the exit of the loop at lines 14-22, we perform a concrete step of computation at
line 23 by calculating a refiner set Ref = X ∩ p̃reM (X). In contrast to the algo-
rithm CGR where the refiner Zi+1 cannot already be in the abstraction μi, here it
may happen that X = Ref . In this case (line 24), we obtain that post∗M (Init) ⊆ X
and this allows us to conclude that the system is safe. Otherwise, Ref � X is
used to refine μi to μi+1 that is obtained by closing μi ∪ {Ref } both under in-
tersections — in order to have an abstraction — and unions — in order to have a
disjunctive abstraction.

Let us now illustrate how FBAR works on a simple finite example.

Example 6.1. Let us consider the safety verification problem represented by the follow-
ing diagram, where μ0 = Cl∪({1, 12, 3, 35, 3456, 6, 7}).
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Init Bad

2

1

4

3

6

5 7

Then, FBAR allows to derive that the system is unsafe with no refinement. In fact,
FBAR gives rise to the following “execution trace”:

[line 2]: M = 1234567; U = 123456; V = 34567; X = 123456; Y = 7;
[line 5]: U ′ = 123456;
[line 6]: 1234567 = μ0(M ∩ (Init ∪ post(U ′))) �⊆ U = 123456;
[line 7]: M = 1234567;
[line 8]: V ′ = 3567;
[line 9]: 13567 = μ0(M ∩ (Bad ∪ pre(V ′))) �⊆ V = 34567;
[line 10]: M = 13567;
[line 11]: U ′ = U & V ′ �= V ;
[line 12]: U = 123456; V = 3567;
[line 5]: U ′ = 135;
[line 6]: 1357 = μ0(M ∩ (Init ∪ post(U ′))) �⊆ U = 123456;
[line 7]: M = 1357;
[line 8]: V ′ = 357;
[line 9]: 1357 = μ0(M ∩ (Bad ∪ pre(V ′))) �⊆ V = 3567;
[line 10]: M = 1357;
[line 11]: U ′ �= U & V ′ �= V ;
[line 12]: U = 135; V = 357;
[lines 5-10]: a further iteration that does not change U ′, V ′ and M
[line 11]: U ′ = U & V ′ = V ;
[line 13]: X = 135; Y = 7;
[line 15]: X = 135;
[line 16]: X ′ = ∅;
[line 16]: Init ∩ M �⊆ X ′ ⇒ KO

Thus, FBAR needs no abstraction refinement and seven abstract fixpoint computations.
On the other hand, CGR needs three abstraction refinements and eight abstract fixpoint
computations in order to conclude that the system is unsafe. In fact, it computes the
following sequence: Z0 = 123456, R0 = 123456, S0 = 123456, Z1 = 12346, R1 =
12346, S1 = 12346, Z2 = 124, R2 = 124, S2 = 124, Z3 = 24, R3 = 24, S3 = 24
and then concludes KO.

It can be also checked that the dual algorithm CGR� needs one abstraction refine-
ment in order to conclude that the system is unsafe while in this case CGR� performs
just four abstract fixpoint computations. ��

The above described properties of the FBAR procedure are stated precisely as
follows.

Lemma 6.2. The following properties are invariant in the algorithm FBAR in Fig. 3:
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(1) post∗M∩Safe(Init) ⊆ U ′ ⊆ U ⊆ M & pre∗M∩NInit (Bad) ⊆ V ′ ⊆ V ⊆ M .
(2) states(MinCex) ⊆ M .
(3) M ∩ p̃re∗(Safe) ⊆ X ′ ⊆ X ⊆ M & Y ⊆ Y ′ ⊆ M ∩ pre∗(Bad).

These invariant properties allows us to show that FBAR is a correct algorithm for safety
checking.

Theorem 6.3 (Correctness). If FBAR outputs OK/KO then T is safe/unsafe.

6.1 Termination

Termination of FBAR is similar to that of CGR.

Theorem 6.4 (Termination)

(1) If μ0 is finite and there exists X ⊆ ℘(Σ) such that for all i ≥ 0, Xi ∈ X and
〈X , ⊆〉 satisfies the descending chain condition then FBAR terminates.

(2) If T is unsafe then FBAR terminates.

Hence, if the refiner sets Xi’s at line 23 all belong to a subset of the state space that
satisfies the descending chain condition then FBAR terminates. This obviously implies
termination when the state space Σ is finite. Ganty et al. [13,14] show that this descend-
ing chain condition allows to show that the instantiation of the CGR algorithm to the
class of well-structured transition systems (WSTSs) always terminates. This is an im-
portant result because WSTSs are a broad and relevant class of infinite-state transition
systems that include, among others, Petri Nets, broadcast protocols and lossy-channel
systems [11]. Since this termination condition works for FBAR exactly in the same way
as for CGR, we conjecture that the descending chain condition should allow to show
that FBAR terminates on WSTSs.

6.2 Relationship with CGR

We made a formal comparison between the FBAR and CGR algorithms and showed
that when no abstraction refinement is needed, FBAR is better than CGR, i.e., if CGR
terminates with a given abstraction μ with no abstraction refinement then this also hap-
pens for FBAR. As shown by the examples in Section 3, the converse is not true.

Theorem 6.5. If CGR for some disjunctive abstract domain μ outputs OK/KO with no
abstraction refinement then FBAR for μ outputs OK/KO with no abstraction refinement.

We did not succeed in comparing formally FBAR and CGR when abstraction refine-
ments indeed happen. This does not appear to be an easy task mainly because FBAR
and CGR use both different refiners — FBAR refines using p̃reM while CGR uses p̃re
— and different ways of refining the abstraction — FBAR needs a refined disjunctive
abstraction while CGR needs a mere abstraction. We can only report that we were not
able to find an example where CGR terminates while FBAR does not.

Let us also remark that Cousot-Ganty-Raskin [10] described how some acceleration
techniques that compute underapproximations of the reflexive-transitive closure R∗ of
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the transition relation R can be integrated into CGR. The correctness of this technique
basically depends on the fact that replacing the transition relation R with a relation T
such that R ⊆ T ⊆ R∗ is still correct in CGR. This also holds for FBAR so that these
same techniques can be applied.

6.3 Implementation of Disjunctive Abstractions

An implementation of FBAR is subject for future work. However, let us mention that
disjunctive abstractions can indeed be efficiently implemented through a state partition
and a relation defined over it.

Let us recall from [20] the details of such a representation. Let μ ∈ dAbs(℘(Σ)).
The partition par(μ) ∈ Part(Σ) induced by μ is defined by the following equivalence
relation ∼μ ⊆ Σ × Σ: x ∼μ y iff μ({x}) = μ({y}). Moreover, let us define the
following relation �μ on par(μ): ∀B1, B2 ∈ par(μ), B1 �μ B2 iff μ(B1) ⊆ μ(B2). It
turns out that 〈par(μ), �μ〉 is a poset. For example, consider the disjunctive abstraction
μ depicted in Section 2, where μ = Cl∪({1, 12, 123, 4, 45, 6}). The poset 〈par(μ), �μ〉
is then as follows:

1

2

3

4

5

6

This allows us to represent the abstraction μ as follows: for any S ⊆ Σ, μ(S) = ∪{B ∈
par(μ) | ∃C ∈ par(μ). C ∩ S �= ∅ & B �μ C}.

As shown in [20], it turns out that this partition/relation-based representation pro-
vides an efficient way for representing and maintaining disjunctive abstractions. More-
over, [20] also shows that the abstraction refinement step μi+1 = Cl∩,∪(μi ∪ {X}) at
line 25 can be efficiently implemented by a procedure that is based on partition splitting
and runs in O(| par(μi)|2 + |X |)-time.

7 Future Work

A number of tasks are left for future research. Firstly, it would be interesting to complete
the formal comparison between FBAR and CGR by investigating whether and how their
refinements and final outputs can be related in the general case when the abstraction is
refined. We also left open our conjecture that, analogously to CGR, the FBAR algorithm
terminates when applied to well-structured transition systems. After the completion of
such a comparison with CGR, it would be worth to develop a prototype of FBAR that
can reuse the implementation of disjunctive abstraction refinements already available
from [20].
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