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Abstract
We present an investigation of the Xe2 excimer emission spectrum observed in
the near-infrared range about 7800 cm−1 in pure Xe gas and in an Ar (90%)–Xe
(10%) mixture for P = 0.1 MPa at T = 300 K obtained by exciting the gas
with energetic electrons. The Franck–Condon simulation of the spectrum shape
suggests that the emission stems from a bound–free molecular transition never
studied before. The states involved are assigned as the bound (3)0+

u state related
to the 6p[1/2]0 atomic limit and the dissociative (1)0+

g state with the 6s[3/2]1

limit. A comparison with the spectrum simulated by using theoretical potentials
for internuclear distances over which the vibrational eigenfunctions of the
bound state have non-negligible amplitude shows that the dissociative potential
does not reproduce correctly the spectrum features. A best fit, purely repulsive
potential is thus proposed to accurately reproduce the observed spectrum.

The vacuum ultraviolet (VUV) luminescence of Xe excimers has been thoroughly investigated
because of its importance for realizing intense sources of coherent and incoherent VUV
radiation [1]. This property of Xe is also exploited, for instance, to build high-energy particle
detectors in which ionizing particles passing through a Xe-filled ionization chamber produce
VUV scintillation light [2].

Actually, all investigations on Xe excimers are devoted to explaining the processes leading
to the emission of the two VUV continua observed under different experimental conditions in
gas excited by discharges [3], UV photons [4, 5], multiphotons [6, 7] or high-energy particles
[8–11].

Radiative transitions from the vibrationally excited
(
0+

u

)
v′�0 molecular state, correlated

with the resonant 6s(3P1) atomic state, to the dissociative 0+
g ground state produce the first

continuum at 152 nm. The second continuum at 170 nm consists of the overlapping bound–
free emission from the lowest vibrationally relaxed (0−

u , 1u) molecular states correlated with
the metastable 6s(3P2) atomic state [6, 11].
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The observation that the Xe VUV luminescence is due to the first continuum at low gas
pressure (P < 2 × 104 Pa) whereas it consists of the second continuum for P > 5 × 104

Pa is explained by the different kinetics of the processes leading to excimer formation and
decay [12]. Mainly metastable atomic and gerade (g) molecular states are studied because of
their involvement in these processes [13], whose kinetics has been clarified in several spectral-
and time-resolved experiments in which lifetimes and rate constants have been determined
[6, 10–12, 14–21]. The structure of the lowest lying excited molecular states has been
investigated theoretically with ab initio [22, 23] or model [24] calculations of the molecular
potentials and experimentally by analysing spectroscopic data [6, 9, 15, 25, 26].

Until now, however, researchers have almost neglected the possibility that, in the cascade
of processes leading to VUV emission, molecular transitions occur in the infrared (IR) range.
There is only scant indication [27] of a broad IR spectrum occurring in the range 765–
830 nm, more precisely in the range 780–815 nm [28], which is attributed to a bound–bound
transition from vibrational levels of the molecular 0+

g state correlated with the 6p[1/2]0 atomic
limit to the B0+

u(6s[3/2]1)v′�0 molecular state in a highly excited vibrational level.
No further measurements of molecular IR emission are found in the literature. Their

absence might be due to the fact the potential energy minimum of higher lying, bound excimer
states occurs at an internuclear distance at which the weakly bound ground-state potential is
strongly repulsive. For this reason, these molecular states are not easily reached by multiphoton
selective excitation. By contrast, broad-band excitation using high-energy, charged particles
[10, 29] produces excited atoms with such high kinetic energy that can collide at a short
distance with ground-state atoms yielding higher lying excimer states. The price to be paid,
however, is that the parity of the molecular states produced in this way cannot be controlled.

Recently, we observed for the first time a broad molecular emission spectrum centred at
λ ≈ 1.3 µm (ν̃ ≈ 7860 cm−1) in both pure Xe gas and in a Xe (10%)−Ar(90%) mixture at
room temperature and at a pressure P = 0.1 MPa by exciting the gas with a pulsed beam of
70 keV electrons [30]. Details of the technique can be found in the literature. It is only worth
recalling here that we use a Fourier-transform-IR (FT-IR) spectrometer in a stepscan mode
[31]. An InGaAs photodiode with flat responsivity in the range (0.6 � ν̃ � 1.2) × 104cm−1

was used as the detector.
As we were then interested on the behaviour of the excimer emission as a function of the

gas density in order to study the excimer interaction with a high density environment [32] to
explore the feasibility of a high-energy particles detector based on this IR luminescence, we
attributed the emission to a Xe2 bound–free transition between a state dissociating into the
6p manifold and one of 6s configuration without any further inquiries, also because accurate
potential energy curves for those high-lying states were not available.

Meanwhile, an extensive set of Xe2 molecular potential energy curves has been published
[23] that fully span the energy range in which the IR molecular emission discovered by us
occurs.

In the present paper, we report new and more accurate high-resolution, time-integrated
measurements of the IR emission spectrum of Xe2 that allow, for the first time, a more precise
assignment of the molecular states involved in the transition. This goal is accomplished
by comparing the observed spectrum with the spectrum calculated by exploiting the new
theoretical potentials of the higher molecular states.

We have used the same FT-IR spectrometer operated in a stepscan mode, but at higher
resolution than in the previous experiment [30]. Moreover, we have replaced the InGaAs
detector with a liquid-N2 cooled InSb photodiode detector in order to extend the explored
wave number range towards the red side of the spectrum. In figure 1, we show the IR spectrum
recorded in an extended wave number range with 16 cm−1 resolution in pure Xe gas at P = 0.1
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Figure 1. The IR emission spectrum of electron-impact excited Xe gas at P = 0.1 MPa at room
temperature. The broad continuum (labelled EXC) is the excimer spectrum. Xe I atomic lines are
numbered (see text).

MPa and T ≈ 300 K. The excimer emission band appears in the centre of the figure and is
surrounded by several atomic lines of Xe I. The full width at half maximum (FWHM) is
� ≈ 900 cm−1. Its value relative to the wave number ν̃m of the centre of the excimer band
is �/ν̃m ≈ 0.115 and is comparable with the value 0.116 of the second VUV continuum
[8, 33]. In the limit of low pressure, ν̃m and � are the same both in the pure gas and in the
Xe (10%)–Ar (90%) mixture, thus showing that the same species, namely Xe2, is emitting in
both cases [30].

An analysis of the Xe I atomic lines surrounding the molecular band sheds light on what
atomic states the emitting excimer is correlated with. By referring to the numbers labelling
the atomic lines in figure 1, we observe that lines 1 through 6 stem from 5d–6p transitions.
In particular, line 1 is the well-known Xe I line at λ = 3.51 µm [34]. Lines 7 through 9 are
7s–6p transitions. Lines 10 through 12 are emitted in 6p–6s transitions. Line 13 is actually an
unresolved 6p–6s and 6d–6p doublet. Line 14 is due to a 6s–5p transition and, finally, lines
15 through 17 are 6p–5p transitions3.

The presence in this wave number region of lines associated with 6p atomic states provides
evidence that states in the 6p manifold are efficiently populated in the deexcitation processes
occurring after electron-impact excitation of the gas. Moreover, the presence of 7s–6p lines
very close to, or embedded in, the excimer band suggests that the upper bound molecular
state is related to a state in the 6p manifold. In particular, line 9 is due to a transition from
the 7s[1/2]0 atomic state (in Racah notation) to the 6p[1/2]0 one (see footnote 3). Thus, we
reasonably assume that the bound molecular state is correlated with this latter limit.

At the density of the present experiment, N ≈ 2.4×1025 m−3, the mean free time between
collisions is estimated to be τc ≈ 10−11 s [30]. The three-body quenching of the 6p[1/2]0

state observed by Bo′′wering et al [35] suggests that a molecular bound state correlated with
this atomic limit could efficiently be populated by a collisional-induced association which is a
three-body process [12]. By contrast, the predissociation time of the bound molecular state to

3 http://physics.nist.gov/PhysRefData/ASD/index.html.
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the 5d[1/2]1 limit is estimated to be τp ≈ 10−10 s [7, 12]. The large collision rate thus leads
to a quick electronic relaxation of the excimer which would otherwise predissociate.

At present, there are no estimates for the radiative lifetime and decay rate for vibrational
relaxation for this molecular bound state. We assume that they do not differ too much from
those of the states responsible for the VUV continua. The radiative lifetimes of highly excited
vibrational states of the 0+

g and (1u, 0−
u ) excimers are estimated to be τ1 ≈ 5 ns [13] and

τ2 ≈ 40 ns [9], respectively. The decay rate for vibrational relaxation k3 has the same value
for all states [18], yielding a decay time τ3 = (k3N)−1 ≈ 0.65 ns at the present density. In
any case, as τc is much shorter than all other characteristic times, we assume that collisions
stabilize excimers electronically and also quickly establish thermal equilibrium.

The simulation of the line shape by means of Franck–Condon calculations for the presently
assumed bound–free transition requires the knowledge of the potential energy curves of the
initial and final molecular states and of the transition moment as a function of the internuclear
distance R. Theoretical calculations of the molecular potentials for higher lying states have
appeared recently [23], whereas calculations for the transition moments of such higher-lying
molecular states are still missing.

The choice of the potentials has to fulfil the following criteria: (i) the upper bound state
has to be related to the atomic 6p manifold; (ii) the selection rule for state parity, u ↔ g and
+↔+, must be obeyed; (iii) the energy difference between the potential energy curves at the
equilibrium distance of the bound state must approximately be equal to ν̃m.

These criteria are met by the choice of the ungerade state (3)0+
u correlated with the 6p(1D2)

atomic limit for the bound state and of the gerade (1)0+
g correlated with the 6s(3P1) limit as the

dissociative state [23]. As a transition 0+
u → 0+

g is involved, conservation of the total angular
momentum enforces the additional selection rule �J = ±1 [36].

Though the potential energy curves are known, nonetheless several approximations must
still be done in order to carry out numerical calculations. First of all, as the transition
moment for the states considered here is not known, we assume that it does not vary too
rapidly as a function of the internuclear distance R and calculate the line shape within the
centroid approximation [36, 37], thus yielding for the intensity I of the spectrum the following
expression:

I ∝
∑
v′J ′

e−βEv′J ′ {(J ′ + 1)|〈ε′′, J ′ + 1|v′, J ′〉|2 + J ′|〈ε′′, J ′ − 1|v′, J ′〉|2}ν̃4, (1)

in which the selection rule �J = J ′′ − J ′ = ±1 has been used. As usual, primed quantities
refer to the upper state whereas doubly primed quantities refer to the lower state. β = (kBT )−1,

where kB is the Boltzmann constant and T is the gas temperature.
ν̃ is the emission wave number and is defined as

ν̃ = [(T ′
e − T ′′

e − D′′
e ) + Ev′J ′ − ε′′]. (2)

Here, T ′
e and T ′′

e are the values of the minimum of the potential energy curves of the upper
and lower states, respectively. They are measured with respect to the situation in which two
ground-state Xe atoms are at infinite separation with zero kinetic energy [23, 38]. D′′

e is the
well depth of the lower potential. In fact, though mainly repulsive, the potential energy curve
of the (1)0+

g state has a weak van der Waals minimum for large R [23].
Ev′J ′ is the energy of a rovibrational state |v′, J ′〉 of the bound potential described by the

vibrational quantum number v′ and by the rotational quantum number J ′:

Ev′J ′ = Ev′ + EJ ′ . (3)

Here, Ev′ are the vibrational energy eigenvalues of the bound potential measured from the
bottom of the potential well and EJ ′ are the rotational energy eigenvalues.
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Figure 2. Potential energy curve for the (3)0+
u state. Dots: literature data [23]. Curve: Morse fit.

The decoupling of the vibrational and rotational energies in (3) can be accomplished
because vibrations are far more energetic than rotations. Moreover, as the amplitude
of vibrations is much smaller than the average internuclear distance, it is surely a good
approximation to express the contribution from the rotational energy, which is proportional
to R−2, through the replacement of R2 by R2

e′ [38], where Re′ is the equilibrium internuclear
distance of the bound state (3)0+

u.

As far as the rotational energies are concerned, we make the further assumption that
the molecule in the bound state can be treated as a rigid rotor also because the centrifugal
stretching constant [38] of the bound state is not known. In this approximation, the rotational
energy eigenvalues are written as

EJ ′ = B ′
eJ

′(J ′ + 1), (4)

where B ′
e = h̄2

/(
2mrR

2
e′
)

is the rotational constant. mr = 1.09 × 10−25 kg is the average
reduced mass of Xe in a sample of natural isotopic abundance. There is no need to calculate
the rotational constant for different isotopes for several reasons. First of all, the contribution of
rotations to the spectrum intensity is tiny. Moreover, the experimental signal is the convolution
of the contributions due to all Xe isotopes in the sample. Finally, the resolution needed
to discriminate the contributions of each isotope by far exceeds the available experimental
resolution.

Finally, |ε′′, J ′′〉 represents a scattering state of kinetic energy ε′′ and angular momentum
J ′′ in the vibrational continuum of the dissociative potential.

The exponential prefactor in (1) accounts for the equilibrium thermal distribution of the
rovibrational degrees of freedom. At room temperature, β−1 ≈ 208.5 cm−1.

The vibrational energy eigenvalues Ev′ and the vibrational eigenfunctions |v′, J ′〉 are
found by numerically integrating the Schrödinger equation for the rotationless potential [38]
using the Numerov–Cooley finite difference scheme [39] and replacing the centrifugal potential
by the constant B ′

eJ
′(J ′ + 1) for the reasons discussed above [36, 38].

The potential energy curve for the upper bound (3)0+
u state is reported in figure 2. The

points are data taken from the literature [23]. For numerical purposes, the theoretical potential
is accurately fitted to a Morse-type potential:
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Figure 3. Energy eigenvalues of the bound potential Vb. The zero of energy is taken at the bottom
of the potential well. The solid line represents the vibrational energy eigenvalues of a parabolic
potential with the same curvature as that of the Morse potential at the equilibrium position.

Vb = T ′
e + D′

e{1 − exp [−βe′(R − Re′)]}2, (5)

where D′
e is the well depth.

The values of the fitting parameters are T ′
e = 13 860 cm−1,D′

e = 1717 cm−1, Re′ =
3.23 Å and βe′Re′ = 6.734. This fit is represented in figure 2 by the solid line. It describes
quite well the position and strength of the minimum, the repulsive- and also the long-range
behaviour of the potential. The largest deviation from the theoretical potential occurs between
4.5 and 5.5 Å. This is not very important for our purposes because, as we will see, only the
lowest-lying vibrational states need to be considered.

This bound potential accommodates up to v′ ≈ 34 vibrational states though only the
first ten significantly contribute to the spectrum owing to the Boltzmann factor. In figure 3
we report the energy eigenvalues Ev′ as a function of v′, as measured from the bottom of the
potential well. A solid line represents the vibrational energy eigenvalues for a purely parabolic
potential with the same curvature, 2D′

eβ
2
e′ , of the Morse potential at the equilibrium position.

It can be easily concluded that a parabolic potential with the same position of the minimum
and the same curvature of the actual Morse potential would give the same eigenvalues and
eigenfunctions as the Morse potential itself for the first ten vibrational eigenstates. Thus, in
our experimental conditions and for our purposes, the actual shape of the bound potential
does not influence very much the Franck–Condon calculations provided that the values of the
position of the minimum and the curvature at the minimum of the potential are the correct
ones because only the first vibrational states are thermally excited.

The value of the rotational constant B ′
e ≈ 2.47 × 10−2 cm−1 corresponds to a rotational

temperature �r ≈ 3.5×10−2 K. Thus, for T ≈ 300 K, states of quite high angular momentum
J ′ are thermally excited. Their population is non-negligible for J ′ � 250 with average
〈J ′〉 ≈ 80.

The scattering states |ε′′, J ′′〉 are found by numerically integrating the Schrödinger
equation for the effective potential

VfJ (R) = Vf (R) +
h̄2

2mrR2
J ′′(J ′′ + 1) (6)

which includes the centrifugal contribution ∝ R−2.
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Figure 4. Potential energy curve for the (mainly) dissociative (1)0+
g state. Points: literature data

[23]. Solid curve: HFD-B-type potential fit.

Vf is the potential of the (mainly) dissociative (1)0+
g state. It is characterized by a very

shallow minimum of depth D′′
e ≈ 217.9 cm−1 at the large distance Re′′ ≈ 4.92 Å and by

T ′′
e ≈ 4779.2 cm−1, measured from the same energy reference of the potential of the bound

state [23]. In figure 4, the literature potential is represented by dots [23]. The theoretical
potential is accurately fitted to the analytical form

Vf (R) = T ′′
e + D′′

e f (x) (x = R/Re′′), (7)

where f (x) is a Hartree–Fock–dispersion (HFD) potential with its repulsive part described by
an exponential term with adjustable slope (HFD-B-type potential) [40]

f (x) = f1 + f2 e(−A2x+A3x
2) − e−(D/x−1)2

2∑
j=0

f2j+6

x2j+6
for x � 1.53. (8)

The values of the fitting parameters are f1 = 0.756, f2 = 2.552 72 × 104, A2 = 3.352, A3 =
−15.497,D = 2.044, f6 = −16.851, f8 = 40.305 and f10 = −21.205. For x > 1.53, i.e.
for R � 7.53 Å, f = 1. The fitting function is plotted as a solid curve in figure 4.

The Schrödinger equation with this potential is integrated with a Runge–Kutta fourth-
order scheme with adaptive stepsize control [41]. The scattering wavefunctions are normalized
to unitary incoming flux [37]

ψe′′ = 〈R|ε′′, J ′′〉 R→∞−→
(

2mr

πh̄2k

)1/2

sin(kR + η), (9)

where h̄2k2/2mr = ε′′ and η is the appropriate phase shift.
The overlap integrals occurring in (1) are evaluated by spline interpolation and quadrature

[42]. The theoretical line shape is then convoluted with the instrumental function, which is a
Gaussian of 16 cm−1 of full width at half maximum.

In figure 5, the simulated spectrum (dash-dotted line) is compared with the experimental
one (thin solid line). The shape obtained using the literature potential for the (1)0+

g state only
qualitatively agrees with the experiment. It is correctly stretched towards the blue side as a
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Figure 5. Experimental and simulated spectra. Thin solid line: experiment. Dash-dotted line:
spectrum computed using the literature potential for the dissociative state [23]. Thick solid line:
spectrum calculated using a R−12 repulsive potential with adjustable parameters.

consequence of the non-negligible contribution of vibrational states with v′ > 0. However, its
position is too strongly red shifted and its width is nearly twice as large as observed. We thus
conclude that the potential energy curves of the bound and of the dissociative states are too
close to each other and that the dissociative potential is too steep.

It is clear that either, or even both, theoretical potentials fail to reproduce the experimental
result. One way to improve the situation could be to modify both potentials until the
simulated spectrum reasonably agrees with the experiment. This possibility, however, opens
up an infinite number of combinations and, thus, it does not make sense to pursue it any
further.

On the other hand, owing to the fact that only the lowest vibrational levels of the upper
bound potential are thermally excited, the actual shape of the bound potential does not influence
very much the outcome of the calculations provided that the values of the position of the
minimum and of the curvature at the minimum are correct. This consideration leads to the
opportunity to modify only the potential of the lower state.

We thus safely assume that the upper bound state is correctly described by the literature
potential [23]. The repulsive part of the lower potential can be determined by inverting the line
shape [37]. To this goal, we assume that the lower state is described by the purely repulsive
potential

Vrep = A +
V0

x12
(x = R/Re′) . (10)

Here, R is scaled by the equilibrium distance of the bound state just for numerical convenience.
A and V0 are adjustable parameters to be determined by fitting the simulated spectrum to

the observed one once the corresponding scattering wavefunctions are suitably computed. If
the values A = (5315±32) cm−1 and V0 = (760±16) cm−1 are used, the simulated spectrum
(figure 5, thick solid line) perfectly agrees with the experiment. The uncertainties on A and
V0 reflect the uncertainty on the experimental determination of the position and width of the
spectrum respectively.
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On the blue side, small wiggles in the simulated spectrum reflect the contributions of
vibrational states with v′ � 10. They are not observed because of an unfavourable signal-to-
noise ratio and the Boltzmann factor.

In figure 6, we compare the literature potential of the lower state with the potential
determined by the inversion procedure. The bound state is also shown with some vibrational
eigenfunctions in order to visualize the coordinate range in which the Franck–Condon factors
are non-negligible. The range, in which the comparison between the potentials describing the
dissociative state is reasonable, is limited to (2.7 � R � 4.5) Å because vibrational states
with v′ � 10 contribute little.

The difference between the best fit potential and the theoretical one for R = Re′ is
≈880 cm−1. No comparison can be made with the experimental determination of the
dissociative potential of this state accomplished by REMPI techniques [26] because selective
multiphoton excitation from the molecular ground-state samples the potential for much larger
R than in the present case.

We believe that the energy difference determined in this way is large enough for
theoreticians to improve the calculation of the potentials and of the transition moments.
However, we must stress the fact that, in our analysis, we have chosen to consider exactly the
theoretical potential of the bound state in order to modify the dissociative one.

Critical issues in our determination of the (1)0+
g state potential are the assumption of

validity of the centroid approximation and the use of the literature potential for the (3)0+
u

state. We can justify these assumptions only on the basis of Occam’s razor [43], according
to which entities should not be multiplied beyond necessity. However, the assumption that
emission takes place from an excimer population in thermal equilibrium explains the observed
blue asymmetry of the line shape and rules out the possibility that emission is produced by
a transition from a vibrationally relaxed bound state because it would yield a line shape of
opposity asymmetry than actually observed.

The present analysis could be confirmed by measuring the spectrum as a function of
temperature in order to change the distribution of the rovibrational states. Moreover, this
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experiment and its consequences open up the possibility of investigating higher lying excimer
states in other rare gases that might also be of interest in astrophysics.
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