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DEGENERATE EIKONAL EQUATIONS WITH DISCONTINUOUS REFRACTION
INDEX ∗
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Abstract. We study the Dirichlet boundary value problem for eikonal type equations of ray light
propagation in an inhomogeneous medium with discontinuous refraction index. We prove a comparison
principle that allows us to obtain existence and uniqueness of a continuous viscosity solution when
the Lie algebra generated by the coefficients satisfies a Hörmander type condition. We require the
refraction index to be piecewise continuous across Lipschitz hypersurfaces. The results characterize
the value function of the generalized minimum time problem with discontinuous running cost.
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Introduction

In this paper we study the following boundary value problem for the eikonal equation{
aij(x)UxiUxj = [f(x)]2, x ∈ Ω;

u(x) = G(x), x ∈ ∂Ω,
(0.1)

where Ω ⊂ R
N is open. Here and in the following we adopt the summation convention on the repeated indices.

When the matrix (aij)i,j is positive semidefinite, the equation describes the propagation of rays of light, see
Courant and Hilbert [9]. In the classical case, the matrix (aij) is the identity matrix and f is a positive constant,
so the partial differential equation in (0.1) reduces to

|DU(x)| = 1.

In this case light rays follow straight lines. In a inhomogeneous medium, either the refraction index n(x) = f2(x)
or the matrix of the coefficients (aij) depend on the position. In the latter case, even when n(·) is constant
the light follows the geodesics of the metric defined by the matrix (aij) which are no longer straight lines, in
general. The case of discontinuous f produces the well known refraction phenomenon, described by Snell’s law.
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Geometric optics is not the only physical interpretation of problem (0.1), which instead appears often in
models of mathematical physics describing for instance flame front propagation or the limiting behavior of
singular perturbation problems. Also in optimal control theory, whose relation we make more explicit in the
next section and will be used, problem (0.1) characterizes the value function of the generalized minimum time
problem.

When f is continuous, problem (0.1) is well understood and rather complete existence and uniqueness results
are known in the literature, in the framework of the theory of viscosity solutions, see e.g. Bardi [1], Bardi-
Soravia [3], Soravia [21], or the books by Bardi and Capuzzo-Dolcetta [2], Barles [4] and the references therein.
Here we will instead concentrate on the case of f discontinuous. While existence of a discontinuous, possibly
extended real valued solution satisfying a weaker Dirichlet-type boundary condition is not a problem, being
provided by the optimal control approach, problem (0.1) is not expected to have a unique solution in general,
at least without a suitable definition of solution and appropriate conditions on f . In our previous paper [22],
see also [11], we studied this problem and found explicit formulas for the minimal and maximal nonnegative
viscosity solution, proving also a uniqueness result when (aij) = IN×N and f is piecewise constant. The case
of nondegenerate matrix (aij) was also studied, with different ideas, by Camilli-Siconolfi [7] who adopt a more
stringent notion of solution and allow f ∈ L∞. Indeed they can characterize uniquely the solution in their sense
which is the maximal among all viscosity solutions.

In this paper we allow the matrix (aij) to be degenerate and we stick to the standard definition of viscosity
solution, which is easier to check and more stable to approximations. Therefore our previous results in [22] make
it impossible to obtain uniqueness of solutions of (0.1) if the set of discontinuity points of f has nonempty inte-
rior. We will then restrict ourselves to the case when f is piecewise continuous across hypersurfaces. We obtain
a comparison principle for the Dirichlet-type problem, a generalization of the classical Dirichlet problem (0.1),
which is now classical in the theory of viscosity solutions. Our proof deals with the points of discontinuity of
the coefficients in a similar way to the boundary points. The key technical ingredients are adopted from the
classical paper on state constraints by Soner [19], as later developed to introduce the Dirichlet type problem by
Barles-Perthame [5] and Ishii [13], see also [2, 4, 8, 10]. In particular the observation in [13] that only a nontan-
gential continuity assumption at boundary points is required to one of the two functions to compare, later used
in a crucial way also in Katsoulakis [14] for second order constrained problems, see also [4], is precisely what
we need for using the Lie brackets. Among the main consequences of our version of the comparison principle,
it allows us to obtain existence and uniqueness of a bounded from below and continuous viscosity solution of
(0.1), taking up the Dirichlet boundary condition, when for instance the Lie algebra generated by the matrix
(aij) satisfies the Hörmander condition (see Th. 3.4). We notice that such weak conditions for the comparison
principle make the existence part rather straightforward while in the literature, even for a continuous f , this
usually takes up some work. With more delicate arguments one can obtain the stronger Hölder continuity of
the solution, see e.g. [20] and the references therein. However the literature in this direction is almost entirely
devoted to the case Ω = R

N\{xo}.
Our results and methods extend in a straightforward way to more general Bellman equations of exit time

control problems with discontinuous running cost such as those presented in [22]. In view of the physical interest
of equation (0.1) and for the sake of clarity we will omit the more technical generality here. We refer however
the reader to the other paper [23] where the uniqueness theory for continuous solutions is extended to a class
of degenerate elliptic equations.

We want to mention that the study of discontinuous eikonal equations starts in the book by Lions [15], where it
is shown the existence of a Lipschitz continuous almost everywhere solution to the problem with homogeneous
boundary condition. Tourin [25] studied the case of the equation of shape-form-shading with homogeneous
boundary condition and uniqueness of continuous viscosity solutions when f is piecewise Lipschitz continuous.
Newcomb and Su [16] study the boundary value problem with f lower semicontinuous, using the stronger notion
of Monge solution which is also explained in [22]. They prove a comparison principle and uniqueness in the class
of continuous Monge solutions of the Dirichlet problem. Other results on the eikonal equation can be found in
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Ostrov [17]. All of the previous results however exclude the degeneracy of the matrix of the coefficients (aij)
which we take into account in this paper.

We finally want to recall that another chapter of the theory of viscosity solutions for equations with discon-
tinuous coefficients concerns second order elliptic pdes. In the uniformly elliptic case, existence and uniqueness
results are available in the literature. For this we just refer the reader to the early paper by Caffarelli, Crandall,
Kocan, Swiech [6] where the theory is formulated, and to Swiech [24] and the references therein for further
results.

1. Preliminaries and relationships with optimal control

We start this section presenting the main general assumptions that we adopt below. Other key assumptions
are discussed later. The boundary data

G : ∂Ω → [0,+∞[ is continuous. (1.1)

The matrix of the coefficients satisfies
(aij) = (σik) · (σt

kj), (1.2)
thus it is symmetric, positive semidefinite but possibly degenerate, where (M ≤ N)

σ(·) ≡ (σik)i=1,...N ;k=1,...M : Ω → R
NM is L-Lipschitz continuous. (1.3)

Moreover the function f : R
N → [ρ,+∞[, ρ > 0 is Borel measurable and possibly discontinuous.

It is sometimes convenient for calculations to rewrite the differential operator in equation (1.1) by exploiting
a square, namely by observing that (p ∈ R

N )

aij(x)pipj =
M∑

k=1

(p · σk(x))2 = |p · σ(x)|2 ,

where we indicated as vector fields σk : Ω → R
N , k = 1, . . . ,M the columns of the matrix (σik)i,k. In this way

the eikonal equation (0.1) turns out to be equivalent to the Bellman equation (for b = (b1, . . . , bM ) ∈ R
M )

max
|b|≤1

{
−DU(x) ·

M∑
k=1

bkσk(x) − f(x)

}
= 0, (1.4)

associated to a symmetric optimal control system

ẏ =
M∑

k=1

bkσk(y), y(0) = x (1.5)

where controls are measurable functions b : [0,+∞[→ {b ∈ R
M : |b| ≤ 1} and whose solution we indicate as

y(·) ≡ yx(·, b). Time optimal trajectories of system (1.5) are the geodesics corresponding to the metric defined
by the matrix (aij), and they are straight lines when this matrix is the identity. Solutions of equation (1.4) and
problem (0.1) are instead related to the optimal control problem

J(x, b(·)) =
∫ τx

0

f(y(t)) dt+G(y(τx)) → min, (1.6)

where τx(b(·)) = inf{t : yx(t, b) /∈ Ω}. We showed in [22] that (0.1) with f ∈ L∞ may have multiple viscosity
solutions, which may be discontinuous, extended real-valued and possibly satisfy the boundary condition in a
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weaker Dirichlet-type sense (or in the sense of lower semicontinuous solutions, see Sect. 4). Most notably, we
found explicit representation formulas for the minimal and maximal nonnegative solution under appropriate
assumptions. They are, respectively

Vm(x) = min
b(·)

∫ τx

0

f∗(y(t)) dt+G(y(τx)),

VM (x) = inf
b(·)

∫ τx

0

f∗(y(t)) dt+G(y(τx)),

where
f∗(x) = lim

r→0+
inf{f(y) : |y − x| ≤ r}, f∗(x) = lim

r→0+
sup{f(y) : |y − x| ≤ r}, (1.7)

see [22] for details. The question that remains to be solved is when Vm ≡ VM , which is therefore equivalent to
uniqueness. It follows that with the notion of viscosity solution uniqueness is impossible if the set

Γ = {x ∈ Ω : f is discontinuous at x} (1.8)

has nonempty interior. For instance, in [7] the notion of solution has to be suitably strengthened to produce
uniqueness results for f ∈ L∞.

In [22] we proved a necessary and sufficient condition for Vm ≡ VM which reads as a geometric property of
optimal trajectories. To better understand the sense of the results of this paper, we mention here a slightly more
stringent sufficient condition. The precise results can be found below in Sections 3 and 4 but for a complete
discussion we refer the reader to [22]. Suppose that at x ∈ Ω we can find an optimal control b̂ for the value Vm(x),
whose corresponding trajectory solution of (1.5) is transversal to the set Γ in (1.8), namely such that

|{t : y(t) ∈ Γ}| = 0.

Then Vm(x) = VM (x). If this happens for all x ∈ Ω, then Vm ≡ VM . The difficulty is that proving the above
transversality condition directly (or the necessary and sufficient condition) is not a trivial task. In this paper
we will proceed differently by proving a comparison theorem and uniqueness results for problem (0.1).

We now introduce precisely the notion of viscosity solution for (0.1). The role of the stars as super or
subscripts in the definition is as in (1.7). The definition follows Ishii [13].

Definition 1.1. A lower (resp. upper) semicontinuous function U : Ω → R ∪ {+∞} (resp. U : Ω → R)
is a viscosity super- (resp. sub-) solution of the equation in (0.1) if for all ϕ ∈ C1(Ω), U(x) < +∞, and
x ∈ argminx∈Ω(U − ϕ), (resp. x ∈ argmaxx∈Ω(U − ϕ)), we have

aij(x)ϕxi (x)ϕxj (x) ≥ [f∗(x)]2, (resp. aij(x)ϕxi(x)ϕxj (x) ≤ [f∗(x)]2).

We also put Dϕ(x) ∈ D−U(x) (Dϕ(x) ∈ D+U(x), resp.).
A function U is a discontinuous viscosity solution of the equation in (0.1) if U∗ is a subsolution and U∗ is

a supersolution. A viscosity solution of problem (0.1) is a (discontinuous) viscosity solution of the equation,
continuous at the points of ∂Ω that attains the boundary condition.

Although the equation has discontinuous coefficients, solutions may be Lipschitz continuous. For instance
the problem { |U ′(x)| = 1 + χR+ , R\{−1},

U(−1) = 0,
where χR+ indicates the characteristic function of positive reals, is solved uniquely by the function

{ |x+ 1|, x ≤ 0,
2x+ 1, x ≥ 0.
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However solutions may be infinitely many, in general. For instance the problem{ |U ′(x)| = 1 + χQ, R\{0},
U(0) = 0,

is solved by U1(x) = |x| and by U2(x) = 2|x| and these are the extremal solutions. The reader can find all of
the other solutions.

We just remark that in general Lipschitz continuous almost everywhere solutions would not provide a good
notion of weak solution for our problem. Indeed existence may fail in general if f is not lower semicontinuous, and
in fact Lipschitz continuous viscosity solutions do not necessarily satisfy the equation almost everywhere. This
problem happens when f has a set of discontinuities with positive measure. On the other hand, functions Vm, VM

when finite always solve problem (0.1), although without appropriate assumptions the boundary condition might
be attained in the weaker Dirichlet-type sense, that we introduce in the next section. As a matter of fact, no
(finite) solution will exist if Vm(x) = +∞ for some x ∈ Ω. For more information about the previous comments,
we refer the reader to [7, 15, 22].

2. A comparison principle and uniqueness of continuous solutions

Before introducing the main result of this section, we need a further preliminary discussion. In order to
obtain the uniqueness results, we will assume that the data f be piecewise continuous in the following sense.
We need the notion of Lipschitz hypersurface.

Definition 2.1. The set Γ ⊂ R
N is said to be a Lipschitz hypersurface if for all x̂ ∈ Γ one of its neighborhoods

is partitioned by Γ into two connected open sets Ω+,Ω− and Γ itself, and we can find a transversal unit vector
η+ ∈ R

N , |η+| = 1, with the following property: there are c, r > 0 such that and if x ∈ B(x̂, r) ∩ Ω± then
B(x± tη+, ct) ⊂ Ω± for all 0 < t ≤ c, respectively. We will say that an open set Ω is a Lipschitz domain if ∂Ω
is a Lipschitz hypersurface. In this case if for x̂ ∈ ∂Ω and transversal unit vector η we have Ω+ ⊂ Ω, then we
call η = ηΩ an inward unit vector.

Now we present the key assumption on the coefficient f .

Assumption (DC). The set
Γ =

{
x ∈ R

N : f is discontinuous at x
}

is the disjoint union of a finite family of connected Lipschitz hypersurfaces and f is piecewise continuous across Γ.
In particular, for x̂ ∈ Γ we can find c, r > 0, open connected sets Ω+,Ω− and inward unit vectors η+, η− = −η+

to Ω± respectively as in Definition 2.1. We may also suppose that Ω± ⊂ Ω if x̂ ∈ Ω and we assume that the
discontinuous coefficient f is continuous in each component Ω± with a continuous extension in Ω±, and that
if x ∈ Γ

f(x) ∈
[

lim
Ω−�y→x

f(y), lim
Ω+�y→x

f(y)
]
,

where it is assumed that the above limits exist and the notation ± is introduced in such a way that the interval
is well defined.

If x̂ ∈ Γ ∩ ∂Ω we assume in addition that in the above we can choose c, r, η+, η− in such a way that η+, η−

are also both inward for Ω i.e. for instance

B(x + tη+, ct) ⊂ Ω ∩ Ω+, B(x+ tη−, ct) ⊂ Ω ∩ Ω−

for all x ∈ B(x̂, R) ∩ Ω ∩ Ω± and 0 < t ≤ c, respectively. In this case however we have to allow η+ 
= −η−, in
general.

To proceed, we need to allow that the boundary condition in (0.1) be satisfied in a weaker sense. We introduce
the following definition.
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Definition 2.2. We say that an upper semicontinuous function U : Ω → R, subsolution of the equation in (0.1),
satisfies the Dirichlet type boundary condition in the viscosity sense

U ≤ G or aij(x)UxiUxj ≤ [f∗(x)]2, on ∂Ω

if for all ϕ ∈ C1(RN ) and x ∈ ∂Ω, x ∈ argmaxx∈Ω(U − ϕ) such that U(x) > G(x), then we have

aij(x)ϕxi(x)ϕxj (x) ≤ [f∗(x)]2.

Lower semicontinuous functions that satisfy a Dirichlet type boundary condition of the form

u ≥ G or aij(x)UxiUxj ≥ [f∗(x)]2, on ∂Ω

are defined accordingly.
Related to Lipschitz domains and surfaces, we introduce the following regularity property of functions.

Definition 2.3. Given a Lipschitz surface Γ ⊂ R
N with transversal unit vector η, we say that a function

u : Ω → R, is nontangentially continuous at x̂ ∈ Γ in the direction of η if there are sequences tn → 0+, and
pn → 0, pn ∈ R

N , such that
lim

n→+∞u(x̂+ tnη + tnpn) = u(x̂).

We are now ready to state the comparison principle for (0.1).

Theorem 2.4. Let Ω be an open domain with Lipschitz boundary. On the data assume (1.1), (1.2) and (1.3).
Let us suppose that the assumption (DC) is satisfied. Let U : Ω → R, V : Ω → R ∪ {+∞} be bounded from
below and respectively an upper semicontinuous subsolution or a lower semicontinuous supersolution of

aij(x)UxiUxj = [f(x)]2, x ∈ Ω.

Let us assume that u, v satisfy the Dirichlet type boundary conditions

U ≤ G or aij(x)UxiUxj ≤ [f∗(x)]2, on ∂Ω,

V ≥ G or aij(x)UxiUxj ≥ [f∗(x)]2, on ∂Ω.

Suppose that U, V are nontangentially continuous on ∂Ω\Γ in the inward direction ηΩ, and on Γ ∩ ∂Ω in the
directions η−, η+ respectively, with the same sequence tn. Assume moreover that at each point of Γ∩Ω, either U
is nontangentially continuous in the direction of η− or V is nontangentially continuous in the direction of η+.
Then U ≤ V in Ω.

Proof. To proceed with the proof, we first modify the equation. We introduce the increasing change of variables
u = 1−e−r = ψ(r) and recall that by standard calculations if W is a viscosity super/sub solution of the equation
in (0.1) then w = ψ(W )(≤ 1) is a super/sub solution of

|Dw(x) · σ(x)| = f(x)(1 − w(x)), (2.1)

in the following sense: if ϕ ∈ C1 and x ∈ argmax(w − ϕ) (resp. x ∈ argmin(w − ϕ)) then

|Dϕ(x) · σ(x)| ≤ f∗(x)(1 − w(x)), (resp. |Dϕ(x) · σ(x)| ≥ f∗(x)(1 − w(x)).

The only slightly new point is the case when W is a supersolution and W (x̂) = +∞. In that case, if we set
w = ψ(W ) and w − ϕ attains a local minimum point at x̂ with w(x̂) = 1, then

|Dϕ(x̂) · σ(x̂)| =
√
aij(x̂)ϕxi(x̂)ϕxj (x̂) ≥ f∗(x̂)(1 − w(x̂)) = 0.
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With the notation of our statement, we define the bounded functions

u(x) = ψ(U(x)), v(x) = ψ(V (x)).

In view of the change of variables, functions u, v satisfy corresponding assumptions of the statement for the
equation (2.1) with boundary data g = ψ(G).

We now fix r, β > 0, 0 < k < 1 and assume by contradiction that there is xo ∈ Ω such that u(xo)−v(xo) > 0.
For convenience of notation, we will set xo = 0. Then we can find x̂ ∈ Ω such that

u(x̂) − v(x̂) ≥ u(x̂) − v(x̂) − β〈x̂〉k = max
x∈Ω

u(x) − v(x) − β〈x〉k = 2γ > 0, (2.2)

where we denoted 〈x〉 = (1 + |x|2)1/2 and fix β sufficiently small. Note that 〈x〉k is a k-Lipschitz continuous
function.

We remark that the proof below will be local in a neighborhood of the point x̂. If x̂ ∈ ∂Ω, we start by
checking the boundary condition and observe that it holds

either u(x̂) > g(x̂) or v(x̂) < g(x̂). (2.3)

We will suppose below, just to fix the ideas, that the former is attained. For the same reason, we also suppose
that if x̂ ∈ Γ ∩ Ω then v is nontangentially continuous in the direction η+. For ε > 0 we now introduce the
function

wε(x, y) = u(x) − v(y) − γ

2

∣∣∣∣x− y

ε
+ η

∣∣∣∣
2

− r

2
|x− x̂|2 − β〈x〉k,

where we choose η = 0 if x̂ ∈ Ω\Γ, η = ηΩ if x̂ ∈ ∂Ω\Γ and η = η+ as in (DC) if x̂ ∈ Γ.
On ∂Ω∪Γ, we will use the nontangential continuity of v in the direction of η, and at least along a subsequence

εn → 0+ that we think as fixed from now on, although we drop the subscript in the notation, we find that

lim
ε→0+

v(x̂ + ε(η + pε)) = v(x̂), (2.4)

for some pε → 0. Notice that formally we may choose pε ≡ 0 if η = 0 for x̂ ∈ Ω\Γ, thus (2.4) always holds.
Let us pick up (xε, yε) ∈ Ω × Ω such that

wε(xε, yε) = max
Ω×Ω

wε.

We may also suppose that, at least along a subsequence (which we drop in the notation),

lim
ε→0+

(xε, yε) = (x, y). (2.5)

In particular from wε(xε, yε) ≥ wε(x̂, x̂) we find that

wε(xε, yε) ≥ u(x̂) − v(x̂) − γ

2
− β〈x̂〉k ≥ γ ≥ 0, (2.6)



DEGENERATE EIKONAL EQUATIONS WITH DISCONTINUOUS REFRACTION INDEX 223

then we have 〈xε〉k ≤ C
β , |xε − yε| ≤ Cε for some constant C > 0. By taking ε→ 0+, u, v bounded imply that

x = y. We now compute, also by (2.4),

u(x) − v(x) − β〈x〉k ≥ lim sup
ε→0+

u(xε) − v(yε) − β〈xε〉k

≥ lim inf
ε→0+

u(xε) − v(yε) − β〈xε〉k ≥ lim inf
ε→0+

wε(xε, yε) +
r

2
|xε − x̂|2

≥ lim
ε→0+

[
u(x̂) − v(x̂ + ε(η + pε)) − β〈x̂〉k − γ

2
|pε|2 +

r

2
|xε − x̂|2

]
= u(x̂) − v(x̂) − β〈x̂〉k +

r

2
|x− x̂|2. (2.7)

From (2.2) and (2.7) we deduce that x = x̂ and then also

lim
ε→0+

u(xε) − v(yε) = u(x̂) − v(x̂). (2.8)

From (2.8) and the semicontinuity of u, v notice that

u(x̂) ≥ lim sup
ε→0+

u(xε) ≥ lim inf
ε→0+

u(xε) = lim inf
ε→0+

(u(xε) − v(yε)) + v(yε)

≥ (u(x̂) − v(x̂)) + v(x̂) = u(x̂),

and then
lim

ε→0+
u(xε) = u(x̂), lim

ε→0+
v(xε) = v(x̂). (2.9)

From wε(xε, yε) ≥ wε(x̂, x̂+ ε(η + pε)) we also get that

γ

2

∣∣∣∣xε − yε

ε
+ η

∣∣∣∣
2

≤ u(xε) − v(yε) − (u(x̂) − v(x̂+ ε(η + pε))) +
γ

2
|pε|2 + βk|xε − x̂|,

and then by (2.4) and (2.8) we obtain

lim
ε→0+

∣∣∣∣xε − yε

ε
+ η

∣∣∣∣ = 0. (2.10)

From (2.10) it also follows that, when ε is sufficiently small,

|xε − yε + εη| < cε, (2.11)

where c > 0 is that of assumptions (DC).
We now want to apply the definition of viscosity sub and supersolution at the points xε, yε. Notice for

instance that by definition of (xε, yε), (if (xε, yε) ∈ Ω × Ω)

γ

(
xε − yε + εη

ε2

)
+ r(xε − x̂) + βD〈·〉k(xε) ∈ D+u(xε),

γ

(
xε − yε + εη

ε2

)
∈ D−v(yε). (2.12)

We have to consider a few separate cases. If x̂ ∈ Ω, by (2.5) we may suppose that, for ε sufficiently small
xε, yε ∈ Ω. If instead x̂ ∈ ∂Ω, then by our choice of η = ηΩ or η = η+, and (2.11) we have that at least yε ∈ Ω,
while xε ∈ Ω. Thus we might need to use the boundary condition for u at xε. Observe that by (2.3), (2.9) and
continuity of g, we may suppose that, for ε sufficiently small, if xε ∈ ∂Ω then we have

u(xε) > g(xε).
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We are then always allowed to use the definition of viscosity solution in equation (2.1) at the points xε, yε for u
and v respectively, and calculate

f∗(xε)(1 − u(xε)) ≥
∣∣∣∣
(
γ
xε − yε + εη

ε2
+ r(xε − x̂) + βk

xε

(1 + |xε|2)1−k/2

)
· σ(xε)

∣∣∣∣
≥

∣∣∣∣γ xε − yε + εη

ε2
· σ(yε)

∣∣∣∣ − Lγ
|xε − yε|

ε

∣∣∣∣xε − yε + εη

ε

∣∣∣∣ −Mr|xε − x̂| −Mβk, (2.13)

where M is a local bound for σ. Similarly we obtain

f∗(yε)(1 − v(yε)) ≤
∣∣∣∣γ xε − yε + εη

ε2
· σ(yε)

∣∣∣∣ . (2.14)

Subtracting (2.14) from (2.13) we get

f∗(xε)(1 − u(xε)) − f∗(yε)(1 − v(yε)) ≥ −Lγ |xε − yε|
ε

∣∣∣∣xε − yε + εη

ε

∣∣∣∣ −Mr|xε − x̂| −Mβk. (2.15)

By taking the lim sup as ε→ 0 we find out that the right hand side of (2.15) goes to −Mβk by (2.10).
In order to handle the discontinuous term, notice that if x̂ ∈ Ω\Γ, by continuity of f and (2.8), (2.9)

and (2.2), the left hand side of (2.15) tends to −(u(x̂)− v(x̂))f(x̂) ≤ −2γρ providing a contradiction for k small
enough. Thus we are left with considering the possibility that x̂ ∈ Γ. Notice that we may restrict ourselves to
subsequences εn → 0 such that it always happens either xε ∈ Ω− or xε ∈ Ω+ ∪ Γ for n sufficiently large. These
two cases are eventually dealt with similarly. In the latter however we use our choice of the test function in
order to make sure that then yε ∈ Ω+ for n large enough, thus xε, yε stay on the same side. This is obtained
by combining (2.11) and (DC).

In order to fix the ideas, let us suppose now that xε ∈ Ω− applies to our case. To simplify notations below,
the choice of the subsequences will not appear explicitly. By assumption (DC), we can then estimate the limit
of the left hand side of (2.15) as follows

lim sup
ε→0+

f∗(xε)(1 − u(xε)) − f∗(yε)(1 − v(yε)) = lim sup
ε→0+

(f(xε) − f∗(yε))(1 − u(xε)) − f∗(yε)(u(xε) − v(yε))

≤ (f∗(x̂) − f∗(x̂))(1 − u(x̂)) − (u(x̂) − v(x̂))f∗(x̂) ≤ −2γρ,
(2.16)

where the last inequality uses (2.2), (2.8) and (2.9). Again (2.16), and (2.15) provide a contradiction when k is
chosen sufficiently small. �

In view of Theorem 2.4, we can improve regularity of solutions of the Dirichlet problem. The following
Corollary gives us a rather general set of sufficient conditions for the existence of a continuous viscosity solution
of a boundary value problem and we will use it in the existence result in the next section.

Corollary 2.5. Assume (1.1), (1.2) and (1.3). Let Ω be open and U : Ω → R be a bounded from below viscosity
solution of

aij(x)UxiUxj = [f(x)]2, x ∈ Ω.

Let us suppose that the assumption (DC) is satisfied. If U is continuous on ∂Ω and either U∗ or U∗ is nontan-
gentially continuous in the direction of η+, η−, respectively, at each point of Γ ∩ Ω, then U ∈ C(Ω).
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Proof. Apply Theorem 2.4 to the supersolution U∗ and the subsolution U∗ and G = U on ∂Ω. Then U∗ ≤ U∗
implies U∗ ≡ U∗ ≡ U . �

The following variant of the comparison theorem also holds. Notice that only the nontangential continuity
of one of the two functions that we want to compare is required at the boundary.

Theorem 2.6. Let Ω be an open domain with Lipschitz boundary. Assume (1.1), (1.2) and (1.3) and let
us suppose that the assumption (DC) is satisfied. Let U, V : Ω → R be respectively an upper and a lower-
semicontinuous function, bounded from below, respectively a subsolution and a supersolution of

aij(x)UxiUxj = [f(x)]2, x ∈ Ω.

Let us assume that V restricted on ∂Ω is continuous and that U satisfies the Dirichlet type boundary condition

U ≤ V or aij(x)UxiUxj ≤ [f∗(x)]2, on ∂Ω.

Suppose moreover that V is nontangentially continuous on ∂Ω\Γ in the inward direction ηΩ and on Γ ∩ Ω in
the direction of η+. Then U ≤ V in Ω.

Proof. The same proof as that of Theorem 2.4 applies also to this case, with the choice G = V on ∂Ω. �

The following is an obvious consequence of the previous statement.

Corollary 2.7. Assume (1.1), (1.2) and (1.3) and let us suppose that the assumption (DC) is satisfied. Let
U : Ω → R be a continuous, bounded from below viscosity solution of the Dirichlet boundary value problem (0.1).
Then U is unique in the class of discontinuous solutions of the corresponding Dirichlet type problem.

Example 2.8. The following example shows that discontinuous solutions may exist, without contradicting the
uniqueness result of Corollary 2.7 which therefore does not cover the whole scope of possible problems. Let us
consider the boundary value problem

{
x2(Ux)2 + (Uy)2 = f(x, y), ] − 1, 1[×]− 1, 1[,
U(±1, y) = U(x,±1) = 0, x, y ∈ [−1, 1],

where f(x, y) = 2, for x > 0, and f(x, y) = 1 for x ≤ 0. It is easy to verify that the piecewise continuous
function,

U(x, y) =

⎧⎨
⎩

2(1 − |y|), x > 0, |y| ≥ 1 + lnx,
−2 lnx, x > 0, |y| ≤ 1 + lnx,
U(−x, y)/2, x ≤ 0,

is a viscosity solution of the problem. Corollary 2.7 then implies that there is no continuous solution. However
by the results in [22] it is easy to show that all discontinuous solutions have U as lower semicontinuous envelope.
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The punch line of this section is that we may use Corollary 2.5 to simplify the construction of a continuous
solution of (0.1) and then this turns out to be unique in the class of discontinuous solutions by Corollary 2.7.
This is the path we follow in the next section.

3. Existence of continuous solutions

We proved in Corollary 2.7 that bounded from below and continuous viscosity solutions of the Dirichlet
problem (0.1) are unique (in a wider class). However Example 2.8 showed that existence of continuous solutions
is not always ensured by the problem. In this section we give sufficient conditions to prove that problem (0.1)
has indeed a solution U ∈ C(Ω) bounded from below. The main point is that comparison principle will again be
helpful in view of Corollary 2.5 to reduce our task. As we mentioned in Section 1, standard theory provides us
with candidate solutions for (0.1). These are the value functions Vm, VM earlier introduced. As shown in [22],
in general, these functions are lower and upper semicontinuous, respectively and when finite, they are solutions
of the Dirichlet type problem corresponding to (0.1). In order to get their continuity, we then only need to show
the appropriate nontangential continuity properties on Γ ∪ ∂Ω, in order to apply the comparison principle.

The first result concerns the value function VM .

Proposition 3.1. Let Ω be an open domain and assume (1.1), (1.2) and (1.3). Let us suppose that the
assumption (DC) holds. At x̂ ∈ Γ ∩ Ω let us suppose that:

there is a sequence of control functions bn(·), positive numbers tn → 0+,

k > 0 and vector v ∈ R
N inward Ω− such that

xn = yx̂(tn, bn) = x̂+ (tn)kv + o((tn)k), as n→ +∞. (3.1)

Then the value function VM is nontangentially continuous at x̂ in the direction of v.

Proof. By the Dynamic Programming Principle in optimal control, e.g. see [2], for n sufficiently large, we may
write

VM (x̂) ≤
∫ tn

0

f∗(y(t, bn)) dt+ VM (y(tn, bn)) ≤Mtn + VM (xn),
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where M is a local bound for f . As n→ +∞ we obtain

VM (x̂) ≤ lim inf
n→+∞ VM (xn) ≤ lim sup

n→+∞
VM (xn) ≤ VM (x̂),

since VM is upper semicontinuous in Ω as shown in [22].
The conclusion comes by construction of the sequence xn. �

The second statement is similar but concerns instead the boundary condition.

Proposition 3.2. Let Ω be an open domain with Lipschitz boundary and assume (1.1), (1.2) and (1.3). Let us
suppose that the assumption (DC) holds. At x̂ ∈ ∂Ω let v be a unit inward vector to Ω (in the sense of Def. 2.1).
Suppose that:

there is a sequence of control functions bn(·), positive numbers tn → 0+,

k > 0 such that

xn = yx̂(−tn, bn) = x̂+ (tn)kv + o((tn)k), as n→ +∞. (3.2)

Then both value functions Vm, VM satisfy

lim sup
n→+∞

V (xn) ≤ G(x̂).

Proof. The two proofs are identical. Consider the trajectory yxn(·, b̂n) solution of (1.5) with x = xn and b ≡ b̂n
where b̂n(t) = bn(tn − t) for t ∈ [0, tn]. We take for instance VM and by the Dynamic Programming Principle
we may write

VM (xn) ≤
∫ tn∧τxn

0

f∗(yxn(t, b̂n)) dt+G(yxn(tn ∧ τxn , b̂n)) ≤Mtn +G(yxn(tn ∧ τxn , b̂n)),

where M is a local bound for f . From here the conclusion as before. �

We want to discuss conditions (3.1), (3.2). We will suppose below that the vector fields σm, defined as the
columns of the matrix σ in (1.2), have all the regularity that we need. Suppose for instance that at x̂ ∈ Γ ∩ Ω
we can find m ∈ {1, . . . ,M} such that σm(x̂) is inward Ω−. Then by choosing v = σm(x̂), bn(t) ≡ em, tn = 1

n
we obtain

xn = x̂+
1
n
v + o

(
1
n

)
·

Here and below, vectors em are the standard basis vectors of R
M . Thus (3.1) is satisfied. Similarly for (3.2) if

v = σm(x̂) is inward Ω and we assume appropriate conditions on σm(x̂).
To obtain versions of (3.1), (3.2) with larger exponent k, one can use the properties of the Lie algebra

generated by the vector fields σm. In fact those formulas are precisely the expansions of the trajectories as
stated for instance in Haynes-Hermes [12]. For a more up to date discussion and refinements see also the work
by Rampazzo-Sussmann [18]. To describe (3.1), let us suppose for instance that the Lie bracket [σm(·), σr(·)](x̂)
is inward Ω− at x̂ ∈ Γ ∩ Ω. Then by setting v = [σm(·), σr(·)](x̂), k = 2, tn = 4/n, we can find a sequence of
controls bn(·) such that (3.1) is satisfied. The sequence can be explicitly described by setting bn(t) = em for
t ∈ [0, 1

n [, bn(t) = er for t ∈ [ 1
n ,

2
n [, bn(t) = −em for t ∈ [ 2

n ,
3
n [, bn(t) = −er for t ∈ [ 3

n ,
4
n ]. The same condition

on Lie brackets of higher order just require to increase in (3.1) the exponent k to the order of the bracket.
The next statement concerns value function Vm.
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Proposition 3.3. Let us suppose that the assumption (DC) holds. At x̂ ∈ Γ ∩ Ω let us suppose that:

we can find an optimal control b̂(·), for Vm(x̂), positive numbers tn → 0+,

and an inward unit vector v to Ω+ such that

xn = yx̂(tn, b̂) = x̂+ tnv + o(tn), as n→ +∞. (3.3)

Then the value function Vm is nontangentially continuous at x̂ in the direction of v.

Proof. We use again the Dynamic Programming Principle for Vm and deduce that, for n sufficiently large

Vm(x̂) =
∫ tn

0

f∗(y(t, b̂)) dt+ Vm(xn) ≥ Vm(xn).

As n→ +∞ we obtain
Vm(x̂) ≥ lim sup

n→+∞
Vm(xn) ≥ lim inf

n→+∞ Vm(xn) ≥ Vm(x̂),

since Vm is lower semicontinuous as shown in [22]. �
To comment on Proposition 3.3, observe that

xn − x̂

tn
=

1
tn

∫ tn

0

M∑
k=1

b̂k(t)σk(y(t)) dt ≤ 1
tn

∫ tn

0

M∑
k=1

b̂k(t)σk(x̂) dt+ LMtn = vn + o(1),

as n → +∞, where M is a local bound for f and vn ∈ co {σk(x̂) : k = 1, . . . ,M}. This implies that at least
along a subsequence, vn → v ∈ co {σk(x̂) : k = 1, . . . ,M}. If Γ is smooth, a necessary condition for (3.3) is then
that there exists k ∈ {1, . . . ,M} such that σk(x̂) is inward Ω+. A clearly sufficient condition is instead that all
the vectors in {σk(x̂) : k = 1, . . . ,M} are inward Ω+ at x̂.

We summarize all of the previous propositions in the following existence result.

Theorem 3.4. Let Ω be an open domain with Lipschitz boundary. On the data assume (1.1), (1.2) and (1.3)
and that the vector fields σk have the regularity needed in the next assumptions. Let us suppose that the
assumption (DC) is satisfied. Suppose that the value function VM is finite in Ω and assume that the Dirichlet
boundary value problem (0.1) admits a continuous viscosity subsolution G : Ω → R. Assume that at each
x̂ ∈ (Γ∩Ω) either there is a Lie bracket generated by the family of vector fields {σk} which is inward Ω− or that
all of the vector fields σk(x̂) are inward Ω+. Assume moreover that at each x̂ ∈ ∂Ω there is a Lie bracket which
is inward Ω. If x̂ ∈ Γ we need to find Lie brackets which are inward also to Ω ∩Ω− and to Ω ∩Ω+. Then (0.1)
has a unique continuous viscosity solution (in the class of discontinuous solutions of the Dirichlet-type problem)
and such solution is either VM or Vm which thus coincide.

Proof. We first use the comparison principle Theorem 2.6 to compare the continuous subsolution G and the
two value functions Vm, VM . This gives G ≤ Vm ≤ VM in Ω. From the assumption and Proposition 3.2, we
then obtain that value function VM is nontangentially continuous on ∂Ω in the direction of an appropriate
Lie bracket. At this point the assumption on Γ ∩ Ω allows us to use either Proposition 3.1 or Proposition 3.3
to achieve the correct nontangential continuity that allows us to compare directly the subsolution VM and
the supersolution Vm by applying Theorem 2.4. Thus VM ≤ Vm, they are therefore equal, and thus continuous
solutions of (0.1). Finally Corollary 2.7 extends uniqueness to the class of discontinuous solutions of the Dirichlet
type problem. �

Notice how by using Corollary 2.5 the existence of a continuous solution becomes almost straightforward,
but this is the power of the comparison theorem, in particular the fact that nontangential continuity is precisely
compatible with the expansion formulas of the trajectories of control problems and the properties of the Lie
algebra. In the statement of Theorem 3.4 there are two assumptions that we did not comment yet. The first is
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that VM is finite in Ω. This means that we can find a trajectory of the control system (1.5) such that τx< +∞,
i.e. the boundary ∂Ω can be reached in finite time. A sufficient condition explicitly given on the vector fields σk

is provided by Chow’s Theorem, requiring that the Lie algebra generated by the vector fields spans R
N at every

point in Ω (Hörmander’s condition). This condition is however way too strong for our needs.
The other assumption is that the boundary condition in (0.1) is the restriction of a continuous subsolution

of the problem and it is clearly a necessary condition for its solvability. It is well known that in general the
Dirichlet boundary value problem for a degenerate equation cannot be solved. This assumption is standard
and called compatibility of the boundary condition, see also the way the problem for discontinuous solutions is
defined in the next section. The role of the compatibility condition is discussed in detail in the book by Lions
[15]. We just notice that for instance the problem with homogeneous boundary condition admits G ≡ 0 as
subsolution.

As we mentioned in Section 1, a byproduct of the uniqueness result Theorem 3.4 is the following geometric
property on the control problem (1.5), (1.6), which is equivalent to uniqueness as shown in [22].

Corollary 3.5. Under the assumptions of Theorem 3.4, then at each x ∈ Ω we can find a minimizing sequence
of controls for Vm(x), i.e. bn : [0,+∞[→ B1(0) ⊂ R

N measurable and satisfying (here yn(·) = yx(·, bn))

Vm(x) = lim
n→+∞

∫ τx

0

f∗(yn(t)) dt+G(yn(τx)),

such that
lim

n→+∞

∫ τx

0

(f∗(yn(t)) − f∗(yn(t))) dt = 0.

In particular, if VM (x) admits an optimal trajectory, this must be transversal to Γ.

Acknowledgements. The author wishes to thank the referee for pointing out an error in a preliminary version of this
paper.
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