
Journal of Pure and Applied Algebra 197 (2005) 23–41
www.elsevier.com/locate/jpaa

A characterization of the maximally almost periodic
abelian groups�

Dikran Dikranjana,∗, Chiara Milana, Alberto Tonolob
aDipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
bDipartimento di Matematica Pura e Applicata, Università di Padova, Via Belzoni 7, 35100 Padova, Italy

Received 7 November 2003; received in revised form 22 June 2004
Communicated by M.-F. Roy

Abstract
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1. Introduction

For an abelian topological groupG and a sequenceu = (un) ∈ ZN one can consider the
subgrouptu(G) := {x ∈ G : unx → 0 in G} of all topologicallyu-torsionelements ofG
[10,13]. If H is a subgroup ofG, thenwe definetG(H) := ⋂{tu(G) : u ∈ ZN, H � tu(G)}.
Thisallowsus todistinguishbetweent-closedsubgroupsofG(i.e.,H �Gsuch thattG(H)=
H ) andt-dense ones (i.e.,H �G such thattG(H) = G). The subgroups ofG of the form
tu(G), u ∈ ZN, are calledbasict-closed subgroups ofG.
Clearly, every finite subgroup of the circle groupT is a basict-closed subgroup. It is

proved in[19] that for every irrational number� with bounded continued fraction coeffi-
cients, the cyclic subgroup ofT generated by� (modZ) has the formtu(T) whereu is the
sequence of best approximations denominators of� (for another proof of this fact see[4]).
This was extended toall cyclic subgroups of the circle group in[7, Theorem 2]where the
following stronger result is proved.

Theorem 1.1. Let H be a countable subgroup ofT. Then H is a basict-closed subgroup
ofT.

Let us mention that for cyclic subgroups〈�〉 of T the authors provide an explicit con-
struction of the sequenceu ∈ ZN such that〈�〉 = tu(T) in terms of the continued fraction
development of� without any assumption on boundedness of its continued fraction coef-
ficients (cf. [7, Theorem 1]). Moreover, the authors conjecture that this property can be
extended to compact abelian groupsGdifferent fromT. It was established in[11] (see also
[10, Theorem 4.7]) that this cannot be done bymeans oft-closedness. More precisely, these
authors prove that for every non-discrete locally compact abelian groupG�T, there exists
a cyclic subgroup ofG that is not event-closed (in other words, the property of having all
cyclic subgroupst-closed characterizesT amongall non-discrete locally compactgroups).
These papers offer also a short independent proof of thet-closedness of the countable
subgroups ofT.
Motivated by these results, we positively answer in this paper an appropriate version of

the question posed in[7].
Let us recall that the above mentionedt-closure arose in[11] in the framework of an

appropriate Galois correspondence between subgroups of abelian topological groupsGand
subgroups ofZN. The special characterizing property of the circle groupT (in terms of
this t-closure) is due to the fact that the sequences of integersu ∈ ZN arise as a natu-
ral object via the Pontryagin duality asZ is the dual group ofT. This suggests to mod-
ify appropriately the domain of the sequencesu for arbitrary abelian topological groups
(G, �) considering sequencesu in the Pontryagin dual̂G ofG and replacing the subgroups
tu(G), with u ∈ ZN, by the analogously defined (see Definition 2.1) subgroupssu(G),
whereu is a sequence with values in̂G. This approach necessarily leads to a different
Galois correspondence and consequently, to a different Galois closuregG(H) for a sub-
groupH of a topological abelian groupG that coincides witht(H) in the case ofT (cf.
Definition 2.4). In the sequel we say that a topological groupG has theg-closure prop-
erty if every cyclic subgroup ofG is Galois-closed (shortly,g-closed) for this new Galois
correspondence.
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The natural question arises of whether it is possible to classify in this setting the abelian
topological groupsG having theg-closure property. This will give a counterpart of
[10, Theorem 4.7]and prove an appropriate version of the conjecture from[7] in the setting
of abelian topological groups. In resolving this question for the important class ofmaximally
almost periodic(MAP for short) abelian groups we obtain in fact a characterization of the
latter class:

Theorem 1.2. A topological abelian group G is MAP if and only if G has theg-closure
property.

In particular, the topological abelian groups that are either locally compact or precompact
have theg-closure property.
Of course, in Theorem 1.2 we consider the zero subgroup as a cyclic one. The larger

class of abelian topological groups in whichall non-zerocyclic subgroups areg-closed is
completely described in Corollary 4.9.
It is easy to see that the topological groups having theg-closure property are necessarily

MAP (see Proposition 2.9). Hence the proof of Theorem 1.2 consists of establishing that
all MAP groups have theg-closure property. It splits into several steps. In Section 2 we
point out the basic properties of the Galois closuregG(−) in the class of topological abelian
groups (cf. Propositions 2.6 and 2.14). Then we reduce the problem to precompact groups
(see Proposition 2.9). In Section 4we consider first the case of totally disconnected compact
abelian groups. A key role in the proof is to show that the group ofp-adic integersZp, p ∈
P, and countably infinite products of finite cyclic groups have theg-closure property (cf.
Lemmas4.1 and4.4). This allowsus to prove, viaCorollaries 4.5 and4.6, thatevery compact
abelian group has theg-closure property (cf. Theorem4.8). NowTheorem1.2 easily follows
from the above results and immediate categorical properties of closure operators.
The fact that the compact groupZp has theg-closure property follows from a specific

characterization of its subgroupssc∗(Zp) wherec∗ is a subsequence of the canonic set of
generatorsc = (cn) of the Prüfer groupZ(p∞) (hence a sequence of characters ofZp).
In Section 3 we analyze the structure of the subgroupssc∗(Zp) of Zp and obtain some
consequences in terms of convergence of sequences ofZ(p∞) with respect to precompact
group topologies.
Indeed, following[3] and motivated by[20], we define a sequenceu= (un) in a groupG

to be aTB-sequenceif there exists a precompact group topology� onG such thatun → 0
in (G, �). The first examples ofTB-sequences of weightc in Z,Q andR were given in
[20]. Extending[3, Proposition 2.5]one can show thatu is aTB-sequence if and only if the
subgroupsu(Ĝ) is dense in the dual group̂G of G (cf. Lemma 3.1). More generally, for a
discrete abelian groupGone can study theTB-sequencesu ofGby studying the subgroups
su(Ĝ) of the compact dual ofG. Analogously to the case ofG = Z, there is afinest totally
boundedgroup topology�u onG that makesu converge to 0 and the weight of�ucoincides
with the size of the subgroupsu(Ĝ) of Ĝ (cf. Proposition 3.2). Clearly,�u is a Hausdorff
group topology if and only ifu is aTB-sequence.
The fact thatc is aTB-sequence ofZ(p∞) follows from the following property proved in

[22, Example 6]: Z(p∞), endowed with the finest group topology that makescn converge
to 0, has the same continuous characters as(Z(p∞), �),where� is the(precompact) group
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topology induced byT onZ(p∞) (in particular, this entails�c = �). This follows also from
our Theorem 3.3 where we prove the following sharper result: for every subsequencec∗ of
c the following are equivalent:

(a) sc∗(Zp) = Z;
(b) the set of differencesnk+1 − nk is bounded;
(c) {nk : k ∈ N} is a large subset ofN (i.e., there exists a finite setF ⊆ N such that

N ⊆ F ∪ (F + {nk : k ∈ N});
(d) the finest precompact group topology�c∗ on Z(p∞) that makescnk converge to 0 is

metrizable;
(e) the finest precompact group topology�c∗ onZ(p∞) that makescnk converge to 0 has

weight< c.

Further information onTB-sequences andt-dense subgroups can be found in[6] and[5],
respectively.
Notation and terminology.We denote byN andP the sets of positive naturals and primes,

respectively; byZ the integers, byT the circle groupR/Z in the additive notation and by
Zp the group ofp-adic integers (p ∈ P). Forn ∈ N we denote byZ(n) the cyclic group of
ordern.
For a topological group(G, �) we denote byw(G) theweightof G (i.e., the minimal

cardinality of a base for the topology onG). All topological groups, unless otherwise speci-
fied, satisfy Hausdorff’s separation axiom. Completeness of topological groups is intended
with respect to the two sided uniformity, so that every topological group has a (Raı¨kov)
completion denoted bỹG.
A topological groupG is said to betotally boundedif for every non-empty open setU

of G there exists a finite subsetF ⊆ G of G such thatG = U + F . Hausdorff totally
bounded topological groupsG are also calledprecompactbecause they are determined by
the property to be (isomorphic to) subgroups of compact groups[21].
For any abelian groupG letHom(G,T) be the group of all homomorphisms fromG to

the circle groupT. When(G, �) is an abelian topological group, the set of�-continuous
homomorphisms� : G → T (characters) is a subgroup ofHom(G,T) and is denoted
by Ĝ.
For an abelian groupGand a subgroupH �Hom(G,T), letTH be the weakest topology

onG that makes all characters ofH continuous with respect toTH . One easily shows that
TH is a totally bounded group topology onG, called thetopology generatedbyH.
A subgroupH �Hom(G,T) is said toseparatethe points ofG if for everyg ∈ G\{0}

there existsh ∈ H such thath(g) �= 0.
It was proved by Comfort and Ross that every precompact group topology� on an

abelian groupG is generated by some suitable point-separating subgroup of characters
H �Hom(G,T) of G. Conversely, every such topology is precompact (cf.[9,
Theorem 1.2]).

Given an abelian topological groupG, we denote byG� the groupG endowed with the
initial topology of all continuous characters� ∈ Ĝ. The topology ofG� is called theBohr
topologyof G. Clearly, the groupsG andG� have the same continuous characters. Notice
thatG� is a totally bounded topological group that need not be Hausdorff.
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The groupG is said to be MAP (maximally almost periodic) whenG� is Haudorff.
Therefore, a topological groupG is MAP iff the continuous characters ofG separates the
points ofG.
For a topological abelian groupG let us denote byn(G) the intersection of the kernels

of all characters in̂G. n(G) is called thevon Neumann’s kernelof G and is characterized
by the property thatG/n(G) is the largest MAP quotient ofG (note that the completion of
(G/n(G))# is the so calledBohr compactificationof G). In particular,G itself is MAP iff
n(G) is trivial.
For undefined terms see[8,13,15,16].

2. The Galois correspondence on topological abelian groups

In this section we shall consider the followingGalois correspondence between subgroups
of a topological abelian groupG and subgroups of the power̂GN.

Definition 2.1. LetG be a topological abelian group. Then:

(a) foru ∈ ĜN setsu(G) := {x ∈ G : un(x) → 0 in T},
(b) for x ∈ G setSx(ĜN) := {u = (un) ∈ ĜN : un(x) → 0 in T}.

We naturally extend these definition also to subgroupsH �G andK�ĜN by letting

su(H) := {x∈H : un(x) → 0 in T} and Sx(K) := {u∈K : un(x) → 0 in T}.

One can easily obtain

Lemma 2.2. Following the above notation:

(a) S0(ĜN) = ĜN ands0(G) = G,
(b) u ∈ Sx(Ĝ

N) if and only ifx ∈ su(G).

Let G andH be topological abelian groups. Given a continuous homomorphismf :
G → H , we denote bŷf : Ĥ → Ĝ the transposed homomorphism defined by� �→ �◦f .
Both su andSx are functorial in the following sense:

Lemma 2.3. Let G, H be topological abelian groups andf : G → H be a continuous
homomorphism. Givenu ∈ ĜN andx ∈ G, we have:

(a) su(G) andSx(ĜN) are subgroups of G and̂GN, respectively,
(b) if J is a topological subgroup of G and K is a subgroup ofĜN, then

su(J ) = J ∩ su(G) and Sx(K) = K ∩ Sx(Ĝ
N);
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(c) f̂N(Sf (x)(Ĥ
N)) ⊆ Sx(Ĝ

N) for everyx ∈ G,
(d) f (s

f̂N(v)
(G)) ⊆ sv(H) for everyv ∈ ĤN.

In particular, if f is a topological isomorphism, then both inclusions are equalities.

Proof. (a) and (b) are obvious.
(c) Let x ∈ G and v ∈ Sf (x)(Ĥ

N). Thenvn(f (x)) = (vn ◦ f )(x) → 0 in T, i.e.
f̂N(v) ∈ Sx(Ĝ

N).
(d) If x ∈ s

f̂N(v)
(G), then one has(vn ◦ f )(x) → 0 in T, i.e.,f (x) ∈ sv(H). �

In analogy withtG(−) we define now theg-closure replacing the subgroupstu(G) by
su(G).

Definition 2.4. LetH andK be topological subgroups ofG andĜN, respectively. We set

gG(H) :=
⋂

{su(G) : u ∈ ĜN, H �su(G)} and

GĜ(K) :=
⋂

{Sx(ĜN) : x ∈ G, K�Sx(Ĝ
N)}.

We say that

• H (resp.K) is g-closed(resp.G-closed) if H = gG(H) (resp.K = GĜ(K));
H (resp.K) is g-dense(resp.G-dense) if gG(H) = G (resp.GĜ(K) = ĜN).

In this paper we will concentrate on the operatorg: we will see that it defines a closure
operator in the category of topological abelian groups in the sense of[12] and[14].
When no confusion is possible, we write simplyg(H) instead ofgG(H) andg(x) instead

of g(〈x〉) for every elementx ∈ G. For every sequenceu ∈ ĜN, su(G) is called abasic
g-closedsubgroup ofG.

Remark 2.5. (a) One can easily prove that any finite intersection of basicg-closed sub-
groups of a groupG is a basicg-closed subgroup ofG.

(b) LetK,H be topological subgroups ofG such thatK is g-closed andH is a basicg-
closed subgroup ofG. If K�H andK is of finite index inH, thenK is a basicg-closed
subgroup ofG.N = ∩n0

i=1.
(c) Of course, the kernel of a continuous character� of an abelian groupG is a basicg-

closed subgroup (since ker� coincides withs�(G), where� is the constant sequence
�, �, �, ...). Actually, any countable intersection of kernels of continuous characters is
a basicg-closed subgroup. Since the kernels of characters are closedG�-subgroups of
G, countable intersections of kernels of continuous characters are closedG�-subgroups
of G.

Let us show that theg-closure is functorial.

Proposition 2.6. Let f : G → H be a continuous homomorphism of groups. Then for
every subgroup N of G one hasf (gG(N)) ⊆ gH (f (N)).
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Proof. Givenv ∈ ĤN such thatf (N)�sv(H), it is sufficient to prove thatf (gG(N)) ⊆
sv(H). Clearly we haveN�s

f̂N(v)
(G); thereforegG(N)�s

f̂N(v)
(G) and hence

f (gG(N))�f (s
f̂N(v)

(G))�sv(H)

by Lemma 2.3 (d). �

Corollary 2.7. The g-closure defines a closure operator in the category of topological
abelian groups.

Proof. To prove that the assignmentH �→ gG(H) defines a closure operator in the category
of topological abelian groups we have to verify the three properties characterizing closure
operators (see[12] and[14]). LetGbe a topological abelian group andJ �H be topological
subgroups ofG. SinceJ �gG(J ) andgG(J )�gG(H), the extension and the monotonic-
ity properties are satisfied (see[12] and[14]). The functoriality ofgG(−) established in
Proposition 2.6 is precisely the third property required for closure operators.�

Corollary 2.8. Let {Gi}i∈I be a family of topological groups and let{Hi}i∈I be a family
of subgroupsHi �Gi . SetG = ∏

i∈I Gi andH = ∏
i∈I Hi . ThengG(H) ⊆ ∏

gGi
(Hi).

In the next proposition we point out the relation between thegG-closure and thegG� -
closure of a subgroupH of G.

Proposition 2.9. Let G be a topological abelian group. Then for each subgroup0�H �G

we have

(a) gG(H) = gG�(H),
(b) gG(0) containsn(G).

In particular,G is MAP if and only if the trivial subgroup{0} is g-closed.

Proof. (a) The topological groupsGandG� have the same continuous characters and hence
the same basicg-closed subgroups. Then the required equality follows by definition.
(b) If x ∈ n(G), then x belongs tosu(G) for any sequenceu in Ĝ. As gG(0) =⋂
u∈ĜNsu(G), the assertion is proved.�

The conclusion of Proposition 2.9 implies one direction of our Theorem 1.2: indeed, if
all the cyclic subgroups ofG areg-closed, necessarily the groupG is maximally almost
periodic (in fact, it suffices to know that 0 isg-closed). On the other hand by (a) of the above
proposition, to study properties of theg-closure it is not restrictive to assumeGprecompact:

Corollary 2.10. If G is a MAP abelian group, then a cyclic subgroup of G isg-closed if
and only if it isg-closed as a subgroup ofG�. In particular, G has theg-closure property
if and only ifG� does.

This is why in the sequel we will work always with abelian precompact topological
groups.
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Remark 2.11. (a) LetGbea topological abelian group. Since eachbasicg-closed subgroup
su(G), u ∈ ĜN, contains obviously

⋂
n kerun, su(G) contains a closedG�-subgroup (cf.

Remark 2.5 (c)). In particular this says that ifG is not metrizable, then basicg-closed
subgroup arelarge. Conversely, ifG is compact, every closedG�-subgroupN of G is a
countable intersection of kernels of characters ofG and henceN is a closed basicg-closed
subgroup. Inparticular,the closedsubgroupsof anycompactmetric grouparebasicg-closed
subgroups.

(b) LetG be a precompact abelian group and letx ∈ G. If N is ag-closed subgroup ofG
containingx, thengG(x) = gN(x). Indeed, by Lemma 2.3gG(x) ∩ N = gN(x). On the
other hand, sinceN is g-closed and contains〈x〉, one obviously hasgG(x)�N .

Lemma 2.12. Let G be a MAP abelian group. Then every closed subgroup of G that is
closed inG� is g-closed in G. Hence:

(a) every finite subgroup ofG is g-closed inG,
(b) everyg-dense subgroup ofG is dense inG�.

Proof. It suffices to observe that a subgroup ofG is closed inG� if and only if it is
the intersection of kernels of continuous characters (recall thatG andG� have the same
continuous characters), which are basicg-closed subgroups according to Remark 2.11 (a).
For (a) note that the finite subgroups ofG are certainly closed inG� since the latter group
is Hausdorff. �

Since in LCA groups and precompact abelian groups all closed subgroupsH are also
closed inG� (this is equivalent to askG/H to be MAP), this lemma implies that for such
groupsclosed subgroups are alwaysg-closed. However, one cannot extend this property to
the larger class of the MAP groups asa Hausdorff quotient of a MAP group need not be
MAP (see[2,17,18]for an example). This leaves open the following:

Question 2.13. Is every closed subgroup of a MAP abelian group alsog-closed ?

Observe that Lemma 2.12, along with Remark 2.11 (b), shows that in order to establish
thatall precompact groups have theg-closure property,it is not restrictive to consider only
the monothetic ones.
Let us consider now finite products of groups having theg-closure property.

Proposition 2.14. LetG,H be MAP abelian groups. Then for every elementz = (x, y) ∈
G × H such that〈x〉�G and 〈y〉�H are g-closed subgroups, the cyclic subgroup〈z〉 is
g-closed inG × H . In particular, theg-closure property is preserved by finite products of
MAP groups.

Proof. If both x, y are torsion, then alsoz is torsion, hence the subgroup〈z〉 is finite and
consequentlyg-closed by Lemma 2.12 (a). Hence assume thato(x)=∞ oro(y)=∞. Note
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that by Corollary 2.8 one immediately has〈z〉�gG×H (z)�〈x〉 × 〈y〉. To prove that〈z〉 is
g-closed it suffices to show thatgG×H (z) ∩ 〈(0, y)〉 = {0}. Let us consider the following
two cases.

(1)Assume thato(x) = ∞ = o(y). Then there exist countably many characters�1, . . . ,
�n, . . . and�1, . . . ,�n, . . . of G andH respectively, such thatX := 〈�n(x) : n ∈ N〉 and
Y := 〈�n(x) : n ∈ N〉 are infinite subgroups ofT. Indeed, asx is non-torsion,nx �= 0
for everyn ∈ N. Therefore, there exists a continuous character�n : G → T such that
�n(nx) = n�n(x) �= 0 inT. In particular,�n(x) /∈ Z(n) ∼= T[n]. Since this is true for every
n ∈ N, the subgroupX := 〈�n(x) : n ∈ N〉 has the desired properties. In particular,Xand
Yare dense subgroups ofT. If a ∈ T is a non-torsion element, then there exist two sequences
(un(x)) ∈ XN and(vn(y)) ∈ YN such thatun(x) → a andvn(y) → −a inT (whereun and
vn are linear combinations of characters ofG andH, respectively). Setw = (un, vn). Then
w ∈ ĜN × ĤN andwn(z)=un(x)+ vn(y) → a − a =0 inT so thatz ∈ sw(G×H).Note
that, for every positive integerd ∈ N, wn(0, dy) = vn(dy) = dvn(y) → −da �= 0 as
a is not torsion. Thus(0, dy) /∈ sw(G × H). As 〈z〉�gG×H (z)�〈x〉 × 〈y〉, this entails
〈z〉 = gG×H (z).

(2)Assume thato(x) = ∞ ando(y) = m. As before one can find continuous characters
�1, . . . , �n, . . . of G such thatX := 〈�n(x) : n ∈ N〉 is an infinite subgroup ofT. Let v :
H → T be a continuous character ofH such thato(v(y))=m. In particular,〈v(y)〉 ∼= Z(m).
SinceX is dense inT, there exists a sequence(un(x)) ∈ XN such thatun(x) → −v(y) in
T, i.e.,un(x) + v(y) → 0 in T. Setw = (un, vn), wherevn = v for everyn ∈ N. Then
w ∈ ĜN × ĤN and by definitionz ∈ sw(G × H). If (0, dy) ∈ gG×H (z) for some positive
integerd ∈ N, then(0, dy) ∈ sw(G × H), i.e.,vn(dy) = v(dy) = dv(y) = 0. Hencem|d
so thatdy = 0. Again one concludes that〈z〉 = gG×H (z). �

Remark 2.15. One can easily show that ifG1, H1 are basicg-closed subgroups of two
topological abelian groupsG,H respectively, thenG1 × H1 is a basicg-closed subgroup
ofG×H . Therefore, ifG,H are MAP abelian groups, then for every elementz= (x, y) ∈
G×H such that〈x〉�G and〈y〉�H are basicg-closed subgroups,〈z〉 is a basicg-closed
subgroup ofG×H . Indeed, if bothx, y are torsion, thenRemark 2.5 (b) applies. Ifo(x)=∞
or o(y) = ∞, then a careful reading of the proofs of Proposition 2.14 (1)-(2) shows that
sw(G × H) ∩ 〈x〉 × 〈y〉 = 〈z〉.

3. TB-sequences

3.1. TB-sequences : general background

In this section we studyTB-sequences of discrete abelian groupsG and in particular of
the Prüfer groupZ(p∞).
The following lemma generalizes[3, Proposition 2.3]:

Lemma 3.1. Let G be a topological abelian group and letH �Ĝ. Then for a sequence
u = (un) ∈ GN one hasun → 0 in (G, TH ) if and only ifH �su(Ĝ).
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Proof. Identifying every elementun of uwith the character̃un of Ĝ given by the evaluation
homomorphism, the definition ofTH implies thatun → 0 in (G, TH ) if and only if ũn(h)=
h(un) → 0 in T for everyh ∈ H if and only ifH �su(Ĝ). �

Since the supremum of totally bounded group topologies is always totally bounded, it
follows that for every sequenceu = (un) of a topological abelian groupG there exists a
finesttotally bounded group topology� onG such thatun → 0 in (G, �). More precisely,
�u := Tsu(Ĝ) is thefinest totally bounded group topology on G for which(un) converges
to 0.
The properties of the topology�u can be characterized in terms of corresponding prop-

erties ofsu(Ĝ).

Proposition 3.2. Let G be a topological abelian group and letu ∈ GN be a sequence.
Then:

(a) w(G,�u) = |su(Ĝ)|,
(b) �u is Hausdorff if and only ifsu(Ĝ) is dense in̂G,
(c) �u is metrizable if and only ifsu(Ĝ) is countable and dense in̂G.

Proof. (a) follows from the propertyw(G, TH )=|H | of the topologyTH generated by any
subgroupH �Ĝ.
(b) According to[9, Theorem 4.15], �u is Hausdorff if and only ifsu(Ĝ) separates the

points ofG if and only if su(Ĝ) is dense in̂G.
(c) If �u is metrizable, thenw(G,�u) is countable and the assertion follows from (a)

and (b).
Conversely, ifw(G,�u) is infinite and countable, then�u is metrizable by Urysohn’s

metrization theorem. �

3.2. TB-sequences inZ(p∞)

Let p be a prime number. We consider the Prüfer groupZ(p∞) (let us recall that its dual
group is the group ofp-adic integersZp).

Denote bycn the element 1/pn + Z of Z(p∞), so that the sequencec = (cn) is nothing
else but the canonical set of generators ofZ(p∞). (One can look atcn also as the character
Zp → Zp/p

nZp
∼= Z(pn)�T obtained from the canonical mapZp → Zp/p

nZp.)

Theorem 3.3. Letnk be a strictly increasing sequence of naturals and letc∗ = (cnk ) be a
subsequence ofc. Thenc∗ is a TB-sequence ofZ(p∞) and the following are equivalent:

(a) sc∗(Zp) = Z,
(b) sc∗(Zp) is countable,
(c) |sc∗(Zp)|< c,
(d) the differencesnk+1 − nk are bounded,
(e) {nk : k ∈ N} is a large subset ofN (i.e., there exists a finite setF ⊆ N such that

N ⊆ F ∪ (F + {nk : k ∈ N}),
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(f) the finest precompact topology�c∗ onZ(p∞) thatmakescnk converge to0 ismetrizable,
(g) the finest precompact topology�c∗ on Z(p∞) that makescnk converge to0 has

weight< c.

Proof. The first assertion follows from the fact that fornk = k the sequencec∗ converges
to 0 w.r.t the topology induced byT onZ(p∞).
The implications(a) ⇒ (b) ⇒ (c) and(f ) ⇒ (g) are obvious.
To prove the implications(c) ⇒ (d) assume that the differencesnk+1 − nk are not

bounded. Then there exists a subsequencekr of k such thatnkr+1 − nkr → ∞ and the
sequencenkr+1 − nkr is strictly increasing withnk0+1>nk0. Let us show by induction on
k that this subsequence has the following additional property

|{ks : ks < k}|�nkr+1 − nkr for eachk > k0 and

for the largestr ∈ N with kr < k. (1)

For simplicity letf (x) := |{ks : ks < x}|. Start with the lowest non-trivial valuek=k0+
1, where (1) is trivially true. Suppose now thatk > k0 + 1 and (1) is true fork − 1 and let
r ∈ N be the largest positive integer withkr < k. If k > kr +1, thenf (k)=f (k−1)= r +1
andr is the largestr ∈ N with kr < k − 1, so that (1) holds also fork. If k = kr + 1, then
note thatnkr+1 − nkr > nkr−1+1 − nkr−1 by the choice of the subsequencekr and apply the
inductive hypothesis.
Now let� = (�s), where 0��s �p − 1, and let

�� =
∞∑
s=0

pnks �s .

Clearly, distinct�’s give rise to distinct elements�� of Zp. Hence to prove that|sc∗(Zp)|=c

it suffices to see that each�� belongs tosc∗(Zp). To this endwe have to show thatcnk�� → 0
in T.
In the sequel we denote elements ofT (in particular,cnk (��)) by their unique repre-

sentative in the interval[0,1). This will allow us to write inequalities inR between such
elements. Therefore, denoted byr the largest index such thatkr < k, we have

cnk�� =
∑r

s=0p
nks �s

pnk
� (p − 1)(nkr+1 − nkr )p

nkr

pnk
�(p − 1)

(nkr+1 − nkr )

pnk−nkr
.

Since this impliesnkr+1�nk, we havepnk−nkr �pnkr+1−nkr . Since

lim
r

nkr+1 − nkr

pnkr+1−nkr
= 0,

we are through.
The equivalence(d) ⇔ (e) is known (see for example[1]), while the equivalences

(b) ⇔ (f ) and(c) ⇔ (g) follow respectively from (c) and (a) of Proposition 3.2.
We are left with the proof of the implication(d) ⇒ (a). Assume that for some natural

numberd one has

nk+1 − nk �d for everyk ∈ N. (2)

We have to prove thatsc∗(Zp) = Z. The inclusionZ�sc∗(Zp) is obvious.
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Let � ∈ sc∗(Zp). Then� admits a representation of the form� = ∑∞
k=0p

k�k where

0��k �p − 1 for everyk ∈ N. Note that, moduloZ, cn(�) = cn(
∑n−1

k=0 p
k�k) for every

n ∈ N. Hence, for a fixed integern>d and

cn(�) = �n−1

p
+ �n−2

p2 + · · · + �1
pn−1 + �0

pn
,

we have

�n−1

p
+ · · · + �1

pn−1 + �0
pn

� �n−1

p
+ �n−2

p2 + · · · + �n−d−1

pd+1

+ (p − 1)

(
1

pd+2 + · · · + 1

pn

)
.

Since(p − 1)
(

1
pd+2 + · · · + 1

pn

)
= 1

pd+1 − 1
pn <

1
pd+1 , one obtains

�n−1

p
+ �n−2

p2 · · · + �n−d−1

pd+1 �cn(�)<
�n−1

p
+ �n−2

p2 + · · · + �n−d−1 + 1

pd+1 . (3)

Now cnt (�) → 0 in T by hypothesis, then there existst0>2 such that, for everyt� t0,
one has

cnt (�)<
1

2pd+1 or 1− 1

2pd+1 <cnt (�). (4)

Let us see now that if

cnt (�)<
1

2pd+1 for somet� t0, (5)

then

cnt ′ (�)<
1

2pd+1 for all t ′ � t. (6)

Indeed, we will see first that (5) implies

�nt−1 = �nt−2 = · · · = �nt−d−1 = 0 (7)

and then we shall see that (7) impliescnt+1(�)<1/2pd+1. Then by a simple induction one
can see that (5) implies (6).
Indeed, assume that (5) holds and�nt−s �= 0 for some 0<s�d + 1. Then

1

pd+1 � 1

ps
� �nt−1

p
+ �nt−2

p2 + · · · + �nt−d−1

pd+1 �cnt (�)<
1

2pd+1

so that 1/pd+1<1/2pd+1, a contradiction. Hence (7) holds. Let us see now that
1−1/2pd+1<cnt+1(�) cannot hold. Indeed, according to (3) and taking into account that by
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nt − d − 1�nt+1 − d − 1�nt − 1 (7) yields�nt+1−d−1 = 0, one obtains

cnt+1(�)<
�nt+1−1

p
+ · · · + �nt+1−d

pd
+ �nt+1−d−1 + 1

pd+1

�(p − 1)

(
1

p
+ · · · + 1

pd

)
+ 1

pd+1 �1− 1

pd
+ 1

pd+1 �1− 1

2pd+1 .

Now we can conclude thatcnt+1(�)<1/2pd+1 holds by (4) applied tont+1. This yields
(6) by induction. It is clear that (5) implies, through (6) and (7), that all�n with sufficiently
largen are zero. Hence� ∈ Z.
Assume that (5) does not hold, then by (4) 1−1/2pd+1<cnt (�) for all t� t0. Then from

1− 1

2pd+1 <cnt (�)�
�nt−1

p
+ · · · + �nt−d

pd
+ �nt−d−1 + 1

pd+1

�(p − 1)

(
1

p
+ · · · + 1

pd

)
+ �nt−d−1 + 1

pd+1

for everyt� t0, one obtains

1− 1

2pd+1 �1− 1

pd
+ �nt−d−1 + 1

pd+1 . (8)

This implies(2p−1)/2pd+1�(�nt−d−1+1)/pd+1 andconsequently2p−1�2�nt−d−1+2.
Since�nt−d−1�p − 1 this yields�nt−d−1 = p − 1. With the same argument we get also
�nt−1= �nt−2 = · · · = �nt−d =p−1 for all t� t0. Then by (2)�n =p−1 for everyn�nt0.

Hence� = ∑nt0−1
k=0 pk�k + ∑∞

k=nt0
pk�k = ∑nt0−1

k=0 pk�k − pnt0 ∈ Z. �

Remark 3.4. Let p be a prime number,p>2, and consider the sequence(an) of Z(p∞)

defined byan := bn/p
n wherebn = (pn −1)/2 for everyn ∈ N. Thenan → 1

2 w.r.t. to the
induced byT topology onZ(p∞). Therefore, also the subsequencea = (an!) → 1

2 w.r.t. to
the same topology. On the other hand,(an!) is aTB-sequence ofZ(p∞). Indeed, let� ∈ Zp

be the character ofZ(p∞) defined by� := 1 + p + 2
∑∞

k=2p
k!. Then, arguing as in the

proof of Theorem 3.3, one can prove that�(an!) → 0 inT so that� ∈ sa(Zp). Since〈�〉 is
dense inZp, Proposition 3.2 applies to conclude that(an!) is aTB-sequence.

4. Proof of Theorem 1.2

Weshow that Theorem1.2 can be easily deduced from the fact that every compact abelian
group has theg-closure property. This is proved in Theorem 4.8 and this section is dedicated
to prove that theorem. The proof splits into several steps. Let us start examining the case of
totally disconnected compact groups. Any totally disconnected monothetic compact group
is isomorphic to

∏
p∈�Zp × ∏

p∈�′ Z(pkp ) where� and�′ are disjoint subsets ofP. We
begin consideringZp.

Lemma 4.1. Letp ∈ P. The groupZp has theg-closure property.
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Proof. We prove first that for every positive integerm�1,mZ is ag-closed subgroup of
Zp. Form = 1 apply Theorem 3.3. Ifm>1, then consider the subringZ(p) of Q defined
asZ(p) := { a

pn : a, n ∈ Z}. SinceZ(p) is dense inQ and 0<1/m<1, there exists
a sequence(an/pn) ∈ (0,1) such thatan/pn → 1/m. Let un : Zp → Zp/p

nZp
∼=

Z(pn)�T be the character ofZp defined asun : =ancn. Thenun(1)= an/p
n + Z, so that

un(d) → d/m + Z �= 0 in T for every 0<d <m, while un(m) → 0 in T. This shows
thatm ∈ su(Zp) andd /∈ su(Zp) for every 0<d <m. SincegZp

(〈m〉) is a subgroup ofZ
containingmZ, one hasgZp

(〈m〉) = dZ for some positive integerd ∈ Z with d|m. Since
we have shown thatk /∈ su(Zp) for every 0<k<m, we conclude thatd = m.
Now let � be an arbitrary non-zero element ofZp. Then� = pnε wheren ∈ N and

ε ∈ Zp\pZp. Letmε : Zp → Zp be the multiplication byε. Thenmε is a topological
automorphism ofZp with mε(p

n) = pnε = �. To finish the proof it suffices to note that by
the above argument the cyclic subgroup〈pn〉 is g-closed and, by Lemma 2.3, the property
to beg-closed is invariant for topological isomorphisms.�

Corollary 4.2. Every cyclic subgroup ofZp is a basicg-closed subgroup.

Proof. Let us consider first the subgroupsmZ for every positive integerm�1. Form = 1
apply Theorem 3.3. Ifm>1, then consider the sequenceu of characters ofZp defined as in
Lemma 4.1. ThenmZ = sc(Zp)∩ su(Zp), hencemZ is a basicg-closed subgroup. Now let
� be an arbitrary non-zero element ofZp. Then� = pmε wheren ∈ N andε ∈ Zp\pZp.

Since〈pm〉 = sw(Zp) for somew ∈ Ẑp
N
, the sequencev : =(wn ◦ mε−1) is in Ẑp

N
and

〈�〉 = sv(Zp). �

Lemma 4.3. Let� ⊆ P be a set of prime numbers. ThenG = ∏
p∈� Zp has theg-closure

property.

Proof. If � is a singleton, then Lemma 4.1 applies. Assume that|�|>1 and denote byz the
element(1p)p∈� ∈ G. ThengG(z) ⊆ ∏

p∈�〈1p〉 by Corollary 2.8. Ifx = (xp)p∈� ∈ gG(z)

is an arbitrary element, thenxp = kp1p for everyp ∈ � and for somekp ∈ Z. Let p, q
be distinct prime numbers in� and let us consider the projectionf : G → Zp × Zq .
Propositions 2.6 and 2.14 imply that

(xp, xq) = f (x) ∈ f (gG(z)) ⊆ gZp×Zq
(f (z)) = 〈f (z)〉.

Thus,(xp, xq) ∈ 〈(1p,1q)〉 so thatkp =kq . Since this is true for every pair(p, q) of distinct
primes in� one concludes thatx ∈ 〈z〉. Hence〈z〉 is g-closed inG.
Let � = (�p)p∈� be an arbitrary element ofG. Without loss of generality we may assume

that〈�〉=G. To finish theproof it suffices to take the topological automorphism	 : G → G

defined by	(z) = � and use the fact that, by Lemma 2.3, the property to beg-closed is
invariant under topological isomorphisms. This allows us to conclude that〈�〉 is g-closed
in G. �

By [10, Theorem 4.7](see also[7, Theorem 1]) and Proposition 2.14, we have proved
so far that every compact group of the formG = Tm × ∏

p∈P Z
np
p , wherem is a positive
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integer and(np) is a bounded sequence, satisfies theg-closure property. It follows from
Proposition 2.14 and Lemma 4.3 that theg-closure property holds also for groups of the
form

∏
p∈� Zp × F , where� is a set of primes andF = Z(q

m1
1 ) × · · · × Z(q

mk

k ), qj are
distinct prime numbers andmj ∈ N for everyj = 1, . . . , k.
Next we take care of infinite products

∏
p∈�Z(pkp ).

Lemma 4.4. Arbitrary countably infinite products of finite cyclic groups have theg-closure
property.

Proof. Let us consider an infinite product of cyclic groupsG=∏
k∈N Z(nk) and fork ∈ N

let �k : G → Z(nk) be the canonical projection. We have to prove that for everyx ∈ G

the subgroup〈x〉 is g-closed. Fixx = (xk)k∈N in G. Theg-closure ofx in G coincides with
the g-closure ofx in G0 = ∏

k∈N〈xk〉. Denote bymk the order ofxk in Z(nk). We can
assume without loss of generality thatmk is a non-decreasing sequence of natural numbers.
We think of eachZ(nk) as the subgroup ofT of ordernk. There exists an automorphism
	 of G0 such thatz = 	(x) = (1/mk)k∈N. Since theg-closure is invariant for topological
isomorphisms, it is sufficient to prove that〈z〉 is g-closed. If〈z〉 is finite, then it is closed
and henceg-closed by Lemma 2.12 (a). Thenwe can assume thatz is a torsion-free element;
therefore the increasing sequence of natural numbersmk,k ∈ N, is unbounded.
Let y ∈ G0, y /∈ 〈z〉: we will prove thaty does not belong to theg-closure of〈z〉. To this

end we construct a sequenceun, n ∈ N, of characters ofG0 such thatun(z) converges to
zero, whileun(y) does not. Our hypothesisy /∈ 〈z〉 entails that only one of the following
two cases occurs:

(i) Assume there exists a strictly increasing sequenceki , 1� i ∈ N, such thatyki = a/mki

with 0� |a|<mki and there existsk0<k1, such thatyk0 =b/mk0 with b/mk0 �= a/mk0.
Let ln =[mkn/mk0] and note that limn ln/mkn =1/mk0. Consider the sequenceu= (un)

of characters ofG0 defined by

un := ln�kn − �k0 for every n ∈ N.

Clearlyun(z) = ln/mkn − 1/mk0 converges to zero forn → ∞. Neverthelessun(y) =
lna/mkn − b/mk0 converges to(a − b)/mk0 �= 0.

(ii) Assume there exists a strictly increasing sequenceki , 1� i ∈ N, such thatyki = ai/mki

with 0<ai <mki anda1<a2<a3< · · ·. If ai/mki does not converge to zero inT for
i → ∞, we setun := �kn andun(z) converges to zero, whileun(y) does not. Then we
can suppose thatai/mki converges to zero inT. Now we distinguish three cases:

(a) Supposeai/mki converges to zero inR; hence it is not restrictive to assume that
2ai <mki for 1� i ∈ N. Let un = [mkn/2an]�kn ; thenun(z) = [mkn/2an]/mkn

converges to zero, whileun(y) = [mkn/2an]an/mkn converges to12.
(b) Supposeai/mki converges to one inR. We haveai/mki = (ai −mki )/mki in T; we

can assume without loss of generality thatai −mki is a strictly decreasing sequence
of negative integers, otherwise (i) can be applied. Then, analogously to the previous
case, letun=[mkn/2(mkn −an)]�kn ; thenun(z)=[mkn/2(mkn −an)]/mkn converges
to zero, whileun(y)=[mkn/2(mkn −an)](an−mkn)/mkn converges to−1

2= 1
2 inT.
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(c) Supposeai/mki does not converge to zero or to one inR. Then there exist a sub-
sequencekir of ki such thatair /mkir

converges to zero or to one inR. Then for
air /mkir

(a) or (b) can be applied.�

Corollary 4.5. The totally disconnected compact groups have theg-closure property.

Proof. LetG be a totally disconnected compact group, i.e. a profinite group. As we have
observed, it suffices to assume thatG is monothetic. Then the groupG is isomorphic to a
productN × H , whereN = ∏

p∈P Zp, H = ∏
p∈P ′ Z(pnp ) andP,P ′ are disjoint sets of

prime numbers. According to Lemmas 4.4, 4.3 and Proposition 2.14, the cyclic subgroups
of G = N × H areg-closed. �

Corollary 4.6. Theg-closure property is preserved by arbitrary products of precompact
groups.

Proof. Let {Gi : i ∈ I } be a family of precompact abelian groups satisfying theg-closure
property. We have to prove that alsoG := ∏

i Gi satisfies theg-closure property. To check
it pick an elementx = (xi) ∈ G andy ∈ g(x).
Case1: There existsi ∈ I such thatxi is non-torsion. Now for everyj ∈ I\{i} consider

the projectionpj : G → Gi × Gj . SinceGi × Gj satisfies theg-closure property by
Proposition 2.14, andpj (y) ∈ gGi×Gj

(pj (x)), by Proposition 2.6, we conclude that

pj (y) ∈ 〈pj (x)〉. (9)

Letpj (y) = kjpj (x) with kj ∈ Z. Now consider the projectionp : G → Gi . Since every
Gi satisfies theg-closure property andp(y) ∈ gGi

(p(x)) we conclude thatp(y) ∈ 〈p(x)〉,
hencep(y)= kp(x)= kxi for somek ∈ Z. Projecting (9) onGi we getkxi =p(y)= kjxi .
Sincexi is non-torsion, we conclude thatkj = k. This proves thatyj = kxj for everyj, i.e.,
y = kx. Hencey ∈ 〈x〉.
Case 2: Every xi is torsion. Hencex is contained in the totally disconnected

compact subgroupH = ∏
i∈I 〈xi〉. By Corollary 4.5H satisfies theg-closure property, so

y ∈ 〈x〉. �

[7, Theorem 1](see also[10, Theorem 4.7]) and Corollary 4.6 yield

Corollary 4.7. T
 has theg-closure property for every infinite cardinal
.

We are ready now to prove that every cyclic subgroup of a compact abelian group is
g-closed.

Theorem 4.8. The compact abelian groups have theg-closure property.

Proof. LetG be a compact abelian group. Denote byX the discrete Pontryagin dual ofG.
Fix a free subgroupF of X such thatX/F is torsion. For everyn ∈ N let

Fn = {x ∈ X : n!x ∈ F },
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(note thatF1 = F andFn form an ascending chain). ThenFn has a bounded torsion part
Tn = Fn[n!] that necessarily splits by Baer’s theorem, henceFn = Ln ⊕ Tn, whereLn is
torsion free. Since the multiplication byn! defines a homomorphismf : Fn → F whose

restriction onLn is a monomorphism, the groupLn is free. Identifyinĝ̂
G with G, we

consider the annihilatorNn of Fn as a subgroup ofG. ThenNn is a closed subgroup ofG
such that

G/Nn
∼= F̂n

∼= L̂n × T̂n and N̂1 ∼= X/F, (10)

and the subgroupsNn form a descending chain. HereLn
∼= ⊕


 Z andTn ∼= ⊕
i∈I Z(ki)

(asTn is a bounded torsion group, the second isomorphism follows from Prüfer’s theorem).
Therefore, (10) gives

G/Nn
∼= T
 ×

∏
i∈I

Z(ki). (11)

Denote byhn the canonical homomorphismG → G/Nn.
In order to prove thatG has theg-closure property, fix an elementx ∈ G.
It is not restrictive to assume that〈x〉 is infinite and dense inG. Here two cases are

possible.
Case1: 〈x〉 non-trivially meets the closed subgroupN1. ThenN1 is open inG since

N1 ∩ 〈x〉 has finite index in〈x〉 and consequently it is open in〈x〉. Since by (10)N1 is
totally disconnected (as the quotient groupX/F is torsion), also the groupG is totally
disconnected. Therefore, Corollary 4.5 applies.
Case2: 〈x〉 trivially meets the subgroupN1 (hence, every subgroupNn). Pick ay ∈

g(x). Thenhn(y) ∈ hn(g(x)) ⊆ gG/Nn
(hn(x)) for everyn ∈ N. SinceG/Nn has the

g-closure property by (11), Corollaries 4.7 and 4.6, we conclude thathn(y) ∈ 〈hn(x)〉 =
hn(〈x〉). Consequently,y ∈ 〈x〉 + Nn for everyn ∈ N. By our assumption each one
of the sums〈x〉 + Nn = 〈x〉 ⊕ Nn is direct. Therefore,y ∈ ⋂

n 〈x〉 ⊕ Nn yields y ∈
〈x〉 ⊕ ⋂

n Nn. Indeed, lety = knx + an, wherekn ∈ Z andan ∈ Nn for everyn. Then for
n<m one getsknx + an = kmx + am. SinceNn�Nm and〈x〉 ⊕Nnis direct, we conclude,
by uniqueness, thatknx = kmx andan = am. This proves thaty = kx + a, wherek ∈ Z and
a ∈ ⋂

nNn. On the other hand, since
⋃

n Fn = X, one has
⋂

n Nn = 0 and consequently
y ∈ 〈x〉 ⊕ ⋂

n Nn = 〈x〉. �

Here comes the proof of our main result.

Proof of Theorem 1.2.One direction follows immediately by Proposition 2.9 (b). Next,
as we have observed, by Proposition 2.9 we can assume thatG is a precompact abelian
group. ThenG embeds as dense topological subgroup of a compact groupG̃. Denote
by j : G ↪→ G̃ this topological embedding. According to Theorem 4.8G̃ has theg-closure
property, hencej (gG(〈x〉)) ⊆ gG̃(〈j (x)〉) = 〈j (x)〉 for every x ∈ G by
Proposition 2.6. �

Corollary 4.9. All non-zero cyclic subgroups of a topological abelian groupGareg-closed
if and only if G is MAP or G is isomorphic to the Prüfer groupZ(p∞) endowed with a
Hausdorff group topology� such thatn(Z(p∞), �) = Z(p).
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Proof. Let G be a topological abelian group such that all non-zero cyclic subgroups are
g-closed. Assume thatG is not MAP. ThenG is infinite andn(G) �= 0. If n(G) is not of
the formZ(p) for somep ∈ P, then for every non-zerox ∈ n(G) such that〈x〉 is a proper
subgroup ofn(G), the cyclic subgroup〈x〉 is notg-closed. Hence we are left with the case
n(G) ∼= Z(p) for somep ∈ P. It suffices to observe that for every non-zeroy ∈ G one has
〈y〉 ⊆ n(G) + 〈y〉 ⊆ gG(y) = 〈y〉. Hence〈y〉 ⊇ n(G) ∼= Z(p). ThenG ∼= Z(p∞).
Conversely, assume thatn(Z(p∞)) = Z(p) so thatZ(p∞)/Z(p) is MAP and let	 :

Z(p∞) → Z(p∞)/Z(p)be the canonical homomorphism.Then for every 0�= y ∈ Z(p∞),
〈y〉 = 	−1(	(〈y〉)) is g-closed by Theorem 1.2 and Proposition 2.6.�

Observe that the group topology� considered in the above corollary can be viewed as the
group topology ofZ(p∞) such thatZ(p∞)� = (Z(p∞), TH ) whereH is a dense subgroup
of pZp.

5. Open questions

It was proved in[7] (see also[11]) that every countable subgroup ofT is (basic)g-closed.
So it will be natural to extend the question also to compact abelian groups:

Problem 5.1. Characterize the classC of those compact abelian groups G such that every
countable subgroup of G isg-closed.

Clearly,T ∈ C. One may start with the larger classC′ of those compact abelian groups
G such that everyfinitely generatedsubgroup ofG is g-closed.

Question 5.2.DoesZp ∈ C′ orC for some (all) prime(s)p?

Theorem 4.8 shows that every cyclic subgroup of a compact abelian group isg-closed.
On the other hand,[7, Theorem 1]yields that every cyclic subgroup ofT is a basicg-closed
subgroup. We do not know if this is true foreverycompact abelian group.

Problem 5.3. Characterize the classCb of those compact abelian groupsG such that every
cyclic subgroup of G is a basicg-closed subgroup of G.

Notice that by Remarks 2.11 (b) and 2.15 the classCb is closed under taking finite
product. Since by[7, Theorem 1]T ∈ Cb and by Corollary 4.2 finite products ofp-adic
integers are inCb, every compact group of the formTn × ∏

� Zp × B, where� is a finite
subset ofP andB is a bounded group, belongs toCb.
One can easily prove thatCb is contained in the class of compact metrizable abelian

groups. Moreover, for every compact metrizable abelian groupGand every elementx ∈ G

such that〈x〉 is a basicg-closed subgroup of〈x〉, 〈x〉 is a basicg-closed subgroup ofG.
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This immediately yields that:

(a) ZN
p ∈ Cb since for everyx ∈ ZN

p one has〈x〉 ∼= Zp and the classCb is closed under
topological isomorphisms.

(b) Every compact, totally disconnected, topologicallyp-torsion groupG belongs to the
classCb. Indeed, for everyx ∈ G one has〈x〉 ∼= Zp or 〈x〉 ∼= Z(p).

(c) G ∈ Cb for every compact totally disconnected groupG= ∏
p∈P Gp such thatGp =0

for all but finitely manyp ∈ P.

It can be deduced from recent unpublished results of A. Biró that the classCb coincides
with the class ofall compact metrizable abelian groups.
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