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1. Introduction

For an abelian topological groupand a sequenae= (u,) € Z" one can consider the
subgroup, (G) := {x € G : u,x — 0 in G} of all topologicallyu-torsionelements oz
[10,13] If His a subgroup 0B, then we definég (H) := ({#(G) : u € ZN, H <t (G}
This allows us to distinguish betweterlosed subgroups @ (i.e., H < G suchthats (H)=
H) andt-dense ones (i.eH < G such that (H) = G). The subgroups o of the form
tw(G),ue ZN, are calledhasict-closed subgroups @.

Clearly, every finite subgroup of the circle groupis a basict-closed subgroup. It is
proved in[19] that for every irrational number with bounded continued fraction coeffi-
cients, the cyclic subgroup df generated by. (mod Z) has the forn, (T) wherey is the
sequence of best approximations denominatoes(@r another proof of this fact s€d]).
This was extended tall cyclic subgroups of the circle group @, Theorem 2where the
following stronger result is proved.

Theorem 1.1. Let H be a countable subgroup @f Then H is a basid¢-closed subgroup
of T.

Let us mention that for cyclic subgrougs) of T the authors provide an explicit con-
struction of the sequengee ZN such that(«) = 7, (T) in terms of the continued fraction
development ofc without any assumption on boundedness of its continued fraction coef-
ficients (cf.[7, Theorem 1}. Moreover, the authors conjecture that this property can be
extended to compact abelian gropsifferent fromT. It was established if11] (see also
[10, Theorem 4.7]that this cannot be done by meang-afosedness. More precisely, these
authors prove that for every non-discrete locally compact abelian gretip, there exists
a cyclic subgroup o6 that is not evert-closed (in other words, the property of having all
cyclic subgroups-closed characterizes amongall non-discrete locally compacfroups).
These papers offer also a short independent proof oft-ttlesedness of the countable
subgroups off.

Motivated by these results, we positively answer in this paper an appropriate version of
the question posed {7].

Let us recall that the above mentionedlosure arose ifil1] in the framework of an
appropriate Galois correspondence between subgroups of abelian topologicakgengps
subgroups oZ". The special characterizing property of the circle grdufin terms of
this t-closure) is due to the fact that the sequences of integersZ" arise as a natu-
ral object via the Pontryagin duality &is the dual group ofl . This suggests to mod-
ify appropriately the domain of the sequeneefor arbitrary abelian topological groups
(G, ©) considering sequencasn the Pontryagin dual of G and replacing the subgroups
t.(G), with u € 7N, by the analogously defined (see Definition 2.1) subgrayps),
whereu is a sequence with values @. This approach necessarily leads to a different
Galois correspondence and consequently, to a different Galois clgg@fe) for a sub-
groupH of a topological abelian grou@ that coincides witht(H) in the case ofl (cf.
Definition 2.4). In the sequel we say that a topological gr@ipas theg-closure prop-
erty if every cyclic subgroup o6 is Galois-closed (shortly-closed) for this new Galois
correspondence.
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The natural question arises of whether it is possible to classify in this setting the abelian
topological groupsG having theg-closure property. This will give a counterpart of
[10, Theorem 4.7&nd prove an appropriate version of the conjecture figdnm the setting
of abelian topological groups. In resolving this question for the important clasaximally
almost periodidMAP for short) abelian groups we obtain in fact a characterization of the
latter class:

Theorem 1.2. A topological abelian group G is MAP if and only if G has tielosure
property.

In particular, the topological abelian groups that are either locally compact or precompact
have theg-closure property.

Of course, in Theorem 1.2 we consider the zero subgroup as a cyclic one. The larger
class of abelian topological groups in whiah non-zerocyclic subgroups arg-closed is
completely described in Corollary 4.9.

Itis easy to see that the topological groups havingytieéosure property are necessarily
MAP (see Proposition 2.9). Hence the proof of Theorem 1.2 consists of establishing that
all MAP groups have thg-closure propertylt splits into several steps. In Section 2 we
point out the basic properties of the Galois closys€—) in the class of topological abelian
groups (cf. Propositions 2.6 and 2.14). Then we reduce the problem to precompact groups
(see Proposition 2.9). In Section 4 we consider first the case of totally disconnected compact
abelian groups. A key role in the proof is to show that the groypadic integer ,, p
P, and countably infinite products of finite cyclic groups havegdkdosure property (cf.
Lemmas 4.1 and 4.4). This allows us to prove, via Corollaries 4.5 and 4.8yvirgtcompact
abelian group has theclosure property (cf. Theorem 4.8). Now Theorem 1.2 easily follows
from the above results and immediate categorical properties of closure operators.

The fact that the compact groufy, has theg-closure property follows from a specific
characterization of its subgroups (Z,) wherec* is a subsequence of the canonic set of
generatorg = (c,) of the Priifer groupZ(p*>°) (hence a sequence of charactersZg).

In Section 3 we analyze the structure of the subgroyp&,) of Z, and obtain some
consequences in terms of convergence of sequenc&g8f) with respect to precompact
group topologies.

Indeed, following 3] and motivated by20], we define a sequenge= (u,,) in a groupG
to be aTB-sequencé there exists a precompact group topolaggn G such that,, — 0
in (G, 7). The first examples of B-sequences of weightin Z, @ and R were given in
[20]. Extending(3, Proposition 2.5pne can show thatis aTB-sequence if and only if the
subgroupcu(G) is dense in the dual grouﬁ of G (cf. Lemma 3.1). More generally, for a
discrete abelian grou one can study th&B-sequences of G by studying the subgroups
su(G) of the compact dual oB. Analogously to the case @ = Z, there is dinest totally
boundedyroup topology,, on G that makes: converge to 0 and the weight @f coincides
with the size of the subgroux@(@) of G (cf. Proposition 3.2). Clearlyy, is a Hausdorff
group topology if and only ift is aTB-sequence.

The fact that is aTB-sequence of (p°°) follows from the following property proved in
[22, Example 6] Z(p°°), endowed with the finest group topology that makesonverge
to 0, has the same continuous characterg&sp°°), 1), wherert is the(precompagtgroup
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topology induced by onZ(p>) (in particular, this entails. = 7). This follows also from
our Theorem 3.3 where we prove the following sharper result: for every subseqtiesfce
¢ the following are equivalent:

(@) Sc* (Zp) =17,

(b) the set of differences,1 — ny is bounded;

(c) {nr : k € N} is a large subset dN (i.e., there exists a finite sé¢t < N such that
N C FU(F+{ng:keN});

(d) the finest precompact group topology- on Z(p*°) that makes:,, converge to 0 is
metrizable;

(e) the finest precompact group topolagy on Z(p*) that makes:,, converge to 0 has
weight < c.

Further information off B-sequences anddense subgroups can be foundhand[5],
respectively.

Notation and terminologyWe denote byN andP the sets of positive naturals and primes,
respectively; byZ the integers, byl the circle grougR/Z in the additive notation and by
Z, the group ofp-adic integers g € P). Forn € N we denote by (n) the cyclic group of
ordern.

For a topological grougG, 7) we denote byw(G) the weightof G (i.e., the minimal
cardinality of a base for the topology @). All topological groups, unless otherwise speci-
fied, satisfy Hausdorff's separation axiom. Completeness of topological groups is intended
with respect to the two sided uniformity, so that every topological group has a (Rai"kov)
completion denoted bg.

A topological groupG is said to beotally boundedf for every non-empty open sét
of G there exists a finite subsé C G of G such thatG = U + F. Hausdorff totally
bounded topological groufs are also callegprecompacbecause they are determined by
the property to be (isomorphic to) subgroups of compact grfds

For any abelian grouf® let Hom (G, T) be the group of all homomorphisms fra@to
the circle groupl. When (G, 1) is an abelian topological group, the setmefontinuous
homomorphismg, : G — T (character§ is a subgroup oHom (G, T) and is denoted
by G.

For an abelian grou@ and a subgroupl < Hom (G, T), let Ty be the weakest topology
on G that makes all characters Hfcontinuous with respect t6y. One easily shows that
Ty is a totally bounded group topology @ called thetopology generatetly H.

A subgroupH < Hom(G, T) is said toseparatethe points ofG if for every g € G\ {0}
there existd: € H such thati(g) # 0.

It was proved by Comfort and Ross that every precompact group topalagy an
abelian groupG is generated by some suitable point-separating subgroup of characters
H<Hom(G,T) of G. Conversely, every such topology is precompact (&,
Theorem 1.2)

Given an abelian topological group we denote byG*? the groupG endowed with the
initial topology of all continuous characteyse G. The topology ofG* is called theBohr
topologyof G. Clearly, the group§ andG* have the same continuous characters. Notice
thatG* is a totally bounded topological group that need not be Hausdorff.
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The groupG is said to be MAP haximally almost periodjcwhen G* is Haudorff.
Therefore, a topological group is MAP iff the continuous characters Gf separates the
points ofG.

For a topological abelian group let us denote by:(G) the intersection of the kernels
of all characters irG. n(G) is called thevon Neumann’s kernelf G and is characterized
by the property tha@/n(G) is the largest MAP quotient &b (note that the completion of
(G/n(G))* is the so calle®ohr compactificatiomf G). In particular,G itself is MAP iff
n(G) is trivial.

For undefined terms s¢®,13,15,16]

2. The Galois correspondence on topological abelian groups

In this section we shall consider the following Galois correspondence between subgroups
of a topological abelian group and subgroups of the powér .

Definition 2.1. Let G be a topological abelian group. Then:

(a) foru e GN sets,(G) :={x € G : u,(x) — 0in T},
(b) forx € G setS,(GV) := {u = (up) € GN : u,(x) > 0in T}.

We naturally extend these definition also to subgrodps G andK < GN by letting
su(H) :={xeH :uy(x) > 0inT} and S¢(K):={uek : u,(x) - 0in T}.

One can easily obtain

Lemma 2.2. Following the above notation

@) So(GN) =GN andso(G) = G
(b) u € S.(GN)if and only ifx € 5,(G).

Let G andH be topological abelian groups. Given a continuous homomorplfsm
G — H,we denote by‘ H—G the transposed homomorphism defineg/by> o f
Boths, andsS, are functorial in the following sense:

Lemma 2.3. Let G, H be topological abelian groups anfl : G — H be a continuous
homomorphism. Givem € GN andx € G, we have

(@) s.(G) and S (GN) are subgroups of G ang ", respectively
(b) if J is a topological subgroup of G and Kis a subgrourﬁﬁl, then

su(J)=J Ns5,(G) and S.(K)=K NS (GV);
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© FNSrw(HN)) € S.(GV) for everyx € G,
(d) /(s n, (G)) S sy(H) for everyy € HN,
In particular, if f is a topological isomorphispthen both inclusions are equalities

Proof. (a) and (b) are obvious.

(c) Letx € G andv € Sf(x)(HN). Thenv,(f(x)) = (v, 0o f)(x) — 0in T, i.e.
N e 8:(GN).

(d)Ifx e sJ;N@(G), then one hagv, o f)(x) = 0inT,i.e., f(x) € sy(H). O

In analogy withtg (—) we define now the-closure replacing the subgroupgG) by
5u(G).

Definition 2.4. Let H andK be topological subgroups ¢f andGV, respectively. We set
3(H) == [ |isu(G) : ue G, H<s5,(G)} and
G (K) = [)(S:(GM) : x € G, K<S(GM)).
We say that

o H (resp.K) is g-closed(resp.®-closed if H = g5(H) (resp.K = G5(K));
H (resp.K) is g-densg(resp.®-densgif g5 (H) = G (resp.65(K) = GN).

In this paper we will concentrate on the operajowe will see that it defines a closure
operator in the category of topological abelian groups in the ser{d@jdénd[14].

When no confusion is possible, we write simply) instead ofy; (/) andg(x) instead
of g((x)) for every elemenkt € G. For every sequence € GN, 5.(G) is called abasic
g-closedsubgroup ofG.

Remark 2.5. (a) One can easily prove that any finite intersection of bgsitosed sub-
groups of a grous is a basiay-closed subgroup d&.

(b) Let K, H be topological subgroups @& such tha is g-closed andH is a basicg-
closed subgroup d&. If K < H andK is of finite index inH, thenK is a basiay-closed
subgroup ofc. N =N2,.

(c) Of course, the kernel of a continuous charagtef an abelian grouis is a basiog-
closed subgroup (since kgrcoincides withs, (G), wherey is the constant sequence
2~ 1 X ---)- Actually, any countable intersection of kernels of continuous characters is
a basicg-closed subgroup. Since the kernels of characters are c@setbgroups of
G, countable intersections of kernels of continuous characters are dgssubgroups
of G.

Let us show that thg-closure is functorial.

Proposition 2.6. Let f : G — H be a continuous homomorphism of groups. Then for
every subgroup N of G one hgfg5(N)) € gy (f(N)).
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Proof. Givenuv € H"N such thatf (N) <s,(H), it is sufficient to prove thay (g5 (N)) €
sy(H). Clearly we haveNgst@(G); thereforeg; (N) <SfN(v)(G) and hence

F@G(N)) S F(5 oy (G)) sy (H)

by Lemma 2.3 (d). O

Corollary 2.7. The g-closure defines a closure operator in the category of topological
abelian groups

Proof. To prove that the assignmeHti— g (H) defines a closure operator in the category

of topological abelian groups we have to verify the three properties characterizing closure
operators (sef 2] and[14]). LetG be a topological abelian group aid< H be topological
subgroups of5. SinceJ <gg(J) andgg (J) <gg(H), the extension and the monotonic-

ity properties are satisfied (sgE2] and[14]). The functoriality ofg;(—) established in
Proposition 2.6 is precisely the third property required for closure operatars.

Corollary 2.8. Let{G,};c; be a family of topological groups and I&#;},;.; be a family
of subgroups; < G;. SetG = [[;; Gi andH = [[;; H;. Theng (H) C []gg, (H).

In the next proposition we point out the relation betweendpeclosure and the;:-
closure of a subgroud of G.

Proposition 2.9. Let G be atopological abelian group. Then for each subgiogpH <G
we have

(@) 9g(H) =g5:(H),
(b) g(0) containsn(G).
In particular, G is MAP if and only if the trivial subgroufD} is g-closed

Proof. (a) The topological group andG* have the same continuous characters and hence
the same basig-closed subgroups. Then the required equality follows by definition.

(b) If x € n(G), thenx belongs tos,(G) for any sequence in G. As g5(0) =
Nucavsu(G), the assertion is proved.[]

The conclusion of Proposition 2.9 implies one direction of our Theorem 1.2: indeed, if
all the cyclic subgroups o& are g-closed, necessarily the gropis maximally almost
periodic (in fact, it suffices to know that Ogsclosed). On the other hand by (a) of the above
proposition, to study properties of theclosure it is not restrictive to assur@gprecompact:

Corollary 2.10. If G is a MAP abelian groupthen a cyclic subgroup of G is-closed if
and only if it isg-closed as a subgroup @*. In particular, G has they-closure property
if and only if G* does

This is why in the sequel we will work always with abelian precompact topological
groups.
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Remark 2.11. (a) LetG be atopological abelian group. Since each bgsilosed subgroup
su(G),u € GV, contains obviously, keru,, s,(G) contains a closed s-subgroup (cf.
Remark 2.5 (c)). In particular this says thatdfis not metrizable, then basig-closed
subgroup ardarge. Conversely, ifG is compact, every closed s-subgroupN of G is a
countable intersection of kernels of character&and hencN is a closed basig-closed
subgroup. In particulathe closed subgroups of any compact metric group are lpgsiosed
subgroups

(b) LetG be a precompact abelian group anddet G. If N is ag-closed subgroup d&
containingx, theng; (x) = gy (x). Indeed, by Lemma 2.8, (x) N N = gy (x). On the
other hand, sinchl is g-closed and containg), one obviously hag; (x) <N.

Lemma 2.12. Let G be a MAP abelian group. Then every closed subgroup of G that is
closed inG* is g-closed in G. Hence

(a) every finite subgroup @ is g-closed inG,
(b) everyg-dense subgroup @ is dense inG*.

Proof. It suffices to observe that a subgroup ®fis closed inG* if and only if it is

the intersection of kernels of continuous characters (recallGnand G* have the same
continuous characters), which are basiclosed subgroups according to Remark 2.11 (a).
For (a) note that the finite subgroups®fare certainly closed iG* since the latter group

is Hausdorff. [J

Since in LCA groups and precompact abelian groups all closed subgkbaps also
closed inG* (this is equivalent to ask/H to be MAP), this lemma implies that for such
groupsclosed subgroups are alwaysclosed However, one cannot extend this property to
the larger class of the MAP groups asdausdorff quotient of a MAP group need not be
MAP (se€[2,17,18]for an example). This leaves open the following:

Question 2.13.1s every closed subgroup of a MAP abelian group alsdosed ?

Observe that Lemma 2.12, along with Remark 2.11 (b), shows that in order to establish
thatall precompact groups have theclosure propertyit is not restrictive to consider only
the monothetic ones

Let us consider now finite products of groups havinggtetosure property.

Proposition 2.14. Let G, H be MAP abelian groups. Then for every elemest (x, y) €

G x H such that(x) <G and (y) < H are g-closed subgroupshe cyclic subgrougz) is
g-closed inG x H. In particular, the g-closure property is preserved by finite products of
MAP groups

Proof. If both x, y are torsion, then alspis torsion, hence the subgrouyy is finite and
consequently-closed by Lemma 2.12 (a). Hence assumedhat= oo or o(y) = oo. Note
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that by Corollary 2.8 one immediately h&s < gg .y (2) < (x) x (y). To prove thatz) is
g-closed it suffices to show that;, ;(z) N ((0, y)) = {0}. Let us consider the following
two cases.

(1) Assume thab(x) = oo = o(y). Then there exist countably many charactgrs . .,
Ins - --andyq, ..., ., ... of GandH respectively, such that := (y,(x) : n € N) and
Y := (y,,(x) : n € N) are infinite subgroups of. Indeed, ax is non-torsionpx # 0
for everyn € N. Therefore, there exists a continuous charagjer G — T such that
1 (nx) =ny,(x) #0in T. In particular,y, (x) ¢ Z(n) = T[n]. Since this is true for every
n € N, the subgroufX := (y,,(x) : n € N) has the desired properties. In particudaand
Yare dense subgroupsbfif a € T is anon-torsion element, then there exist two sequences
(un(x)) € XN and(v,(y)) € YN suchthats, (x) — a andv,(y) — —ain T (whereu, and
v, are Iineal combinations of characters®andH, respectively). Seb = (u,, v,). Then
we GV x HY andwy, (z) = u, (x) + v, (y) — a —a=0inT sothat; € s,(G x H).Note
that, for every positive integef € N, w, (0, dy) = v,(dy) = dv,(y) - —da # 0 as
a is not torsion. ThugO, dy) ¢ 5, (G x H). As (2) <ggxy(2) <(x) x (y), this entails
(2) = 96 xn(2)-

(2) Assume thab(x) = co ando(y) = m. As before one can find continuous characters
A1s - dns - OF Gsuch thatX := (y,(x) : n € N) is an infinite subgroup of . Letwv :
H — T be acontinuous charactertldsuch thav (v(y))=m. In particular(v(y)) = Z(m).
SinceXis dense inl, there exists a sequeng@e,(x)) € XN such thate, (x) — —v(y)in
T, |e u,,(x) +v(y) - 0inT. Setw = (u,, v,), wherev,, = v for everyn € N. Then
w €E GN x HN and by definitior; € 5, (G x H). If (0, dy) € g5y (2) for some positive
integerd € N, then(0, dy) € s,(G x H), i.e.,v,(dy) = v(dy) =dv(y) = 0. Hencen|d
so thatdy = 0. Again one concludes thét) = g5, 5 (z). O

Remark 2.15. One can easily show that &1, H1 are basiay-closed subgroups of two
topological abelian groupS, H respectively, thert;1 x Hq is a basiay-closed subgroup

of G x H. Therefore, ifG, H are MAP abelian groups, then for every elemest(x, y) €

G x H such thatx) <G and(y) < H are basig-closed subgroupsz) is a basiay-closed
subgroup of5 x H. Indeed, if bothx, y are torsion, then Remark 2.5 (b) applies.(f) = oo

or o(y) = oo, then a careful reading of the proofs of Proposition 2.14 (1)-(2) shows that
sw(G x H) N {x) x (y) = (2).

3. TB-sequences
3.1. TB-sequences : general background

In this section we studyB-sequences of discrete abelian gro@and in particular of
the Prufer grou (p®°).

The following lemma generaliz¢8, Proposition 2.3]

Lemma 3.1. Let G be a topological abelian group and IHc<G Then for a sequence
u=(u,) € GN one has, — 0in (G, Ty) if and only if H <s,(G).
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Proof. Identifying every element, of u with the charactef,, of G given by the evaluation
homomorphism, the definition @fy implies thatu,, — 0 in (G, Ty) ifand only if iz, (h) =
h(u,) — 0in T for everyh € H if and only if H <s,(G). O

Since the supremum of totally bounded group topologies is always totally bounded, it
follows that for every sequenage= (u,) of a topological abelian grou@ there exists a
finesttotally bounded group topologyon G such that,, — 0 in (G, t). More precisely,
ou = T g Is thefinest totally bounded group topology on G for whiey) converges
to 0.

The properties of the topology, can be characterized in terms of corresponding prop-
erties ofsl(ﬁ).

Proposition 3.2. Let G be a topological abelian group and lete GN be a sequence.
Then

(@) w(G, 0,) = lsu(G), R R
(b) o, is Hausdorff if and only if, (G) is dense irG,
(c) o, is metrizable if and only 'Lfl(@) is countable and dense .

Proof. (a) follows from the propertw (G, Ty) = |H| of the topologyl'y generated by any
subgroupH < G.

(b) According to[9, Theorem 4.15]a,, is Hausdorff if and only ifsl(a) separates the
points ofG if and only if sE(’G\) is dense inG.

(c) If o, is metrizable, thenw (G, o,,) is countable and the assertion follows from (a)
and (b).

Conversely, ifw(G, o,) is infinite and countable, thes, is metrizable by Urysohn’s
metrization theorem. [

3.2. TB-sequences ifi(p™)

Let p be a prime number. We consider the Prifer grdgp) (let us recall that its dual
group is the group gb-adic integersZ ).

Denote byc, the element 1p" + Z of Z(p*°), so that the sequenee= (c,) is nothing
else but the canonical set of generatorg g5°°). (One can look at, also as the character
2y, — Zp/p"Z, = Z(p")< T obtained from the canonical mafy, — Z,/p"Z,.)

Theorem 3.3. Letny be a strictly increasing sequence of naturals and:tet (¢, ) be a
subsequence of Thenc* is a TB-sequence df(p>°) and the following are equivalent

@) sex(Zp) =2,

(b) sc+(Z)) is countable

(©) Ise(Zp)] <,

(d) the differencesy.1 — ny are bounded

(e) {nx : k € N} is alarge subset oN (i.e, there exists a finite sgf < N such that
NC FU(F+{nx: keN}),
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(f) thefinest precompacttopology- onZ(p>) that makes,, converge tdis metrizable
(9) the finest precompact topology+ on Z(p*>) that makesc,, converge to0 has
weight< c.

Proof. The first assertion follows from the fact that for = k the sequence* converges
to 0 w.r.t the topology induced by on Z(p°).

The implicationsa) = (b) = (¢) and(f) = (g) are obvious.

To prove the implicationgc) = (d) assume that the differenceg,1 — ny are not
bounded. Then there exists a subsequénoef k such thatu, 1 — nx, — oo and the
sequencey, 1 — ny, IS strictly increasing withug, 1 > ng,. Let us show by induction on
k that this subsequence has the following additional property

ks : ks <k} <ng,4+1 — ng, for eachk > kg and
for the largest € N with k, <k. (1)

For simplicity letf (x) := |{ky; : ks < x}|. Start with the lowest non-trivial value=kq+
1, where (1) is trivially true. Suppose now thiat ko + 1 and (1) is true fok — 1 and let
r € N be the largest positive integerwith< k. If k > k, + 1, thenf (k)= f(k—1) =r+1
andr is the largest € N with k. <k — 1, so that (1) holds also fd« If k =k, + 1, then
note thati, 11 — ng, > nk,_,+1 — nk,_, by the choice of the subsequerigeand apply the
inductive hypothesis.

Now leto = (o), where O< o, < p — 1, and let

00
=3
s=0

Clearly, distinct:’s give rise to distinct elements, of Z,,. Hence to prove that.« (Z,)| =«
it suffices to see that eaéh belongs ta.«(Z,). To this end we have to show that £, — 0
inT.

In the sequel we denote elementsbf(in particular,c,, (¢,)) by their unique repre-
sentative in the intervdlD, 1). This will allow us to write inequalities ifiR between such
elements. Therefore, denotedbthe largest index such thit < k, we have

_oP o — D (nk,+1 — ng, ) p"*r Nk, +1 — Nk,
2szoP™ %5 (P = D1~k )p <(p— 1) Pt~ ")
pnk pnk pnk ng,.

anéoc =

Since this impliesi, 11 <ng, we havep”t~"* > p"k+17"%  Since

. Nk, +1 — N,
lim r+ r
P pkel =Nk

=0,

we are through.

The equivalencdd) < (e) is known (see for examplfL]), while the equivalences
(b) & (f) and(c) < (g) follow respectively from (c) and (a) of Proposition 3.2.

We are left with the proof of the implicatioil) = (a). Assume that for some natural
numberd one has

ni+1 —nip <d foreveryk € N. (2)

We have to prove that+(Z,) = Z. The inclusionZ <s.(Z,) is obvious.
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Let ¢ € s.+(Z,). Then& admits a representation of the forin= > 72 5 p*oy where

0<ox < p — 1 for everyk € N. Note that, moduldZ, ¢, (&) = ¢, (3 _;_ 1p o) for every
n € N. Hence, for a fixed integer > 4 and

1 Olp—2 o1 [0%)
o (§) = + 2 +'~'+pn_1 ﬁ,
we have
Oln—1 o1 oo Oln—1 Olp—2 Oln—d—1
» +"'+pn_l+ﬁ< P + P2 +"'+W
l 1
; 1 1 1 1 1 R
Slnce(p — 1) (pd—Jrz + -4+ p_") = W — ? < W, one obtains
Op—1 | Op—2 Op—d—1 ) Up—d—1+1
L2 ead fogptdl
p P2 pd+1 S P2 pd+1

Now ¢,, (£) — 0in T by hypothesis, then there exisgs> 2 such that, for every> 1,
one has

1 1
e, (€) < W or 1- W <cp, (8). 4)

Let us see now that if

1
cn, (6) < W for somer > 1, (5)
then
1 /
Cn, &< m forall ¢’ >1t. (6)

Indeed, we will see first that (5) implies
Op,—1=0Up,—2 ="+ =0p,—d-1= 0 (7)
and then we shall see that (7) impliss, , (¢) < 1/2p9+1. Then by a simple induction one
can see that (5) implies (6).
Indeed, assume that (5) holds ang_, # O for some O< s <d + 1. Then

1
pd-i-l

On,—
p

O‘n,—Z ant d-1 1
+7++ pd+1 \Cn;(é)<2 d+1

1
<SS
I

so that ¥p9tl <1/2p9tl, a contradiction. Hence (7) holds. Let us see now that
1-1/2p¢tt < ¢n,41 (&) cannot hold. Indeed, according to (3) and taking into account that by
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—d —1<n;41 —d — 1<n, — 1 (7) yieldso,,,,—4—1 = 0, one obtains

7y < Zazl Oniy1—d | Onya—d—1+1
cnt+1(§) < i + .4 "l+ji N1 o
p p
s( 1)<1+ +1>+—1 g+, 1
x(p— — . <1- = <1- |
p pd pd+l Pd pd+1 2pd+l

Now we can conclude that, , () < 1/2p4+1 holds by (4) applied ta,, 1. This yields
(6) by induction. It is clear that (5) implies, through (6) and (7), thakalvith sufficiently
largen are zero. Hencé € 7.

Assume that (5) does not hold, then by (4} 1/2p9+* < ¢,,, (¢) for all t > tp. Then from

O, —d—1+1

+
pd+1

n, On,—d

1 1 Op,—d—1+1
g(p—l)<—+-~-+—>~l—’—
P pd pd+1
for everyr > 1o, one obtains

1 1 n Opy—d—1+1

<1-— . (8)
pd pd+1

1- 2 d+1

2p
Thisimplies(2p—1)/2p?*1 < (oy, —g—1+1)/ p?*T1and consequently2-1< 2a,, —g—1+2.
Sinceo,,, —4—1< p — 1 this yieldso,, _4—1 = p — 1. With the same argument we get also
Oy, —1 =0lp,—2="-=0y,_g=p—1foralls >to Then by (2, = p — 1 for everyn > ny,.

ngy—1
Henceé =3, " pkoy + Y, o =Y, °o ploy —p"o e 7. O

Remark 3.4. Let p be a prime numbelp > 2, and consider the sequengg) of Z(p*°)
defined bya, := b,/ p" whereb, = (p" — 1)/2 for everyn € N. Thena, — % w.r.t. to the
induced byT topology onZ(p°). Therefore, also the subsequence (a,) — % w.r.t. to
the same topology. On the other hata,) is aTB-sequence of (p*°). Indeed, let € Z,
be the character of (p™) defined by¢ := 1+ p + 23 72, p*'. Then, arguing as in the
proof of Theorem 3.3, one can prove ti§ét,)) — 0in T so thaté € s,(Z,,). Since(l) is
dense inZ,,, Proposition 3.2 applies to conclude tliat,) is aTB-sequence.

4. Proof of Theorem 1.2

We show that Theorem 1.2 can be easily deduced from the fact that every compact abelian
group has thg-closure property. This is proved in Theorem 4.8 and this section is dedicated
to prove that theorem. The proof splits into several steps. Let us start examining the case of
totally disconnected compact groups. Any totally disconnected monothetic compact group
is isomorphic to[] ., Z, x [, Z(p*») wherer andx’ are disjoint subsets db. We
begin considering .

Lemma 4.1. Let p € P. The groupZ,, has theg-closure property
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Proof. We prove first that for every positive integer>1, mZ is ag-closed subgroup of
Z,. Form =1 apply Theorem 3.3. liz > 1, then consider the subring,, of Q defined
asZyp) = {4 : a, n € Z}. SinceZ ) is dense inl and 0< 1/m <1, there exists
a sequencéa,/p") € (0,1) such thata,/p" — 1/m. Letu, : Z, — Z,/p"Z, =
Z(p™) < T be the character of , defined as:,, : =a,c,. Thenu, (1) =a,/p" + Z, so that
up(d) — d/m+ Z # 0in T for every O<d <m, while u,,(m) — 0 in T. This shows
thatm e s5,(Z,) andd ¢s,(Z,) for every O<d <m. Sincegzp((m)) is a subgroup o¥
containingmZ, one hasy; ({(m)) = dZ for some positive integel € Z with d|m. Since
we have shown that ¢ SE(ZP) for every O< k <m, we conclude thad = m.

Now let £ be an arbitrary non-zero element &f,. Thené = p"e wheren € N and
e € Z,\pZp,. Letm, : Z, — Z, be the multiplication by. Thenm, is a topological
automorphism o¥ , with m.(p") = p"e = £. To finish the proof it suffices to note that by
the above argument the cyclic subgrayyy) is g-closed and, by Lemma 2.3, the property
to beg-closed is invariant for topological isomorphismd.]

Corollary 4.2. Every cyclic subgroup of , is a basicg-closed subgroup

Proof. Let us consider first the subgroup¥ for every positive integern >1. Form =1
apply Theorem 3.3. Ifr > 1, then consider the sequencef characters of , defined as in
Lemmad4.1l. ThemZ =s.(Z,) Nsy,(Z),), hencenZ is a basiay-closed subgroup. Now let
¢ be an arbitrary non-zero element®j. Thené = p™e wheren € N ande € Z,\pZ,,.

Since(p™) = sy (Zp) for somew € pr, the sequence : =(w;, o m,-1) isin ZNand
() = Sg(Zp)- U

Lemma 4.3. Letw € P be a set of prime numbers. Thén=[]|
property.

per Lp has theg-closure

Proof. If wis a singleton, then Lemma 4.1 applies. Assumelthiat 1 and denote bythe
element(1,),c; € G. Thengg(z) < [],c,(1,) by Corollary 2.8. Ifx = (x,) per € 6 (2)
is an arbitrary element, thex), = k,1, for everyp e = and for somek, € Z. Let p, g
be distinct prime numbers in and let us consider the projectiogh : G — 7, x Z,.
Propositions 2.6 and 2.14 imply that

(xp, xg) = f(x) € f(96(2)) € 97,xz7,(f(2) = (f(2).

Thus,(x,, x4) € ((1p, 1)) sothat, =k,. Since this is true for every paip, ¢) of distinct
primes int one concludes that € (z). Hence(z) is g-closed inG.
LetE = (¢,) per bE @n arbitrary element @. Without loss of generality we may assume

that(&)=G. Tofinish the proof it suffices to take the topological automorphismG — G

defined by¢(z) = ¢ and use the fact that, by Lemma 2.3, the property tg-otosed is
invariant under topological isomorphisms. This allows us to conclude(ghas g-closed
inG. O

By [10, Theorem 4.7]see alsq7, Theorem 1} and Proposition 2.14, we have proved
so far that every compact group of the fotin=T" x [ ,cp Z'I’,", wherem s a positive
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integer and(n,) is a bounded sequence, satisfies ghdosure property. It follows from
Proposition 2.14 and Lemma 4.3 that telosure property holds also for groups of the
form ]_[pen Z, x F,wherer is a set of primes and = Z(g}"*) x --- x Z(q;'*), q; are
distinct prime numbers and; € N foreveryj =1,... k.

Next we take care of infinite producﬁpenZ(p"p).

Lemma 4.4. Arbitrary countably infinite products of finite cyclic groups havedgh&osure
property.

Proof. Letus consider an infinite product of cyclic grou@s=[ [, . Z(nx) and fork € N
letn, : G — Z(ny) be the canonical projection. We have to prove that for exeey G
the subgroupx) is g-closed. Fixx = (xz);en IN G. Theg-closure ofxin G coincides with
the g-closure ofx in Go = [ [, (xk). Denote bym; the order ofx; in Z(ny). We can
assume without loss of generality that is a non-decreasing sequence of natural numbers.
We think of eachZ(n;) as the subgroup of of ordern,. There exists an automorphism
¢ of Go such that = ¢(x) = (1/my)ren- Since they-closure is invariant for topological
isomorphisms, it is sufficient to prove tha is g-closed. If(z) is finite, then it is closed
and hencg-closed by Lemma 2.12 (a). Then we can assumeztisat torsion-free element;
therefore the increasing sequence of natural numbgps e N, is unbounded.

Lety € Go, y ¢ (z): we will prove thaty does not belong to thgclosure of(z). To this
end we construct a sequengg n € N, of characters o6 such that, (z) converges to
zero, whileu, (y) does not. Our hypothesis¢ (z) entails that only one of the following
two cases occurs:

(i) Assume there exists a strictly increasing sequénce<<i € N, such thaty, = a/my,
with 0< |a| < my, and there existky < k1, such that, =b/my, With b/my, # a/my,.
Letl, =[my,/m,] and note that linal,, /my, =1/my,. Consider the sequenge= (u,,)
of characters o7 defined by

uy = lymy, —my, forevery ne N.

Clearlyu,(z) =1,/my, — 1/my, converges to zero for — oco. Nevertheless, (y) =
lna/my, — b/my, converges tda — b)/my, # 0.

(if) Assume there exists a strictly increasing sequencg<i € N, such thaty, =a; /my,
with 0 < a; <my, anday <az <az <---. If a;/my, does not converge to zero ihfor
i — oo, we setu, := m, andu,(z) converges to zero, whilg, (y) does not. Then we
can suppose that /m;, converges to zero ifi. Now we distinguish three cases:

(a) Suppose:;/my, converges to zero if®; hence it is not restrictive to assume that
2a; <my, for 1<i € N. Letu, = [my,/2a,]1m,; thenu,(z) = [my, /2a,]1/mg,
converges to zero, whileg, (y) = [m, /2a,]a, /my, converges to}.

(b) Suppose;/my, converges to one iR. We haves; /my, = (a; —my,)/my, in T; we
can assume without loss of generality that- my, is a strictly decreasing sequence
of negative integers, otherwise (i) can be applied. Then, analogously to the previous
case, lett, =[my, /2(my, —ay) 1y, ; thenu, (z) =[mx, /2(my, —a,)]/my, converges
to zero, whilew,, (v) = [mx, /2(mx, —an)1(an —my,)/my, convergeste-3 =3 in T.
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(c) Suppose; /my, does not converge to zero or to oneRnThen there exist a sub-
sequenced;, of k; such thata;, /my, converges to zero or to one iR. Then for
a;, /my; (@) or (b) can be applied.[]

Corollary 4.5. The totally disconnected compact groups havegtiaéosure property

Proof. Let G be a totally disconnected compact group, i.e. a profinite group. As we have
observed, it suffices to assume tiais monothetic. Then the group is isomorphic to a
productN x H, whereN =[] ,cp Zp, H =[] ,cp Z(p"r) and P, P are disjoint sets of
prime numbers. According to Lemmas 4.4, 4.3 and Proposition 2.14, the cyclic subgroups
of G = N x H areg-closed. [J

Corollary 4.6. Theg-closure property is preserved by arbitrary products of precompact
groups

Proof. Let{G; : i € I} be a family of precompact abelian groups satisfyinggtaosure
property. We have to prove that al6o:= []; G; satisfies thg-closure property. To check
it pick an element = (x;) € G andy € g(x).

Casel: There exist$ € I such thaty; is non-torsion. Now for every € 7\{i} consider
the projectionp; : G — G; x G;. SinceG; x G; satisfies they-closure property by
Proposition 2.14, ang;(y) € 96:xG; (pj(x)), by Proposition 2.6, we conclude that

pi(y) e (pjx)). 9)

Letp;(y) =k;jp;(x) withk; € Z. Now consider the projectiop : G — G;. Since every
G, satisfies thg-closure property ang(y) € g, (p(x)) we conclude thap(y) € (p(x)),
hencep(y) =kp(x) =kx; for somek e Z. Projecting (9) orG; we getkx; = p(y) =k;x;.
Sincex; is non-torsion, we conclude thiat = k. This proves thay; = kx ; for everyj, i.e.,
y =kx. Hencey € (x).

Case 2: Every x; is torsion. Hencex is contained in the totally disconnected
compact subgroupl = [];.; (x;). By Corollary 4.5H satisfies they-closure property, so
ye{x). O

[7, Theorem 1)see alsq10, Theorem 4.7]and Corollary 4.6 yield
Corollary 4.7. T* has theg-closure property for every infinite cardinal

We are ready now to prove that every cyclic subgroup of a compact abelian group is
g-closed.

Theorem 4.8. The compact abelian groups have tfelosure property

Proof. Let G be a compact abelian group. DenoteXothe discrete Pontryagin dual Gf
Fix a free subgroup of X such thatX/F is torsion. For every € N let

F,={x € X :nlx € F},
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(note thatF; = F and F,, form an ascending chain). Thdfy has a bounded torsion part
T, = F,[n!] that necessarily splits by Baer's theorem, hehge= L,, @ T,,, whereL,, is
torsion free. Since the multiplication by defines a homomorphistf : F, — F whose

restriction onL, is a monomorphism, the group, is free. Identifying@ with G, we
consider the annihilatav,, of F,, as a subgroup d&. ThenN, is a closed subgroup @&
such that

G/N,=F,=L,xT, and N; = X/F, (10)

and the subgroupd, form a descending chain. Hefg, = @, Z andT, = @,; Z(k;)
(asT, is a bounded torsion group, the second isomorphism follows from Prufer’s theorem).
Therefore, (10) gives

G/Ny =T" x [ Ztks). (11)
iel
Denote byn,, the canonical homomorphist — G/N,,.

In order to prove tha has theg-closure property, fix an elemente G.

It is not restrictive to assume théat) is infinite and dense iG. Here two cases are
possible.

Casel: (x) non-trivially meets the closed subgrodya. Then N1 is open inG since
N1 N (x) has finite index in{x) and consequently it is open ix). Since by (10)N7 is
totally disconnected (as the quotient groMpF is torsion), also the grouf is totally
disconnected. Therefore, Corollary 4.5 applies.

Case2: (x) trivially meets the subgroup/s (hence every subgroupV,). Pick ay €
g(x). Thenh,(y) € h,(g(x)) C 96/n, (hn(x)) for everyn € N. SinceG/N, has the
g-closure property by (11), Corollaries 4.7 and 4.6, we conclude/that) € (h,(x)) =
hn({x)). Consequentlyy € (x) + N, for everyn € N. By our assumption each one
of the sums(x) + N, = (x) @ N, is direct. Thereforey € (), (x) & N, yieldsy €
x) ® (), Nu. Indeed, lety = k,x + a,, wherek, € Z anda, € N, for everyn. Then for
n <m one get%k,x + a, = kyx + a,. SinceN, > N,, and(x) @ N,is direct, we conclude,
by uniqueness, thaf,x = k,,,x anda,, = a,,. This proves thay = kx + a, wherek € Z and
a € (), Nx. On the other hand, sindg, F,, = X, one hag"), N, = 0 and consequently

x)® N, Na=(x). O

Here comes the proof of our main result.

Proof of Theorem 1.2. One direction follows immediately by Proposition 2.9 (b). Next,
as we have observed, by Proposition 2.9 we can assum&tisa precompact abelian
group. ThenG embeds as dense topological subgroup of a compact gﬁbupenote
byj:G < G this topological embedding. According to Theorem &@.8as they-closure

property, hencej(gs((x)) < gz((j(x)) = (j(x)) for every x e G by
Proposition 2.6. [J

Corollary 4.9. Allnon-zero cyclic subgroups of a topological abelian group Gegrdosed
if and only if G is MAP or G is isomorphic to the Prifer grodfgp>°) endowed with a
Hausdorff group topology such that: (Z(p*), t) = Z(p).
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Proof. Let G be a topological abelian group such that all non-zero cyclic subgroups are
g-closed. Assume thd is not MAP. ThenG is infinite andn(G) # 0. If n(G) is not of
the formZ(p) for somep € P, then for every non-zere € n(G) such thatx) is a proper
subgroup of:(G), the cyclic subgrougx) is notg-closed. Hence we are left with the case
n(G) = Z(p) for somep € P. It suffices to observe that for every non-zere G one has
(y) € n(G) +(y) S gg(y) = (y). Hence(y) 2 n(G) = Z(p). ThenG = Z(p*).

Conversely, assume thatZ(p>)) = Z(p) so thatZ(p*>)/Z(p) is MAP and let¢ :
Z(p*>°) — Z(p*°)/Z(p) bethe canonical homomorphism. Thenforever @ € Z(p*),
(y) = d)‘l(qﬁ((y))) is g-closed by Theorem 1.2 and Proposition 2.6

Observe that the group topologygonsidered in the above corollary can be viewed as the
group topology ofZ(p™) such thaZ (p>)* = (Z(p™), Ty) whereH is a dense subgroup
of pZ,.

5. Open questions

It was proved 7] (see als¢11]) that every countable subgroupbis (basic)s-closed.
So it will be natural to extend the question also to compact abelian groups:

Problem 5.1. Characterize the clasg of those compact abelian groups G such that every
countable subgroup of G igclosed

Clearly, T € %. One may start with the larger cla&s of those compact abelian groups
G such that everfinitely generategdubgroup ofG is g-closed.

Question 5.2. DoesZ,, € €' or % for some (all) prime(sp?

Theorem 4.8 shows that every cyclic subgroup of a compact abelian grgegadsed.
On the other hand?, Theorem 1}ields that every cyclic subgroup @fis a basigy-closed
subgroup. We do not know if this is true feverycompact abelian group.

Problem 5.3. Characterize the class;, of those compact abelian groups G such that every
cyclic subgroup of G is a basigclosed subgroup of G

Notice that by Remarks 2.11 (b) and 2.15 the cl@gsis closed under taking finite
product. Since by7, Theorem 1]T € %} and by Corollary 4.2 finite products gfadic
integers are %, every compact group of the for" x [, Z, x B, wherer is a finite
subset of® andB is a bounded group, belongs#.

One can easily prove thé&t;, is contained in the class of compact metrizable abelian
groups. Moreover, for every compact metrizable abelian g®apd every element € G

such thatx) is a basiay-closed subgroup afx), (x) is a basiay-closed subgroup d&.
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This immediately yields that:

(@) ZE‘ € %), since for everyx € Zlf\} one hagx) = Z, and the clas¥), is closed under
topological isomorphisms.
(b) Every compact, totally disconnected, topologicaiiyorsion groupG belongs to the

class%,. Indeed, for every € G one hasx) = Z, or (x) = Z(p).
(c) G € %) for every compact totally disconnected gradp= Hpep G, suchthaG, =0
for all but finitely manyp € P.

It can be deduced from recent unpublished results of A. Biré that the €las®sincides
with the class o&ll compact metrizable abelian groups.
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