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Abstract: Two independent active faults, capable of generating medium-sized earthquakes in the 
San Vito lo Capo peninsula, northwestern Sicily (Italy) have been identified as a result of detailed 
field studies. In western Sicily, instrumental seismicity is low; in fact, except for the 1968 Belice 
earthquake (Ms = 5.4), historical records indicate that this area is relatively quiescent. Most of the 
seismicity is in the offshore sector of the Sicilian Maghrebian Chain, which is characterized by 
several medium- to low-magnitude events. The main shock of the 2002 Palermo seismic sequence 
(Mw = 5.9) represents the largest earthquake felt in the area in recent years. The deformation 
pattern characterizing the most recent faults mapped in northwestern Sicily includes a grid of 
high-angle faults consisting of major east-west-striking right-lateral and north-south-striking 
left-lateral features. This fault grid is related to a regional transcurrent right-lateral shear zone, 
here named the UEKA shear zone, bounded to the north by the Ustica-Eolie fault and to the 
south by the Kumeta-Alcantara fault. The UEKA shear zone accommodates the regional strain 
induced by the current stress field acting in the area, which, as emerges from both structural 
and seismological data, is characterized by a NW-SE-striking main compression. 

The northern coast of Sicily and its Tyrrhenian off- 
shore have been interpreted by various workers (e.g. 
Boccaletti et al. 1982; Malinverno & Ryan 1986; 
Dewey et al. 1989; Chironi et al. 2000) as a hinge 
zone between the Tyrrhenian basin (characterized 
by incipient oceanization processes) and the 
emerged portion of the Sicilian Maghrebian 
Chain. This hinge zone is interpreted as a regional 
east-west-striking right-lateral shear zone that 
developed from Pliocene time, while the structuring 
of the fold-and-thrust belt continued in southern 
Sicily (Boccaletti et al. 1982; Ghisetti & Vezzani 
1984; Giunta et al. 2000). 

As concerns seismicity, the Sicilian offshore is 
mainly characterized by medium- to low-magnitude 
events. The main shock of the 2002 Palermo 
seismic sequence (Mw = 5.9; CMT Catalog, 
Harvard Seismology, http://www.seismology.har- 
vard.edu/) represents the largest earthquake felt in 
the area in recent years (Giunta et al. 2004). 
Onshore, in western Sicily, the 1968 Belice seismic 
sequence (Ms = 5.4 for the main shock; Anderson 
& Jackson 1987b) represents the strongest earthquake 
that has occurred in the area in historical times. 

Several faults, in western Sicily, involve Pliocene 
and Early Pleistocene deposits; in the San Vito lo 
Capo peninsula, they cut through conglomerates 
of Tyrrhenian age and Holocene sediments, hence 
recording the effects of active tectonic processes 
in the area (Giunta et al. 2004). For this reason 
we focused our analyses in the San Vito Lo Capo 
peninsula, as it may be considered a key area for 
better understanding the tectonic processes acting 
in this sector of the peri-Tyrrhenian orogenic 
system, and to evaluate the seismic potential of 
northwestern Sicily. 

Tectonic framework 

The present-day structural setting of northern Sicily 
is the result of the Cenozoic collision between 
the North African continental margin and the 
Sardinia-Corsica block. The main tectonic units 
derived from the deformation of the northern margin 
of the African plate display a general southward ver- 
gence, and a structural style that is characterized by 
folds with a wavelength of a few kilometres and by 
thrusts that extend for tens of kilometres (Fig. 1; 
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Fig. 1. Schematic geostructural map of Sicily. 

Fig. 2. (a) Plio-Quaternary faults of northwestern Sicily; (b) active fault zones in the San Vito lo Capo peninsula. 
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Ogniben 1960; Scandone et al. 1974; Catalano et al. 
1979; Catalano & D'Argenio 1982). The main stages 
in the Neogene deformation history of the area 
include (Giunta et al. 2000): (1) thrust tectonic 
events, from the Early Miocene; (2) extensional tec- 
tonics and crustal thinning processes, from the Late 
Miocene; (3) strike-slip tectonic activity, often reacti- 
vating inherited structures, during the Plio-Pleistocene 
evolution of the northern Sicily- southern Tyrrhenian 
hinge zone (Boccaletti et al. 1982; Finetti & Del Ben 
1986). 

According to some workers, strike-slip tectonics, in 
the area separating the southern Tyrrhenian Sea from 
northern Sicily, started in Pliocene time, when the 
UEKA shear zone was first established. The latter 
extends offshore for more than 400 km from the 
island of Ustica to the Aeolian Islands (the Ustica- 
Eolie Line of Boccaletti et al. 1982), and onland, 
for more than 300 km, from the Trapani mountains 
to Mt. Etna, including the so-called Kumeta- 
Alcantara Line (Ghisetti & Vezzani 1984). Lower- 
rank structures related to the Ustica-Eolie and 
Kumeta-Alcantara lines comprise the NW-SE- 
striking faults of Marettimo, Trapani, San Vito and 
Palermo (Nigro et al. 2000; Gueguen et al. 2002). 
Taken as a whole, these structures were interpreted 
as a right-lateral duplex: the Southern Tyrrhenian 
Strike-Slip Duplex (Renda et al. 2000). 

Related to these faults, some minor shear zones 
are well exposed at several localities (Fig. 2a; 
Giunta et al. 2004). Based on their geometric and 
kinematic characteristics, these have been grouped 
into three major sets: (1) an ESE-striking mainly 
right-lateral to transtensive fault set; (2) a north- 
south-striking left-lateral to transtensive fault set; 
(3) a NE-SW-striking set including faults with 
left-lateral transpressive and reverse kinematics. 
Some of these high-angle faults involve Pliocene 
and Early Pleistocene deposits; at San Vito lo 
Capo peninsula, in particular, two fault zones 
(trending roughly ESE and NNE) cut through both 
conglomerates, of Tyrrhenian age, and Holocene 
sediments (Fig. 2b). 

Seismicity 

The seismicity pattern recorded in the southern Tyr- 
rhenian Sea since 1988 is shown in Figure 3a. As 
may be seen in Figure 3b (see also Giunta et al. 
2004), the distribution of the hypocentres reveals 
the presence of two seismogenic zones. The first 
is located in the eastern portion of the southern Tyr- 
rhenian Sea, where about 480 events are concen- 
trated around a NE-dipping plane with a slope 
angle of 58 ~ down to a depth of about 400 km. 
This distribution has been associated with the 
Wadati-Benioff plane of the Ionian lithospheric 

slab dipping beneath the Calabrian Arc (Gasparini 
et al. 1982; Anderson & Jackson 1987a). 

The second seismogenic zone extends parallel to 
the northern coast of Sicily and is generally located 
within the upper crust. The 2002 Palermo seismic 
sequence is located within this belt (Fig. 3c). The 
hypocentral distribution of about 540 earthquakes 
recorded from 6 September to 15 October 2002 
shows a N E - S W  trend and a NW-dipping seismic 
belt (Fig. 3d; Giunta et al. 2004). The focal sol- 
utions of the main shock (Mw-----5.9) display 
NE-SW-striking nodal planes with compressive 
mechanisms (CMT Catalog, Harvard Seismology, 
http://www.seismology.harvard.edu/). As may be 
seen in Figure 3c, some 60 earthquakes cluster at 
about 55 km west from the main shock. 

On land, in western Sicily, instrumental seismi- 
city is very low and the 1968 Belice earthquake 
sequence, characterized by six main shocks with a 
magnitude of 5-5.4 (Anderson & Jackson 1987b), 
represents the strongest seismic event recorded in 
historical times (CPTI Gruppo di Lavoro 1999). 
There is some controversy about the seismogenic 
structure responsible for the 1968 Belice seismic 
sequence. Monaco et al. (1996) discussed the possi- 
bility that the seismic source might be a blind 
steeply north-dipping reverse fault, whereas 
Michetti et al. (1995) recognized surface faulting 
evidence interpreted in terms of strike-slip tectonics 
associated with a NW-SE-striking fight-lateral 
fault. 

Active faults in the San Vito 1o Capo 
peninsula 

The San Vito lo Capo peninsula, located at the 
western end of the northern coast of Sicily, 
extends in a roughly north-south direction into 
the southern Tyrrhenian Sea (see Fig. 2). This 
area represents the westernmost and the most exter- 
nal sector of the Sicilian orogenic belt, which is 
composed mainly of south-verging folds and 
thrusts. Here, deformed Mesozoic to Tertiary plat- 
form carbonates evolve upwards into deep-water 
marls, limestones and siliciclastic deposits. These, 
in turn, are unconformably overlain by terrigenous 
deposits of Plio-Pleistocene age that crop out 
widely in the coastal plain of Castelluzzo (Piana 
di Castelluzzo; Fig. 4). These latter deposits 
consist of carbonate grainstones overlain by shales 
and sands. Along the coast, small outcrops of 
Tyrrhenian conglomerates and bio-calcarenites 
are well exposed (see Fig. 4). 

At San Vito lo Capo peninsula we analysed in 
detail the two main active faults shown in the map 
of Figure 4. The NNE-striking fault (here named 
the Faro fault) is exposed, for a length of about 
3 kin, in the Mesozoic carbonates cropping out in 
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Fig. 3. Distribution of epicentres (a) and hypocentres (b) of the 2100 earthquakes occurring in the southern Tyrrhenian 
Sea and northern Sicily between 1988 and 15 October 2002. The epicentre location of the main shock (Ms = 5.4) of 
the 1968 Belice seismic sequence is also shown. (d) Distribution ofepicentres (e) and hypocentres of the c. 540 earthquakes 
belonging to the Palermo seismic sequence, recorded from 6 September to 15 October 2002 (after Giunta et al. 2004). 
The epicentre and hypocentre location of the main shock (Mw = 5.9) is marked by a star. 
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Fig. 4. Geological map of the Plio-Pleistocene deposits cropping out in the San Vito lo Capo peninsula (Abate et aL 1993). 

the surroundings of the San Vito lo Capo village. 
Here, we observed striated fault surfaces showing 
left-lateral strike-slip kinematics, and a few mor- 
photectonic features characterizing NE-striking 
lower-rank positive flower structures (Fig. 5a and 
d). Evidence for recent tectonic activity of the 
Faro fault is given by a continuous 20 m high 
fault scarp cutting a flat erosional surface that is 
interpreted to be an Early Pleistocene marine 
terrace (Fig. 5c; Abate et  al. 1998). Furthermore, 
about 3 km north of the marine cliff shown in 
Figure 5a, at Faro, the fault runs across Late Pleisto- 
cene to Holocene aeolian deposits (see Fig. 4). The 
latter deposits are also cut by lower-rank (metre- 
scale) faults related to the main NNE trend (Fig. 5d). 

The southern margin of the Piana di Castelluzzo 
is bordered by an ESE-striking fault (here named 
the Castelluzzo fault), which is exposed for about 
2 km in Early Pleistocene marine sediments (see 
Fig. 4). The morphological evidence of the Castel- 
luzzo fault is given by a fresh-looking fault scarp 
(about 15 m high; Fig. 6). At several localities, 
along the coast, we observed striated surfaces 

indicating prevalent right-lateral kinematics 
(Fig. 6b). In the fault footwall, lower-rank features 
(meso-faults and shear fractures) cut through 
Tyrrhenian conglomerates (Fig. 7). 

In the Piana di Castelluzzo, Early Pleistocene 
bio-calcarenites cropping out along the coast are 
also affected by several minor faults (Fig. 8). 
There, we produced a detailed map (at 1:25 scale) 
by combining field data and image analysis of a 
photo mosaic composed of digital photographs 
taken from a helicopter. The marine fiat surface 
is pervasively affected by individual deformation 
bands and zones of deformation bands with over- 
printed stylolites, sheared stylolites and slip sur- 
faces (Fig. 9). Individual deformation bands are 
known to represent the smallest structures, caused 
by faulting in high-porosity, poorly cemented sand- 
stones (Aydin & Johnson 1978; Antonellini et  al. 

1994) as well as in porous carbonate grainstones 
(Tondi et  al. 2006). They consist of broken and 
compacted grains defining roughly planar features 
that record small amounts of displacement, typi- 
cally from a few centimetres to < 1 mm. Larger 
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Fig. 5. (a) Surface evidence of active faulting associated with the NNE-striking Faro fault. (b) Line drawing from the 
digital image of the marine cliff shown in (a). (c) The 20 m high fault scarp, associated with the Faro fault, cutting a flat 
erosional surface of Early Pleistocene age. (d) Fault orientation and kinematic data (see Fig. 4 for locations). 

amounts of displacement can be accommodated by 
wider zones of multiple, composite, deformation 
bands (Engelder 1974; Aydin & Johnson 1978; 
Antonellini et al. 1994). In the Piana di Castelluzzo, 
deformation bands are generally shear bands 
(Aydin et al. 2006), mostly trending ESE 
(Fig. 10). Sheared stylolites are associated with 
all sets of shear bands. The geometry of step-over 
zones and 'horse-tail' terminations (Figs 11 
and 12) indicates a right-lateral strike-slip character 
for most of them (striking east-west and ESE) and 
left-lateral strike-slip kinematics for those (subordi- 
nate) trending NNW and north-south. The NW- 
striking set is often characterized by oblique- 
normal kinematics, whereas all sets of shear bands 
and related sheared stylolites show cross-cutting 
relationships that suggest that they sheared at the 
same time (see Fig. 8). 

In the Piana di Castelluzzo, several mesofaults 
also affect the Dendropoma coastal reef platform, 

which is made of worm populations still growing 
at present in the temperate climate of northwestern 
Sicily (Fig. 13; Antonioli et al. 1999). The fault- 
controlled reef therefore records clear evidence of 
the very recent activity of these structures. 

The information collected in the study area also 
suggests that the geometry of the stress field respon- 
sible for the overall deformation pattern observed in 
this sector of northwestern Sicily is characterized 
by a direction of maximum compression oriented 
roughly NW. In fact, as shown in Figure 14, the 
most abundant features exposed in the Piana di Cas- 
telluzzo may be interpreted as R shears related to 
a roughly east-west-striking fault driven by a 
NW-oriented compression. 

As concerns chronology, our observations indi- 
cate that deformation bands are the oldest structures 
formed in the Piana di Castelluzzo area, from 
Early Pleistocene time, whereas sheared stylolites 
and mesofaults affecting the Dendropoma reef 
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Fig. 6. (a) The 15 m high fault scarp in Early Pleistocene marine deposits associated with the Castelluzzo fault. (b) 
Fault orientation and kinematic data (see Fig. 4 for locations). 

(characterized by distinctive slip surfaces, visible 
gauge, and the same kinematics of the deformation 
bands) developed later. This also suggests that the 
geometry of the stress field acting in the area has 
not changed from Early Pleistocene time to the 
present. 

Discussion and conclusions 

Detailed analyses of macro- and mesostructural fea- 
tures exposed in the San Vito lo Capo peninsula, in 
northwestern Sicily, show that the overall defor- 
mation pattern in the area may be interpreted in 
terms of strike-slip tectonics driven by a current 

Fig. 7. Remains of macrofauna of Tyrrhenian age cut by an east-striking right-lateral shear fracture: (a) photograph; 
(b) schematic drawing. 
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Fig. 9. East-West- and NW-striking deformation 
bands, in the Piana di Castelluzzo, easily recognized 
because of their increased resistance to weathering with 
respect to the host-rock. 

stress field geometry characterized by a NW- 
oriented maximum compression. The stress field 
acting in the area appears to be directly controlled 
by the convergence between the African and Euro- 
pean plates. The present-day Africa motion along 
NNW-SSE- to NW-SE-directed vectors is sub- 
stantiated by geological, seismological, VLBI 
(very long baseline interferometry) and global 
positioning system data (Ward 1998; Zarraoa 
et al. 1994; Cello et al. 1997; Di Bucci & Mazzoli 
2003; Goes et al. 2004; Tondi et al. 2005). 

In the San Vito lo Capo peninsula, we identified 
two main active faults: the Faro and Castelluzzo 
faults. Both faults are marked by 15-20 m high 
fault scarps cutting marine deposits of Early Pleis- 
tocene age. 

Integrating the values of the vertical component 
of motion (derived from the height of the fault 
scarps) and data from mesostructural analysis 
(which shows a mean pitch value of about 10 ~ for 
the faults mapped in the area) we computed the 
cumulative displacement across both faults as 
some 90-120 In. Consequently, slip on both faults 
must have occurred at a rate of about 0.05 mm 
a-1 since the Pleistocene. Furthermore, the notion 
that empirical expressions relating fault length and 
displacement (Cowie & Scholz 1992; Schlische 
et al. 1996; Tondi & Cello 2003) may provide 
good estimates for their dimensional properties 
allowed us to suggest that the cumulative length 
of each fault is in the range of about 10 km. 

Frequency Data, 6au~ian 
Total D~ta: 843 

GAUSS|AN PARAMETERS 
# % ~ H  M a x H .  i ~ m u t h  sd  

4 22~9 100,0 23.25 -75,0" 8,2 '= 

2 21~3 88,8 20,6( =88~2 ~ 6.5 ~ 

3 t 6 .2  48,5 11.5( ~60~7 m 8,8 ~ 

4 28.8 36.2 8.41 - 3 8 3  = 20.0 = 

5 7.8 25.9 6.02 74,0= 8~1 = 

Min ~*4alue Fit = 0~ 

Fig. 10. Orientation data for the structures exposed in the Piana di Castelluzzo outcrop. 
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Fig. 11. Detail of Figure 8 showing: (a) east-west-striking mature mesofaults with right-lateral kinematics, and (b) 
NNW-striking sheared stylolites with left-lateral sense of motion. 

Fig. 12. (a) Left-stepping geometry of ESE-striking sheared stylolites; (b) 'horse-tail' termination showing right- 
lateral kinematics. 
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Fig. 13. (a, b) Fault-controlled morphology of the Dendropoma reef platform. 

y ..... / " ' ~  ~.._, j ..,,. 
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Fig. 14. Two-dimensional geometry of the stress field 
acting in northwestern Sicily, and structural 
interpretation of the structures mapped in the Piana di 
Castelluzzo. 

From (1), it follows that the moment  magnitude 
is (Kanamori 1977) 

Mw = ( log Mo/1.5)  - 10.73. (2) 

Considering each seismogenic structure indivi- 
dually, and a mean coseismic displacement of the 
order of 0.5 m (Wells & Coppersmith 1994), we 
propose that the maximum expected moment mag- 
nitude for each fault is about 6.0. This result 
suggests therefore that, in western Sicily, as well 
as the Belice region, the San Vito lo Capo peninsula 
may also be considered as a seismic source area for 
medium-sized earthquakes. 

This work was supported by the Universities of Camerino 
and Palermo (research funds to E. Tondi, G. Giunta, 
P. Renda and M. Unti), and by the MIUR, Cofin 2002 
(research funds to G. Cello and D. Zampieri). 

Based on this estimate, we also computed the 
maximum expected moment  magnitude for both 
faults from the relationship 

Mo = ~Agu (1) 

where Mo is the seismic or geological momentum, 
A is the fault surface area, ix is the rigidity modulus 
(3 x 1011 dyn cm -2)  and gu is the last slip incre- 
ment on the fault. 

We calculated A from the inferred fault length, by 
assuming that its width is equal to the thickness of 
the seismogenic layer (about 10 kin; as may be 
averaged from the hypocentre distributions shown 
in Fig. 3). 
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