
An Abstract Interpretation Perspective
on Linear vs. Branching Time�

Francesco Ranzato and Francesco Tapparo

Dipartimento di Matematica Pura ed Applicata,
Università di Padova, Italy

Abstract. It is known that the branching time language ACTL and the linear
time language ∀LTL of universally quantified formulae of LTL have incompa-
rable expressive powers, i.e., Sem(ACTL) and Sem(∀LTL) are incomparable
sets. Within a standard abstract interpretation framework, ACTL can be viewed
as an abstract interpretation LTL∀ of LTL where the universal path quantifier
∀ abstracts each linear temporal operator of LTL to a corresponding branching
state temporal operator of ACTL. In abstract interpretation terms, it turns out
that the universal path quantifier abstraction of LTL is incomplete. In this paper
we reason on a generic abstraction α over a domain A of a generic linear time
language L. This approach induces both a language αL of α-abstracted formulae
of L and an abstract language Lα whose operators are the best correct abstrac-
tions in A of the linear operators of L. When the abstraction α is complete for the
operators in L it turns out that αL and Lα have the same expressive power, so that
trace-based model checking of αL can be reduced with no lack of precision to A-
based model checking of Lα. This abstract interpretation-based approach allows
to compare temporal languages at different levels of abstraction and to view the
standard linear vs. branching time comparison as a particular instance.

1 Introduction

The relationship between linear and branching time specification languages to be used
in automatic system verification by model checking has been the subject of thorough
investigation [2,8,11,12,13,14,19] (see [20] for a survey). In particular, some of these
works [2,8,11,13,14] studied the relationship between the expressive power of linear vs.
branching time formalisms.

LTL and CTL are the most commonly used languages for, respectively, linear and
branching time model checking. ACTL is the fragment of CTL that uses only the uni-
versal path quantifier. Given a Kripke structure K = (Σ, R−→), the standard approach
for comparing a linear formula ϕ ∈ LTL and a branching formula ψ ∈ CTL consists in
“abstracting” the path semantics [[ϕ]] = {π ∈ Path(K) | π |= ϕ} to its corresponding
universal (or, dually, existential) state semantics {s ∈ Σ | ∀π ∈ Path(K). (π(0) =
s) ⇒ π |= ϕ} and then comparing this set of states with the standard state semantics
[[ψ]] = {s ∈ Σ | s |= ψ} of ψ. As shown by Cousot and Cousot [5], the intuition

� This work was partially supported by the FIRB Project “Abstract interpretation and model
checking for the verification of embedded systems” and by the COFIN2004 Project “AIDA”.

K. Yi (Ed.): APLAS 2005, LNCS 3780, pp. 69–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 F. Ranzato and F. Tapparo

that this actually is a step of abstraction can be precisely formalized within the abstract
interpretation framework [3,4]. In fact, Cousot and Cousot [5] show that the universal
path quantifier is an abstraction function ∀ : ℘(Trace(Σ)) → ℘(Σ) mapping any set T
of traces, viz. arbitrary sequences of states, to the set of states s ∈ Σ such that any path
in K that begins in s belongs to T .

The standard approach introduced by Emerson and Halpern [8] for comparing lin-
ear and universal branching time languages relies on the above universal branching ab-
straction ∀. If L ⊆ LTL is a linear time language and L ⊆ ACTL is a branching time
language then L and L can be compared by comparing the sets {∀([[ϕ]]) ⊆ Σ | ϕ ∈ L}
and {[[ψ]] ⊆ Σ | ψ ∈ L} in ℘(℘(Σ)). Thus, the linear time language L is abstracted to
a universal branching time language ∀L, denoted by B(L) in [8]. For example, it is well
known that LTL and ACTL are incomparable (cf. [2,8]), where this means that ∀LTL
and ACTL are incomparable in ℘(℘(Σ)).

Moreover, if L is a linear time language which is inductively generated by a set
of linear operators f ∈ OpL (and a set of atomic propositions p), i.e., L � ϕ ::=
p | f(ϕ1, ..., ϕn), then the universal path quantifier also induces the following universal
state language: L∀ � ψ ::= ∀p | ∀f(ψ1, ..., ψn), where each linear temporal opera-
tor in Op is preceded by the universal path quantifier ∀. For example, it turns out that
ACTL = LTL∀. Thus, the comparison between ∀LTL and ACTL boils down to the
comparison between ∀LTL and LTL∀. As a consequence of the incomparability of
∀LTL and LTL∀ we obtain that the abstraction map ∀ is incomplete in the abstract in-
terpretation sense [3,9]. In fact, if ∀ would be complete for the operators of LTL then
we would also have that ∀LTL = LTL∀ whereas this is not the case. Cousot and Cousot
[5] analyzed the linear operators that cause the incompleteness of ∀ and then isolated
some inductive fragments L ⊆ LTL such that ∀L = L∀.

Thus, abstract interpretation allows to cast the linear vs. branching time problem
as a particular instance of a more general “linear vs. A time” problem, where α :
℘(Trace(Σ)) → A is any abstract interpretation of sets of traces to some abstract
domain A. For any such abstraction α, a linear language L therefore induces two “A-
time” languages: αL and Lα.

In this paper, we study a number of abstractions of sets of traces that are alterna-
tive to the above standard universal path quantifier abstraction. We consider abstrac-
tions of ℘(Trace(Σ)) parameterized by some model M , namely by the set Path(K)
of paths in some Kripke structure K. This is more general than considering abstractions
of ℘(Path(K)) because we show that ℘(Path(K)) is a complete (both existential and
universal) abstract interpretation of ℘(Trace(Σ)). Completeness plays a key role in
this generalized approach. In fact, it turns out that when α is complete for the linear
operators in OpL of some language L then αL = Lα. We first study an abstract do-
main consisting of traces of sets of states, i.e., Trace(℘(Σ)). Here, the trace of sets
abstraction tr : ℘(Trace(Σ)) → Trace(℘(Σ)) approximates any set T of traces to the
sequence of sets of states reached by some trace in T . This is a more precise abstraction
than the universal branching abstraction ∀. While tr is not complete for all the linear
operators of LTL, we show that tr is instead complete for disjunction, next and even-
tually operators, namely for the fragment L({∨, X, F}) ⊆ LTL. We then consider a
reachable state abstraction rs : ℘(Trace(Σ)) → ℘(Σ), where any set T of traces T is

An Abstract Interpretation Perspective on Linear vs. Branching Time 71

approximated to the set of states reached by some trace in T . This abstraction is incom-
parable with the universal branching abstraction ∀ while it is less precise than the trace
of sets abstraction. In this case, we show that rs is not complete for the next operator
and it is still complete for the fragment L({∨, F}).

This abstract interpretation-based perspective of the linear vs. branching time prob-
lem allows us to show that the Emerson and Halpern [8] transform EH∀ of a lin-
ear time language L to the branching time language ∀L actually can be viewed as
a “higher-order” abstract interpretation. This means that EH∀ is an abstraction from
trace abstract domains to universal branching state abstract domains. Hence, the Emer-
son and Halpern transform can be generalized to a higher-order abstract interpretation
Aα : AbsDom(℘(Trace(Σ))) → AbsDom(A) which is parameterized by any trace
abstraction α : ℘(Trace(Σ)) → A, so that Aα(L) = {α([[ϕ]]) | ϕ ∈ L}. Therefore, this
generalized approach allows to compare the expressive power of linear time languages
at any level of abstraction A. As an example, we consider the linear time language
L � ϕ ::= p | Fϕ | Gϕ. We show how this approach can be used to prove that the
languages ∀L and L∀ have incomparable expressive powers by comparing them in a
higher-order abstract domain of state partitions.

2 Basic Notions

Notation. Let X be any set. When writing a set S ∈ ℘(℘(X)) we often use a compact
form like in {1, 12, 123} ∈ ℘(℘({1, 2, 3})). We denote by ¬ the complement opera-
tor w.r.t. some universe set. A poset or complete lattice C w.r.t. a partial ordering ≤ is
denoted by C≤ or 〈C, ≤〉. A function f : C → C on a complete lattice C is additive
when f preserves arbitrary least upper bounds. We denote by Part(X) the set of par-
titions of X . Part(X) is endowed with the following standard partial order �: given
P1, P2 ∈ Part(X), P1 � P2 (P1 refines P2) iff ∀B ∈ P1.∃B′ ∈ P2.B ⊆ B′. It turns
out that 〈Part(X), �〉 is a complete lattice.

Kripke Structures. We consider transition systems (Σ, R) where the transition relation
R ⊆ Σ × Σ (also denoted by R−→) is total. A Kripke structure K = (Σ, R,AP , �)
consists of a transition system (Σ, R) together with a set AP of atomic propositions
and a labeling function � : Σ → ℘(AP). A trace on Σ is any infinite sequence of
elements in Σ, that is, any function σ : N → Σ. Trace(Σ) denotes the set of traces
on Σ. For any k ∈ N and σ ∈ Trace(Σ), σk ∈ Trace(Σ) denotes the suffix of σ that
begins in σ(k), i.e., σk = λi ∈ N.σ(i + k). A path in a Kripke structure K (or, more
in general, in a transition system) is any trace π ∈ Trace(Σ) such that for any i ∈ N,
π(i) R−→ π(i + 1). Path(K) denotes the set of paths in K.

Temporal Languages. LTL and ACTL are two well-known temporal specification
languages used in model checking. LTL consists of linear (or path) formulae describing
properties of a computation path through linear temporal operators. ACTL consists of
branching (or state) formulae that describe properties of computation trees because each
temporal operator is preceded by the universal path quantifier. We consider formulae in
negation-normal form, so that LTL is inductively defined as follows:

LTL � ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xϕ | U(ϕ1, ϕ2) | V(ϕ1, ϕ2)

72 F. Ranzato and F. Tapparo

where p ranges over a set AP of atomic propositions that contains true. Given a Kripke
structure K, let us recall the standard semantics [[·]]K : LTL → ℘(Path(K)) of LTL:

– [[p]]K = {π ∈ Path(K) | p ∈ �(π(0))};
– [[¬p]]K = Path(K) � [[p]]K;
– [[ϕ1 ∧/∨ ϕ2]]K = [[ϕ1]]K ∩/∪ [[ϕ2]]K;
– “Next”: [[Xϕ]]K = {π ∈ Path(K) | π1 ∈ [[ϕ]]K};
– “Until”: [[U(ϕ1, ϕ2)]]K = {π ∈ Path(K) | ∃k ∈ N. πk ∈ [[ϕ2]]K and ∀j ∈

[0, k).πj ∈ [[ϕ1]]K};
– “Release”: [[V(ϕ1, ϕ2)]]K = {π ∈ Path(K) | ∀n ∈ N.(∀i ∈ [0, n).πi �∈ [[ϕ1]]K)⇒

(πn ∈ [[ϕ2]]K)}.

“Globally” (G), “eventually” (F) and “weak-until” (W) can be defined as derived oper-
ators in LTL as follows: Gϕ

def= V(false , ϕ); Fϕ
def= U(true, ϕ); W(ϕ1, ϕ2)

def= Gϕ1 ∨
U(ϕ1, ϕ2). Moreover, “release” can be expressed in terms of “weak-until”: V(ϕ1, ϕ2)=
W(ϕ2, ϕ1 ∧ ϕ2). If Op is any set of linear operators then we will denote by L(Op) the
subset of LTL formulae which are inductively generated by the grammar:

L(Op) � ϕ ::= p | op(ϕ1, ..., ϕn)

where op ranges over Op. The universal (or, dually, existential) path quantifier pro-
vides a state semantics of LTL. For any ϕ ∈ LTL, [[∀ϕ]]K = {s ∈ Σ | ∀π ∈
Path(K). (π(0) = s) ⇒ π ∈ [[ϕ]]K}. For any L ⊆ LTL, ∀L denotes the set of
universally quantified formulae of L, i.e. ∀L = {∀ϕ | ϕ ∈ L}.

ACTL is defined by the following grammar:

ACTL � ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | AXϕ | AU(ϕ1, ϕ2) | AV(ϕ1, ϕ2)

The standard semantics [[·]]K : ACTL → ℘(Σ) w.r.t. a Kripke structure K goes as
follows:

– [[p]]K = {s ∈ Σ | p ∈ �(s)};
– [[¬p]]K = Σ � [[p]]K;
– [[ϕ1 ∧/∨ ϕ2]]K = [[ϕ1]]K ∩/∪ [[ϕ2]]K;
– [[AXϕ]]K = {s ∈ Σ | ∀t ∈ Σ. (s R−→ t) ⇒ t ∈ [[ϕ]]K};
– [[AU(ϕ1, ϕ2)]]K = {s ∈ Σ | ∀π ∈ Path(K). (π(0) = s) ⇒ ∃k ∈ N. πk ∈

[[ϕ2]]K and ∀j ∈ [0, k).πj ∈ [[ϕ1]]K};
– [[AV(ϕ1, ϕ2)]]K = {s ∈ Σ | ∀π ∈ Path(K). (π(0) = s) ⇒ (∀n ∈ N. (∀i ∈

[0, n).πi �∈ [[ϕ1]]K) ⇒ (πn ∈ [[ϕ2]]K))}.

It is well known that LTL, i.e. ∀LTL, and ACTL have incomparable expressive
powers [2,8,13,20]. For instance, the ACTL formula AFAGp cannot be expressed in
∀LTL while the ∀LTL formula AFGp cannot be expressed in ACTL.

3 Abstract Interpretation of Inductive Languages

3.1 Abstract Interpretation Basics

In standard abstract interpretation, abstract domains can be equivalently specified either
by Galois connections/insertions (GCs/GIs) or by (upper) closure operators (uco’s) [4].

An Abstract Interpretation Perspective on Linear vs. Branching Time 73

These two approaches are equivalent, modulo isomorphic representations of domain’s
objects. The closure operator approach has the advantage of being independent from
the representation of domain’s objects and is therefore appropriate for reasoning on ab-
stract domains independently from their representation. Recall that µ : C → C is a uco
when µ is monotone, idempotent and extensive (viz. x ≤ µ(x)). It is well known that
the set uco(C) of all uco’s on C, endowed with the pointwise ordering �, gives rise
to the complete lattice 〈uco(C), �〉 of abstract domains of C. The ordering on uco(C)
corresponds to the standard order which is used to compare abstract domains with re-
gard to their precision: µ1 � µ2 means that the domain µ1 is a more precise abstraction
of C than µ2, or, equivalently, that the abstract domain µ1 is a refinement of µ2. Each
closure µ ∈ uco(C) is uniquely determined by the set µ(C) of its fixpoints, which is
also its image img(µ). Moreover, a subset X ⊆ C is the set of fixpoints of a uco on C
iff X is meet-closed (i.e. closed under arbitrary greatest lower bounds). Also, we have
that µ � ρ iff ρ(C) ⊆ µ(C). Often, we will identify closures with their sets of fixpoints
since this does not give rise to ambiguity.

We denote by G = (α, C, A, γ) a GC/GI of the abstract domain A into the con-
crete domain C through the abstraction and concretization maps α and γ forming an
adjunction between C and A: α(c) ≤C a ⇔ c ≤A γ(a). Let us recall that it is enough
to specify either the abstraction or the concretization map because in any GC the left
adjoint map α determines the right adjoint map γ and vice versa: on the one hand, α is
additive iff α admits the right adjoint γ(a) = ∨C{c ∈ C | α(c) ≤A a}; on the other
hand, γ is co-additive iff γ admits the left adjoint map α(c) = ∧A{a ∈ A | c ≤C γ(a)}.
Recall that a GC is a GI when α is onto (or, equivalently, γ is 1-1), meaning that
A does not contain useless abstract values. Recall that any GC G induces the uco
µG = γ ◦ α and conversely any µ ∈ uco(C) induces a GI (µ, C, img(µ), id). Ga-
lois connections of a concrete domain C can be ordered according to their precision
by exploiting the above ordering on the induced uco’s: G1 = (α1, C, A1, γ1) ≤ G2 =
(α2, C, A2, γ2) when µG1 � µG2 . Let α : ℘(X) → ℘(Y) and γ : ℘(Y) → ℘(X), and
α̃

def= ¬◦α◦¬ and γ̃
def= ¬◦γ◦¬. Recall that (α, ℘(X)⊆/⊇, ℘(Y)⊆/⊇, γ) is a GC/GI iff

(α̃, ℘(X)⊇/⊆, ℘(Y)⊇/⊆, γ̃) is a GC/GI. Thus, results on α/γ and α̃/γ̃ can be dualized
through complementation.

By the above equivalence, throughout the paper, uco(C)� will play the role of the
lattice of abstract interpretations of C [3,4], i.e. the complete lattice of all the abstract
domains of the concrete domain C.

Let (α, C, A, γ) be a GI, f : C → C be some concrete semantic function — for
simplicity of notation, we consider here 1-ary functions — and f � : A → A be a
corresponding abstract semantic function. Then, 〈A, f �〉 is a sound abstract interpreta-
tion when α ◦ f � f � ◦ α. The abstract function fA def= α ◦ f ◦ γ : A → A is called the
best correct approximation of f in A. Completeness in abstract interpretation [3,9] cor-
responds to require the following strengthening of soundness: α ◦ f = f � ◦ α. Hence,
completeness corresponds to require that, in addition to soundness, no loss of precision
is introduced by the abstract function f � on the approximation α(c) of a concrete object
c ∈ C with respect to approximating by α the concrete computation f(c). Complete-
ness is an abstract domain property because it only depends on the abstract domain: in
fact, it turns out that 〈A, f �〉 is complete iff 〈A, fA〉 is complete. Thus, completeness

74 F. Ranzato and F. Tapparo

can be equivalently stated as a property of closures as follows: µ ∈ uco(C) is complete
for f iff µ ◦ f = µ ◦ f ◦ µ [9].

3.2 Abstract Semantics of Inductive Languages

Concrete Semantics. It is well known that abstract interpretation can be applied to
approximate the semantics of any inductively defined language. Assume that formulae
of a generic inductive language L are defined by:

L � ϕ ::= p | f(ϕ1, ..., ϕn)

where p ranges over a set of atomic propositions, that is left unspecified, while f ranges
over a finite set Op of operators. Each operator f ∈ Op has an arity1 �(f) > 0. The set
of operators of L is also denoted by OpL. Formulae in L are interpreted on a semantic
structure S = (C,AP, I) where: C is any (concrete) domain of interpretation,AP is a
set of atomic propositions and I is an interpretation function such that for any p ∈AP,
I(p) ∈ C and for any f ∈ Op, I(f) : C�(f) → C. For p ∈ AP and f ∈ Op we will
also use p and f to denote, respectively, I(p) and I(f). Also, Op def= {f | f ∈ Op}.
Hence, the concrete semantic function [[·]]S : L → C is inductively defined as follows:

[[p]]S = p and [[f(ϕ1, ..., ϕn)]]S = f([[ϕ1]]S, ..., [[ϕn]]S).

When clear from the context, we will omit the subscript S which denotes the underlying
semantic structure. The set of semantic evaluations in S of formulae in L is denoted
by SemS(L) def= {[[ϕ]]S | ϕ ∈ L}, or simply by SemC(L). SemC(L) is also called the
expressive power (in C) of the language L.

If g is any syntactic operator with arity �(g) = n > 0 and whose interpretation is
given by g : Cn → C then we say that a language L is closed under g when for any
ϕ1, ..., ϕn ∈ L there exists some ψ ∈ L such that g([[ϕ1]]S, ..., [[ϕn]]S) = [[ψ]]S, for
any semantic structure S. In particular, if L is evaluated on a powerset ℘(X) then L is
closed under (infinite) logical conjunction iff for any Φ ⊆ L, there exists some ψ ∈ L
such that

⋂

ϕ∈Φ[[ϕ]]S = [[ψ]]S.
The standard semantics of LTL and ACTL, as recalled in Section 2, can be viewed

as concrete semantic functions, where the concrete semantic domains are given, respec-
tively, by ℘(Path(K)) and ℘(Σ).

Comparing Expressive Power. The standard notion of expressive power is used to
compare different languages. Let L1 and L2 be two languages. L1 is more expressive
than L2, denoted by L1 ≤ L2, when for any semantic structure S = (C,AP, I) such that
I provides an interpretation for all the operators in L1 and L2, SemS(L2) ⊆ SemS(L1),
while L1 is equivalent to L2, denoted by L1 ≡ L2, when L1 ≤ L2 and L2 ≤ L1, viz.,
SemS(L1) = SemS(L2). For instance, as recalled in Section 2, ACTL and ∀LTL have
incomparable expressive powers meaning that ACTL �≤ ∀LTL and ∀LTL �≤ ACTL.

Abstract Semantics. Within the standard abstract interpretation framework for defin-
ing abstract semantics [3,4], for a given semantic structure S = (C,AP, I), C≤ is a

1 It would be possible to consider generic operators whose arity is any possibly infinite ordinal,
thus allowing, for example, infinite conjunctions or disjunctions.

An Abstract Interpretation Perspective on Linear vs. Branching Time 75

complete lattice which plays the role of concrete domain. Let us consider an abstract
domain A specified by a GI G = (α, C, A, γ). Thus, A induces an abstract semantic
structure SA = (A,AP, IA) where IA is defined through best correct approximations
as follows:

IA(p) def= α(I(p)) and IA(f) def= α ◦ I(f) ◦ γ.

Thus, SA induces the abstract semantic function [[·]]AS : L → A (also simply denoted
by [[·]]A). We will also use Lα or LA to denote the abstract semantic evaluation of L
induced by the abstract domain A so that Sem(Lα) (or Sem(LA)) denotes the set of
abstract semantics {[[ϕ]]A | ϕ ∈ L}.

On the other hand, the domain A also induces the overall abstraction of the concrete
semantics, namely A[[·]]S : L → A is defined by: A[[ϕ]]S

def= α([[ϕ]]S). In this case, we
will use αL to denote this abstract semantic evaluation of L induced by the abstract
domain A so that Sem(αL) = {A[[ϕ]]S | ϕ ∈ L}.

Definition 1. The abstraction α is complete for L when Sem(αL) = Sem(Lα).

This is indeed a generalization of Emerson and Halpern’s [8] approach for comparing
linear and branching formulae based on the universal path quantifier ∀. In fact, we will
see in Section 4.2 how the universal path quantifier ∀ can be viewed as a particular
abstraction of sets of traces, so that the branching language ∀L = {∀ϕ | ϕ ∈ L} and the
corresponding results in [8] can be cast as particular cases in our framework.

It turns out that the abstract semantic function is always sound by construction:
for any ϕ ∈ L, α([[ϕ]]S) ≤A [[ϕ]]AS (or, equivalently, [[ϕ]]S ≤C γ([[ϕ]]AS)). As far as
completeness is concerned, it turns out that completeness of the abstract domain A for
(the interpretation of) the operators in Op ensures completeness of the abstract semantic
function [5].

Theorem 1 (Cousot and Cousot [5]). If A is complete for every f ∈ OpL then for
every ϕ ∈ L, α([[ϕ]]S) = [[ϕ]]AS . In this case, α is complete for L.

4 Abstracting Traces

4.1 Trace Semantics of Linear Languages

As recalled above, the standard semantics of a linear formula ϕ ∈ LTL consists of a set
of paths in a Kripke structure K = (Σ, R,AP, �). Path(K) can be viewed as a model
M for interpreting LTL. It turns out that this standard semantics can be obtained as an
abstract interpretation of a more general semantics which evaluates formulae in LTL
as a set of traces and therefore is independent from a given model. Following [5], this
trace semantics [[·]] : LTL → ℘(Trace(Σ)) only depends on a state space Σ and is as
follows:

– [[p]] = {σ ∈ Trace(Σ) | p ∈ �(σ(0))};
– [[¬p]] = Trace(Σ) � [[p]];
– [[ϕ1 ∧/∨ ϕ2]] = [[ϕ1]] ∩/∪ [[ϕ2]];
– [[Xϕ]] = X([[ϕ]]) def= {σ ∈ Trace(Σ) | σ1 ∈ [[ϕ]]};

76 F. Ranzato and F. Tapparo

– [[U(ϕ1, ϕ2)]] = U([[ϕ1, ϕ2]])
def= {σ ∈ Trace(Σ) | ∃k ∈ N. σk ∈ [[ϕ2]] and ∀j ∈

[0, k).σj ∈ [[ϕ1]]};
– [[V(ϕ1, ϕ2)]] = V([[ϕ1, ϕ2]])

def= {σ ∈ Trace(Σ) | ∀n ∈ N. (∀i ∈ [0, n).σi �∈
[[ϕ1]]) ⇒ (σn ∈ [[ϕ2]])}.

Let M = Path(K) be a model and let us define αM∀ : ℘(Trace(Σ)) → ℘(M) and
γM∀ : ℘(M) → ℘(Trace(Σ)) as follows:

αM∀(T) def= T ∩ M and γM∀(P) def= P.

It is easy to note that (αM∀ , ℘(Trace(Σ))⊇, ℘(M)⊇, γM∀) is a GI. This is a universal
model abstraction (hence the subscript ∀) because sets of traces and paths are ordered
by superset inclusion. The abstraction map λT.T ∩M on ℘(Trace(Σ))⊆ gives also rise
to the existential model abstraction (αM∃ , ℘(Trace(Σ))⊆, ℘(M)⊆, γM∃) where:

αM∃(T) def= T ∩ M and γM∃(P) def= P ∪ ¬M.

Note that ¬M is the set of “spurious” traces, namely traces that are not paths. This is a
GI as well. Existential abstraction is dual to universal abstraction because: γM∃ ◦αM∃ =
¬ ◦ (γM∀ ◦ αM∀) ◦ ¬.

It is immediate to notice that for any ϕ ∈ LTL, [[ϕ]]K = αM∀([[ϕ]]) = αM∃([[ϕ]]).
In abstract interpretation terms, this is a consequence of the fact that the standard path
semantics of LTL is a complete abstract interpretation of trace semantics.

Proposition 1. αM∀ and αM∃ are complete for the linear operators in OpLTL.

As a consequence, αM∀([[ϕ]]) = [[ϕ]]αM∀ = [[ϕ]]K and αM∃([[ϕ]]) = [[ϕ]]αM∃ = [[ϕ]]K,
namely path semantics can be retrieved as complete abstractions of trace semantics.

In the following, we provide a number of abstractions of the trace semantics of LTL,
based on abstract domains of the existential/universal concrete domain ℘(Trace(Σ))⊆/⊇.
Any such trace abstraction α∃/∀

M : ℘(Trace(Σ))⊆/⊇ → A depends on a model M =
Path(K) and can be factorized as α∃/∀

M = α∃/∀ ◦ αM∃/∀
, where α∃/∀ : ℘(M)⊆/⊇ →

A is a path abstraction, namely an abstraction of of the existential/universal domain
℘(M)⊆/⊇ of sets of paths. It turns out that the above Proposition 1 makes completeness
of trace and path abstractions α∃/∀

M and α∃/∀ equivalent. In fact, if f : ℘(Trace(Σ)) →
℘(Trace(Σ)) is a linear trace operator and f∃/∀ : ℘(M) → ℘(M) is the corresponding
linear path operator induced by αM∃/∀ (i.e., f∃/∀ = αM∃/∀ ◦ f ◦ γM∃/∀), then α∃/∀

M is

complete for f iff α∃/∀ is complete for f∃/∀.

4.2 Branching Abstraction

As shown by Cousot and Cousot [5], the universal path quantifier allows to cast states as
an abstraction of traces, so that state-based model checking can be viewed as an abstrac-
tion of trace-based model checking. Let K be a Kripke structure and M = Path(K)
be the corresponding model. For any s ∈ Σ and i ∈ N, we define M i

↓s
def= {π ∈

M | π(i) = s}. Therefore, M i
↓s is the set of paths in M whose state at time i is s.

In particular, M0
↓s is the set of paths that start in s. The universal branching abstraction

G∀ = (α∀
M , ℘(Trace(Σ))⊇, ℘(Σ)⊇, γ∀

M) is defined as follows:

α∀
M (T) def= {s ∈ Σ | M0

↓s ⊆ T } and γ∀
M (S) def= {π ∈ M | π(0) ∈ S}.

An Abstract Interpretation Perspective on Linear vs. Branching Time 77

α∃
M (T)

set T
of traces

Fig. 1. Branching abstraction

It turns out that G∀ is a GI. The existential branching abstraction is defined by duality:

– α∃
M (T) def= ¬(α∀

M (¬(T))) = {s ∈ Σ | M0
↓s ∩ T �= ∅};

– γ∃
M (S) def= ¬(γ∀

M (¬(S))) = {π ∈ ℘(Trace(Σ)) | (π ∈ M) ⇒ (π(0) ∈ S)}.

In this case, G∃ = (α∃
M , ℘(Trace(Σ))⊆, ℘(Σ)⊆, γ∃

M) is a GI. An example of existential
branching abstraction is depicted in Figure 1.

The branching abstraction exactly formalizes the universal path quantification of
LTL formulae: in fact, it is immediate to observe that for any ϕ ∈ LTL, [[∀ϕ]]K =
α∀

M ([[ϕ]]K). Moreover, as shown by Cousot and Cousot [5], it turns out that the branch-
ing abstraction LTLα∀

M of LTL exactly gives ACTL, namely the best correct approx-

imations of the linear operators of LTL induced by α∀
M coincide with the branching

state temporal operators of ACTL. Therefore, Sem(LTLα∀
M) = Sem(ACTL).

As recalled above, it is well known that ∀LTL and ACTL have incomparable ex-
pressive powers. In our framework, this means that Sem(α∀

MLTL) and Sem(LTLα∀
M)=

Sem(ACTL) are incomparable sets, i.e. the branching abstraction is incomplete for
LTL. As a consequence, by Theorem 1, it turns out that the branching abstraction is
incomplete for some operators in OpLTL. The sources of incompleteness of α∀

M have
been analyzed by Cousot and Cousot [5]: the branching abstraction results to be in-
complete for the disjunction, until and release operators (see [5]). On the other hand,
Maidl [14] provides a synctatic characterization of the maximum common fragment,
called LTLdet, of LTL and ACTL: for any ϕ ∈ LTL, α∀

M ([[ϕ]]) ∈ Sem(ACTL) iff
[[ϕ]] ∈ Sem(LTLdet). We will further discuss completeness of the branching abstrac-
tion in Section 5.1.

4.3 Trace of Sets Abstraction

Sets of traces can be approximated by a trace of sets. Let us formalize this approxi-
mation. We consider the abstract domain Trace(℘(Σ)), namely sequences of sets of
states. Traces of sets are ordered pointwise: if σ, τ ∈ Trace(℘(Σ)) then σ � τ iff
∀i ∈ N. σ(i) ⊆ τ(i). Thus, we first consider existential traces of sets because ℘(Σ)
is here ordered by ⊆. It turns out that Trace(℘(Σ))� is a complete lattice where
σ � τ = λi. σ(i) ∪ τ(i) and σ � τ = λi. σ(i) ∩ τ(i). The existential trace of sets
abstraction α∃t

M : ℘(Trace(Σ)) → Trace(℘(Σ)) is then defined as follows:

α∃t
M (T) def= λi ∈ N.{π(i) | π ∈ T ∩ M} = λi ∈ N.{s ∈ Σ | M i

↓s ∩ T �= ∅}

78 F. Ranzato and F. Tapparo

43210

Fig. 2. Existential trace of sets abstraction

a b

a b

c d a b c

Fig. 3. Transition systems T1 (left), T2 (middle) and T3 (right)

and together with its adjoint map γ∃t
M : Trace(℘(Σ)) → ℘(Trace(Σ)) defined by

γ∃t
M (τ) def= {π ∈ Trace(Σ) | (π ∈ M) ⇒ ∀i ∈ N. π(i) ∈ τ(i)}

gives rise to a GC.

Theorem 2. G∃t = (α∃t
M , ℘(Trace(Σ))⊆, Trace(℘(Σ))�, γ∃t

M) is a GC.

A graphical example of an existential trace of sets abstraction is given in Figure 2. It
turns out that G∃t is not a GI. In fact, for the transition system T1 in Figure 3, γ∃t

M is not
1-1: γ∃t

M (〈{a}, {a}, {b}, {b}, {b}, ...〉) = γ∃t
M (〈{a}, {a}, {a}, {b}, {b}, ...〉) = ¬M .

The universal trace of sets abstraction is dually defined, where the complement of a
trace of sets is defined pointwise, namely for any τ ∈ Trace(℘(Σ)), ¬τ = λi. ¬τ(i).

– α∀t
M (T) def= ¬(α∃t

M (¬(T))) = λi ∈ N.{s ∈ Σ | M i
↓s ⊆ T };

– γ∀t
M (τ) def= ¬(γ∃t

M (¬τ)) = {π ∈ M | ∃i ∈ N.π(i) ∈ τ(i)}.

Hence, G∀t = (α∀t
M , ℘(Trace(Σ))⊇, Trace(℘(Σ))
, γ∀t

M) is a GC as well.

4.4 Reachable State Abstraction

One can approximate a set T of traces through the set of states that can be reached
by some path in T . Let us formalize this approximation. For any s ∈ Σ, let us define
M↓s

def=
⋃

i∈N
M i

↓s = {π ∈ M | ∃i ∈ N. π(i) = s}. Thus, the existential reachable

state abstraction α∃r
M : ℘(Trace(Σ)) → ℘(Σ) is defined by:

α∃r
M (T) def= {s ∈ Σ | M↓s ∩ T �= ∅}.

Therefore, the corresponding concretization map γ∃r
M : ℘(Σ) → ℘(Trace(Σ)) is as

follows:

γ∃r
M (S) def= {π ∈ Trace(Σ) | (π ∈ M) ⇒ (∀i ∈ N. π(i) ∈ S)}.

An Abstract Interpretation Perspective on Linear vs. Branching Time 79

Fig. 4. Existential reachable state abstraction

Theorem 3. G∃r def= (α∃r
M , ℘(Trace(Σ))⊆, ℘(Σ)⊆, γ∃r

M) is a GC.

A graphical example of existential reachable state abstraction is depicted in
Figure 4. Also in this case, this is not a GI. In fact, by considering the transition system
T1 in Figure 3, we have that γ∃r

M is not 1-1: γ∃r
M (∅) = γ∃r

M ({a}) = ¬M .
By duality, the universal reachable state abstraction is defined as follows:

– α∀r
M (T) def= ¬(α∃r

M (¬(T))) = λi ∈ N.{s ∈ Σ | M↓s ⊆ T };

– γ∀r
M (S) def= ¬(γ∃r

M (¬S)) = {π ∈ M | ∃i ∈ N.π(i) ∈ S}.

Hence, G∀r = (α∀r
M , ℘(Trace(Σ))⊇, Trace(℘(Σ))
, γ∀r

M) is a GC as well.

4.5 Comparing Trace Abstractions

It turns out that traces of sets of states are more precise than both branching and reach-
able states, while branching and reachable states abstractions are incomparable.

Proposition 2. G∀t ≤ G∀ and G∀t ≤ G∀r. Also, G∀ and G∀r are incomparable.

5 Completeness of Trace Abstractions

5.1 Branching Abstraction

The maximum common fragment LTLdet of LTL and ACTL has been characterized
by Maidl [14]:

LTLdet � ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | (p ∧ ϕ1) ∨ (¬p ∧ ϕ2) |
Xϕ | U(p ∧ ϕ1, ¬p ∧ ϕ2) | W(p ∧ ϕ1, ¬p ∧ ϕ2)

Maidl [14] shows that LTLdet = LTL ∩ACTL, namely for any ϕ ∈ LTL, α∀
M ([[ϕ]]) ∈

Sem(ACTL) iff [[ϕ]] ∈ Sem(LTLdet). This result is important in abstract model check-
ing because formulae in LTL ∩ ACTL admit linear counterexamples.

It turns out that the branching abstraction is complete for all the logical/temporal
operators of LTLdet.

80 F. Ranzato and F. Tapparo

Theorem 4. α∀
M is complete for the logical/linear operators in OpLTLdet

.

Thus, as expected, by Theorem 1 we obtain that the branching abstraction is com-
plete for LTLdet so that trace-based and state-based model checking of LTLdet are
equivalent.

We also obtain a further consequence from this completeness result. Some attempts
prior to Maidl’s 2000 work [14] of characterizing LTL∩ACTL considered the so-called
branchable formulae of LTL: given ϕ ∈ LTL, the formula ϕA ∈ ACTL is obtained
from ϕ by preceding each linear temporal operator occurring in ϕ by the universal path
quantifier A. A formula ϕ ∈ LTL is branchable when α∀

M ([[ϕ]]) = [[ϕA]] [11,20]. We
thus define LTLbr

def= {ϕ ∈ LTL | ϕ is branchable}. Since the abstract semantics [[ϕ]]α
∀
M

of a LTL formula ϕ exactly coincides with [[ϕA]], by Theorem 4, we have that LTLbr =
{ϕ ∈ LTL | α∀

M ([[ϕ]]) = [[ϕ]]α
∀
M }. As a consequence of the above Theorem 4, of

Theorem 1 and of Maidl’s Theorem, we obtain the following alternative characterization
relating LTLdet and LTLbr.

Theorem 5. Sem(LTLdet) = Sem(LTLbr).

5.2 Trace of Sets Abstraction

The trace of sets abstraction α∀t
M is not complete for all the operators of LTL. This is

indeed a consequence of a more general result in [16] stating that no refinement of the
branching abstraction can be complete for all the operators of LTL. As an example,
let us show that α∀t

M is not complete for disjunction. In fact, for the transition system
T2 in Figure 3, by considering the set of traces (actually paths) T1 = {abω, cdω} and
T2 = {adω, cbω}, we have that:

α∀t
M (¬T1) � α∀t

M (¬T2) =
〈{b, d}, {a, c}, {a, c}, ...〉 � 〈{b, d}, {a, c}, {a, c}, ...〉 =

〈{b, d}, {a, c}, {a, c}, ...〉 �
α∀t

M (¬T1 ∪ ¬T2) =
α∀t

M (Trace(Σ)) =
〈{a, b, c, d}, {a, b, c, d}, {a, b, c, d}, ...〉

On the other hand, it turns out that traces of sets are complete for conjunction, next
and globally operators.

Proposition 3. α∀t
M is complete for the following operators on ℘(Trace(Σ)): λS, T.S ∩

T , λT.X(T), λT.G(T).

Thus, by Theorem 1, we obtain that α∀t
M is complete for L({∧, X, G}). By duality,

α∃t
M is complete for L({∨, X, F}).

5.3 Reachable State Abstraction

As expected, also the reachable states abstraction is not complete for all the linear op-
erators of LTL. For instance, let us show that α∀r

M is not complete for disjunction and
next operators. As far as disjunction is concerned, let us consider the transition system
T3 in Figure 3 and the set of traces (actually paths) T1 = {abω} and T2 = {cbω}.

α∀r
M (¬T1)∪α∀r

M (¬T2) = {c}∪{a} �= α∀r
M (¬T1∪¬T2) = α∀r

M (Trace(Σ)) = {a, b, c}.

An Abstract Interpretation Perspective on Linear vs. Branching Time 81

Moreover, for the next operator X we have that:

α∀r
M (X(¬{abω})) = ¬α∃r

M (X({abω}))=¬α∃r
M ({aabω, babω, cabω})=¬{a, b}={c}.

Conversely, we have that α∀r
M (X(γ∀r

M (α∀r
M (¬{abω}))))=¬α∃r

M (X(γ∃r
M (α∃r

M ({abω}))))
and bω ∈ γ∃r

M (α∃r
M ({abω})) so that cbω ∈ X(γ∃r

M (α∃r
M ({abω}))) and in turn c ∈

α∃r
M (X(γ∃r

M (α∃r
M ({abω})))), namely c �∈ α∀r

M (X(γ∀r
M (α∀r

M (¬{abω})))). We have thus
shown incompleteness for X:

α∀r
M (X(¬{abω})) �= α∀r

M (X(γ∀r
M (α∀r

M (¬{abω})))).

Here, it turns out that α∀r
M is complete for conjunction and globally operators.

Proposition 4. α∀r
M is complete for the following operators on ℘(Trace(Σ)): λS, T.S∩

T and λT.G(T).

Therefore, by Theorem 1, we obtain that α∀r
M is complete for L({∧, G}). By duality,

α∃r
M is complete for L({∨, F}).

6 Comparing Expressive Powers

The standard notion of expressive power recalled in Section 3.2 is based on the idea
of comparing languages in a common domain of interpretation. In fact, given a domain
of interpretation C of some semantic structure S = (C,AP, I) we can compare two
languages L1 and L2 by comparing SemC(L1) and SemC(L2). Thus, we write L1 ≡C

L2 (L1 ≤C/≥C L2) when SemC(L1) = SemC(L2) (SemC(L1) ⊇/⊆ SemC(L2)).
More in general, we can also compare languages in a common “abstract” domain

of interpretation. For example, it is well known how to compare state languages in the
abstract domain of partitions. Let L be a state language, namely to be evaluated on
℘(Σ). Following Dams [6,7], the logical equivalence ∼L on the state space Σ induced
by L is defined as follows: s1 ∼L s2 iff ∀ϕ ∈ L.s1 ∈ [[ϕ]] ⇔ s2 ∈ [[ϕ]]. The
state partition associated to the equivalence ∼L is here denoted by PL ∈ Part(Σ)
and, following Dams [6,7], is called the distinguishing power of L. Then, two state
languages L1 and L2 can be also compared according to their distinguishing power:

L1 ≡Part(Σ) L2 iff PL1 = PL2 .

Of course, this is indeed an “abstract” way of comparing languages because

L1 ≡℘(Σ) L2 ⇒ L1 ≡Part(Σ) L2

while the reverse implication is obviously not true. The distinguishing power is more ab-
stract than the expressive power because it is not able to discriminate presence/absence
of negation: in fact, for any language L, if L¬ denotes the language L plus negation then
we have that PL = PL¬ [17]. As an example, let Lµ denotes mu-calculus. It is well
known [1] that PCTL = PLµ , that is CTL ≡Part(Σ) Lµ, whereas Sem℘(Σ)(CTL) �

Sem℘(Σ)(Lµ), that is Lµ �℘(Σ) CTL. A number of further examples can be found in
Dams’ works [6,7].

82 F. Ranzato and F. Tapparo

The key point here is that the lattice Part(Σ) of state partitions is indeed an ab-
straction of the lattice of abstract domains uco(℘(Σ)), as shown in [17]. Starting from
this observation, the idea of comparing languages at different levels of abstraction can
be precisely formalized by abstract interpretation. Let us recall from [17] how Part(Σ)
can be viewed as an abstraction of the lattice of abstract domains uco(℘(Σ)). We define
the abstraction and concretization maps:

uco(℘(Σ)⊆)
 −−−→−→←−−−−−
par

pcl
Part(Σ)�

where, for any s ∈ Σ and µ ∈ uco(℘(Σ)), [s]µ
def= {s′ ∈ Σ | µ({s′}) = µ({s})} and

par(µ) def= {[s]µ | s ∈ Σ}, while pcl(P) def= λX ∈ ℘(Σ). ∪ {B ∈ P | X ∩ B �= ∅}.
Thus, two states belong to the same block of par(µ) when they are abstracted by µ
to the same set while pcl(P)(X) is the minimal covering of the set X ⊆ Σ through
blocks in P .Let us also remark that pcl(P) is a uco whose set of fixpoints is given by
all the unions of blocks in P , i.e. pcl(P) = {∪iBi | {Bi} ⊆ P}. It turns out that
(par, uco(℘(Σ))
, Part(Σ)�, pcl) is a GI.

Let us observe that a state language L (to be evaluated on ℘(Σ)) which is closed
under conjunction can be viewed as an abstract domain, in the sense that Sem℘(Σ)(L) ∈
uco(℘(Σ)⊆) because Sem℘(Σ)(L) is meet-closed (cf. Section 3.1). Assume now that L
is closed under conjunction. Then, the distinguishing power of L can be retrieved as an
abstraction in Part(Σ) of the expressive power of L, that is PL = par(Sem℘(Σ)).

Obviously, this can be done in general for any abstraction (α, uco(℘(Σ))
, A, γ),
namely we can define the α-expressive power of a state language L as the abstract value
α(Sem℘(Σ)) ∈ A. Notice that (α, uco(℘(Σ))
, A, γ) is a generic higher-order abstract
interpretation meaning that here we deal with an abstraction of the higher-order lattice
of abstract domains of the concrete domain ℘(Σ).

6.1 Generalizing the Linear vs. Branching Time Comparison

As recalled in Section 3.2, Emerson and Halpern [8] use the universal path quantifier ∀
for “abstracting” a linear time language L to a corresponding branching time language
B(L) def= {∀ϕ | ϕ ∈ L} so that the expressive power of L can be compared with that
of any state language. As shown in Section 4.2, the path quantifier ∀ can be cast as
the branching abstract interpretation (α∀

M , ℘(Trace(Σ))⊇, ℘(Σ)⊇, γ∀
M). Thus, the ex-

pressive power of B(L) (in ℘(Σ)) actually can be characterized as Sem℘(Σ)(B(L)) =
{α∀

M ([[ϕ]]) | ϕ ∈ L}. Therefore, Emerson and Halpern [8] indeed define a mapping
which abstracts the “trace” expressive power {[[ϕ]] | ϕ ∈ L} ⊆ Trace(Σ) of any linear
time language L to a corresponding “branching time” expressive power {α∀

M ([[ϕ]]) | ϕ ∈
L} ⊆ Σ.

As noted above, when L is closed under conjunction it turns out that the expressive
power Sem℘(Trace(Σ))(L) of L is an abstract domain in uco(℘(Trace(Σ))⊆) because it
is intersection-closed. Moreover, since α∀

M : ℘(Trace(Σ))⊇ → ℘(Σ)⊇ is an abstrac-
tion map and therefore preserves least upper bounds, it turns out that {α∀

M ([[ϕ]]) | ϕ ∈
L} is intersection-closed as well, i.e., it is an abstract domain in uco(℘(Σ)⊆). In our
framework, this means that Emerson and Halpern define a mapping

EH∀ : uco(℘(Trace(Σ))) → uco(℘(Σ))

An Abstract Interpretation Perspective on Linear vs. Branching Time 83

from trace abstract domains to branching state abstract domains. Thus, any trace ab-
straction (α, ℘(Trace(Σ))⊇, A, γ) allows us to generalize the EH∀ transform from the
specific branching abstraction α∀

M to the generic abstraction α: the generic transform
Aα : uco(℘(Trace(Σ))) → uco(A) is therefore defined by Aα(µ) def= {α(T) | T ∈ µ}.
The interesting point is that Aα gives rise to a higher-order abstract interpretation.

Theorem 6. Aα gives rise to a GI (Aα, uco(℘(Trace(Σ)))
, uco(A)
, Cα), where
Cα(ρ) def= {T ⊆ Trace(Σ) | α(T) ∈ ρ}.

In particular, the concretization functions HE∀ : uco(℘(Σ)) → uco(℘(Trace(Σ)))
which is right adjoint to Emerson and Halpern’s transform EH∀ is defined by

HE∀(ρ) = {T ⊆ Trace(Σ) | α∀
M (T) ∈ ρ}.

Therefore, in order to compare a linear time language L and a branching time lan-
guage L (both closed under conjunction) Emerson and Halpern compare the abstrac-
tion EH∀(Sem℘(Trace)(L)) with Sem℘(Σ)(L). In our approach, given any abstraction
(α, ℘(Trace(Σ))⊇, A, γ), like those in Section 4, we can compare L with any lan-
guage L whose semantic evaluation is in A by comparing Aα(Sem℘(Trace(Σ))) with
SemA(L).

Abstractions, namely Galois connections, can be composed. As an example, our ab-
stract interpretation-based view allows to compose Emerson and Halpern’s abstraction
with the partitioning abstraction:

uco(℘(Trace(Σ))⊆)
 −−−−→−→←−−−−−
EH∀

HE∀
uco(℘(Σ)⊆)
 −−−→−→←−−−−−

par

pcl
Part(Σ)�

This is quite interesting because if L1 and L2 are comparable according to their ex-
pressive power they are also comparable according to their distinguishing power: this
is an obvious consequence of the fact that abstraction maps are monotone. Thus, if L1
and L2 are incomparable in Part(Σ) they are also incomparable in ℘(Σ). This can be
helpful because comparisons in Part(Σ), i.e. based on distinguishing powers, could be
easier than those in ℘(Σ), i.e. based on expressive powers. In fact, one can compute
the distinguishing power PL of some state language L through a partition refinement
algorithm. These can be efficient algorithms because they work by iteratively refining a
current partition so that the number of iterations is always bounded by the height of the
lattice Part(Σ), namely by |Σ|. Some well-known partition refinement algorithms are
those by Paige and Tarjan [15] for CTL and by Groote and Vaandrager [10] for CTL-X.
Moreover, there also exist partition refinement algorithms for generic state languages:
see [6–Chapter 6] and [18]. Let us see an example.

Example 1. Let us consider the following two languages:

L � ϕ ::= p | Fϕ | Gϕ L � ψ ::= p | AFψ | AGψ

L ⊆ LTL is linear time, L ⊆ ACTL is branching time and we consider their stan-
dard interpretations. Notice that L = L∀, i.e., for any model M on a state space Σ,
Sem℘(Σ)(L) = Sem℘(Σ)(Lα∀

M). Our goal is comparing the expressive powers of ∀L
and L, i.e. Sem℘(Σ)(α∀

ML) and Sem℘(Σ)(L). We show that they are incomparable by
comparing their distinguishing powers P∀L and PL.

84 F. Ranzato and F. Tapparo

1
p

2
q

3
p

4

p

1
q

2
q

3
p

4
p

5
p

6
r

Fig. 5. Transition systems T1 (on the left) and T2 (on the right)

Let us consider the transition system T1 in Figure 5. Thus, the labelling for the atomic
propositions p and q determines the initial partition P = {134, 2}. Let us character-
ize PL. We have that [[AGp]] = {3}, so that P is refined to P ′ = {14, 2, 3}. Also,
[[AFAGp]] = {2, 3, 4}, so that P ′ is refined to P ′′ = {1, 2, 3, 4}. Hence, PL =
{1, 2, 3, 4}. Let us now consider ∀L. Since AGp ∈ ∀L, also in this case P is first refined
to P ′ = {14, 2, 3}. It turns out that this partition can be no more refined, because:

– [[AFGp]] = [[AGFp]] = {1, 2, 3, 4}; [[AFGq]] = [[AGFq]] = ∅;
– FGF = GF and GFG = FG.

Thus, PL ≺ P∀L.
Let us now consider the transition system T2 in Figure 5. Here, the labelling for the

atomic propositions provides P = {12, 345, 6} as initial partition. Let us characterize
PL. Since [[AGp]] = {5}, P is refined to P ′ = {12, 34, 5, 6}. This partition can be no
more refined because:

[[AF{12}]] = {1, 2}, [[AG{12}]] = ∅; [[AF{5}]] = {5, 6}, [[AG{5}]] = {5};
[[AF{34}]] = {1, 2, 3, 4}, [[AG{34}]] = ∅; [[AF{6}]] = {6}, [[AG{6}]] = ∅.

Thus, PL = {12, 34, 5, 6}. On the other hand, let us characterize P∀L. In this case, it is
enough to notice that [[AFGp]]={1, 3, 5, 6}, so that P is refined to P ′={1, 2, 3, 4, 5, 6}.
Hence, P∀L = {1, 2, 3, 4, 5, 6}. In this case, we have that P∀L ≺ PL.
Summing up, we showed that ∀L and L are incomparable in Part(Σ), i.e. , they have
incomparable distinguishing powers. This implies that ∀L and L have incomparable
expressive powers. ��

References

1. M.C. Browne, E.M. Clarke and O. Grumberg. Characterizing finite Kripke structures in
propositional temporal logic. Theor. Comp. Sci., 59:115-131, 1988.

2. E.M. Clarke and I.A. Draghicescu. Expressibility results for linear time and branching time
logics. In Linear Time, Branching Time and Partial Order in Logics and Models for Concur-
rency, LNCS 354:428-437, 1988.

3. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proc. 4th ACM POPL, pp. 238-
252, 1977.

An Abstract Interpretation Perspective on Linear vs. Branching Time 85

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. 6th

ACM POPL, pp. 269-282, 1979.
5. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proc. 27th ACM POPL, pp. 12-

25, 2000.
6. D. Dams. Abstract Interpretation and Partition Refinement for Model Checking. Ph.D.

Thesis, Univ. Eindhoven, 1996.
7. D. Dams. Flat fragments of CTL and CTL∗: separating the expressive and distinguishing

powers. Logic J. of the IGPL, 7(1):55-78, 1999.
8. E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” revisited: on branching

versus linear time temporal logic. J. ACM, 33(1):151-178, 1986.
9. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete.

J. ACM, 47(2):361-416, 2000.
10. J.F. Groote and F. Vaandrager. An efficient algorithm for branching bisimulation and stutter-

ing equivalence. In Proc. 17th ICALP, LNCS 443:626-638, 1990.
11. O. Kupferman and M. Vardi. Relating linear and branching model checking. In Proc. IFIP

PROCOMET, pp. 304-326, Chapman & Hall, 1998.
12. O. Kupferman and M. Vardi. Freedom, weakness and determinism: from linear-time to

branching-time. In Proc. 13th LICS, pp. 81-92, IEEE Press, 1998.
13. L. Lamport. Sometimes is sometimes “not never” – on the temporal logic of programs. In

Proc. 7th ACM POPL, pp. 174-185, 1980.
14. M. Maidl. The common fragment of CTL and LTL. In Proc. 41st FOCS, pp. 643-652, 2000.
15. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM J. Comput.,

16(6):973-989, 1987
16. F. Ranzato. On the completeness of model checking. In Proc. 10th ESOP, LNCS 2028:137-

154, 2001
17. F. Ranzato and F. Tapparo. Strong preservation as completeness in abstract interpretation. In

Proc. 13th ESOP, LNCS 2986:18-32, 2004.
18. F. Ranzato and F. Tapparo. An abstract interpretation-based refinement algorithm for strong

preservation. In Proc. 11th TACAS, LNCS 3440:140-156, 2005.
19. M. Vardi. Sometimes and not never re-revisited: on branching vs. linear time. In Proc. 9th

CONCUR, LNCS 1466:1-17, 1998.
20. M. Vardi. Branching vs. linear time: final showdown. In Proc. 7th TACAS, LNCS 2031:1-22,

2001.

	Introduction
	Basic Notions
	Abstract Interpretation of Inductive Languages
	Abstract Interpretation Basics
	Abstract Semantics of Inductive Languages

	Abstracting Traces
	Trace Semantics of Linear Languages
	Branching Abstraction
	Trace of Sets Abstraction
	Reachable State Abstraction
	Comparing Trace Abstractions

	Completeness of Trace Abstractions
	Branching Abstraction
	Trace of Sets Abstraction
	Reachable State Abstraction

	Comparing Expressive Powers
	Generalizing the Linear vs. Branching Time Comparison

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

