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Abstract. We define a complex connection on a real hypersurface of Cnþ1 which is
naturally inherited from the ambient space. Using a system of Codazzi-type equations, we
classify connected real hypersurfaces in Cnþ1, nf 2, which are Levi umbilical and have non
zero constant Levi curvature. It turns out that such surfaces are contained either in a sphere
or in the boundary of a complex tube domain with spherical section.

1. Introduction

Let M be a ð2nþ 1Þ-dimensional real surface embedded in Cnþ1, denote by h the
C-linear extension of the second fundamental form of M and by g be the restriction to the
complexified tangent bundle CTM of the standard hermitian product of Cnþ1. The surface
M is Levi umbilical if hðZ;WÞ ¼ HgðZ;WÞ for some scalar function H (the Levi curva-
ture) and for all holomorphic tangent vector fields Z and W . Levi umbilicality is weaker
than Euclidean umbilicality because it contains no information on terms of the form
hðZ;WÞ with holomorphic Z and W . In particular, it is easy to construct Levi umbilical
surfaces which are neither spheres nor hyperplanes. Indeed, any surface which is the zero
set F ¼ 0 of a smooth defining function Fðz; zÞ ¼ jzj2 þFðz; zÞ, where F is any polyhar-
monic function in Cnþ1, is Levi umbilical (see Example 2.3).

In view of these examples, a natural question is whether there is any version of the
classical Darboux theorem for usual umbilical surfaces. In this paper we classify Levi um-
bilical surfaces with constant non zero Levi curvature. An example of such surfaces are, of
course, the spheres fz A Cnþ1 : jzj ¼ rg, r > 0. A less trivial example is the boundary of
spherical tubes, i.e. surfaces of the form (see Example 2.2)

�
z A Cnþ1 :

Pnþ1

h¼1

ðzh þ zhÞ2 ¼ r2

�
; r > 0:ð1:1Þ

Our main result states that there are no other examples. More precisely, we prove that any
ð2nþ 1Þ-dimensional oriented connected surface embedded in Cnþ1, nf 2, which is Levi
umbilical and has non zero constant Levi curvature is necessarily contained either in a
sphere or, up to complex isometries of Cnþ1, in a spherical cylinder of the form (1.1). This



is proved in Theorem 5.1. It is interesting to observe the appearance of tube domains, which
are relevant objects in several complex variables, see [Kr].

This classification follows from the analysis of a system of Codazzi equations for h,
where covariant derivatives are computed with respect to a suitable complex connection ‘
on M. Though very natural, this connection and the corresponding Codazzi equations do
not seem to be studied in the literature. The main features of ‘ are:

(a) both the holomorphic and the antiholomorphic bundles are parallel;

(b) the restriction g to CTM of the hermitian product in Cnþ1 satisfies ‘g ¼ 0.

Briefly, the connection is constructed in the following way. Let n be a real unit normal to M

and consider N ¼ 2�1=2ðn� iTÞ, the holomorphic unit normal to M. Here, T ¼ JðnÞ where
J is the standard complex structure of Cnþ1. Then, given a holomorphic tangent vector field
Z and a tangent vector U , we define

‘UZ ¼ DUZ � gðDUZ;NÞN;

where D is the standard connection in Cnþ1. Then, this definition, along with ‘T ¼ 0, is
extended to the whole tangent bundle, giving rise to a connection satisfying (a) and (b) (see
Section 3).

Properties (a) and (b) are similar to the ones of the Tanaka-Webster connection on
strictly pseudoconvex Cauchy-Riemann manifolds (see [T] and [W]). Whereas for this con-
nection the Levi form �idQ associated with a contact form Q plays the role of the metric
and is required to be parallel, in our case the metric inherited from Cnþ1 is required to be
parallel. See also the discussion in Remark 3.2. This produces a connection which seems to
be more suitable for our purposes. A di¤erent connection is introduced by Klingenberg in
[Kl]. It arises as orthogonal projection of the standard connection in the space and, in gen-
eral, does not satisfy property (a).

A typical example of Codazzi equation for h, written in components with respect to a
holomorphic frame Z1; . . . ;Zn, is (see Remark 4.2)

‘ahbg � ‘bhag ¼ ihbgha0 � ihaghb0;ð1:2Þ

where h
ab

¼ hðZa;ZbÞ for a; b ¼ 1; . . . ; n and index 0 refers to T . In Theorem 4.1, we com-
pute the system of equations needed in the classification theorem. In these equations, as in
(1.2), there is a non vanishing right-hand side, reflecting both the non vanishing of Tor‘
and the non vanishing of gðDZN;NÞ.

Concerning the restriction nf 2 in the classification theorem, note that for n ¼ 1 the
umbilicality property is satisfied by any hypersurface of C2. Moreover, by the existence
and regularity results proved by Slodkowski and Tomassini [ST] and Citti, Lanconelli and
Montanari [CLM] for the Levi equation, there are smooth graphs in C2 with prescribed
boundary and with constant Levi curvature which do not belong to the classes described
above. Then, the natural question is whether a compact surface in C2 having constant Levi
curvature is necessarily a sphere. This question has been recently addressed in [HL] by
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Hounie and Lanconelli, who give an a‰rmative answer in the class of Reinhardt do-
mains.

Another result implied by our Codazzi equations is the classification of connected
pseudoconvex surfaces with non zero constant Levi curvature and vanishing hab (the sym-
metric part of the second fundamental form). Up to complex isometry, such surfaces are
contained in a sphere or in a spherical cylinder of the form

�
z A Cnþ1 :

Pnþ1

i¼m

jzij2 ¼ r2

�
; r > 0; 1eme n:

This is established in Theorem 5.2, which improves [Kl], Theorem 5.2, where the result is
proved by a global argument under compactness and strict pseudoconvexity assumptions
(see Remark 5.3).

The notion of Levi curvature was introduced by Bedford and Gaveau in [BG] and it
has been recently generalized by Montanari and Lanconelli in [ML]. There is an increasing
interest on problems concerning this curvature, mainly from the point of view of partial
di¤erential equations. Other significant references are Citti and Montanari [CM], Huisken
and Klingenberg [HK] and Montanari and Lascialfari [MLa]. The tools developed in this
work could be useful in the study also of other problems concerning real hypersurfaces in
complex space.

Concerning terminology, we call ‘‘Levi form’’ the hermitian map ðZ;WÞ 7! hðZ;WÞ,
with holomorphic Z and W . This is justified by the fact that hðZ;WÞ coincides with the
Levi form associated with a natural pseudohermitian structure (see [W] or [JL] for this no-
tion) inherited by M from the ambient (see the discussion in Section 2).

Notation. Greek indices a, b etc. run from 1 to n, Latin indices h, k run from 1 to

nþ 1. We let qh ¼
q

qzh
, q

h
¼ q

qzh
and Fh ¼ qhF . J is the standard complex structure and D

is the usual connection in Cnþ1. The standard hermitian product g in Cnþ1 is normalized by

gðqh; qkÞ ¼ gðq
h
; qkÞ ¼

1

2
dhk, gðqh; qkÞ ¼ gðq

h
; q

k
Þ ¼ 0, where dhk is the Kronecker symbol.

The metric tensors g
ab

and gab, which are related by gabg
gb
¼ dag, are used to lower and

raise indices, e.g. ha
b ¼ gbghag. If h is symmetric, we write hb

a instead of ha
b. We adopt the

summation convention. If E is a bundle we denote by GðEÞ the sections of E. Finally,
½U ;V � denotes the Lie bracket of vector fields and Tor‘ðU ;VÞ ¼ ‘UV � ‘VU � ½U ;V � is
the torsion of the connection ‘.

Acknowledgments. We are indebted to Ermanno Lanconelli and Annamaria Mon-
tanari for several fruitful conversations on Levi curvature.

2. Levi form and examples

Let MHCnþ1 be a real hypersurface oriented by a real unit normal n. We denote by
H ¼ T 1;0M (resp. H ¼ T 0;1M) the holomorphic (resp. antiholomorphic) tangent bundle
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of M. We restrict the complex structure J to HlH and the metric g to CTM. The vector
field T ¼ JðnÞ is tangent to M. Then, the complexified tangent bundle CTM can be decom-
posed as a direct sum HlHlCT and the decomposition is orthogonal with respect to
g. The holomorphic unit normal to M is the holomorphic vector field

N ¼ 1ffiffiffi
2

p ðn� iTÞ:ð2:1Þ

Up to orientation, N is defined uniquely on M by jNj ¼ 1 and gðN;UÞ ¼ 0 for all
U A HlH. Here and in the following, jV j2 ¼ gðV ;VÞ. We have the relations

T ¼ iffiffiffi
2

p ðN �NÞ; n ¼ 1ffiffiffi
2

p ðN þNÞ:ð2:2Þ

There is a unique real 1-form h on M such that

hðTÞ ¼ 1 and hðZÞ ¼ 0 for all Z A HlH:ð2:3Þ

Precisely, hðZÞ ¼ gðZ;TÞ for any Z A CTM. The Levi form on M associated with h is the
hermitian form on H defined by

LhðZ;WÞ ¼ 1

2i
dhðZ;W Þ; Z;W A H:ð2:4Þ

Denote by h the C-linear extension to CTM � CTM of the second fundamental form
of M. For Z;W A CTM let

hðZ;WÞ ¼ gðZ;DWnÞ:ð2:5Þ

Note that hðZ;WÞ ¼ hðW ;ZÞ and hðZ;WÞ ¼ hðZ;WÞ.

The Levi form associated with h coincides with the hermitian part of the second fun-
damental form, i.e. LhðZ;WÞ ¼ hðZ;WÞ for all Z;W A H. Indeed, by (2.3) and (2.2),

dhðZ;WÞ ¼ ZhðWÞ �WhðZÞ � hð½Z;W �Þ ¼ �hð½Z;W �Þð2:6Þ

¼ gð½W ;Z�;TÞ ¼ iffiffiffi
2

p gðDWZ �DZW ;N �NÞ:

Since gðDWZ;NÞ ¼ gðDZW ;NÞ ¼ 0, we find

dhðZ;W Þ ¼ � iffiffiffi
2

p
�
gðDWZ;N þNÞ þ gðDZW ;N þNÞ

�
¼ �2igðDWZ; nÞ:ð2:7Þ

The claim follows.

The Levi curvature H of M is the trace of the Levi form. The surface M is Levi umbil-

ical if hðZ;WÞ ¼ HgðZ;WÞ for all Z;W A H. In order to express these definitions in com-
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ponents, fix a frame Z1; . . . ;Zn of holomorphic tangent vector fields. Let h
ab

¼ hðZa;Zb
Þ

and g
ab

¼ gðZa;Zb
Þ. The Levi curvature of M is

H ¼ 1

n
ha
a :ð2:8Þ

The surface M is Levi umbilical if h
ab

¼ Hg
ab

. Observe that the relation between the Levi
curvature H ¼ HC and the standard mean curvature HR is ð2nþ 1ÞHR ¼ 2nHC þ hðT ;TÞ.

It is useful to compute the Levi curvature by means of a defining function. Let
M ¼ fz A Cnþ1 : FðzÞ ¼ 0g for some smooth function F : Cnþ1 ! R. The holomorphic
unit normal is

N ¼
ffiffiffi
2

p F
h

jqF j qh; where jqF j2 ¼ FhFh
:ð2:9Þ

The complex Hessian D2F induces a hermitian form on holomorphic vector fields of Cnþ1

by letting D2FðU ;VÞ ¼ UhVkF
hk

, where U ¼ Uhqh and V ¼ Vkq
k
. As observed in [ML],

the Levi form can be written as

hðU ;VÞ ¼ 1

2jqF jD
2FðU ;VÞ; U ;V A H:ð2:10Þ

Moreover, the Levi curvature of M is

H ¼ 1

njqF j F
hh
�
FkFh

F
hk

jqF j2

 !
:ð2:11Þ

We briefly check (2.10). By (2.2) and (2.9), we have

hðU ;VÞ ¼ gðU ;DVnÞ ¼
1ffiffiffi
2

p g
�
U ;DV ðN þNÞ

�
¼ g

 
U ;DV

Fh

jqF j qh
� �!

:

As gðFhqh;UÞ ¼ 0, we get

g

 
U ;DV

Fh

jqF j qh
� �!

¼ 1

jqF j g
�
U ;DV ðFhqhÞ

�
¼ 1

2jqF jD
2FðU ;VÞ:

In order to prove (2.11), assume, for instance, Fnþ1 3 0 near a point P A M and con-
sider the local holomorphic frame near P

Za ¼ qa �
Fa

Fnþ1
qnþ1; a ¼ 1; . . . ; n:ð2:12Þ

The application of (2.10) to the Za’s gives

h
ab

¼ 1

2jqF j F
ab
�

F
b

F
nþ1

F
anþ1 �

Fa

Fnþ1
F
nþ1;b

þ
FaFb

jFnþ1j2
F
nþ1;nþ1

( )
:
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The metric tensor and its inverse are respectively

g
ab

¼ 1

2
dab þ

FaFb

jFnþ1j2

 !
and gab ¼ 2 dab �

FbFa

jqF j2

 !
:

Then, a short computation gives

H ¼ 1

n
gabh

ab
¼ 1

njqF j F
hh
�
FkFh

F
hk

jqF j2

 !
:

In the next proposition we collect some useful identities.

Proposition 2.1. Let MHCnþ1 be an oriented surface with real unit normal n,
T ¼ JðnÞ and holomorphic unit normal N. Then:

(i) gðDZN;NÞ ¼ gð½T ;Z�;TÞ for all Z A GðHÞ.

(ii) gðDZN;NÞ ¼ ihðT ;ZÞ for all Z A GðCTMÞ.

(iii) gð½Z;W �;TÞ ¼ �2ihðZ;WÞ for all Z;W A GðHÞ.

Proof. Note that gðDZT ;TÞ ¼ 0, because T is real. Moreover, by (2.2), we have for
any Z A GðHÞ

gð½T ;Z�;TÞ ¼ gðDTZ �DZT ;TÞ ¼ 1

2
gðDN�NZ;NÞ:

We used the orthogonality gðDN�NZ;NÞ ¼ 0, which holds because Z is holomorphic. Thus

2gð½T ;Z�;TÞ ¼ gðDZN þ ½N;Z�;NÞ � gðDZN þ ½N;Z�;NÞ

¼ gð½N �N;Z�;NÞ þ gðDZN;NÞ

¼ 1

i
gð½T ;Z�; nþ iTÞ þ gðDZN;NÞ ¼ gð½T ;Z�;TÞ þ gðDZN;NÞ:

We used again (2.2) and gð½T ;Z�; nÞ ¼ 0. This proves (i).

In order to check (ii), note that

gðDZN;NÞ ¼ gðDZN;N þNÞ ¼
ffiffiffi
2

p
gðDZN; nÞ ¼ gðDZn; nÞ � igðDZT ; nÞ

¼ �igðDZT ; nÞ ¼ ihðT ;ZÞ:

Identity (iii) is proved in (2.6)–(2.7). r

Now we discuss a couple of examples showing the existence of non trivial Levi umbil-
ical surfaces.

Example 2.2 (Boundary of spherical tubes). The surface M ¼ fz A Cnþ1 : FðzÞ ¼ 0g,
where
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FðzÞ ¼ 1

2

Pnþ1

h¼1

ðzh þ zhÞ2 � 1;

is a Levi umbilical cylinder with spherical section having constant Levi curvature. Indeed,
the complex derivatives of F are Fh ¼ F

h
¼ zh þ zh and F

hk
¼ dhk. Then jqF j ¼

ffiffiffi
2

p
and, by

(2.11), the Levi curvature is H ¼ 1=
ffiffiffi
2

p
. The complex Hessian of F is the identity and, by

(2.10), the condition h
ab

¼ 1ffiffiffi
2

p g
ab

is identically satisfied on M.

Example 2.3. It is possible to construct compact Levi umbilical surfaces by polyhar-
monic perturbations of the sphere. Consider

M ¼ fz A Cnþ1 : jzj2 þ lFðzÞ ¼ 1g;ð2:13Þ

where l is a real parameter and

FðzÞ ¼ 1

2

Pnþ1

h¼1

ðz2
h þ z2

hÞ:

The derivative of the defining function FðzÞ ¼ jzj2 þ lFðzÞ � 1 are Fh ¼ zh þ lzh and

F
hk

¼ dhk. On the set M we have jqFðzÞj2 ¼ 2 � ð1 � l2Þjzj2. Then, jqF j is constant on
M if and only if l ¼ 0; 1;�1. If jlj < 1, M is a smooth compact surface bounding the
region fz A Cnþ1 : FðzÞ < 0g. Indeed, M is an ellipsoid: letting z ¼ xþ iy, we have
FðzÞ ¼ ð1 þ lÞjxj2 þ ð1 � lÞjyj2 � 1. Moreover, on M

jqFðzÞj2 ¼ 2 � ð1 þ lÞð1 � 2ljxj2Þf 1 � l > 0:

By formula (2.11), the Levi curvature of M is H ¼ jqF j�1. The complex Hessian of F is the
identity and, by (2.10), the surface M is Levi umbilical and

h
ab

¼ 1

jqF j gab:ð2:14Þ

Many other examples of compact Levi umbilical surfaces can be constructed, taking
as F in (2.13) any polyharmonic function, i.e. any smooth function satisfying F

hk
¼ 0. In

fact, the complex Hessian of the corresponding defining function is the identity. Therefore
condition (2.14) is satisfied.

3. The connection and its properties

In this section, we define the covariant derivative ‘ on an oriented, smooth hy-
persurface MHCnþ1 starting from the standard connection D in Cnþ1. A vector field
V A GðCTMÞ can be uniquely decomposed as

V ¼ Z þW þ fT ;ð3:1Þ

where Z;W A GðHÞ and f A CyðMÞ is a complex valued function. We define
‘ : GðCTMÞ � GðCTMÞ ! GðCTMÞ by letting, for U ;V A GðCTMÞ with V as in (3.1),
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‘UV ¼ DUZ � gðDUZ;NÞN þDUW � gðDUW ;NÞN þ ðUf ÞT :ð3:2Þ

Here, N is the holomorphic unit normal. Equivalently, let for U A GðCTMÞ and
Z;W A GðHÞ

‘UZ ¼ DUZ � gðDUZ;NÞN;

‘UW ¼ DUW � gðDUW ;NÞN;

‘UT ¼ 0:

ð3:3Þ

We have the following

Theorem 3.1. ‘ is a complex connection on M and satisfies the following proper-

ties:

(C1) ‘UV ¼ ‘UV for all U ;V A GðCTMÞ.

(C2) ‘U

�
JðVÞ

�
¼ Jð‘UVÞ for all U ;V A GðCTMÞ.

(C3) The bundles H and H are parallel.

(C4) ‘g ¼ 0.

(C5) Tor‘ðU ;VÞ ¼ 0 for all U ;V A GðHÞ.

(C6) Tor‘ðU ;VÞ ¼ �gð½U ;V �;TÞT for all U ;V A GðHÞ.

Proof. Properties (C1), (C2) and the fact that ‘ is a connection are easy and we
omit their proof.

Property (C3) amounts to say that the covariant derivative of a holomorphic (resp.
antiholomorphic) vector field is still a holomorphic (resp. antiholomorphic) vector field.
But this is an immediate consequence of definition (3.2) and of the orthogonal decomposi-
tion T

1;0
P Cnþ1 ¼ HP lCNP, at any point P A M.

In order to prove property (C4), let

V1 ¼ Z1 þW 1 þ f1T ; V2 ¼ Z2 þW 2 þ f2T ;

where Z1;Z2;W1;W2 A GðHÞ and f1, f2 are complex valued functions. By the metric prop-
erty of the standard connection D in Cnþ1, we have

UgðV1;V 2Þ ¼ UgðZ1;Z2Þ þUgðW 1;W2Þ þUgð f1T ; f2TÞð3:4Þ

¼ gðDUZ1;Z2Þ þ gðZ1;DUZ2Þ þ gðDUW 1;W2Þ

þ gðW 1;DUW2Þ þ g
�
DUð f1TÞ; f2T

�
þ g
�
f1T ;DUð f2TÞ

�
:

We claim that the following identities hold:
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gðDUZ1;Z2Þ ¼ gð‘UZ1;V 2Þ; gðDUW 1;W2Þ ¼ gð‘UW 1;V2Þ;

gðZ1;DUZ2Þ ¼ gðV1;‘UZ2Þ; gðW 1;DUW2Þ ¼ gðV1;‘UW2Þ:
ð3:5Þ

We check the first one only. Since gðN;Z2Þ ¼ 0, we have gðDUZ1;Z2Þ ¼ gð‘UZ1;Z2Þ and
property (C3) gives gð‘UZ1;Z2Þ ¼ gð‘UZ1;V 2Þ. The following identities also hold:

g
�
DUð f1TÞ; f2T

�
¼ g
�
ðUf1ÞT ;V 2

�
; g

�
f1T ;DUð f2TÞ

�
¼ g
�
V1; ðUf2ÞT

�
:ð3:6Þ

We check the first one. Since gðDUT ;TÞ ¼ 0, then

g
�
DUð f1TÞ; f2T

�
¼ g
�
ðUf1ÞT ; f2T

�
þ gð f1DUT ; f2TÞ ¼ g

�
ðUf1ÞT ; f2T

�
:

But T is orthogonal to Z2 and W 2. Thus we get the claim. Replacing (3.5) and (3.6) into
(3.4) we get UgðV1;V2Þ ¼ gð‘UV1;V2Þ þ gðV1;‘UV 2Þ, which means ‘g ¼ 0.

Statement (C5), Tor‘ðU ;VÞ ¼ 0 for U ;V A GðHÞ, follows from TorDðU ;VÞ ¼ 0 and
½U ;V � A GðHÞ. Concerning property (C6), observe that a connection leaving H and H
parallel cannot be, in general, torsion free, because the horizontal distribution needs not be
integrable (in other words, it may be ½H;H� jLHlH). Take W A GðHlHÞ. Then

g
�
Tor‘ðU ;VÞ;W

�
¼ g
�
TorDðU ;VÞ þ gðDVU ;NÞN � gðDUV ;NÞN;W

�
¼ 0;

because TorDðU ;VÞ ¼ 0 and gðN;WÞ ¼ gðN;WÞ ¼ 0. Then Tor‘ðU ;VÞ ¼ lT for some
function l and, by (C3), l ¼ g

�
Tor‘ðU ;VÞ;T

�
¼ �gð½U ;V �;TÞ. r

Recall that the restriction of the hermitian product in Cnþ1 to CTM induces the or-
thogonal decomposition

CTM ¼ HlHlCT :ð3:7Þ

Denote by PH : CTM ! H the projection onto H and by PH the projection onto H.
Then it is easy to check that for U ;V A GðHÞ, we have

‘UV ¼ PHð½U ;V �Þ and ‘UV ¼ PHð½U ;V �Þ:ð3:8Þ

This follows from (C3) and (C6).

Remark 3.2. If M is a strictly pseudoconvex CR manifold, there is a natural connec-
tion associated with a given contact form Q, which was introduced by Tanaka and Webster
in [T] and [W]. Although it was designed for di¤erent scopes from ours, we highlight some
analogies and di¤erences between our connection ‘ and the Tanaka-Webster one.

The Levi form ðZ;W Þ 7! �id QðZ;WÞ is a non degenerate hermitian form on H.
Then, Q induces a decomposition of CTM similar to (3.7). The vector field T is re-
placed in this construction by the characteristic vector field T 0, defined by QðT 0Þ ¼ 1 and
dQðT ;ZÞ ¼ 0 for all Z A H. In the Tanaka-Webster connection, the Levi form dQ essen-
tially plays the role of the metric and is required to be parallel. Covariant derivatives of
holomorphic vector fields along antiholomorphic ones are defined by relations analogous
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to (3.8) (see [T], Lemma 3.2, p. 31), but with the projections P 0
H and P 0

H
induced by dQ.

The characteristic vector field T 0 of Q is in general di¤erent from T for any choice of the
contact form Q.

Similarly to the Tanaka-Webster connection, the property ‘T ¼ 0 is forced by (C4)
and (C5). Indeed, the one dimensional bundle generated by T is the orthogonal comple-
ment with respect to the parallel metric g of the parallel bundle HlH. Then ‘UT ¼ lT

for some function l and U A CTM. But, since T is real, 0 ¼ UgðT ;TÞ ¼ 2gð‘UT ;TÞ ¼ 2l.
Therefore ‘T ¼ 0.

Remark 3.3. The connection ‘ is not uniquely determined on the whole tangent
bundle GðCTMÞ by properties (C1)–(C6). In particular, ‘TU with U A GðHÞ is not
uniquely determined. In (3.3), we let ‘TU ¼ DTU � gðDTU ;NÞN. An alternative possibil-
ity, consistent with (3.8), is to set

‘ 0
TU ¼ PHð½T ;U �Þ and ‘ 0

TU ¼ PHð½T ;U �Þ:

The resulting connection ‘ 0 still satisfies (C1)–(C6). Our choice ‘, however, seems to be
more suitable than ‘ 0 to work with Codazzi equations.

Remark 3.4. The real tangent bundle has the orthogonal decomposition
TM ¼ ReðHlHÞlRT . Then, for Y A G

�
ReðHlHÞ

�
, V A GðTMÞ and f real func-

tion, we have

‘V ðY þ fTÞ ¼ DVY � gðDVY ; nÞn� gðDVY ;TÞT þ ðVf ÞT :ð3:9Þ

Indeed, taking X ¼ Z þ Z with holomorphic Z, we have

‘V ðZ þ ZÞ ¼ ‘VZ þ ‘VZ ¼ DVZ � gðDVZ;NÞN þDVZ � gðDVZ;NÞN

¼ DVX � gðDVZ; nÞðn� iTÞ � gðDVZ; nÞðnþ iTÞ

¼ DVX � gðDVX ; nÞnþ ig
�
DV ðZ � ZÞ; n

�
T

¼ DVX � gðDVX ; nÞnþ g
�
DV

�
JðXÞ

�
;�JðTÞ

�
T

¼ DVX � gðDVX ; nÞn� gðDVX ;TÞT :

We used n ¼ �JðTÞ and the property DV � J ¼ J �DV .

4. Codazzi equations

In this section we compute the system of Codazzi equations.

Theorem 4.1. The Levi form h on a hypersurface MHCnþ1 satisfies the following

Codazzi equations:

‘bhag � ‘ghab ¼ ihabhg0 � ihaghb0 � 2ihbgha0;ð4:1aÞ
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‘
b
ha0 � ‘0hab ¼ ihalh

l

b
� ih

al
hl
b
þ ih

ab
h00;ð4:1bÞ

‘bha0 � ‘0hab ¼ ih
bl
hla � ihblh

l
a þ ihabh00 � 2iha0hb0;ð4:1cÞ

‘ah00 � ‘0ha0 ¼ 2ihl
ahl0 � 2ihlahl0

� ihalh
l
0 þ ih

al
hl0 � iha0h00:ð4:1dÞ

Proof. The proof relies on the fact that the standard connection D in Cnþ1 has
vanishing curvature. We shall also use several times the formula

DZU ¼ ‘ZU �
ffiffiffi
2

p
hðU ;ZÞN; U A GðHÞ; Z A GðCTMÞ:ð4:2Þ

Let Z;W A GðCTMÞ and U A GðHÞ. Denote by RD and R‘ the standard curvature endo-
morphisms of D and ‘. Using (4.2), we have

0 ¼ RDðZ;WÞU ¼ DZDWU �DWDZU �D½Z;W �Uð4:3Þ

¼ DZ

�
‘WU �

ffiffiffi
2

p
hðU ;W ÞN

�
�DW

�
‘ZU �

ffiffiffi
2

p
hðU ;ZÞN

�
�D½Z;W �U

¼ R‘ðZ;W ÞU �
ffiffiffi
2

p
hðU ;W ÞDZN þ

ffiffiffi
2

p
hðU ;ZÞDWN

�
ffiffiffi
2

p �
ZhðU ;WÞ � hð‘ZU ;WÞ �WhðU ;ZÞ

þ hð‘WU ;ZÞ � hðU ; ½Z;W �Þ
�
N:

Multiplying by N and using g
�
R‘ðZ;WÞU ;N

�
¼ 0, we get the equation for h

‘ZhðU ;WÞ � ‘WhðU ;ZÞ ¼ h
�
U ;Tor‘ðW ;ZÞ

�
� hðU ;WÞgðDZN;NÞð4:4Þ

þ hðU ;ZÞgðDWN;NÞ;

where ‘ZhðU ;W Þ ¼ ZhðU ;WÞ � hð‘ZU ;WÞ � hðU ;‘ZWÞ is the covariant derivative of
h. Note that by Proposition 2.1, we have gðDZN;NÞ ¼ ihðZ;TÞ for any Z A GðCTMÞ.

In order to prove (4.1a), take Z;W ;U A GðHÞ and write (4.4) with W instead of W .
By Theorem 3.1, the torsion satisfies Tor‘ðZ;WÞ ¼ �gð½Z;W �;TÞT . Moreover, by Pro-
position 2.1 we have gð½Z;W �;TÞ ¼ �2ihðZ;W Þ. Thus, equation (4.4) becomes

‘ZhðU ;WÞ � ‘WhðU ;ZÞ ¼ ihðU ;ZÞhðW ;TÞ � ihðU ;WÞhðZ;TÞð4:5Þ

� 2ihðZ;WÞhðU ;TÞ:

This is formula (4.1a).

In order to prove (4.1b), we take Z;U A GðHÞ. By (4.4), we have

‘ZhðU ;TÞ � ‘ThðU ;ZÞ ¼ hðU ;‘TZ þ ½Z;T �Þ � ihðU ;TÞhðZ;TÞð4:6Þ

þ ihðU ;ZÞhðT ;TÞ;

because ‘T ¼ 0.

We analyze the right-hand side of (4.6). By TorDðZ;TÞ ¼ 0 and the second equation
of (3.3), we have
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‘TZ þ ½Z;T � ¼ DZT � gðDTZ;NÞNð4:7Þ

¼ DZT � gðDZT ; nÞn� igðDTZ; nÞT :

We also used gð½Z;T �; nÞ ¼ 0, which implies gðDZT ; nÞ ¼ gðDTZ; nÞ. The vector field
V ¼ DZT � gðDZT ; nÞn is tangent to M and gðV ;TÞ ¼ 0. Therefore, for any holomorphic
frame Z1; . . . ;Zn, we have

V ¼ glmgðDZT ;ZmÞZl þ gmlgðDZT ;ZmÞZl
ð4:8Þ

¼ iglmgðDZn;ZmÞZl � igmlgðDZn;ZmÞZl

¼ iglmhðZm;ZÞZl � igmlhðZm;ZÞZl
:

In order to get the second equality in (4.8), we used the isometry J and the relations
T ¼ JðnÞ, JðDZTÞ ¼ DZ

�
JðTÞ

�
, JðZmÞ ¼ iZm and JðZmÞ ¼ �iZm. Thus, (4.7)–(4.8) give

hðU ;‘TZ þ ½Z;T �Þ ¼ ihðT ;ZÞhðU ;TÞ þ iglmhðZm;ZÞhðU ;ZlÞð4:9Þ

� igmlhðZm;ZÞhðU ;Z
l
Þ:

Replacing (4.9) into (4.6), we finally find

‘ZhðU ;TÞ � ‘ThðU ;ZÞ ¼ ihðU ;ZÞhðT ;TÞ þ iglmhðZm;ZÞhðU ;ZlÞ

� igmlhðZm;ZÞhðU ;Z
l
Þ;

which is identity (4.1b).

In order to prove (4.1c), take Z;U A GðHÞ. By (4.4), we have

‘ZhðU ;TÞ � ‘ThðU ;ZÞ ¼ ihðU ;ZÞhðT ;TÞ � ihðU ;TÞhðZ;TÞð4:10Þ

þ hðU ;‘TZ þ ½Z;T �Þ:

On conjugating (4.7), we find ‘TZ þ ½Z;T � ¼ V � ihðZ;TÞT , where the vector field
V ¼ DZT � gðDZT ; nÞn is, by (4.8),

V ¼ iglmhðZ;ZmÞZl � igmlhðZ;ZmÞZl
:

Thus, equation (4.10) reads

‘ZhðU ;TÞ � ‘ThðU ;ZÞ ¼ ihðU ;ZÞhðT ;TÞ � 2ihðU ;TÞhðZ;TÞ

þ iglmhðU ;ZlÞhðZ;ZmÞ � igmlhðZ;ZmÞhðU ;Z
l
Þ:

The proof of identity (4.1c) is accomplished.

In order to prove (4.1d), take Z A GðHÞ and start from the identity
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DTDZT �DZDTT �D½T ;Z�T ¼ 0:ð4:11Þ

Observe that DZT ¼ U � hðZ;TÞn for some U A GðHlHÞ, because gðDZT ;TÞ ¼ 0.
Precisely, as in (4.8), we have

U ¼ iglmhðZ;ZmÞZl � igmlhðZ;ZmÞZl
:ð4:12Þ

Then DTDZT ¼ DTU � ThðZ;TÞn� hðZ;TÞDTn, and multiplying by n,

gðDTDZT ; nÞ ¼ �hðU ;TÞ � ThðZ;TÞ;ð4:13Þ

because gðDTn; nÞ ¼ 0.

We analyze the second term in the left-hand side of (4.11). A computation similar to
(4.8) furnishes

DTT � gðDTT ; nÞn ¼ iglmhðZm;TÞZl � igmlhðZm;TÞZ
l
¼ W ;ð4:14Þ

where W A GðHlHÞ is defined by the last equality. Thus,

gðDZDTT ; nÞ ¼ �hðZ;WÞ � ZhðT ;TÞ:ð4:15Þ

Finally, we study the third term in the left-hand side of (4.11). We have

½T ;Z� ¼ DTZ �DZT ¼ ‘TZ þ gðDTZ;NÞN �DZT

¼ ‘TZ � hðZ;TÞðn� iTÞ �DZT ¼ ‘TZ �U þ ihðZ;TÞT ;

where U is defined after (4.11). This yields

gðD½T ;Z�T ; nÞ ¼ �hð½T ;Z�;TÞð4:16Þ

¼ �hð‘TZ;TÞ þ hðU ;TÞ � ihðZ;TÞhðT ;TÞ:

Multiplying (4.11) by n and using (4.13), (4.15) and (4.16), we obtain

‘ZhðT ;TÞ � ‘ThðZ;TÞ ¼ 2hðU ;TÞ � hðZ;WÞ � ihðZ;TÞhðT ;TÞ:

Replacing the expressions for U and W in (4.12) and (4.14), we get formula (4.1d). r

Remark 4.2. The second fundamental form h satisfies also other Codazzi equations.
For instance, we have

‘ahbg � ‘bhag ¼ ihbgha0 � ihaghb0;ð4:17aÞ

‘ahbg � ‘ghba ¼ ihbahg0 � ihbgha0:ð4:17bÞ

Identity (4.17a) can be obtained interchanging a and b in identity (4.1a) and taking
the di¤erence of the two equations. Identity (4.17b) follows from (4.4) on choosing
Z;U ;W A GðHÞ and using Tor‘ðW ;ZÞ ¼ 0.
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Notice also that, letting Z;U ;V ;W A GðHÞ and multiplying identity (4.3) by V , we
get the Gauss-type equation

g
�
R‘ðZ;WÞU ;V

�
¼ 2fhðU ;WÞhðV ;ZÞ � hðU ;ZÞhðV ;WÞg:

5. Classification results

In this section we prove the following results:

Theorem 5.1. Let MHCnþ1, nf 2, be a ð2nþ 1Þ-dimensional, connected Levi um-

bilical surface with constant Levi curvature H3 0. Then M is contained either in a sphere

or in the boundary of a spherical tube.

Theorem 5.2. Let M be a connected pseudovonvex hypersurface in Cnþ1, nf 1, with
constant Levi curvature H3 0 and hab ¼ 0. Then, up to a complex isometry, M is contained

in a sphere or in a cylinder of the form

�
z A Cnþ1 :

Pnþ1

i¼m

jzij2 ¼ r2

�
; r > 0; 1eme n:ð5:1Þ

Remark 5.3. The only compact surface among the ones defined in (5.1) is the sphere.
Theorem 5.2 improves [Kl], Theorem 5.2, because we assume neither compactness nor
strict pseudoconvexity of M.

A slight modification of the argument also shows that if strict pseudoconvexity (but
not compactness) is added as hypothesis in Theorem 5.2, then the surface M must be con-
tained in a sphere.

Proof of Theorem 5.1. Possibly changing the orientation of M, assume H > 0. Ob-
serve preliminarily that, given an orthonormal frame Za, by Proposition 2.1 part (iii), we
have

Pn
a¼1

gð½Za;Za�;TÞ ¼ �2inH3 0;ð5:2Þ

provided that H3 0. Then at least one term in the sum is non zero and the distribution
ReðHlHÞ is bracket generating.

We accomplish the proof in several steps.

Step 1. We claim that

ha0 ¼ 0:ð5:3Þ

Indeed, contracting the indices a and g in the Codazzi equation (4.17a), we get

‘ah
a
b � ‘bh

a
a ¼ iha

bha0 � iha
ahb0:ð5:4Þ
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The fundamental form satisfies h
ab

¼ Hg
ab

and thus hb
a ¼ Hdba and ha

a ¼ nH. Then the left-
hand side in (5.4) vanishes. Therefore ðn� 1ÞHhb0 ¼ 0. The claim follows.

As a consequence of (5.3), it turns out that h satisfies the identities

hb
ah

m

b
¼ ðH 2 � h00HÞdma ;ð5:5aÞ

‘0hab þ ih00hab ¼ 0;ð5:5bÞ

‘ah00 ¼ 0:ð5:5cÞ

To show (5.5a), observe that, since (5.3) holds and h
ab

¼ Hg
ab

, the left-hand side of identity
(4.1b) vanishes. Thus, using again h

ab
¼ Hg

ab
in the right-hand side, we find the equation

halh
l

b
¼ ðH 2 � h00HÞg

ab
:

Contracting with gmb yields (5.5a). Equations (5.5b) and (5.5c) follow from (4.1c) and
(4.1d), letting ha0 ¼ 0 and h

ab
¼ Hg

ab
.

Notice also that equation (5.5a) gives

jhabj2 :¼ hb
ah

a

b
¼ nHðH � h00Þ;ð5:6Þ

which implies h00 eH. Moreover, equation (5.5c) and ‘T ¼ 0 give

ZhðT ;TÞ ¼ ‘ZhðT ;TÞ ¼ 0 on M for any Z A H:

On conjugating, the equation is satisfied also for all Z A H. Since M is connected, from
(5.2) it follows that

hðT ;TÞ ¼ constant ¼ h00 on M:ð5:7Þ

Take P A M and denote by L the shape operator, LðXÞ ¼ DXn, X A TPM.

Step 2. If X A TPM is an eigenvector of L with jX j ¼ 1 and gðX ;TÞ ¼ 0, then
Y ¼ JðXÞ is an eigenvector of L with jY j ¼ 1.

Indeed, assume that LðXÞ ¼ lX for some l A R and let

Z ¼ X � iJðXÞ ¼ X � iY A HP:

By (5.3), since LðXÞ is orthogonal to T ,

0 ¼ hðZ;TÞ ¼ g
�
LðX Þ � iLðYÞ;T

�
¼ �ig

�
LðY Þ;T

�
:

Therefore LðY Þ is orthogonal to T . Moreover, by the symmetry of L,
g
�
LðYÞ;X

�
¼ g
�
LðXÞ;Y

�
¼ lgðX ;YÞ ¼ lg

�
X ; JðX Þ

�
¼ 0. Finally, if W A HP satisfies

gðZ;WÞ ¼ 0, it must be also gðX ;WÞ ¼ 0 and thus g
�
LðXÞ;W

�
¼ lgðX ;WÞ ¼ 0. Since

M is Levi umbilical, we also have g
�
LðZÞ;W

�
¼ HgðZ;WÞ. Eventually, we get
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g
�
LðYÞ;W

�
¼ ig

�
LðX Þ � iLðYÞ;W

�
¼ ig

�
LðZÞ;W

�
¼ iHgðZ;WÞ ¼ 0:

Taking the conjugate we also find g
�
LðY Þ;W

�
¼ 0. Ultimately, we showed that LðY Þ has

no component orthogonal to Y and our claim is proved.

Step 3. At any point P A M there exists an orthonormal basis

fXa;Ya ¼ JðXaÞ;T : a ¼ 1; . . . ; ng of TPM

such that

LðXaÞ ¼ ðH þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � h00H

p
ÞXa;

LðYaÞ ¼ ðH �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � h00H

p
ÞYa;

LðTÞ ¼ h00T :

ð5:8Þ

Note first that, by (5.3), hðT ;XÞ ¼ 0 for any X A HP lHP. Then we have
LðTÞ ¼ h00T , by (5.7), and the orthogonal complement of T at any point P A M is an in-
variant subspace for L. We diagonalize L restricted to this invariant subspace. By Step 1,
for any eigenvector Xa with eigenvalue la, there is an eigenvector Ya ¼ JðXaÞ with eigen-
value ma. Thus we get an orthonormal basis fT ;Xa;Ya; a ¼ 1; . . . ; ng of TPM. We may as-
sume la f ma.

The values of la and ma are determined by (5.5a) and by Levi umbilicality. Indeed,
letting Za ¼ Xa � iYa, we have g

ab
¼ 2dab. Since M is Levi umbilical,

2H ¼ HgðZa;ZaÞ ¼ g
�
LðZaÞ;Za

�
¼ gðlaXa � imaYa;Xa þ iYaÞ ¼ la þ ma:ð5:9Þ

Moreover, since hab ¼ g
�
Za;LðZbÞ

�
¼ ðla � maÞdab, it is hb

a ¼ 1

2
ðla � maÞdba . Thus,

ðH 2 � h00HÞdga ¼ hb
ah

g

b
¼ 1

4
ðla � maÞ

2dla :ð5:10Þ

The solutions to equations (5.9) and (5.10) are la ¼ H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � h00H

p
and

ma ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � h00H

p
. The proof of Step 3 is concluded.

In Step 3, we established that the principal curvatures of M are the constant numbers
(5.8). By a classical result going back to Segre [S], if a connected hypersurface in RNþ1 has
constant principal curvatures, then it must be a plane, a sphere or a cylinder, i.e. a Carte-
sian product Sp � RN�p, where Sp is a p-dimensional sphere and 0e peN. In particular,
a surface with constant curvatures can have at most two di¤erent ones. The numbers in (5.8)
are not pairwise di¤erent only in the following two cases:

Case A: h00 ¼ H

and

Case B: h00 ¼ 0.
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In Case A, all the principal curvatures are equal to H and the surface M must be
contained in a sphere of radius 1=H. In Case B the surface must be a cylinder. In the latter
case, equations (5.8) become

LðXaÞ ¼ 2HXa; LðYaÞ ¼ 0 and LðTÞ ¼ 0:ð5:11Þ

Fix a point P. After a complex rotation, we may assume that the vectors at P satisfying
(5.11) are Xa ¼ qxa , Ya ¼ qya and T ¼ qynþ1

. This means that

kerðLÞ ¼ spanfqyh : h ¼ 1; . . . ; nþ 1g:

For a cylinder, kerðLÞ is the same at any point (after the trivial identification between dif-
ferent tangent spaces of R2n). Moreover, the remaining n principal curvatures are all equal
to 2H. Then the surface is contained in a cylinder of equation

Pnþ1

k¼1

ðxk � bkÞ2 ¼ 1

4H 2
;

for suitable constants bk. The proof is concluded. r

Proof of Theorem 5.2. Without loss of generality we can assume H > 0.

Step A. First we prove that ha0 ¼ 0. Since hab ¼ 0, (4.1a) becomes
‘bhag þ ihaghb0 þ 2iha0hbg ¼ 0. Contracting with gga gives ‘bh

a
a þ iha

ahb0 þ 2iha0h
a
b ¼ 0. The

Levi curvature is constant and then

nHhb0 þ 2ha0h
a
b ¼ 0:ð5:12Þ

Denote by kðlÞ, l ¼ 1; . . . ; n, the principal Levi curvatures of M at a point P. This
means that there is an orthonormal family of holomorphic vectors VðlÞ ¼ V

b
ðlÞZb A HP,

l ¼ 1; . . . ; n, such that ha
bV

b
ðlÞ ¼ kðlÞV

a
ðlÞ. Contracting (5.12) with V

b
ðlÞ yields

ðnH þ 2kðlÞÞhðT ;VðlÞÞ ¼ 0:

By pseudoconvexity, it is kðlÞ f 0 for all l ¼ 1; . . . ; n. Since H > 0, this implies
hðT ;VðlÞÞ ¼ 0 for any l ¼ 1; . . . ; n, which ensures ha0 ¼ 0.

Inserting hab ¼ 0, ha0 ¼ 0 and ha
a ¼ nH ¼ constant in equations (4.1a), (4.1b) and

(4.1d), we find

‘bhag ¼ 0;ð5:13aÞ

‘0hab ¼ ih
al
hl
b
� ih

ab
h00;ð5:13bÞ

‘ah00 ¼ 0:ð5:13cÞ

Equation (5.13c) and ‘T ¼ 0 imply that Zh00 ¼ 0 for all holomorphic Z. Since the
horizontal distribution is bracket generating, we conclude that h00 is constant on M. Con-
tracting a and b in (5.13b) and using H ¼ constant, we find h

al
hal ¼ nHh00. If h00 ¼ 0, it
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follows that h
al

¼ 0 and thus H ¼ 0. This is not possible and h00 must be a non zero con-
stant. Since ha0 ¼ 0, by Step A we also have LðTÞ ¼ h00T .

Step B. If X A TPM is a real tangent vector orthogonal to T and such that
LðXÞ ¼ lX , then the vector Y ¼ JðXÞ satisfies LðYÞ ¼ mY . This follows from hab ¼ 0 and
can be proved as in Step 2 of the proof of Theorem 5.1. Moreover, letting Z ¼ X � iY we
have

0 ¼ hðZ;ZÞ ¼ g
�
LðZÞ;Z

�
¼ gðlX � imY ;X � iYÞ ¼ l� m:

Therefore l ¼ m.

Iterating this process n times, we find an orthonormal basis

fXa;Ya ¼ JðXaÞ;T : a ¼ 1; . . . ; ng of TPM

such that

LðXaÞ ¼ laXa; LðYaÞ ¼ laYa:ð5:14Þ

Notice that L sends H into H, because hab ¼ 0 and ha0 ¼ 0. Moreover, letting
Za ¼ Xa � iYa we have LðZaÞ ¼ laZa. The numbers l1; . . . ; ln are the eigenvalues of the
Levi form at the point P, i.e. hðZa;Zb

Þ ¼ lagðZa;Zb
Þ.

Step C. We claim that the eigenvalues of L are constant. First observe that any
pair of points in M can be connected by a horizontal path g : ½0; 1� ! M, i.e. a piece-
wise C1 curve such that gð _gg;TÞ ¼ 0. This follows from the rank condition (5.2). Take
P;Q A M and connect them by a horizontal curve g with gð0Þ ¼ P and gð1Þ ¼ Q. Let
fX P

a ;Y
P
a ¼ JðX P

a Þ;T : a ¼ 1; . . . ; ng be an orthonormal basis of TPM satisfying (5.14).
Let ZP

a ¼ X P
a � iY P

a and let Za be the parallel extension of ZP
a along g, that is

‘ _ggZa ¼ 0 along g and ZaðPÞ ¼ ZP
a :ð5:15Þ

The vector field Za is holomorphic.

Equation (5.13a) and its conjugate imply

‘ _gghðZ;WÞ ¼ 0; for all holomorphic Z;W :ð5:16Þ

Then, from (5.16) and (5.15) it follows that

d

dt
hðZa;Zb

Þ ¼ ‘ _gghðZa;Zb
Þ þ hð‘ _ggZa;Zb

Þ þ hðZa;‘ _ggZb
Þ ¼ 0:

Thus hðZa;Zb
Þ is constant along g and

hðZa;Zb
Þ ¼ hðZP

a ;Z
P

b
Þ ¼ 2ladab;

where the la’s are the Levi eigenvalues at P. Since g is parallel, we also have
gðZa;Zb

Þ ¼ gðZP
a ;Z

P

b
Þ ¼ 2dab. Eventually, we get hðZa;Zb

Þ ¼ lagðZa;Zb
Þ, where the la’s
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are again the eigenvalues at P. This means that also at the point Q ¼ gð1Þ the eigenvalues
of L are l1; l2; . . . ; ln and h00.

Step D. The shape operator L has constant eigenvalues l1; . . . ; ln, h00. Each eigen-
value la has multiplicity 2 and the corresponding eigenspace is a complex subspace of Cnþ1.
By Segre’s theorem on hypersurfaces with constant curvatures, M can have not more than
two di¤erent constant curvatures and it is contained either in a sphere or in a cylinder with
spherical section. We may assume l1 ¼ � � � ¼ lm ¼ 0 and lmþ1 ¼ � � � ¼ ln ¼ h00 for some
0eme n� 1. In case m ¼ 0 we have a sphere. In case 1eme n� 1 we have a cylinder
of the form (5.1). The case m ¼ n is excluded, because we have a cylinder of the form
Cn � S1 which has H ¼ 0.

The proof is concluded. r
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