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Abstract

We derive the effectiv&V = 1, D = 4 supergravity for the seven main moduli of type IIA orien-
tifolds with D6-branes, compactified d?ﬁ/(Zz x Zo) inthe presence of general fluxes. We illustrate
and apply a general method that relatesahe: 1 effective Kahler potential and superpotential to a
consistent truncation of gaugat= 4 supergravity. We identify the correspondence between various
admissible fluxesN = 4 gaugings an&v = 1 superpotential terms. We construct explicit examples
with different features: in particular, new IIA no-scale models and a model which admits a super-
symmetricAd$, vacuum with all seven main moduli stabilized.
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1. Introduction

Compactifications of superstrings and M-thebmgay lead to four-dimensional vacua
with exact or spontaneously broken supersymmetries. The pattern of residual and broken
supersymmetries strongly depends on the set of moduli fields predicted by the compactifi-
cation geometry and on the detailed dynamics of these moduli. Even for the phenomeno-
logically attractive compactifications with spontaneously brokea 1 only, information
on the dynamics of moduli is provided by the much larger symmetry of the underlying
D = 10 string theories, with sixteen or thirty-two supercharges. Similarly, in the effective
D = 4 low-energy supergravity theory, this information on moduli dynamics is encoded
in the underlyingN > 4 supersymmetry. Thus, the Kahler potential of tie= 1 effec-
tive supergravity follows from the scalar sigma-model induced\by: 4 auxiliary field
and gauge-fixing equations. And thé = 1 superpotential for the moduli and matter
fields is directly related to th&/ = 4 supergravity{2—-4] gauging[5], which in turn cor-
responds to a specific flux structure of the underlying ten-dimensional string theory or
eleven-dimensional M-theory.

The generation of a scalar potential for the moduli fields is a crucial ingredient in su-
persymmetry breaking and in the determination of a st@ble 4 background geometry,
if any. It is also essential to reduce the number of massless scalars and/or undetermined
parameters in the low-energy effective theory. Besides the curvature of the internal space
itself, there are several well-known sources for a scalar potential in the compactified ten-
dimensional (or eleven-dimensional) theory.

A first source is the Scherk—Schwarz mechani§fy and its generalization to su-
perstrings via freely acting orbifold§]. The relevant fluxes are the geometrical ones,
associated with the internal spin connectign Some of the corresponding effective the-
ories are no-scale supergravity modg@$, with broken supersymmetry in a fl@d = 4
background. However, the gravitino and the other masses generated in this way are pro-
portional (modulo quantized charges) to the inverse length scale of the compactified space,
m o« R~1. Therefore, to have supersymmetry breaking and/or preserving TeV scale masses,
we need a very large internal dimensidh,~ 10'% p, wherelp is the (four-dimensional)
Planck length.

A second source is nonzero “fluxes” of antisymmetric tensor fields, as first identified
long ago for the three-fornifz of the heterotic theory9]. There is an extensive recent
literature[10] on orientifolds of the 11B theory in the presence of three-form fluxes. For
instance, simultaneous and suitably aligned NS—NS £NSeveu-Schwarz) and R-R
(R = Ramond) 3-form fluxesH3 and F3, can lead to no-scale supergravities, but now
m o ZIZDR‘3: as a result, TeV scale supersymmetry breaking and/or preserving masses can
be obtained foR ~ 10°/p. The richer flux content of the IIA theory has been studied to a
lesser extentl1,12]

Both sources, geometric and antisymmetric tensor fluxes, can be combined, as originally
examined in the heterotic theory by Kaloper and Myjéf.

3 For an introduction, see, e.gd].
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In this paper, we use the method of supergravity gaugings to describe in general
terms the generation of moduli superpotentials in a specific compactification scheme, de-
fined as follows. We consider compactifications of superstring theories on the orbifold
T%/(Z> x Z»), combined for type-Il strings with a compatible orientifold projection to
reduce supersymmetry to four supercharges. The moduli spectrum includes then seven
chiral multiplets from the closed string sector, and the orbifold has a natural permutation
symmetry in the three two-toi7’2) defined by the action of» x Z» on the six-torus
T6. We then construct the gaugings associated to general flux structures respecting this
“plane-interchange” permutation symmetry (this assumption could be eventually relaxed,
leading to a wider spectrum of possibilities). We include the fluxes generated by all an-
tisymmetric tensor fields (NS-NS and R-R), and also geometrical fluxes associated to
components of the internal spin connection, as in Scherk—Schwarz compactifications. We
analyze here in detail the case of I1A strings (with D6-branes), since it offers the broadest
choice of fluxes and breaking patterns. We establish the dictionary relating fluxes, gauging
structure constants and superpotential terms, and the consistency conditions applying on
gauging and flux coefficients. This general formulation allows us to study examples with
selected phenomenological properties. We find in particular that gaugings and fluxes exist
in [IA compactifications, such that all seven moduli are stabilized in a vacuumMwvithi,,

D = 4 anti-de SittefAdS) supersymmetry. Other superstring theories and more general
compactification schemes will be considered in a longer, companion fafjer

This paper is organized as follows. The general method for obtaiNirgl superpo-
tentials fromN = 4 gaugings, already anticipated[itb,16], is studied and applied to our
specific compactification scheme in Sect®he familiar example of the heterotic theory
is then used to define the relation between fluxes and superpotentials, and the consistency
conditions for a gauging (Sectid®). We then turn to the general study of fluxes in type
IIA compactifications (Sectiod) and to the study of some selected examples (Se8jion
We conclude in Sectio6.

2. N =1 superpotentialsfrom N = 4 gaugings

The Lagrangian density describing the coupling of vector multipletS te 4, D = 4
supergravity[5] depends on two sets of numbers. Bteicture constantgsy ¥ define the
gauge algebra, and tririality phasesig specify the duality-covariant coupling of each
gauge field to the supergravity dilateh With n vector multiplets, the gauge group is a
(6 + n)-dimensional subgroup of the natu&MX6, n) symmetry, inherited from the super-
conformal origin of the Abelian theory. The structure constants must leavB@& n)
metric ngs invariant, a condition which implies antisymmetry g7z = fsrUnur.
Notice thatnzy is not in general the Cartan metric of the gauge growith the
SU(1, 1)/ U (1) Kéhler potential

K(S,8)=—=In(S+S), 1)

4 TheSQ6, n) metric has six eigenvaluesl andn eigenvaluest-1.
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the S-dependentv = 4 (superconformal) gauge kinetic terms read

1
ﬁgaugez—ZZnRsSsRFlfv_F“”S_+h_c_+...’ 2
R,

whereFR* = FR +iFR  and

COSSRgS — i Sindg

S5, = . . 3
%% = Z/SindzS + cosx 3)

Further gauge kinetic terms, depending on the scalars in the vector multiplets, arise from
the elimination of superconformal auxiliary fielgs]. They also depend on the duality
phases through the sarfig,. The duality phase$ must respect the structure of the gauge
algebra and discretization of tisJ(1, 1) S-duality group implies that only two choices of
phases are allowed

k=0 <« S5,=S, and ép=m/2 <« S5,=1/S, 4

commonly associated with perturbative and nonperturbative sectors, respectively.
Then vector multiplets contain scalars in the representdiohthe R-symmetry group
SU(4). They live[3,4] on the cose8Q(6, n) /[SA6) x SQn)]:

1 ..
o == =semud ™, ¢V =(9])

G,j...=1...,4 R=1...,6+n). (5)

The structure of the sigma-model is dictated by the field equation of an auxiliary scalar,
which leads to the constraint

1
nrsdi9S = 15 (078) = 8i87)nrsdp e, (6)
and by the Poincaré gauge-fixing condition
nrsp ¢S = ¢ley = —6. (7)

These two conditions eliminate twenty-one scalar fields, and the ®ld&l) symmetry
can be used to eliminate another fifteen. The remaininglysical scalars live on the
announced coset.

As usual, gauging supergravity also generates a scalar potential, and gravitino mass
terms—(1/2) M32" ;0 ¥y + h.c., with?

4 . .
_é(PEFR)fRSTd)Zde)/f[(bUT, (8)

2 . .
(pEkR) Z‘[ ﬁ(cosaR—lSS”'lSR). (9)

5 For N = 4, D = 4 supergravity, we mostly follow the conventions[d¥], unless otherwise stated, and set
the D = 4 Planck mass equal to one.

Mz =

and
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To reduce supersymmetry 16 = 1, we use aZ2 x Z» truncation, as in string orbifolds

with the same discrete point group. This truncation leads to a moduli sector with seven
chiral multipletsS, T4, Us (A =1, 2, 3), for all string compactifications and compatible
orientifolds and D-brane systems. We can also include an arbitrary number of matter mul-
tiplets, generically denoted kzlg (I=1,...,n4). TheN =4 sigma-model reduces to the
Kahler manifold

_SUL SQ2,2+n4)
Mzza =35 X/Elsw)xsww)' uo
Since
SQ2,2  SUl1 SUL1D (11)

SQ2) xS02) . UM U@

in the absence of furthélf‘ fields each complex modulus is associated t&aiil, 1)/
U (1) structure. In the Lagrangian, the truncation is performed by first rewriting the fields
in anSU(3) basis,

pRA = pRAS. ok = (¢F4)" = %GABCquBC. (12)

The threeSU(3) nonsinglet gravitino multiplets are then truncated, and the remaiviag
1 gravitino mass term reads

4
m3jp = —éwfR)fRSTEABC¢RA¢SB¢TC- (13)

This simple formula still depends on the constrainée= 4 scalar fieldsp®4. However,

once written in terms of the unconstrained fields, the expression of the gravitino mass term
will considerably change (see below). These constrained states are truncaied fo
multiplets according to th&, x Z» action on theSU(3) and SQ(6, n) indicesA and R,

as in the sigma model truncatigh0). Since our goal is to work with a fixed set of well-
defined moduli and matter field§'s, Ua, Zj‘), and to study various classes of gaugings

of these multiplets, the next step is to solve the truncated const(ajrasd(7). We then
introduce three sets of-4 n4 complex scalars that we denote by

ot 02 pY 03, xk, A=1,231=1,... na. (14)

The truncatedSQ(2, 2 + n 4)-invariant constraints, which forgs = diag(— 14, 1,,) read

oA *+ |0 31° = ok | = 103" = X_[xAl* = 1/2.
1
(03)"+ (03)° = (o5)" = (45)° = 2_(xh)* =0, (15)
1
are then solved in this basis by:

11+ TyUp— (Zf,)z
2[Y (T4, Un, ZI)V2

i Ta+Uxp
2[Y (T, Un, ZV2

1_ 2 _
Oy = 0y =
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1 11-TaUs+(Zh)? , i Ta—Ua
pa=75 2 PAT3 2
2[Y(Ta,Un, Z)1Y 2[Y(Ta,Un, Z)1Y
sl
I iZy
= . 16
AT W (T, U, 212 (o
These expressions depend on the real quantity
Y(T,U.Z2) =@+ DWW +0) - > (2! + 7). (17)

1

As expected, the constraints eliminate six complex scalar fields.

The above equations allow to rewrite the scalar potential and the gravitino mass term as
functions of theV = 1 complex scalars, the structure constants and the duality phases. The
Kahler potential and the superpotential can then be obtained by separating the holomorphic
part in theN = 1 gravitino mass term, using the relatiory/, = eX/2w . The resulting
Kahler potential is

3
K=—-In(S+38) = > InY(Tx.Ua. Z}). (18)
A=1

while the superpotential is simply

3 1/2
4 ,
W= éx/é[COS(SR —i S|n8RS]|: []Y(Ta Ua, zg)}
A=1

x frsreapcpRApSBpTC. (19)

It is a holomorphic function ofS, T4, Ua, Zg), once theN = 4 scalars from the vector
multiplets have been truncated b= 1 and replaced by the solutiofl5).

In this paper, we discard all matter fieldij for simplicity. However, many of the
features encountered in the restricted cases studied here remain true with all matter fields
included. Removing théfl fields, the generic superpotential is then a polynomial in the
moduli fields with maximal degree seven. In particular, each monomial is of order zero or
one in each of the seven mod#liT,, U4. The superpotential can then have up fe=2128
real parameters, which are structure constants and duality phases of the und&rkying
4 algebré These numbers will be identified with various fluxes of compactified string
theories.

The structure constant&s’ gauge a subalgebra 806, 6), with dimension equal or
less than twelve and compatible with tie x Z, truncation. They verify Jacobi iden-
tities. The gauging structure constants with lower indigasr = frsCnor are fully
antisymmetric for consistency of the gauging. The truncatioW te 1 provides further
information. The residual Poincaré gauge fixing conditions solve@fgndU,4 are in-
variant unde6SQ(3) rotations of the plane index andSQ(2, 2) rotations inside each plane.

6 The N = 1 truncation of the scalar fields®4 associates to each fixed valuedf= 1, 2, 3 only four values
of the indexR, the four directions in each of the thr&€X2, 2). Hencefg g7 includes 4 = 64 real numbers.
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This means that structure constants can be classified usii8Xe2) x SQ(3) subgroup
of SO, 6) with embeddindl2 = (4, 3). One can rewrite the gauge algebra in this embed-
ding by defining generatofBy, (A =1,2,3, a=1,...,4), and commutation relations

[Taa. Taol = faasp Tce. (20)
The antisymmetric gauging structure constants are then
faaBbce = faanp““Nea, (21)

where . is the SQ2, 2) metric. TheZ, x Z» orbifold projectiorl leads naturally to
define a “plane-interchange symmetry” in the moduli sector. Our purpose here is to study
a particular class of gaugings which respect this plane-interchange symmetrjl14&ef.

will analyse more general gauging structures. The structure constants for these particular
gaugings read

anleQCCg = AalbzcgeABC (a1, b2, c3= 1., 4)7
C d
anlez G = AaleCBEABC» Aa1b203 = ﬁc3 3Aa1b2d3' (22)

Each indexas, b, c3 is an SQ(2, 2) index, and there are in principle® 4 64 possible
combinations, as for the number of possible superpotential terms constructddwaiiid

T4 and the rule that each term is either linear or independent of each ma@@iuss4).
EachSQ2, 2) index refers to a specific complex plane of tNe= 1 truncation:a; to

the first planep, to the secondgs to the third. Antisymmetry of the gauging structure
constantsfrsr implies full symmetry ofA,,s,¢,: this reduces the number of independent
structure constants to 20, which is also the number of combinations of superpotential terms
left invariant by any permutation of the plane index. The Jacobi identities verified by the
structure constantgs, g, ¢ translate into a simple cyclicity property:

ndeabdAcfe = ndebchafe = ndecadAbev Va,b,c,e. (23)

Eq.(23)and symmetry oA, are the conditions applying to @ = 4 gauging respecting
the plane-interchange symmetry.

There are two commonly used bases3ax6, 6). Firstly, the natural basis in which the
Cartan metric is diagonal, as in Hd5). Secondly, the S/A basis defined by

6 6
ds® = Z[dx“' dx't —dxi~ Z x4 dxi— (dxi+ - dxi_)
1 i=1

i

dx's dx'®. (24)

e

Il
N

1

The Cartan metric in the S/A basis is off-diagonal,
1/06 Is
== ) 25
2 ( Ig Oe) (25)

7 And theSQ(3) invariance of the constraints.
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The analysis of the consistency conditig@8)is much simpler in the S/A basis, especially

in view of the solutiong16) of the Poincaré constraints. The procedure to analyse a gaug-
ing and obtain the corresponding= 1 superpotential is as follows. To begin with, select

a symmetric set of constants,;,., that solve the cyclicity equatiorf23)in the S/A basis.
Then, compute the resulting = 1 superpotential, in two steps. Firstly, use the following
correspondence between the indi¢es b2, ¢3) and the twelve directions iBQ(6, 6):

a1=(1,2,3,49 <« (55,65,54,64),

bp=(1,2,3,4 <« (75,85,74,84),

c3=(1,2,3,4 <« (95,105,94,104). (26)
Secondly, use the solution of the Poincaré constraints, in the form

(55.75.95) — LN @a+TOWs+00), A=123,

(65,85,105) — iTa/y(Ta+TUa+00), A=123,

(5, 74,94) — TaUs/J(Ta+T)Ua+00), A=123,

(64,84,104) — iUA/\/(TA +TA)Ua+Us), A=123 (27)

For each compactified string theory, the allowed fluxes will determine the set of allowed
Agybyc5 and the cyclicity equation@3) will impose the consistency relations between var-
ious fluxes. This method can be used to generate all superpotentials from fluxes verifying
plane-interchange symmetry. Without invoking this symmetry, the analysis of a gauging
would be similar, but with a set of nonzero gauging structure constants submitted to more
complicated Jacobi identities, instead of the simple relat{a8%

With our seven moduli fields, Kahler potent{@8) and superpotentigll9), the N =1
supergravity scalar potential simplifies to

.
e_KV:Z|W—W[(Z,‘+Zi)|2—3|W|2, (28)
i=1
wherez; = S, Ty, Us andW; = (dW)/(dz;). Each quantity W — W;(z; + z;)] is simply
the superpotentidl/ with the corresponding field: replaced by-z;.

3. Heterotic fluxes

Before moving to the discussion of the IIA theory, we recall some known results for
N = 1 compactifications of the heterotic theory on #Hh®/(Z,> x Z») orbifold. This will
be useful to establish some notation and to illustrate our general method in a familiar case.
We begin with the identification of the seven main moduli. Conventionally, we split
the space—time indices a¢ =1 =0,1,2,3; i =5,6,7,8,9,10], and we take on&>
acting on the coordinates>®"-8, the otherZ, on the coordinates’-8 19, This naturally
defines three complex plangls=1,2,3: i1 =5,6,i2 =7, 8, i3 =9, 10. We follow the
conventions of1] unless otherwise stated.
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If we neglect theEg x Eg or SQO(32) gauge bosons (which would generate multiplets
of Z! type in theD = 4 theory, and would allow for additional fluxes associated with the
internal components of their two-form field strengths), the bosonic fields obtkel10
heterotic theory are just the universal ones of the NS—NS sector: the string-frame metric
gun, the dilaton® and the two-form potentiaky, v . Their Z> x Z5 invariant components
can be decomposed as

e =s(ntar3) Y g =5 8w (29)
o _ta(ui 4 owa _

8iaja = ua < va 1 (A=1,223), (30)

By, <0, Bsg =11, Brg=T12, Bo10= 13, (31)

whereg,,, is the metric in theD = 4 Einstein frame, and the symbe} indicates the
four-dimensional duality transformation relating a two-form potential with an axionic
pseudoscalar. Neglecting the dependence of the fields on the internal coordinates, absorb-
ing an integration constant in the = 4 Planck mass, conventionally set to unity, and
making the identifications

S=s+io, Th=ts+ita, Up=us+ivy (A=123), (32)

we obtainD = 4 kinetic terms described precisely by the Kahler potential of(E8), for
the caser4 = 0 we have chosen to study

3 3
K=—In(S+38) =Y IN(Ta+Ta)— Y _IN(Ua+ Uan). (33)
A=1 A=1
In view of what follows, we stress that the kinetic terms of the seven main moduli are
invariant under both0 (7) rotations andBU(1, 1) x [SQ(2, 2)]° duality transformations.
We now summarize the different allowed fluxes, and identify the assocpédtedl
superpotentials with the method illustrated in the previous section.

3.1. Hs heterotic fluxes

As first recognized if9], possible fluxes in the heterotic theory are those of the modified
NS-NS three-fornfiz = d B» + - - -, where the dots stand for the gauge and Lorenz Chern—
Simons terms. There are eight independent real fluxes, invariant undér thg, orbifold
projection:

[—}579, 1:1679, [:]589, g6897 1:15710, 1:16710 1:15810, ﬁGSlO (34)

The corresponding potential for the seven main moduli can be explicitly computed by di-
mensional reduction. Its generic structur&/jg, = eX [[3_; fa(va, 43 +v?), where each

fa is a polynomial of at most degree one in its arguments. This is sufficient to deduce,
similarly to what happens in 1IB theorig0], the correspondingy = 1 effective super-
potential W, (U), which carries no dependence on thend7 moduli. It is immediate

to check thatf fluxes correspond td&/ = 4 gaugings for any choice of the parameters in
(34). Leaving aside a systematic discussion, we just observe that, under the assumption of
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plane-interchange symmetry, there are four independent parameters, associated with four
different structures iy, (U):

Hs79=A111 < 1,

He7o9= Hsgo= Hs710= A114 < (U1 + Uz + U3),

Hego= Hsgio= Her10= A14s < —(UrU2+ U2Us+ U1Us3),

Hegro= Aaaq < —iUiUUs. (35)

3.2. Geometrical heterotic fluxes

The possible fluxes also include some geometrical ones, associated with the internal
components of the spin connectiag, and corresponding to coordinate-dependent com-
pactificationg6]. These fluxes are characterized by real constants with one upper curved
index and two lower antisymmetric curved indices:

flik=—Ff"%- (36)
These constants must satisfy the Jacobi identities of a Lie ggﬁiypf"lm + filkf"mj +
[ mk f"ﬂ = 0, and the additional consistency conditigiy;; = 0. The corresponding
D = 4 potential in the heterotic theory can be easily calculated from the formul[&g in

In agreement with th&, x Z, orbifold projection, we must assume here that

f4ipic=0 forA=BorA=CorB=C, (37)
which satisfies automatically the consistency conditfdp, = 0. Geometrical fluxes are
then described by 24 real parameters

Ciyigic = figics  [(ABC) = (123, (231), (312)], (38)
subject only to the Jacobi identities. Leaving aside a general discussion, we assume here
plane-interchange symmetry, to reduce the number of independent parameters. Inspection
of the resulting scalar potential singles out six different possible structures in the effective
superpotentiaW,, (T, U), always linear in thd moduli and independent ¢f:

Ce79=Cgos=Cio57= A112 < i (T1+T2+T3),

Cs79=Cos57=C795= A113 < (T1U1+ T2U2+ T3U3),

Ceg10= Cg106= C1068= A244 <« —i (T1U2U3+ T2U1 U3+ T3U102),

Csg10= C7106= Coeg= Azaa <« —(T1+ T2+ T3)U1U2Us3,

Cg96 = C1067= Ce89 = C1058= Ce710= Cg105= A124 <

—(T1Uz + ThU3 + TRUy + TRUs + T3U1 + T3U>),
Csgg= C796= C7105= C9s8 = C5710= Co67= A134 <>
i(T1U1U2 + ToUU3 + T3U3Ur + T1U1Uz + ToUoUr + T3U3U>). (39)

In this case the Jacobi identiti€a3) impose some nontrivial constraints:

A112A344 = A124A134,
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A113A344+ A244A134= AzsaAi2a+ Afgy,
A112A244+ A113A124= A112A1344 A3y (40)

3.3. Combined heterotic fluxes

The combination offl3 and w3 fluxes in theT'®/(Z> x Z») orbifold of the heterotic
string is then described, under the assumption of plane-interchange symmetry, by the ten
real parameters of EqE35) and (39) According to Eq(23), consistency with an under-
lying N = 4 gauging amounts to requiring the Jacobi identities (cyclicity conditions) of
Eg. (40) and the additional condition

A111A344+ A112A444+ A113A144+ A114A244 = 2A144A 104+ 2A114A134.  (41)
The corresponding effectiv® = 1 superpotential would read

W = A111+ i A114(U1 + Uz + Us) — A144(U1U2 + UUs + U1U3)
— 1 A444U1U2U3 + i A112(T1 + T2 + T3) + A113(TaUr + T2U2 + T3U3)
— 1 A244(T1U2U3 + ToU Uz + T3U1U2) — Azaa(Th + T2 + T3)UrU2Us3
— A124(T1U2 + T1 U3 + ToU1 + ToU3z + T3U1 + T3U>2)

+ i A134(T1U U2 4+ T1rUL U3 4+ ToUUy 4 ToU2U3 + T3U3U1 + T3U3U).
(42)

Similar superpotentials were considered, motivatedMoy 1 gaugings but without as-
suming plane interchange symmetry and without establishing the precise connections with
fluxes, in[18]. The connection between Scherk—Schwarz compactifications, geometrical
fluxes, N = 4 gaugings andV = 1 superpotentials was also discussed1i9], without
assuming plane-interchange symmetry and in a different field basis. More results at the
N = 4 level were obtained if20]. A general analysis of combined fluxes in toroidal com-
pactifications of the heterotic string was given113]: consistentZ, x Z, truncations of
their results are in complete agreement with our results.

It is important to recall that, in the heterotic theofs and w3 fluxes, corresponding
to perturbativeN = 4 gaugings with trivial duality phases, can never genefate 1 su-
perpotentials with both constant and linear terms$inVe can then obtain, for example,
no-scale models as {i@,19], but never reach the full stabilization of all seven main mod-
uli, including S. From the point of view ofV = 4 supergravity, of course, we could also
consider nonperturbative gaugings with nontrivial duality phases, which would give rise
to both kinds of allowedS-dependences in the effectivé = 1 superpotential. We may

think of these gaugings as associated to possible nonperturbative effects such as gaugino
condensation.

4. Fluxesin Il1A superstrings

In type IIA and IIB superstring theories compactified 8A/(Z> x Z»), to produce
N =1, D =4 supersymmetry we must introduce consistently an additigpalrientifold
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projection. We discuss here only the case of the IIA theory, with a specific orientifold
projection compatible with D6-branes.

The bosonic fields of the 1A theory are the universal ones of the NS—NS sector, plus
those of the R—R sector: a one-foun,; and a three-forni ,;yz. Five-forms and seven-
forms are related to the previous ones by ten-dimensional duality, do not carry independent
degrees of freedom and do not need to be included at this stage. Nine-form potentials do
not carry any propagating degree of freedomln= 10, even if they can play a role,
as we shall see, in the classification of allowed fluxes. We consider here a specific
orientifold projection, involving the inversion of three out of the six internal coordinates
and associated with D6 branes: it is not restrictive to take the odd coordinates d-Be
The independent invariant spin-0 fields from the NS—NS sector are then

gii. @, Bss, Brs, Boio, (43)

for which we can temporarily make the heterotic decomposition of 2§3-(31) setting
v4 = 0 and disregarding the off-diagonal components of the internal metric. The indepen-
dent invariant spin-0 fields from the R—R sector are:

Aegro=0',  Apro=—v;,  Asgg=—Vvy,  As710=—V3. (44)

Looking at theD = 4 kinetic terms of the fields i44), we find

3
1.
Lr——Zead" [Oo(aw/)(auo/) +y OA<auv;)(auvg)], (45)
A=1
where
s W A . (46)
K Su2U3 Suiu3 SuiuU3

This immediately suggesf42] the identification of the real parts’, u}, u5, u%), associ-
ated byN = 1 supersymmetry to the imaginary paés, v}, vy, v3):
22 (a7)
us

, N ’ Suu3 ’ Suius ,
S = , Uy = , Uy = , us
uuu3 ui uz

These identifications can be cross-checked by looking afth&*” and F,,, F*’ terms in

the effective four-dimensional action for the Yang—Mills vectors, generated by the Dirac—
Born—Infeld and Wess—Zumino actions for the D6 branes, aligned alorg8i€), (679),

(589, (5710 O6-planes.

The theory under consideration exhibits a rich structure of possible invariant fluxes. As
in the heterotic case, we first discuss each of them separately, then we look at a generic
combination. The Jacobi identities of = 4 gaugings, Eq(23), will be automatically
satisfied if there are only NS—NS three-form fluxes, or only fluxes of the R-R forms: as we
shall see, nontrivial constraints will arise only in the presence of geometrical fluxes or of
combined fluxes.
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4.1. H3fluxesin lIA

Only four out of the eight independent fluxes allowed for the NS—-NS 3-form in the
heterotic case, E(34), are also invariant with respect to the orientifold projection. In
terms of H3 = d Bo, they are:

Hs79, Hess, He710. Hsgio (48)

Inspection of the four-dimensional potential obtained from dimensional reduction shows
that, after moving to the IIA field basis of E@7), and assuming plane-interchange sym-
metry, there are two independent superpotential structures:

Hs79= Aél.ll <~ i,

—Hegg= —He710= —Hsg10= A114 < i(U1+ U2+ Us3). (49)

Notice that, in contrast with the heterotic case, two indepengtldl, 1) phases are in-
volved.

4.2. Geometrical IlA fluxes

Again, the 1A orientifold projection leaves invariant only half of the geometrical fluxes
(38) that were allowed, modulo Jacobi identities, in the heterotic case:
Cs710 C7105 C1057: Ce79, C796, Co67;
Csg, Cgos, Cosg; Ces10 Cs106 C1068 (50)

Inspection of the four-dimensional potential obtained from dimensional reduction shows
that in this case, after moving to the IlA field basis of E47), and assuming plane-
interchange symmetry, there are three independent superpotential structures:

Ce79=Cgos= C1057= A1, < —S(T1+ T2+ T3),

Ceg10= Cs106= C1068= A113 < (T1U1+ T2U2+ T3U3),

Csgg= C796 = C7105= Cos8 = C5710= Co67= A124 <>

—(T1 U2 + ThU3z + ToUy + ToUz + T3U1 + T3U>). (51)

Notice that also for geometrical fluxes two differeésity(1, 1) phases appear, in contrast

with the heterotic case. From E(3) we can easily derive the Jacobi identities required
for a consistentv = 4 gauging with geometrical fluxes only:

A124(A124— A113) =0. (52)
4.3. Fy flux

The mass parameter of massive IIA supergray§] can be regarded as a ten-
dimensional zero-form flux¥g, dual to the ten-form field strength associated with a nine-
form potential, which does not carry any propagating degree of freedom. Inspectifg the
contribution to the potential via dimensional reduction, and moving to IIA variables, we
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can identify the associated structure in the effective superpotétitial

Fo=A22 < —i(ThT2T3). (53)
4.4. F> fluxes

The independenk> fluxes invariant under the orbifold and orientifold projections are:

Fse, Frs, Folo. (54)

Looking at their contributions to the potential via dimensional reduction, moving to the
lIA field basis of Eq.(47), and assuming plane-interchange symmetry, we find that the
corresponding structure in the effective superpotentias

Fsg= Frg= Fo10=A1220 < —(ThWTo+ T1T3+ T>13). (55)
4.5. F4 fluxes

The four-form fluxes with internal indices, invariant under the orbifold and orientifold
projections, are:

Fse7s  F7g910  Fo1056 (56)

Looking at their contribution to the potential via dimensional reduction, moving to the
lIA field basis of Eq.(47), and assuming plane-interchange symmetry, we can identify the
corresponding structure in the effective superpotential:

Fse78= F78010= Fse910= A112 < i(T1+ T2+ T3). (57)
4.6. Fgflux

Among the components of the R—R four-form field strength, invariant under both the
orbifold and the orientifold projections, there is alBp,,. , which is not associated with
any D = 4 propagating degree of freedom, and can be related by ten-dimensional duality
to a ten-dimensional six-form fluks. A similar flux was considered if22] to address the
cosmological constant problem. Looking at the corresponding potential terms generated
by dimensional reduction, and moving to the llA variables of @), we can identify the
corresponding structure in the effective superpotential:

Fg=A1117 < 1 (58)

Notice that the above flux generates a constant superpotential, not a constant potential, in
the four-dimensional effective theory.

4.7. Combined IIA fluxes

Switching on simultaneously all the independent fluxes identified so far corresponds to
having, as nonvanishing coefficients:
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o (Aqy, A7) With SU(1, 1) phase factor S;
o (A111, A112, A122, A222, A113, A114, A124) With SU(L, 1) phase 1.

Under our simplifying assumption of plane-interchange symmetry, the Jacobi identities
constraining such combined fluxes read

A222A114+ A113A120=2A122A124, A113A124= A%y, (59)

Any combination of fluxes satisfying the above Jacobi identities correspondd/te-d
gauging, and can be easily translated into an effeétive 1 superpotential:

W=A111+ iAél.llS +iA112(Th +To+ T3) — A&lZS(Tl + T> + T3)
+iA114(U1 + Uz 4+ U3) + A113(ThU1 + ToU2 + T3U3)
— A122(T1To + Th T3 + TT3)

— A124(T1U2 + T1U3 + ToU1 + ToUs + T3U1 + T3Uz) — i A2 T2 1.

(60)
The results of Eqg59) and (60)provide a powerful and practical tool for analyzing, di-
rectly in the N = 1, D = 4 effective theory, the different vacuum structures associated
with the different allowed combinations of fluxes, in the chosen orbifold and orientifold
of the IIA theory. The study of a large number of examples of flux configurafibis in
heterotic and type Il strings, actually shows that the effective supergravity approach based
upon N = 4 gaugings can accurately reproduce the conditions imposed by the full field
equations of the ten-dimensional theories. This of course requires to include all necessary
brane and orientifold plane contributions to these equations. For the combinations of fluxes
leading to stable vacua of o = 1, D = 4 effective theory, it would be interesting to ex-
plicitly examine the corresponding combinations of D6-branes and O6-planes required to
satisfy theD = 10 equations and Bianchi identities, and the associated tadpole cancellation
conditions. This analysis goes beyond the scope of the present paper.

5. Some selected |1 A examples

We present now some selected examples of admissible IIA fluxes that correspond to
N =4 gaugings with non-triviabU(1, 1) phases and give rise to physically different situ-
ations.

5.1. Flat gaugings, no-scale models: stabilization of four moduli

Switching on a system dfvs, Hs, Fo, F2) fluxes, with nonzero parametetB, D > 0)
Alp=—A, A100=—AB,
Al=C,  Axpp=-CD, (61)

the Jacobi identitie§59) are automatically satisfied, and the following effectiVe= 1
superpotential is generated:

W =A[S(T1+ T2+ T3) + B(WT2 + T2Ts + T1T9)] +iC[S + DTiT2T3]. (62)
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It is immediate to see that this corresponds to a ho-scale model. Birdmes not depend
on (U1, U, U3), the scalar potential is a sum of positive semi-definite terms

2

3
KV =W — S+ HWs[P+ Y |W — (T4 + TayWr,

, (63)
A=1
and stabilization of th& and 74 moduli occurs at
B
(8) =BT, (T1) =(T2) =(T3) =T, T=,/5, (64)

with (V) = 0. The U4 moduli remain as complex flat directions and supersymmetry is

broken in thel/4 sector, since the stabilization conditions leadWt # 0, with a gravitino

mass

|9A2B + C2D)|
uuouz

(m3)2) o« (65)
To identify the gauging associated with the above fluxes and superpotential, it is conve-
nient to rescale the fields according to

S — B3?p~1/2g, Ty — BY?D~Y?T1,. (66)

The stabilization of the rescaled fields occurg®t= (T4) = 1, with a superpotential as
in (62) with B = D = 1. The resulting group i€3 x E3 [14], where E3 is the three-
dimensional Euclidean group, i.e., tB€3)-invariant contraction 08Q(4) or SQ3, 1).

This kind of rescalings can be applied in general, to shift the values at which the fields
are stabilized. For simplicity, and without losing the full generality of the combination of
fluxes, we choose that moduli are stabilized at value one in most of the following examples.

As a side remark, we notice here that the same phenomenology of the above example
can be obtained without respecting the plane-interchange symmetry. As an example, we
can consider as before a system of flukes, Hs, Fo, F2), but this time corresponding to
a superpotential:

A%+ B2

W = A(ST1+ ToT3) + i B(S + T1T2T3),  with (m35) oc ———.
UiUU3

(67)
The complex flat directions ané/1, U, Us), as in the first example.

We finally notice that, in the type-llA theory, purely geometrical fluxesare not
sufficient to stabilize all moduli explicitly appearing in the corresponding superpotential
W, because the latter is always quadratic in the fields. As an example to illustrate this
point, based on the two-dimensional Euclidean gréygthe SO(2)-invariant contraction
of SQ3) or SAO2, 1)) and breaking the plane-interchange symmetry, we consider the su-
perpotential

A2

. (68)
st3u3

W = A(ThUz + ToUy), with (m§/2> =

This corresponds to 4> freely acting orbifold (generalized Scherk—Schwarz mechanism
in string theory), with complex flat directionss, T3, Us). However, there are additional
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flat directions, because the auxiliary fields associated WithU,, 7>, U,) are all set to
zero by requiringry = 72 = v1 = v2 = 0 and#uz = ruy. In this case the spectrum has
4 massive and 3 massless “axions”, 1 massive and 6 massless “dilatons”.

5.2. Gaugings witlV > 0, cosmological models

Examples can be easily found, in which less than four moduli are stabilized and the
potential is always strictly positive-definite, leading to runaway solutions (in time).

Superpotentials with a single monomial are of course examples where no modulus gets
stabilized. For instance, we can choose the flutes = Fg, Az22 = Fo or A}, = H3,
corresponding to

W = Fs, W =—iFoT1T2T3 or W =iH3S. (69)
This leads toV = 4¢X|W|2, with |W| > 0 and a gravitino mass term of the form

2 1

m3,, = X {|F6|2, | FoT1 T2 T3|% or |H35|2}, (70)

21st1totauuou3
respectively.

An example where three moduli are stabilized is obtained by switching on a system of
R-R fluxes(Fy, F2, F4, Fg), with parameters

A= —A122= A, A112=—A22=B. (71)

The Jacobi identitie$59) are automatically satisfied, and the following effective= 1
superpotential is generated:

W=AAQ4+T1To+ To2T3+ T3T1) + i B(T1 + T> + T3 + T1 1> T3). (72)

This choice of fluxes and superpotential is actually a gaugir§f, 3). It is immediate

to see that, since the superpotential does not depend on four of the seven main moduli (the
T-moduli are stabilized at one), supersymmetry is broken and a positive-definite runaway
D = 4 scalar potential is generated:

A2 4+ B2

. 73
8suquouz (73)

(V) =(m55), with (m3,)=
possibly leading to time-dependent vacua of cosmological interest.
5.3. Gaugings witlV < 0, stabilization of all moduli

We now look at situations where more than four moduli are stabilized, leading to
negative-definite potentials once the stabilized moduli are set to their appropriate values.
We begin with a gauging of'3 with fluxes A113= —w3 (geometric) andA111 = Fs
(R-R six-form), withws, Fs > 0. The R—R six-form corresponds to tB€(3) directions
in E3 while w3 corresponds to the translations. The superpotential reads

W = —w3(Th U1 + ToUy + T3U3) + F. (74)
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The six equations for the nontrivial supergravity auxiliary fields are solve(t gt=
(va) = 0 and (t1u1) = (tou2) = (taus) = Fg/w3. At these valueslV = —2Fg, and the
s-dependent scalar potential and gravitino mass term read

1

3
w

V==2KwPr=-—2—,
et Wl 16Fgs

At the string level, this is the well-known NS five-brane solution plus linear dilaton, in
the near-horizon limit. The original gauging$J(2), combined with translations, which
emerge as free actions at the level of the world-sheet conformal field theory. It is remark-
able that thisk3 algebra remains visible at the supergravity level. It is also interesting that,
if we allow extra fluxes, induced by the presence of fundamental-string sources, we can
reachAdS background solutions with stabilization of the dilaton. All moduli are therefore
stabilized. This has been studied recently at the string [832]

Using all fluxes admissible in lIAZ> x Z» strings, we can obtain the stabilization of
all moduli in AdS; space—time geometry. Switching on all fluxes,(Hs, Fo, F2, Fa, Fg),
with parameters

1 1 1
—§A111= _EA/“Z: 6A113= A122=A, (76)
L M= —EAro= A=~ App=B (77)
5 A= —34112= 5A14=—¢ A2 = B,

the Jacobi identitie€b9) are satisfied for

6A% = 10B2, (78)

and the following effectiveéV = 1 superpotential is generated:

W = A[2S(T1+ T2+ T3) — (T1 T2 + ToT3 + T3Th) + 6(T1U1 + ToUz + T3Us) — 9]
+iB[2S + 5TWToT3+ 2(Ur + Uz + Uz) — 3(T1 + T2 + T3)]. (79)

Notice that condition(78) relates the terms with even and odd powers of the fields in
the superpotential, thus its sign ambiguity is irrelevant. The superpotérideads to a
supersymmetric vacuum &) = (T4) = (Ua) = 1 (A =1, 2, 3). Since at this pointW) =
4(3BA+iB) #0, implying (V) = —3m§/2 < 0, this vacuum has a stabfelS; geometry
with all seven main moduli frozen.

The educated reader might feel uncomfortable with cond{ff&), which seems to im-
ply noninteger flux numbers. This is a consequence of our choice for presenting the model,
with § = T4 = U4 = 1 at the minimum. One can recover integer flux numbers by rescaling
appropriately the moduli. A possible choice (among many others) is the following:

B 3
(S,Ta,Up) = b(S,Ta,Up), b:Z: 5 (80)

With that choice
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W = N[2S(T1+ T2+ T3) — (T1 T2 + T2 T3 + T3T1)
+ 6(T1U1 + ToUz + T3U3) — 15]
+iN([2S + 31 T2T3 + 2(Ur + U2 + Ua) — 3(T1 + T2 + T3)], (81)

whereN = (3/5)A.

We should emphasize here that this is tmy known example of a complete stabi-
lization of the moduli, reached in IIA by switching on fundamental fluxes (NS or R). We
should also stress that this cannot happen in the heterotic string, because of the absence
of S-dependence in the general flux-induced superpotential. Such a dependence could
however be introduced under the assumption of gaugino condensation. In type 1B with
D3-branes, the orientifold projection that accompaniesZhex Z, orbifold projection
eliminates thews fluxes, thus th@ moduli are not present in the superpotential and cannot
be stabilized by fluxes. The case of D9-branes (open string) is similar to the heterotic case,
whereas the D7-brane set-up is not captured bythe Z» orbifold projection used here.

The heterotic approach a la Horava—Witten is under investigftiéj whereas F-theory
on Calabi—Yau four-folds can introduce exponential dependences in the superp{éhtial
and stabilize thg moduli.

6. Conclusions and outlook

In this paper we proposed a novel, bottom-up approach for studying the infrared physics
of superstring compactifications that preserve an exact or spontaneously brekérsu-
persymmetry. The approach is in principle applicable to all ten-dimensional superstring
theories and M-theory, and is based on the powerful constraints of the gaugedl su-
pergravity underlying all these compactifications. Sinc&'ia- 4, D = 4 supergravity the
manifold of the scalar fields is unique, once the number of vector fields is given, our ap-
proach allows to identify unambiguously the Kahler potential of¥he 1, D = 4 effective
theory. The various systems of fluxes allowed in the different superstring theories are then
used to determine, without solving the ten-dimensional equations of motion and Bianchi
identities, the structure constants and duality phases that specify the gaugingvo£the
theory. This in turn can be used to identify the superpotential of the resitiagl the-
ory. The search for the possible vacuum structures corresponding to the different systems
of fluxes can then be performed in a very powerful and elegant formalism, by looking at
the potential and auxiliary fields of the effecti%e= 1, D = 4 theory.

To be specific, we applied our strategy to situations where the reductionNres
to N =1 is achieved by &, x Z, orbifold projection. In the present work, we kept for
clarity the sixN = 4 vector-multiplet geometrical moduli. Thus, the moduli sector of the
resulting N = 1 theory (after the projection) contained seven distinguished chiral multi-
plets:S, T4, Us (A =1,2,3). In the heterotic theory, thé, x Z, projection is enough to
reduce the initial N = 4)) supersymmetry t&v = 1. For describing type-Il theories, and
in particular the type-lIA compactifications on which we focused for this paper, an extra
Z, orientifold projection is needed: we chose the one acting as a parity on three of the six
internal coordinates, associated with= 1 compactifications of the IIA theory with D6-
branes and O6-planes. Type IIB can be treated similarly, by introducifig arientifold
projection associated with either D3- or D9-branes.
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A major geometrical difference exists, however, which makes the type IIA compacti-
fications far more interesting. In type IIB, the Calabi—Yau smooth manifold resolution of
the orbifold holds even in the presencersf and F3 fluxes[10]. This explains why most
of the literature deals with this kind of type 1B constructions. However, even in this case,
the w3 geometrical fluxes are incompatible with tle x Z, orbifold projection (and its
smooth Calabi—-Yau resolution). The situation for type IIA is even more exotic, since no
well-defined mathematical framework has yet been unraveled for understanding the “de-
formed Calabi—Yau” geometry.

Nevertheless, this is by no means an obstruction to us, when the situation is considered
from the conformal field theory perspective of string theory. Many examples exist that
demonstrate this: asymmetric orbifolds, fermionic constructions, twisted Gepner construc-
tions, supersymmetric compactifications on manifolds with torsion, etc. Furthermore, these
exact models, as well as the whole procedure we have developed so far for dealing with
fluxes, point towards the existence of a generalized mirror symmetry, despite the absence
of a Calabi-Yau geometrical interpretation for type IIA. A manifestation of that symme-
try emerges, for instance, when a nontrivial flux is switched on. In the (freely-acting)
orbifold limit, a mirror-like U <> T duality relates the type IlA to the type 1B side.

The gauging approach we propose here relies on the rich but constidiget! struc-
ture. It enables us to bypass the above geometrical difficulties and to organize the fluxes in a
systematic way. Indeed, the gauging procedure goes along with a set of structure constants
and duality phases, where the former must satisfy Jacobi identities and antisymmetry con-
ditions. These all enter the superpotential, which in turn determines the scalar potential. In
the above framework, it is possible to list exhaustively the various choices for the structure
constants and duality phases. The choice ofahe& Z, projection plays an important role,
since it naturally induces an interchange symmetry among the three planes, and simplifies
considerably the implementation of the full antisymmetryf@fr. Releasing the assump-
tion of plane-interchange symmetry, changing the orbifold and/or orientifold projections
preservingN = 1 supersymmetry, moving to type-1IB or type-l superstring theories, all
goes beyond the scope of the present paper, and is postpofigd. to

For each of the possible choices of the structure constants (this is equivalent to choosing
the subgroup o85Q(6, 6) that is gauged) and duality phases, one can readily analyze the
issue of moduli stabilization. Furthermore, and this is the core of the present paper, one
can trace back the origin of the structure constants and duality phases in terms of fluxes in
the underlying fundamental theory in ten dimensions. Although our main motivation was
the analysis of the yet not unraveled type IIA, we applied our technique to the heterotic
case, where we clarified the case where geometrical and NS—-NS three-form fluxes are
combined. Our pattern allows to reproduce systematically the various examples available
in the literature, such as the no-scale models.

As far as type IlA is concerned, more possibilities exist, thanks to the presence of R—
R fluxes, besides the geometric and NS—-NS oifigsF>, F4 and evenFg. They can be
introduced one by one, or in combination, provided the Jacobi identities are still satisfied.
A specific combination exists, which generates a solution wakgeven moduli are sta-
bilized, in anAdS geometry. This is typical of type IIA and cannot happen in heterotic,
where the allowed geometrical and three-form fluxes cannot cregtelapendence in the
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superpotential. More examples can be displayed with partial moduli stabilization: domain-
wall solutions, runaway solutions, no-scale models. . .

There are various directions that would be worth exploring, besides those already men-
tioned above. Among them, the detailed correspondence of the ten-dimensional equations
of motion, Bianchi identities and tadpole cancellation conditions, with the equations and
consistency conditions in the effective gauged four-dimensional supergravity theory. Also,
the inclusion in our formalism of the scalar and vector fields associated to brane excitations,
and the exploration of the new systems of fluxes associated with their field strengths.
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