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1. Introduction

The problem of self–consistent interactions of higher spin fields is one of the longstanding

problems of theoretical physics (see [1] for references, [2] for an elementary review and [5]

for recent progress). It is known that higher spin fields can consistently interact in a
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space–time with a non–vanishing cosmological constant. The gravitational interactions

of the fermionic fields require the space–time to be of an anti-de-Sitter type [3, 4]. The

interactions should simultaneously involve an infinite set of fields of an arbitrary high spin

and their higher derivatives [6, 7, 3, 8, 4].

Several powerful methods have been developed to deal with theories which contain an

infinite tower of higher spin fields. In particular, the star product formalism was used to

construct higher spin theories [9, 10] even earlier than it was applied to the study of effects

of non-commutativity in String Theory [11]. Actually, String Theory itself contains an

infinite tower of interacting massive higher spin excitations. In a tensionless string limit

the higher spin modes become massless and in a linear approximation satisfy free higher

spin equations of motion (see e.g. [12] and references therein for more details).1 However a

much more non–trivial problem is to extract from the string effective action the information

about the structure of higher spin interactions.

In [14] Fronsdal proposed another way of formulating higher-spin field theory. He

conjectured that four-dimensional higher spin field theory can be realized as a field theory

on a ten–dimensional ‘tensorial’ manifold parametrized by the coordinates

Xαβ = Xβα =
1

2
xmγαβm +

1

4
ymnγαβmn ,

m, n = 0, 1, 2, 3 ; α, β = 1, 2, 3, 4 , (1.1)

where xm are associated with four coordinates of the conventional D = 4 space-time and

six ymn = −ymn describe spin degrees of freedom.

The assumption was that by analogy with, for example D = 10 or D = 11 supergrav-

ities, there may exist a theory in a ten–dimensional space whose alternative Kaluza-Klein

reduction may lead inD = 4 to an infinite tower of fields with increasing spins instead of the

infinite tower of Kaluza-Klein particles of increasing mass. It was argued that the symme-

try group of the theory should be OSp(1|8) ⊃ SU(2, 2), which contains the D = 4 conformal

group as a subgroup such that an irreducible (oscillator) representation of OSp(1|8) con-

tains each and every massless higher spin representation of SU(2, 2) only once. So the idea

was that using a single representation of OSp(1|8) in the ten–dimensional tensorial space

one could describe an infinite tower of higher spin fields in D = 4 space-time.

This proposal (rather accidentally) found its dynamical realization in the OSp(1|2n)-

invariant model of a twistor superparticle propagating in a flat tensorial superspace (X αβ =

Xβα, θα) (α, β = 1, . . . , n, with n = 4 corresponding to the Fronsdal case (1.1)) [15, 16].

The quantization of this model was shown [17] to produce the infinite tower of free massless

fields of all possible spins in D = 4 space-time and an infinite set of higher spin fields in

higher dimensions. In the general case the bosonic dimension of the tensorial superspace is
n(n+1)
2 . In particular, the case n = 32 has been considered (see [18]) as a point-like model

for a BPS preon, a hypothetical constituent of M-theory [19].

1Note that these papers deal with a tensionless limit of ordinary (super)strings which differs from ten-

sionless or so called null (super)strings [13].
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The superparticle action in the flat tensorial superspace has the following form

S =

∫

dτ [Ẋαβ(τ)− iθ̇α(τ)θβ(τ)]λαλβ , (1.2)

where λα(τ) are auxiliary commuting spinor variables. From (1.2) it follows that the

particle momentum is Pαβ = λαλβ, which in the tensorial spaces associated with 4, 6

and 10-dimensional space-times implies that the quantum states of the superparticle are

massless [15, 16]. Note that this is the direct analog and generalization of the Cartan-

Penrose (twistor) realization of the light-like momentum of massless states.

The action (1.2) is non-manifestly invariant under the rigid transformations of

OSp(1|2n) [15, 16, 17, 21, 22, 24] but is manifestly invariant under the transformations

of its subgroup GL(n) acting on X, θ and λ as follows

X ′αβ = Xα′β′G α
α′ G

β
β′ , θ′α = θα

′

G α
α′ , λ′α = G−1α

′

α λα′ . (1.3)

Superparticle models and free field theories in flat tensorial superspaces and on su-

pergroup manifolds OSp(1|n) have been studied in detail in [17] and [20]–[26]. It was

conjectured in [20, 21] and shown in [23, 24] that a field theory on OSp(1|4) is classically

equivalent to the OSp(1|8)-invariant free higher spin field theory in AdS4.

Interestingly enough, the spectrum of the quantum states and the wave equations

which one obtains by quantizing the particle propagating in the bosonic tensorial space is

supersymmetric and possesses OSp(1|2n) symmetry [21], while the spectrum of the quan-

tum states of the particle propagating in tensorial superspace is the doubly degenerate

spectrum of the ‘bosonic’ tensorial particle [17].

In the ‘bosonic’ case (i.e. when θα = 0) the quantization of the model (1.2) results in

the following equation of motion of the particle wave function Φ(Xαβ , λγ) [17]

(∂αβ − iλαλβ)Φ(X,λ) = 0 , (1.4)

which may be called the “preonic” equation in the light of the conjecture of [19].

Upon the Fourier transform of Φ(X,λ) into C(X, yα) =
∫

dnλ eiλα yαΦ(X,λ) the equa-

tion (1.4) takes the following equivalent form [21]
(

∂αβ + i
∂

∂yα
∂

∂yβ

)

C(X, y) = 0 . (1.5)

As was first shown in [21] the only dynamical fields among the components of the series

expansion of C(X, y) = b(X)+ fα(X) yα +
∑∞

n=2Cα1···αn(X) yα1 · · · yαn are the scalar field

b(X) and the spinor (or ‘svector’) field fα(X) which, as a consequence of (1.5), satisfy the

following equations of motion

(∂αβ∂γδ − ∂αγ∂βδ) b(X) := 2∂α[β∂γ]δ b(X) = 0 , (1.6)

∂αβfγ(X)− ∂αγfβ(X) := 2∂α[βfγ](X) = 0 . (1.7)

The equations (1.4)–(1.7) are OSp(1|2n) invariant [21], the subgroup GL(n) of OSp(1|2n)

being a manifest symmetry of these equations. The fields b(X) and fα(X) are superpartners

whose OSp(1|2n) transformations the reader can find in [21]. Below we present only their

part which corresponds to rigid supersymmetry and superconformal boosts with parameters

– 3 –



J
H
E
P
1
1
(
2
0
0
4
)
0
2
3

εα and sα, respectively

δb(X) = εα fα(X) + 2sαX
αβfβ(X) , δfα(X) = εβ ∂βα b(X) + 2sγX

γβ ∂βα b(X) . (1.8)

In the case of n = 4 (1.1) the fields b(X) and fα(X) subject to eqs. (1.6) and (1.7)

describe the infinite tower of the massless (and thus conformally invariant) fields of all

possible integer and half-integer spins in the physical four-dimensional subspace of the ten-

dimensional tensorial space [14, 21]. In the cases of n = 8 and n = 16 which correspond

to D = 6 and D = 10 space-time, respectively, the equations (1.6) and (1.7) describe

conformally invariant higher spin fields with self-dual field strengths (work in progress).

The field strengths of the D = 4 higher spin fields are components of the series expan-

sion of b(X) = b(xl, ymn) and fα(X) = fα(x
l, ymn) in powers of the tensorial coordinate

ymn

b(xl, ymn) = φ(x) + ym1n1Fm1n1(x) +

+ ym1n1 ym2n2

[

Cm1n1,m2n2(x) +
1

4
∂[n1 ηm1][m2

∂n2]φ(x)

]

+

+
∞
∑

s=3

ym1n1 · · · ymsns [Cm1n1,···,msns(x) + · · ·] ,

fα(xl, ymn) = ψα(x) + ym1n1

[

Ψα
m1n1

(x) +
1

2
∂m1(γn1ψ)

α

]

+

+
∞
∑

s= 5
2

ym1n1 · · · y
m
s− 12

n
s− 12

[

Ψα
m1n1,···,ms− 12

n
s− 12

(x) + · · ·

]

. (1.9)

In (1.9) φ(x) and ψα(x) are scalar and spin 1/2 field, Fm1n1(x) is the Maxwell field strength,

Cm1n1,m2n2(x) is the Weyl curvature tensor of the linearized gravity, Ψα
m1n1

(x) is the Rarita-

Schwinger field strength and other terms in the series stand for strengths of spin-s fields

(which also contain contributions of derivatives of lower spin fields denoted by dots, as in

the case of the Weyl curvature and of the Rarita-Schwinger field).

The OSp(1|2n) invariant equations of motion of the fields b(X) and fα(X) propagating

on the group manifold Sp(n) (see eqs. (2.12) and (2.13) of section 2.2) have been derived

in [25] from the Sp(n) counterpart of (1.4) and (1.5)

[

∇αβ −
i

2
(YαYβ + YβYα)

]

C(X, y) = 0 , Yα ≡ i
∂

∂yα
+
ς

4
yα , (1.10)

where ∇αβ are covariant derivatives generating the algebra Sp(n)

[∇αβ,∇γδ] = ςCα(γ∇δ)β + ςCβ(γ∇δ)α , (1.11)

Cαβ is a simplectic metric and ς is a constant proportional to the inverse AdS radius (the

square root of the cosmological constant). In [23] the general solution of the equations (1.10)

and their generalization to the supergroup manifolds OSp(N |n) were constructed and an-
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alyzed. For instance, in the case of n = 4 the equations (1.10) are equivalent to an infinite

system of equations of motion of all the integer and half-integer higher spin fields propa-

gating in AdS4 [23, 25].

At this point we should make the following comment. In the formulation described

in eqs. (1.4)–(1.11) the fields b(X) and fα(X) have the same statistics, namely they are

Grassmann even if Φ(X,λ) or C(X, y) is Grassmann even, while if we would like b(X) and

fα(X) to form a scalar OSp(1|n) supermultiplet we should assign to fα(X) the fermionic

statistics. An a priori un-physical statistics of a part of higher spin fields is a generic feature

of the unfolded formulations of higher spin field theory involving twistor-like Grassmann

even spinor variables λα or yα [27, 21]. To single out the fields with physically correct

statistics one can use several equivalent prescriptions [28, 10, 21]. In our case the most ap-

propriate one is the following ‘parity conservation’ requirement used in [17, 1]. One should

consider the complete (doubly degenerate) spectrum of states of the quantum superparticle

model (1.2) which on the mass shell is described by a generic Grassmann even superfield

of the form

g0(X,λ, θ) = Φ(X,λ) + i(λαθ
α)Ψ(X,λ) , (1.12)

where Ψ(X,λ) is a Grassmann odd counterpart of Φ(X,λ). In Ψ(X,λ) the half integer

spin fields have the correct statistics while the integer spin fields do not. We now notice

that the Grassmann parity of g0(X,λ, θ) can be related to the parity of g0(X,λ, θ) under

the change of the sign of λ (λ → −λ). If g0(X,λ, θ) = g0(X,−λ, θ) then Φ(X,λ) and

Ψ(X,λ) are expanded in the integer and half integer series of λ, respectively, and contain

the fields of only physically appropriate statistics (see [17] for details). Thus, strictly

speaking, one should regard the fields b(X) and fα(X) of eqs. (1.6), (1.7) and (2.12), (2.13)

as ones which come, respectively, from the field Φ(X,λ) and Ψ(X,λ) of (1.12), namely

b(X) =
∫

dnλΦ(X,λ) and fα(X) =
∫

dnλλαΨ(X,λ). We shall discuss this in more detail

in section 2.

Since the equations (1.6), (1.7) and their AdS counterparts are supersymmetric, a

natural question arises whether these equations can be formulated as superfield equations in

a corresponding tensorial superspace2 and whether they allow for a nonlinear generalization

which would result in an interacting theory of higher spin fields. In this paper we study

these problems.

First we combine the scalar field b(X) and the spinor field fα(X) into a scalar superfield

Φ(X, θ) and find simple superfield equations for Φ(X, θ) which reproduce (1.6), (1.7) and

the “preonic” equation (1.4). Then we look for a non-linear generalization of the superfield

equations. Our initial assumption has been that a class of non-linear models of this kind can

be constructed in a consistent geometrical way by considering a supergravity in tensorial

superspace. A stronger conjecture might be that the tensorial supergravity itself is an

example of a theory of interacting higher spin fields. If it was so, the superdiffeomorphisms

and the local GL(n) or SL(n) structure group transformations of the tensorial superspace

could generate infinite higher spin superalgebras in ordinary space-time.

2A superfield formulation of the unfolded higher spin dynamics [27, 21] was considered in [29].
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Our reasoning behind the idea to look for a non-linear dynamics of higher spin fields

within a superfield formulation of tensorial supergravity and not, for instance within a

bosonic tensorial gravity has been two fold

• the superfield equations of motion of the free higher spin fields are much simpler than

their component counterparts and hence may be more appropriate for a non-linear

generalization and

• as the experience of dealing with conventional superfield gauge and supergravity

theories teaches us, the imposition of constraints on the superfield contents of these

theories reduces the number of possible choices and in many cases produces a complete

set of superfield equations of motion whose form would be otherwise hard to guess in

the absence of clear group-theoretical and geometrical guidelines.

As we shall see, the supergeometry of the tensorial supergravity with GL(n) or SL(n)

holonomy which we derive from the requirement of the κ-invariance of the superparticle

action in the curved superspace background resembles that of N = 1, D = 2 and D = 3

supergravity. We find that general solutions of the supergravity constraints are tensorial

superspaces conformally related to flat tensorial superspace or to the supergroup manifold

OSp(1|n). Because of the conformal symmetry of the supergravity constraints and of the

scalar superfield equation such a geometry is trivial in the sense that it cannot generate a

kind of ‘minimal’ coupling of higher spin fields to their potentials. So our expectations to

find non-linear higher spin field equations in the framework of tensorial supergravity have

not been materialized yet. However, we believe that the results obtained lay a geometrical

basis for a new class of models formulated in tensorial superspaces and may be useful for

further development of this subject in various directions. One of them may hopefully bring

us to a non-linear higher spin dynamics.

The paper is organized as follows. In section 2 we construct the equations of motion of

a scalar superfield Φ(X, θ) in the flat tensorial superspace and on the supergroup manifold

OSp(1|n). We also find a superfield generalization of the “preonic” equation (1.4) and of

its AdS counterpart (1.10).

In section 3 we introduce the supergeometry of a curved tensorial superspace with the

holonomy group GL(n) and find constraints on its torsion and curvature which are required

by the κ-invariance of the (‘preonic’) superparticle action. We then impose additional con-

ventional supergravity constraints and study the consistency of the torsion and curvature

Bianchi identities. In particular we find that, as in the case of N = 1, D = 3 supergrav-

ity [30], the supergeometry with SL(n) holonomy is described by an antisymmetric tensor

superfield Rαβ(X, θ) and by a totally symmetric field Gαβγ(X, θ).

Section 4 is devoted to the consideration of the dynamics of the scalar superfield in an

external tensorial supergravity background. It is shown that its consistency requires the

background supergeometry to have SL(n) holonomy.

In section 5 we describe generalized Weyl (superconformal) transformations of the

supervielbeins and superconnection which leave the constraints form-invariant and study

superconformally flat and OSp-related geometries of tensorial superspaces.

– 6 –
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In section 6 we show that (being superconformally invariant) the dynamics of the

scalar superfield propagating in a conformally flat or OSp(1|n)-related tensorial superspace

is described by the free scalar superfield equation in flat superspace or on the supergroup

manifold OSp(1|n) and hence does not lead to a non-trivial interacting theory of higher

spin fields.

The general solution of the tensorial supergravity constraints is considered in section 7.

It is shown that (up to possible topological subtleties) the conformal tensorial superspaces

are the only solutions of this theory.

In conclusion we summarize the main results obtained and discuss possible ways in

which they can be developed.

2. Superfield generalization of the massless higher spin equations

2.1 Scalar superfield equations in flat tensorial superspace

Let us consider a scalar superfield

Φ(Xαβ , θγ) = b(X) + fα(X) θα +

n
∑

i=2

φα1···αi(X) θα1 · · · θαi (2.1)

in a flat tensorial superspace whose coordinates transform under rigid supertranslations as

follows

δθα = εα , δXαβ =
i

2
(θα εβ + θβ εα) = iθ(α εβ) . (2.2)

We are looking for a superfield equation for Φ(X, θ) which would reproduce the equa-

tions (1.6) and (1.7) for the leading components of Φ(X, θ) and from which it would follow

that the higher components of the superfield Φ(X, θ) are completely auxiliary and van-

ish on the mass shell. Since (1.6) and (1.7) are manifestly GL(n) invariant, the corre-

sponding superfield equation should also possess this symmetry. Taking this into account

we find that the only possible superfield equation quadratic in supercovariant derivatives

Dα = ∂/∂θα + iθβ∂βα ({Dα, Dβ} = 2i∂αβ) is

D[αDβ]Φ(X, θ) = 0 . (2.3)

It can be regarded as a generalization to the tensorial superspace of the defining conditions

of a tensor supermultiplet in D = 4 or of the equations of motion of a scalar supermultiplet

in D = 3.

The analysis of the equation (2.3) in flat tensorial superspace with an arbitrary even

number n of the Grassmann coordinates shows that all components of the superfield (2.1)

subject to (2.3) vanish, except for b(X) and fα(X), and the latter satisfy the equations (1.6)

and (1.7).

The equation (2.3) can be derived in a rigorous way from a superfield equation which

one gets by quantizing the tensorial superparticle model (1.2). As was considered in detail

in [17] the quantum states of the tensorial superparticle form a bosonic superfield

Υ(X, θ, λ, χ) = g0(X, θ, λ) + iχ g1(X, θ, λ) , (2.4)

– 7 –
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where χ is a real single Clifford variable (χ2 = 1) of the Grassmann odd parity. As

has been mentioned in the Introduction, to have the correct relation between spin and

statistics of the components of the series expansion of g0 and g1 in powers of λα, we require

that (2.4) is an even function under the change of sign of λ and χ (λ → −λ, χ → −χ),

namely Υ(X, θ, λ, χ) = Υ(X, θ,−λ,−χ). This implies that g0(X, θ, λ) = g0(X, θ,−λ) and

g1(X, θ, λ) = −g1(X, θ,−λ).

The superfield (2.4) satisfies the first order differential equation [17]

(Dα − χλα)Υ(X, θ, λ, χ) = 0 . (2.5)

From (2.5) it follows that

Dα g0 − i λα g1 = 0 , Dα g1 − i λα g0 = 0 . (2.6)

Hence, for example g1 can be expressed in terms of Dα g0

g1 = −iµ
αDα g0 , (2.7)

where µα is “inverse” of λα in the sense that µαλα = 1.

Thus only one superfield component of (2.4), e.g. g0(X, θ, λ) = g0(X, θ,−λ), is inde-

pendent. Now taking the derivative Dα of (2.6) we find that g0 should obey the equation

(DαDβ + λαλβ) g0(X, θ, λ) = 0 . (2.8)

The symmetric part of (2.8) is

(∂αβ − iλα λβ) g0(X, θ, λ) = 0 ,

which is similar to (1.4), while the antisymmetric part is

D[αDβ] g0(X, θ, λ) = 0 . (2.9)

Thus, we can regard (2.8) and/or (2.5) as a superfield generalization of the “preonic”

equation (1.4).

Integrating (2.9) over λ and defining Φ(X, θ) =
∫

dnλ g0(X, θ, λ), so that b(X) =
∫

dnλ g0(X, θ, λ)|θ=0 and fα(X) =
∫

dnλDα g0(X, θ, λ)|θ=0, we get the equation (2.3).

Thus, on the mass shell the scalar superfield (2.1) is linear in θα, which is in accordance

with the form of the wave function describing on-shell quantum states of the tensorial

superparticle discussed in the Introduction (eq. (1.12)).

2.2 Scalar superfield equations on OSp(1|n)

Let us now consider the case whenXαβ and θα parametrize a supergroupmanifold OSp(1|n)

and find the corresponding generalization of the superfield equation (2.3). For this we

should replace the flat covariant derivatives Dα with OSp(1|n) covariant derivatives ∇α

which extend the sp(n) algebra (1.11) to the osp(1|n) superalgebra3

{∇α,∇β} = 2i∇αβ , [∇αα′ ,∇β] = ς Cβ(α∇α′) . (2.10)

3Explicit expressions for the OSp(1|n) Cartan forms and covariant derivatives in particular parametriza-

tions has been given in [20, 25] and for the OSp(N |n) Cartan forms in a generic parametrization in [23].
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The scalar superfield equation on the supergroup manifold OSp(1|n) has the following form
(

∇[α∇β] + i
ς

4
Cαβ

)

Φ(X, θ) = 0 . (2.11)

The equation (2.11) reduces to the following equations on the dynamical components of

Φ(X, θ) [25]

∇α[β∇γ]δb(X) =
ς

4

(

Cα[β∇γ]δ+Cδ[β∇γ]α−Cβγ∇αδ

)

b(X)+
ς2

16

(

CαδCβγ−Cα[βCγ]δ

)

b(X) ,

(2.12)

∇α[βfγ](X) = −
ς

4

(

Cα[γfβ](X) + Cβγfα(X)
)

. (2.13)

The coefficient in front of the second term of (2.11) is fixed by checking the integrability

of this equation. To this end we observe that ∇α[β∇γ]δb(X) = (∇α[β∇γ]δΦ(X, θ))|θ=0 and

hence in view of (1.11)

∇(α[β∇γ]δ) b(X) =
1

2
(∇α[β∇γ]δ +∇δ[β∇γ]α)b(X) =

1

2
[∇α[β,∇γ]δ] b(X)

=
ς

4

(

Cα[β∇γ]δ b(X) + Cδ[β∇γ]α b(X)− Cβγ∇αδ b(X)
)

. (2.14)

The equation (2.14) is then compared with the bosonic equation (2.12) which follows

from (2.11). This fixes in the latter the factor iς
4 .

A superfield generalization of the “AdS preonic” equation (1.10) considered in [23] is

(∇α − χYα)Υ(X, θ, λ, χ) = 0 , (2.15)

while the OSp(1|N) analog of eq. (2.8) is

(∇α∇β + YβYα) g0(X, θ, λ) = 0 , Yα = λα −
iς

4
Cαβ

∂

∂λβ
. (2.16)

We observe that the superfield equations (2.3) and (2.11) are much simpler than their

component counterparts and therefore it is natural to take them as a starting point in

the search for a non-linear generalization of the higher-spin field equations. Since the

scalar field contains only the linearized field strengths of the higher spin fields one needs

to find a room for higher spin field potentials which are required for the construction of

‘minimal’ higher spin interactions. In this respect on can consider supergravity in tensorial

superspace and its coupling to the scalar superfield as a model which might provide us

with minimal-like higher spin interactions via supervielbeins and superconnections.

3. Geometry of tensorial superspace

3.1 The definition of tensorial supergeometry

As in the conventional supergravity case, curved tensorial superspace geometry is de-

scribed by the supervielbein one forms Eαβ(Z) = Eβα(Z) = dZME αβ
M (Z) and Eα(Z) =

dZME α
M (Z). The supercoordinates ZM = (Xµν , θρ) are assumed to transform under the

superdiffemorphisms Z ′M = fM(ZN ) (sdet(∂fM/∂ZN ) 6= 0) which leave the superviel-

beins invariant (E ′ A(Z ′) = EA(Z)).
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We have seen that in the flat case the superparticle model (1.2) is manifestly invariant

under the rigid transformations of the group GL(n) (1.3), which can be regarded as a kind

of the “Lorentz” group in the tensorial superspace. We shall therefore assume that in the

tensorial supergravity GL(n) plays the role of a generalized local Lorentz group acting

in the co-tangent tensorial superspace whose local basis is given by the supervielbeins

EA = (Eαβ , Eγ). As so, by analogy with the conventional spin connection of general

relativity and supergravity we introduce the GL(n) connection

Ωβ
α := dZMΩMβ

α ≡ EAΩAβ
α , (3.1)

the torsion 2-forms (where D stands for the GL(n)-covariant differential)

Tαβ := DEαβ ≡ dEαβ −Eαγ ∧ Ωγ
β −Eβγ ∧ Ωγ

α , (3.2)

Tα := DEα ≡ dEα −Eβ ∧Ωβ
α , (3.3)

and the curvature of the GL(n) connection

Rβ
α := dΩβ

α − Ωβ
γ ∧Ωγ

α . (3.4)

The Ricci identity DD = R in our notation implies DDEα ≡ −Eβ ∧Rβ
α.

In what follows we shall also discuss consequences of the restriction of the GL(n)

curvature to the SL(n) curvature by imposing the tracelessness constraint R α
α = 0.

The next step is to find the constraints on tensorial supergeometry. In the case of

conventional super Yang-Mills and supergravity theories there are different geometrical

and physical guiding lines to get superfield constraints. The one which we have at our

disposal is the κ-symmetry of the massless superparticle.

3.2 The massless superparticle in curved tensorial superspace

Let us consider the dynamics of a superparticle in a curved tensorial superspace and find

restrictions on its supergeometry which follow from the requirement for the model to possess

the same symmetries as in the flat limit. Thus, we shall derive the constraints on torsion

and curvature of a supergravity in tensorial superspace using the conventional requirement

that a superparticle or a superbrane propagating in the supergravity background should

be invariant under κ-symmetry, as in the flat case.

3.2.1 Superparticle action, κ-symmetry and the basic torsion constraint in ten-

sorial superspace

A straightforward generalization of the action (1.2) to the curved tensorial superspace is

S =
1

2

∫

Eαβ(Z(τ))λα(τ)λβ(τ) =
1

2

∫

dτEαβ
τ λαλβ , (3.5)

where the flat superform dXαβ(τ) − idθ(αθβ)(τ) of eq. (1.2) has been replaced with the

pull-back on the superparticle worldline of the bosonic supervielbein form Eαβ(Z)

Eαβ(Z(τ)) := dτEαβ
τ = dZM (τ)Eαβ

M (Z(τ)) . (3.6)
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In the flat case the action (1.2) is invariant under local κ-symmetry with n − 1 in-

dependent parameters, which means that the superparticle under consideration can be

associated with a BPS state (called the BPS preon [19]) which preserves all but one super-

symmetry [15]. The κ-symmetry transformations of the fields in the action (1.2) are

δκX
αβ(τ) = iδκθ

(α(τ) θβ)(τ) , δκ λα(τ) = 0 , (3.7)

δκθ
α(τ) =

n−1
∑

I=1

κI(τ)µα
I (τ) , (3.8)

where κI(τ) are n− 1 fermionic parameters and µα
I (τ) is a set of (n− 1) auxiliary bosonic

GL(n) vectors (or spinors of an SO(t,D− t) ⊂ GL(n) for n = 2k) which are orthogonal to

λα(τ)
4,

µα
I (τ)λα(τ) = 0 , I = 1, . . . (n− 1) . (3.9)

Actually (3.8) describes the general solution of the equation

δκθ
α(τ)λα(τ) = 0 , (3.10)

which can be used instead of (3.8) as the definition of (n− 1) parametric κ-symmetry.

The flat superspace action (1.2) is also invariant under the n(n − 1)/2 parametric

bosonic b-symmetry [15, 17], which can be treated as a bosonic ‘superpartner’ of the κ-

symmetry,

δbX
αα′ = µα

I µ
α′

J b
IJ(τ) (⇔ δbX

αα′ λα′ = 0) , δbθ
α(τ) = 0 , δbλα(τ) = 0 . (3.11)

We would like the κ-symmetry as well as the b-symmetry to be also preserved in the

supergravity background (see [37]). Such a requirement has a deep physical meaning: it

implies that the limit of flat superspace (when the background fields tends to zero) is

smooth and, in particular, that the number of the degrees of freedom of the dynamical

system does not change in such a limit. The curved superspace generalization of the

κ-symmetry and of the b-symmetry transformations (3.7) and (3.11) of the coordinate

functions are, respectively,

iκE
αα′ := δκZ

MEαα′

M = 0 , iκE
α := δκZ

MEα
M = µα

I κ
I(τ) , (3.12)

and

ibE
αα′ := δbZ

MEαα′

M = µα
I µ

α′

J b
IJ(τ) , ibE

α := δbZ
MEα

M = 0 . (3.13)

The variation of the bosonic spinor field λα(τ), δκλα and δbλα are to be defined from the

invariance of the action.

The invariance of the action (3.5) under the κ- and b-transformations (3.12) and (3.13)

requires the bosonic torsion of the tensorial superspace to be restricted by the constraints5

Tαβ = −iEα ∧Eβ + 2Eγ ∧Eδ(αtγδ
β)(Z) +Eγγ′ ∧Eδ(α tγγ′ δ

β)(Z) . (3.14)

4The bosonic spinors µαI can be considered [18] as counterparts of the Killing spinors corresponding to

an (n−1)/n supersymmetric (BPS preon) solution of supergravity equations, which is still hypothetical for

the standard supergravity but which exists in a Chern-Simons like supergravity [18].
5We should note that the requirement of the κ-symmetry itself already leads to the constraints (3.14),

while taking into the consideration of the b-invariance makes the analysis simpler.
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The complete set of the κ-symmetry and b-symmetry transformations leaving the action

(3.5) invariant in the background (3.14) is

iκE
αα′ = 0 , iκE

αλα = 0
(

⇔ iκE
α = µα

I κ
I(τ)

)

,

δκλα = iκE
βtβ α

γλγ ; (3.15)

ibE
αβλβ = 0 (⇔ ibE

αα′ = µα
I µ

α′

J b
IJ(τ) ) , ibE

α = 0 ,

δbλα =
1

2
ibE

ββ′tββ′ α
γλγ . (3.16)

Eq. (3.14) is the starting point for our analysis of possible supergravity constraints

in the tensorial superspace. In addition to (3.14) we also impose conventional constraints

which express some of superfields in terms of other ones or, equivalently, fix an arbitrariness

in the definition of the supervielbeins and the connection.

As this point, although well known in the context of standard supergravity [38], is

important for understanding that the supergravity constraints we find are indeed the most

general ones for the superspaces with the GL(n) and SL(n) structure group, we are going

to discuss it in more detail. The reader who is not interested in technicalities may skip the

next subsection 3.2.2 and pass directly to subsection 3.3.

3.2.2 On the freedom in superfield redefinitions and conventional constraints

In the case under consideration it is essential that the GL(n) structure group symmetry of

the tensorial superspace allows one to make, for instance, the following redefinition of the

‘spin’ connection (3.1) and of the fermionic supervielbein

Ωα
β 7→ Ωα

β +Eγrγα
β +

i

2
Eγδrγδα

β , (3.17)

Eα 7→ Eα −EβγSα
γβ , (3.18)

with arbitrary superfields rγα
β(Z), rγδα

β(Z) = rδγα
β(Z) and Sα

γβ(Z).

We now notice that the tensorial structure of components (3.14) of the bosonic tor-

sion (3.2) is similar to that of the superfields which are used in the redefinitions (3.17)

and (3.18). This allows us to simplify the torsion (3.14) by removing the tγδ
β(Z) super-

field and also set to zero either the lowest dimensional component of the GL(n) curvature,

Rδ γα
β = 0, or alternatively to eliminate the highest dimensional component of the bosonic

torsion, tγγ′ δ
β(Z) = 0. The additional conditions on the torsion and/or curvature obtained

in this way are called [33] conventional constraints in contrast to the essential constraint

on the torsion given by the form of the first term (−i Eα ∧ Eβ) on the right hand side

of (3.14).

Thus the two natural choices of the conventional constraints are

Tαβ = −iEα ∧Eβ +Eγγ′ ∧Eδ(α tγγ′ δ
β)(Z) , (3.19)

Rβ
α = Eγγ′ ∧EδRδ γγ′β

α +
1

2
Eγγ′ ∧Eδδ′Rδδ′ γγ′β

α (3.20)

and

Tαβ = −iEα ∧Eβ , (3.21)

Rβ
α =

1

2
Eγ ∧Eδ Rγδ β

α(Z) +Eγγ′ ∧EδRδ γγ′β
α +

1

2
Eγγ′ ∧Eδδ′Rδδ′ γγ′β

α . (3.22)
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One can see that the constraints (3.19), (3.20) and (3.21), (3.22) are related by the redef-

inition Ωα
β 7→ Ωα

β + 1
2E

γδtγ δα
β and Rγ δα

β = −itγ δα
β.

The consistency of the constraints (3.19), (3.20) or (3.21), (3.22) should be studied

with the use of the Bianchi identities

DTαβ +Eαγ ∧Rγ
β +Eβγ ∧Rγ

α ≡ 0 , (3.23)

DTα +Eβ ∧Rβ
α ≡ 0 , (3.24)

DRβ
α ≡ 0 . (3.25)

It is well known (see [38]) that although in the absence of constraints the Bianchi identities

only imply that the torsion and curvature are constructed from the supervielbeins and

connection, when the set of essential and conventional constraints are imposed, the Bianchi

identities lead to additional restrictions on the form of the torsion and curvature, and in

some cases produce dynamical equations of motion which then imply that corresponding

supergravity constraints are on shell.

Also in our case the Bianchi identities impose further conditions on the form of torsion

and curvature. In particular, already the study of the simplest lower dimensional compo-

nent of the Bianchi identity (3.23) shows that (3.19), (3.20) (as well as (3.21), (3.22)) imply

that Tγβ
α = 0, i.e. that

Tα = Eγγ′ ∧EδTδ γγ′
α +

1

2
Eγγ′ ∧Eδδ′Tδδ′ γγ′

α . (3.26)

Moreover, the higher dimensional components of the Bianchi identity (3.23) imply that all

the superfields in TA and R α
β can be expressed in terms of an antisymmetric superfield

Rαβ , a superfield Uαβ γ = Uβα γ and their derivatives, as we shall see in the next subsection.

3.3 The Bianchi identities and the complete set of the constraints in the ten-

sorial superspace with the structure group GL(n)

Thus eq. (3.14) which follows from the requirement of the κ-symmetry of the tensorial

superparticle and contains what is usually called essential constraints (in conventional su-

perspace these are Tαβ
a = −2iΓa

αβ) is the starting point for our analysis of the supergravity

constraints in tensorial superspace with the GL(n) structure group. In addition to (3.14)

we also impose conventional constraints (see Subsecion 3.2.2) which express some of su-

perfields in terms of other ones or, equivalently, fix an arbitrariness in the definition of

the supervielbeins and of the connection. By imposing the conventional constraints and

studying the Bianchi identities (3.23), (3.24) and (3.25) one finds the form of the torsion

and curvature of the tensorial superspace. A particular choice of conventional constraints

(see eqs. (3.19) and (3.20)) results in

Tαβ = −iEα ∧Eβ + 2Eγ(α ∧Eβ)δRγδ(Z) , (3.27)

Tα = 2Eαβ ∧EγRβγ +Eαβ ∧EγδUβγδ , (3.28)

Rβ
α = iEγδ ∧EαUβγδ −E

αγ ∧Eδ(Fδβγ +DδRβγ)−

−Eαγ ∧Eδε(D(βUγ)δε +DδεRβγ) . (3.29)
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In (3.29) Rγδ(Z) and Uαβγ(Z) = Uαγβ(Z) are ‘main’ superfields6, and

Fαβγ = 2iU(βγ)α − iUαβγ − 2D(βRγ)α . (3.30)

The main superfields are related by the equations

D[αUβ]γδ = −DγδRαβ , (3.31)

D(αUβ) γδ = −iD(γFδ) αβ (3.32)

and

DαβUγδσ −DδσUγαβ + 2Uγα(σRδ)β + 2Uγβ(σRδ)α = 0 , (3.33)

which are the constraints on Rαβ and Uαβγ required by the Bianchi identities (3.23)

and (3.24). Due to a straightforward generalization of the Dragon theorem [32] no other

independent constraints arise from the curvature Bianchi identities (3.25).

The superfields Uαβγ and Fαβγ can be alternatively expressed in terms of a totally

symmetric superfield Gαβγ , a derivative of Rγα and a mixed symmetry superfield Hαβγ =

Hαγβ as follows

Uαβγ = Gαβγ +
2i

3
D(βRγ)α +Hαβγ ,

−iFαβγ = Gαβγ +
2i

3
D(βRγ)α − 2Hαβγ . (3.34)

This decomposition is useful when we perform the reduction of GL(n) holonomy to SL(n)-

holonomy, which is achieved by putting Hαβγ = 0 (see section 4).

Note that if we choose Rαβ = − ς
2Cαβ and U(αβγ)(Z) = 0 we find that R β

α = 0, and

the constraints (3.27)–(3.29) reduce to the defining relations of the Maurer-Cartan forms

and of the torsion of the supergroup OSp(1|n) in the flat basis (Ω β
α = 0), whose covariant

derivatives form the OSp(1|n) superalgebra (1.11), (2.10). The OSp(1|n) Maurer-Cartan

equations are

dEαβ = −iEα ∧ Eβ − ζEαγ ∧ EδβCγδ ,

dEα = −ζEαγ ∧ EδCγδ . (3.35)

A different but equivalent set of constraints can be obtained by making the following

redefinition of the connection

Ωβ
α −→ Ωβ

α −EαγRγβ (3.36)

which results in the corresponding redefinition of the vector covariant derivative. The

constraints take the form

Tαβ = −iEα ∧Eβ , (3.37)

Tα = Eαβ ∧EγRβγ +Eαβ ∧EγδUβγδ , (3.38)

Rβ
α = −iEα ∧EγRβγ + iEγδ ∧EαUβγδ −E

αγ ∧EδFδβγ −

−Eαγ ∧Eδε(D(βUγ)δε +RβεRγδ) , (3.39)
6We hope that the reader will not confuse the curvature two-form R α

β with the superfield Rαβ . The

notation for the latter has been chosen by analogy with N = 1, D = 3 supergravity where Rαβ = εαβ R [30].

Note also that, since we deal with the holonomy groups GL(n) and SL(n), for n > 2 there is no metric to

rise and lower the indices.
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where the main superfields Uαβγ and Rαβ satisfy the constraints

D[αUβ]γδ = −DγδRαβ , (3.40)

D(αUβ) γδ = −iD(γFδ) αβ (3.41)

and

DαβUγδσ −DδσUγαβ +Rγ(αUβ)δσ −Rγ(δUσ)αβ = 0 . (3.42)

To conclude, eqs. (3.27), (3.28) and (3.29) describe the most general constraints on

the geometry of curved tensorial superspace with the holonomy group GL(n) which are

required by the tensorial superparticle with (n − 1) κ-symmetries. The equivalent set of

constraints (3.37), (3.38) and (3.39) can be obtained by making superfield redefinitions

with the use of the main superfields R and U as parameter functions.

3.4 Tensorial superspace with the holonomy group SL(n)

When n = 2 the constraints (3.27)–(3.29) and (3.37)–(3.39) describe conformal N = 1,

D = 3 supergravity [30]. In this case the superfield Rαβ gets reduced to the scalar density

R (Rαβ = εαβ R), and the trace part of the GL(2) connection and curvature correspond to

local Weyl (scaling) symmetry. To reduce the conformal D = 3 supergravity to the off-shell

N = 1, D = 3 Poincaré supergravity one imposes the additional tracelessness constraint

on the curvature

Rα
α = 0 . (3.43)

This reduces GL(2) down to SL(2) ≈ O(1, 2) which is isomorphic to the D = 3 Lorentz

group.

The constraint (3.43), restricting GL(n) to SL(n), can also be imposed in the general

case of n ≥ 2. Then the main superfields reduce to

− iFαβγ = Uαβγ = Gαβγ +
2i

3
D(βRγ)α , (3.44)

where Gαβγ is totally symmetric. In view of (3.34) we observe that the condition of SL(n)

holonomy amounts to putting to zero the tensor Hαβγ .

The superfields U , G and R satisfy the following differential relations

D(αUβ)γδ = D(γUδ)αβ , (3.45)

(which is a consequence of (3.32) and (3.44)), and

D[αGβ]γδ = −DγδRαβ −
i

3

(

DαD(γRδ)β −DβD(γRδ)α

)

. (3.46)

Since Gβγδ is totally symmetric, from eq. (3.46) we can get

2D[αGβ]γδ = −D(γδRα)β +D(γδRβ)α . (3.47)

To derive (3.47) we first symmetrize the left and the right hand side of (3.46) in (γδα) and

then sum up the result with the symmetrization of (3.46) in (γδβ).
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Comparing (3.46) with (3.47) we find a condition which must be satisfied by Rαβ and

which will appear in section 4 as part of the integrability of a scalar superfield equation

in an external tensorial supergravity background. This condition can also be obtained by

antisymmetrizing the indices [αβγ] in (3.46) which gives

D[αDβRγ]δ +DδD[αRβγ] = 5iDδ[αRβγ] . (3.48)

Then symmetrizing eq. (3.48) with respect to (γδ) and regrouping indices we get

DγD[αRβ]δ +DδD[αRβ]γ = 2iDγδRαβ + 3iDγ[αRβ]δ + 3iDδ[αRβ]γ . (3.49)

We shall encounter this last form of the condition on Rαβ in section 4 analyzing the consis-

tency of the propagation of a scalar field in a non-linear tensorial supergravity background.

Let us also note that using the anticommutation relation {Dα,Dα} = 2iDαβ , from

(3.49) one finds that the last two terms in the right hand side of (3.46) can be rewritten in

the form

DαD(γRδ)β −DβD(γRδ)α = 2iDγδRαβ + iDγ[αRβ]δ + iDδ[αRβ]γ (3.50)

which upon the substitution into (3.46) gives (3.47). This can be regarded as a check or

as an alternative derivation of eq. (3.47).

Eq. (3.48) is identically satisfied in the case of N = 1, D = 3 supergravity (in which

case α, β, γ = 1, 2, and hence the antisymmetrization of three indices gives zero), but it is

nontrivial for the tensorial superspaces with n > 2.

Using (3.44), from eq. (3.45) one derives another consequence of the constraint (3.43)

D[αGβ]γδ +D[γGδ]αβ = −
2

3

(

Dδ(αRγ)β +Dβ(αRγ)δ

)

. (3.51)

In view of (3.47) the equation (3.51) (and hence (3.45)) is identically satisfied and therefore

does not put further restrictions on the form of Rαβ and Gαβγ .

To conclude, when the holonomy group is restricted to SL(n) by (3.43), the con-

straints (3.27) and (3.28) remain the same

Tαβ = −iEα ∧Eβ + 2Eγ(α ∧Eβ)δRγδ ,

Tα = 2Eαβ ∧EγRβγ +Eαβ ∧EγδUβγδ (3.52)

while (3.29) reduce to

Rβ
α = iEγδ ∧EαUβγδ −E

αγ ∧Eδ(iUδβγ +DδRβγ)−

−Eαγ ∧Eδε(D(βUγ)δε +DδεRβγ) . (3.53)

The superfield Uαβγ is expressed through the totally symmetric superfield Gαβγ and a

derivative of the superfield Rαβ by the equation (3.44), the main superfields Gαβγ and Rαβ

being related to and constrained by eqs. (3.46) and (3.33).

We should note that further reduction of the SL(n) holonomy group down to its sub-

group Sp(n) imposes in the case of n > 2 additional restrictions on Rαβ and Gαβγ which

trivialize the tensorial supergravity down to either flat tensorial superspace or the super-

group manifold OSp(1|n).

– 16 –



J
H
E
P
1
1
(
2
0
0
4
)
0
2
3

In the case of the N = 1, D = 3 supergravity (where n = 2) SL(2) is isomorphic to

Sp(2), the constraints (3.52)–(3.53) are off the mass shell and the trivialization does not

occur. The supergravity equations of motion are obtained by putting

Rαβ = 0, Gαβγ = 0 , (3.54)

or in the case of AdS

Rαβ = −
ς

2
Cαβ , Gαβγ = 0 . (3.55)

These equations imply that pure N = 1, D = 3 supergravity is non-dynamical, since its

torsion and curvature vanish [30].

Also in the case of n > 2 the equations (3.54) or (3.55) single out, respectively, the flat

or OSp(1|n) vacuum solution of the tensorial supergravity constraints.

4. The scalar superfield equation in a tensorial supergravity background

In the previous sections we have derived the constraints of tensorial supergravity from

the requirement of the κ-symmetry of the “preonic” superparticle. The supergravity con-

straints can also be obtained (see [33, 38] for the ordinary case) by requiring that in curved

superspace there exist (super)field representations of (generalized) supersymmetry simi-

lar to those in flat superspace. In our case of flat tensorial superspace and of OSp(1|n)

the only known representation is described by the scalar superfield obeying the dynamical

equations (2.3) and (2.11), respectively. So it is natural to consider a curved superspace

generalization of these equations and to analyze which restrictions on superspace geom-

etry are imposed by its integrability. Instead of starting again from the most general

structure of tensorial supergeometry, in this section we shall consider a possible general-

ization of eqs. (2.3) and (2.11) in a curved superspace already subject to the supergravity

constraints (3.27), (3.28) and (3.29). Interestingly enough, the integrability of the scalar

superfield equation will require the curved superspace holonomy to be SL(n) and not GL(n).

A natural generalization of the free superfield equations (2.3) and (2.11) is

D[αDβ]Φ =
i

2
Rαβ Φ . (4.1)

One gets eqs. (2.3) and (2.11) from (4.1) by putting Uαβγ = 0 and Rαβ = 0 or Rαβ =

− ς
2Cαβ , respectively

7. A more general form of the scalar superfield equation is discussed

in appendix B.

Let us now study the integrability of the equations (4.1) in the case of supergravity

with the holonomy group GL(n) subject to the constraints (3.27)–(3.29). To this end we

need the following covariant derivative commutation relations (where Wδ is an arbitrary

superfield)

{Dα , Dβ} = 2iDαβ , (4.2)

[Dαβ , Dγ ]Wδ = −2Rγ(αDβ)Wδ − iUδαβWγ + Fγδ(αWβ) +DγRδ(αWβ) , (4.3)

7Note that eq. (4.1) resembles a conformally invariant scalar field equation in a D = 4 gravitational

background gmnDm∂n b(x) =
1
6
R(x) b(x), where R(x) is the curvature scalar.
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and

[Dαβ , Dγδ]Wε = −4R(γ|(αDβ)|δ)Wε + U(α| γδD|β)Wε − U(γ|αβDδ)Wε +

+DγδRε(αWβ) −DαβRε(γ Wδ) +
1

2
DεU(α| γδ W|β) −

−
1

2
DεU(γ|αβ Wδ) −

1

2
W(βDα)Uε γδ +

1

2
W(δDγ)Uε αβ , (4.4)

where it is implied that the indices (αβ) as well as (γδ) are symmetrized with the unit

weight (Aαβ = A(αβ) + A[αβ]). Acting on (4.1) with Dγ and using (4.2) and (4.3) we get

the non-linear counterpart of the fermionic equations (1.7) and (2.13)

Dα[βDγ]Φ =
1

2

(

Rα[γDβ]Φ+RβγDαΦ
)

−
Φ

6
D[βRγ]α +

Φ

6
DαRβγ . (4.5)

Acting on (4.5) with Dδ and using the commutation relations (4.2) and (4.3) we get

the non-linear counterpart of the bosonic equations (1.6) and (2.12)

Dα[βDγ]δΦ =
1

2

(

RβγDαδ −Rα[βDγ]δ −Rδ[βDγ]α

)

Φ+
1

4

(

RαδRβγ −Rα[βRγ]δ

)

Φ+

+
i

6
DαRβγDδΦ−

i

6
D[βRγ]αDδΦ+

i

2
DαRδ[βDγ]Φ−

i

2
D[βΦDγ]Rαδ +

+
Φ

6
(3Dα[β Rγ]δ − iDδDαRβγ + iDδD[βRγ]α) + (4.6)

+U[βγ]αDδΦ+
1

2
U(γα)δDβΦ−

1

2
U(βα)δDγΦ+

1

2
Uδα[βDγ]Φ .

On the other hand, as a consequence of the constraints (3.27) and (3.28) the ‘antisym-

metrized’ commutator of the bosonic covariant derivatives (4.4) acting on a scalar superfield

has the following form

1

2
[Dα[β ,Dγ]δ] Φ =

1

2
(Dα[βDγ]δ +Dδ[βDγ]α)Φ (4.7)

=−
1

2
(Rα[βDγ]δΦ+Rδ[βDγ]α Φ−RβγDαδ Φ)+

1

2

(

U[βγ](αDδ)Φ−U(αδ)[βDγ]Φ
)

.

From (4.7) it follows that for the equation (4.1) to be consistent, the right hand side of

the equation (4.6) symmetrized in α and δ must coincide with the right hand side of (4.7).

This results in the equation

0 = U[βγ](αDδ)Φ−
i

3
D(αΦDδ)Rβγ −

i

3
D[βRγ](αDδ)Φ+

+U(α δ)[β Dγ]Φ+ D[γΦUβ]αδ +D(αRδ)[β Dγ]Φ+

+
Φ

12

(

DαδRβγ + 3Dα[βRγ]δ + iDαD[βRγ]δ + α↔ δ
)

. (4.8)

The above equation is identically satisfied in the case of the tensorial supergravity with the

holonomy group SL(n) described in subsection 3.4. Indeed, the first and the second line

in (4.8) vanish in virtue of eq. (3.44), while the last line coincides with the left hand side

of eq. (3.49).

Thus, the scalar superfield can consistently propagate in any tensorial supergravity

background with SL(n) holonomy. Peculiarities of the coupling of a scalar superfield to

N = 1, D = 3 supergravity are briefly discussed in appendix C.
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5. Generalized Weyl invariance of the tensorial supergravity constraints

and conformally related supermanifolds

Let us now proceed with studying the properties of the tensorial supergravity constraints

and looking for their general solution in terms of an unconstrained superfield. To this

end consider the following transformations of the supervielbeins and superconnection of a

tensorial superspace

E′αβ = Eαβ ,

E′α = Eα +EαβWβ

Ω ′αβ = Ωβ
α − iEαWβ −E

αγ(Dγ Wβ + iWγWβ) , (5.1)

where Wα is an arbitrary spinor superfield. Then, as one can check, the form of the

supergravity torsion and curvature (3.27)–(3.29) remain intact when the transformed R ′αβ
and U ′αβγ are defined as

R′αβ = Rαβ −D[αWβ] −
i

2
WαWβ ,

U ′αβγ = Uαβγ +Dβγ Wα −W(γ Dβ)Wα . (5.2)

As a result, the main superfields R′αβ and U ′αβγ satisfy the constraints (3.31)–(3.33)

provided that Rαβ and Uαβγ solve them and vice versa.

Thus the solutions of the supergravity constraints (3.27)–(3.29) form classes of equiva-

lence whose members are related by the transformations (5.1)–(5.2). These can be regarded

as a kind of generalized super-Weyl transformations which reduce to proper Weyl transfor-

mations when Wα = −iDαW (Z) with W (Z) being a scalar superfield (see e.g. [34, 35]).

In particular, when R′αβ = 0 = U ′αβγ correspond to the flat superspace, eqs. (5.2)

describe a class of conformally flat tensorial superspaces whose holonomy group is SL(n)

if Wα = −iDαW (Z)

Rαβ = D[αWβ] +
i

2
WαWβ ,

Uαβγ = −Dβγ Wα +W(γ Dβ)Wα . (5.3)

To see this let us calculate the trace of the curvature (3.29) with Rαβ and Uαβγ given

by eqs. (5.3). The trace takes the form

Rαβγ, δ
δ = −iDβγWα +DαD(βWγ) + 2iW(βRγ)α . (5.4)

For a generic Wα the trace of the curvature is non-zero, however it identically vanishes

when Wα = −iDαW . Indeed in this case, in virtue of the commutation relations

{Dα , Dβ} = 2iDαβ , (5.5)

[Dαβ , Dγ ]W = −2Rγ(αDβ)W , (5.6)

we get

Rαβγ, δ
δ = −[Dβγ ,Dα]W − 2Rα(βDγ)W ≡ 0 . (5.7)
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A simpler way to arrive at the same conclusion is to calculate the trace of the connection

in (5.1), Ω′αα = Ωα
α − iEαWα − EαβDαWβ. With Wα = −iDαW and Ω′αα = 0 this gives

Ωα
α = dW which implies Rα

α = 0.

In conventional superfield theories, a detailed analysis of which superspaces among

supermanifolds containing AdSd×S
m are superconformally flat has been carried out in [35].

For instance, it was demonstrated that the N = 1 supersymmetric AdS3 isomorphic to

OSp(1|2) is superconformally flat. This is also a particular case of the tensorial superspace

under consideration when n = 2, Rαβ = − ς
2 εαβ and Uαβγ = 0.

In [24, 25] it has been found that OSp(1|n) are so called GL(n) flat supermanifolds, i.e.

their bosonic supervielbeins Eαβ are obtained from the flat ones by a transformation with

a certain GL(n) matrix, while the fermionic supervielbeins Eα have a more sophisticated

form than that of (5.1). For n = 2 the two properties, superconformal flatness and GL-

flatness, are equivalent since GL(2) ∼ SL(2)×R and SL(2) ∼ Sp(2) is the holonomy group

of OSp(1|2). As we have already discussed a supergroup manifold OSp(1|n) with n > 2

has the holonomy group Sp(n) which is smaller than SL(n), therefore in the generic case

the properties of superconformal flatness and of GL-flatness (which, in the way it works,

preserves Sp(n)-holonomy) are not equivalent and hence do not imply each other.

Indeed, the supergroup manifold OSp(1|n) with n > 2 is not superconformally flat. To

show this let us recall again that the main superfields Rαβ and Gαβγ of OSp(1|n) satisfy

the equations (3.55) and Uαβγ = 0 which imply that

D(α Cβ)γ = D(α Cβ)γ − Ω(αβ)
δ Cγδ + Cδ(α Ωβ) γ

δ = 0 ⇒ Ω(α [β)
δ Cγ]δ = 0 . (5.8)

Substituting into (5.8) the superconformally flat form of the connection (see eq. (6.2) of

section 5) we arrive at the condition

(n− 2)(n+ 1)DαW = 0 , (5.9)

from which it follows that the Weyl scalar superfieldW (Z) does not reduce to the constant

only when n = 2. When n > 2, W = const and thus (3.55) are consistent with (5.3) if only

ς = 0. Hence, OSp(1|n) with n > 2 is not superconformally flat.

As so, in the case, when R′αβ = − ς
2Cαβ and U ′αβγ = 0 which are that of the su-

permanifold OSp(1|n), the generalized Weyl transformations produce a class of tensorial

superspaces which are not superconformally flat but are conformally related to OSp(1|n)

with Rαβ and Uαβγ having the following form

Rαβ = −
ς

2
Cαβ +D[αWβ] +

i

2
WαWβ , (5.10)

Uαβγ = −Dβγ Wα +W(γ Dβ)Wα . (5.11)

We should note that though the supermanifold OSp(1|n) we started with has the holonomy

group Sp(n) with respect to which Cαβ is covariantly constant, the resulted supermanifolds

described by (5.10) and (5.11) have (in general) the holonomy group GL(n) which reduces to

SL(n) when Wα = −iDαW (Z). With respect to the GL(n)- or SL(n)-covariant derivative

Cαβ is not covariantly constant. Hence, the equation (5.10) should be considered as valid in

some gauge which reduces GL(n) or SL(n) down to Sp(n). The GL(n) covariant expression
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for Rαβ is

Rαβ = −
ς

2
Xαβ(Z) +D[αWβ] +

i

2
WαWβ , (5.12)

where Xαβ(Z) is now an antisymmetric tensor superfield with detXαβ 6= 0. Using a local

GL(n) transformation X ′αβ(Z) = G α′

α (Z)G β′

β (Z)Xα′β′(Z) it is always possible to put

X ′αβ(Z) = Cαβ and to reduce (5.12) to (5.10).

6. Decoupling of higher spin field dynamics from superconformal geome-

try

Since the higher spin fields (at least at the linearized level) are described by the single

scalar superfield it is natural to assume that in order to switch on non-trivial higher spin

interactions the geometry of tensorial supergravity coupled to the scalar superfield is itself

expressed in terms of this single scalar superfield (see [5] for a somewhat similar assumption

in the framework of the unfolded higher spin formulation). If we restrict ourselves to

the class of conformally flat manifolds or to the class of manifolds conformally related to

OSp(1|n) discussed in the previous section and assume that the geometry is expressed

in term of a single physical scalar superfield Φ we find that the geometry reduces to flat

superspace (or to OSp(1|n) superspace) and the superfield Φ (in a sense) decouples from the

geometry. The reason is in the generalized super-Weyl invariance of both the supergravity

constraints and the scalar superfield equation (4.1).

Let us first discuss the conformally flat case and then the OSp(1|n) related one.

Using the generic expressions of section 4 the supervielbeins and the SL(n) connection

of a conformally flat superspace can be presented in the following conventional form (cf.

e.g. [34, 35])

Eαβ = e
2W (Z)

n Eα′β′

0 L α
α′ (Z) L

β
β′ (Z) , Eα = e

W (Z)
n (Eα′

0 − iE
α′β′

0 Dβ′W )L α
α′ (Z), (6.1)

Ω α
β = Ω0β

α +
1

n
dW δβ

α − L−1β
β′

[

Eα′

0 Dβ′W +Eα′γ
0 (Dγβ′W +

i

2
DγW Dβ′W )

]

L α
α′ ,

Ω α
α ≡ 0 , (6.2)

where L α
β (Z) is a matrix of local SL(n) transformations which together with e

W (Z)
n form

a GL(n) matrix G α
β = e

W (Z)
n L α

β . The supervielbeins Eαβ
0 , Eα

0 and the connection Ω α
0β

satisfy the constraints of a flat superspace

Tαβ
0 = −iEα

0 ∧E
β
0 , Tα

0 = 0 = R0
α

β (6.3)

and Dαβ and Dα are corresponding covariant derivatives.

In particular, in the ‘flat’ basis

Eαβ
0 = dXαβ − idθ(α θβ), Eα

0 = dθα , Ω α
0β = 0 , L α

β = δ α
β , (6.4)

Dαβ =
∂

∂Xαβ
≡ ∂αβ , Dα =

∂

∂θα
+ iθβ ∂βα (6.5)
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and

Dαβ = e−
2W
n (Dαβ − iD(αW Dβ)) + Ωαβ − ie

−W
n D(αW Ωβ) , Dα = e−

W
n Dα +Ωα , (6.6)

Using the constraint relations (3.37)–(3.39) and (3.43) one finds that in the ‘flat’ basis

the main superfields Rαβ and Uβγδ have the form

Rαβ = i e−
2W
n

[

D[αDβ]W +
1

2
DαW DβW

]

, (6.7)

Uβ γδ = e−
3W
n

[

−i∂γδDβW +D(γW Dδ)DβW
]

, (6.8)

or in the basis of the ‘curved’ covariant derivatives (6.6)

Rαβ = iD[αDβ]W −
i

2
DαW DβW

= −D[αWβ] +
i

2
WαWβ , (6.9)

Uβ γδ = iDγδDβW −D(γ W Dδ)DβW

= −DγδWβ +W(γDδ)Wβ . (6.10)

where we have introduced Wα ≡ −iDαW to compare these expressions with those of

section 4.

In view of a generic reasoning behind the constraint conserving transformations of

the supervielbeins and superconnection given in section 4 one can directly check that the

main superfields (6.7)–(6.10) identically satisfy the constraints (3.37)–(3.43) of tensorial

supergravity with SL(n) holonomy, which can be checked directly.

Now our assumption that the geometry depends only on the scalar superfield Φ implies

that W becomes a scalar function of Φ, W = W (Φ), and using this (physical) scalar

superfield W (Φ), we are allowed to perform the Weyl transformation (5.1) and get for the

transformed superfields R′αβ = 0 = U ′αβγ , i.e. flat superspace8. Thus the superfield Φ

decouples from supergravity, and the most general form of the scalar superfield equation

which one may construct in such a case is

D[αDβ] Φ = Xαβ(Φ) , (6.11)

where Xαβ(Φ) is an antisymmetric tensor which depends on Φ and its derivatives. Xαβ(Φ)

must satisfy an integrability condition (see (B.4) of the appendix B, where one should put

Dα = Dα, Dαβ = ∂αβ and Rαβ = 0).

8Note that if we formally put to zero only Rαβ while keeping Uαβγ in the form (6.10) we get

Rαβ = 0 ⇒ D[αDβ]W +
1

2
DαW DβW = 0 .

This equation reduces to the free scalar superfield equation (2.3) upon the field redefinition W = 2lnΦ, or

better W = 2ln(Φ + a) with an arbitrary constant a > 0. So one might think that at least free higher spin

dynamics is intrinsically encoded in superconformally flat tensorial geometry, but this is not the case since

using the super-Weyl transformations with a parameter satisfying the free scalar superfield equation one

can put Uαβγ = 0 and arrive in flat superspace with no dynamics.
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If, for example, we choose Xαβ(Φ) = −f ′(Φ)DαΦDβΦ, where f(Φ) is an arbitrary

function and f ′(Φ) = df
dΦ , the eq. (6.11) takes the form

D[αDβ]Φ+ f ′(Φ)DαΦDβΦ = 0 ,

which upon the field redefinition Φ̃ = const ·
∫

dΦ ef(Φ) (i.e. dΦ̃
dΦ = const · ef(Φ)) reduces to

the free scalar superfield equation (2.3).

If there exists a more general Xαβ(Φ) satisfying the consistency condition (see eq. (B.4)

of appendix B), the equation (6.11) would describe a non-linear dynamics of a self-interac-

ting scalar superfield Φ(Z). Since, as we have explained in the Introduction, Φ(Z) contains

only the linearized field strengths of the higher spin fields and not their potentials, such a

non-linear dynamics of higher spin fields would not include minimal coupling terms which

require potentials or connections. It would contain only terms constructed of higher or-

ders of the higher spin field strengths. As a result, the non-linear model obtained in

this way would be analogous in a certain sense to the abelian Dirac-Born-Infeld the-

ory.

Let us now discuss the case of the tensorial manifolds conformally related to OSp(1|n).

The consideration follows the same lines as in the case of the conformally flat manifolds

and the result is that in terms of the OSp(1|n) covariant derivatives the main tensor fields

describing their geometry have the following form

Rαβ = i e−
2W
n

[

i
ς

2
Cαβ +∇[α∇β]W +

1

2
∇αW ∇βW

]

, (6.12)

Uβγδ = e−
3W
n

[

−i∇γδ∇βW +∇(γW ∇δ)∇βW
]

. (6.13)

With such a definition of Rαβ and Uβγδ the spin connection of this tensorial superspace is

SL(n)-valued.

Again one can now perform the field redefinitions (4.1) to end with the OSp(1|n)

geometry. As in the case of the conformally flat superspace the field W disappears from

the transformed torsion and curvature and eventually we can impose on Φ the linear scalar

superfield equation9
(

∇[α∇β] + i
ς

4
Cαβ

)

Φ(X, θ) = 0 .

As in the case of the flat tensorial superspace a problem for future study is to under-

stand if the integrability conditions discussed in appendix B allow for the existence of more

general, non-linear scalar superfield equation on OSp(1|n) in the form

∇[α∇β]Φ = Xαβ(Φ) . (6.14)

9Note that, as in the superconformally flat case this equation can be obtained from eq. (6.12) by a formal

trick, namely by putting in (6.12) Rαβ = − ς
2
Cαβ exp{(1+4/n)W/2} and making in the resulting equation

∇[α∇β]W +
1

2
∇αW ∇βW = −

iς

2
Cαβ

(

1− e−
W
2

)

the field redefinition W = 2 ln(Φ+a
a

) , a > 0 .
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From the above discussion we can conclude that to construct non-linear higher spin

equations involving in a non-trivial way higher spin field potentials one should have at

his disposal more general tensorial superspaces than superconformally flat manifolds or

manifolds conformally related to OSp(1|n). However, as we shall demonstrate in the next

section, the superconformal tensorial superspaces are the general solution of the supergrav-

ity constraints (at least locally, or when the first cohomology of the tensorial superspace is

trivial).

7. The general solution of the tensorial supergravity constraints

Let us show that (up to topological subtleties) the superconformally flat and OSp related

geometries studied in sections 5 and 6 form the general solution of the tensorial supergravity

constraints (3.27), (3.28) and (3.29). To this end consider a weak deviation of tensorial

supergeometry from the ‘vacuum’ solutions, namely, from the flat superspace (3.54), and

from the supergroup manifold OSp(1|n) (3.55).

In the weak superfield approximation over the flat superspace the main superfields

describing such a curved tensorial superspace are considered to be infinitesimal of order

one, Rαβ = o(1) and Uα βγ = o(1). The constraints (3.31), (3.32) and (3.33) on these

superfields should be satisfied order by order and in particular in the linear approximation

for the infinitesimal quantities of order one. In this approximation we ignore the connection

terms in the covariant derivatives (which thus become those of the flat superspace) and

drop the second order terms in eq. (3.33). Then eq. (3.33) takes the form

∂αβUγδσ − ∂δσUγαβ = 0 . (7.1)

As a consequence of the Poincaré lemma its general solution is

Uγαβ = −∂αβΨγ . (7.2)

Now in the linear approximation eq. (3.31) reduce to

∂γδRαβ = D[α|∂γδΨ|β] = ∂γδD[αΨβ] . (7.3)

Its general solution is

Rαβ = D[αΨβ] + aαβ , ∂γδaαβ = 0 , aαβ = −aβα = o(1) , (7.4)

where aαβ is independent of Xαβ . In the simplest case when aαβ is a constant matrix it can

be absorbed by Ψβ if one performs the following redefinition Ψβ → Ψβ + θγaγβ . If aαβ is a

generic polynomial in θ, the solution (7.4) breaks the GL(n) symmetry and supersymmetry

of the original system of supergravity constraints.

When aαβ = 0, eqs. (7.1) and (7.4) describe a weak superfield approximation of the su-

perconformally flat geometry (6.9) and (6.10) with Wα = Ψα = o(1). Extending the above

analysis to higher orders in the superfields we find that the superconformally flat geometry

is the general solution of the constraints on tensorial supergravity which is continuously

related to the flat superspace vacuum.
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Let us now consider curved tensorial superspaces with the holonomy group GL(n) or

SL(n) whose geometry weakly differs from the ‘vacuum’ superspace OSp(1|n) (3.55). In

the weak field approximation the superfield Uαβγ is infinitesimal of order one Uαβγ = o(1),

while Rαβ = − ς
2 Cαβ +rαβ is of order zero, with rαβ being infinitesimal of order one . Note

also that the covariant derivatives of Rαβ are infinitesimal of order one DRαβ = o(1)10.

More explicitly, in the linear approximation

DRαβ = (∇+Ω)Rαβ = −
ς

2
DCαβ +∇ rαβ = ς Ω γ

[α Cβ]γ +∇ rαβ = o(1) , (7.5)

where ∇ are the covariant derivatives satisfying the osp(1|n) superalgebra (1.11) and (2.10)

(note that ∇Cαβ = 0), and Ω β
α is an order one deviation of the GL(n) (or SL(n)) connec-

tion of the curved superspace from the Sp(n) connection of the supermanifold OSp(1|n).

In the linear approximation the equation (3.33) takes the form

∇αβUγδσ −∇δσUγαβ − ς Uγα(σCδ)β − ς Uγβ(σCδ)α = 0 . (7.6)

Its general solution is

Uγαβ = −∇αβΨγ . (7.7)

Using (7.7) and (4.3) in the weak superfield approximation one finds that eq. (3.31) reduces

to

Dγδ(Rαβ −D[αΨβ]) = −2R[α|(γ Dδ)Ψ|β] , (7.8)

and in view of (7.5)

ς Ωγδ [α
εCβ]ε − ς C[α|(γ∇δ)Ψ|β] = −∇γδ(rαβ −∇[αΨβ]) . (7.9)

One easily sees that a particular solution of (7.9) is

rαβ = ∇[αΨβ] → Rαβ = −
ς

2
Cαβ +∇[αΨβ] , (7.10)

Ω β
α = (Ω

OSp
) β
α + iEα

OSp
Ψβ −E

αγ
OSp
∇γ Ψβ .

The solutions (7.7) and (7.10) are the linearized version of (5.1), (5.10) and (5.11) which

describe the tensorial superspaces conformally related to the supermanifold OSp(1|n).

To understand whether a more general solution of the equation (7.9) exists notice that

the main superfield Uαβγ expressed as in (7.6) can be put to zero by using generalized super-

Weyl transformations (5.1) with Wα = −Ψα. Equivalently, one can simply put Ψα = 0 in

eqs. (7.6), (7.8) and (7.9). We thus exclude from further consideration the superconformal

solution already found above. Then (7.8) and (7.9) reduce to

DγδRαβ = 0 → ς Ωγδ [α
εCβ]ε = −∇γδrαβ . (7.11)

10We should stress that one is not obliged to use the explicit form of the OSp-vacuum solution involving

the constant matrix Cαβ which breaks manifest GL(n) or SL(n) gauge invariance. All the consideration

can be carried out in a GL(n) covariant fashion by using two properties of the ‘near-OSp’ superfields: Rαβ

should be a non-degenerate matrix of order zero and DRαβ is infinitesimal of order one.

– 25 –



J
H
E
P
1
1
(
2
0
0
4
)
0
2
3

If we restrict the consideration to superspaces of SL(n) holonomy then Rαβ must also

satisfy the condition

D(γ Rβ)α = 0 , (7.12)

which follows from the fact that for the spaces of SL(n) holonomy Uαβγ = Gαβγ+
2i
3 D(γ Rβ)α

(see subsection 3.4) and in the case under consideration Uαβγ = 0.

It can be shown, using the commutation relations (4.3) for the covariant derivatives

and assuming Rαβ to have the inverse matrix, that a stronger condition holds Dγ Rβα = 0.

Then together with (7.11) this implies that Rαβ is covariantly constant DRαβ = 011 whose

integrability (in view of the constraints (3.27)–(3.29) on the torsion and curvature) forces

the tensorial superspace to be the supergroup manifold OSp(1|n).

We have thus shown that the general solution of the tensorial supergravity con-

straints are the superspaces conformally related to flat superspace or supergroup manifold

OSp(1|n).

8. Conclusion and discussion

The main results of this article are the following

• we have found simple free equations of motion of a scalar superfield propagating in

flat tensorial superspace (2.3) and in the supergroup manifold OSp(1|n) (2.11) which

in the case of n = 4 describe the infinite set of OSp(1|8) invariant free higher spin

field equations in flat D = 4 and AdS4 space-time, respectively; in the cases of n = 8

and n = 16, which correspond to D = 6 and D = 10 space-time, these equations

describe conformally invariant higher spin fields with self-dual field strengths (work

in progress);

• the geometry of curved tensorial superspaces has been introduced and corresponding

supergravity constraints have been obtained from the requirement of the κ-symmetry

of superparticle dynamics in the tensorial supergravity background; the superfield

structure of the tensorial supergravity has been shown to be a generalization ofN = 1,

D = 3 supergravity;

• A ‘no-go’ result is that the class of the superconformally flat and OSp(1|n)-related

superspaces is the general solution of the constraints of tensorial supergravity with

GL(n) or SL(n) holonomy which are required by the κ-symmetry of the GL(n)-

invariant tensorial superparticle.

As we have shown, the geometry of these superspaces is trivial in the sense that it

cannot produce ‘minimal-like’ interactions of higher spin fields.

11Indeed, (7.12), (7.11) and (4.3) with Uβ γδ = 0 imply DRα(γ Rδ)β +DRβ(γ Rδ)α = 0 which also can be

written in the form D(Rα(γ Rδ)β) = 0. In the case with an invertible Rαβ one multiplies this equation by

R−1 εαR−1 κβ to arrive at (R−1DR)
(ε
(γ δ

κ)
δ) = 0 which implies (R−1DR) εγ = 0 and, hence, DRβγ = 0.
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During work on this project we have also analyzed the possibility of constructing a

tensorial super-Yang-Mills theory and its coupling to the scalar superfield and have not

found a nontrivial model of this kind which possess manifest GL(n) or SL(n) symmetry and

non-manifest OSp(1|2n) generalized superconformal symmetry. One can thus assume that,

surprisingly enough, the scalar superfield is the only dynamical object in the tensorial

superspace of this kind. This is similar to the unfolded higher spin field dynamics of

Vasiliev where at the linearized level all physical degrees are contained in a scalar field (zero

form). Since interactions of higher spin fields break conformal invariance one should look

for tensorial superfield models in which the generalized superconformal group OSp(1|2n)

and a corresponding structure group GL(n) or SL(n) are (spontaneously) broken down

to an appropriate subgroup (or realized non-linearly with an appropriate linearly realized

subgroup). The unbroken/linearly realized subgroup of GL(n) or SL(n) should presumably

be the Lorentz group SO(1, D − 1) of the associated D-dimensional subspace-time of the

tensorial superspace.

One might hope that in such models the tensorial supergravity constraints are less

restrictive.

Note that in the unfolded formulation of non-linear higher spin dynamics confor-

mal symmetry is spontaneously broken by doubling auxiliary (spinor or vector) vari-

ables and introducing Goldstone-like fields which acquire non-zero vacuum expectation

values [5].

Our results suggest that for tensorial supergravity to be a relevant geometrical frame-

work for the formulation of non-linear dynamics of higher spin fields in a way which would

be somewhat alternative to the unfolded higher spin dynamics [27, 10, 1] one should en-

large the superspace with additional coordinates, for example, by keeping in the non-linear

construction the auxiliary commuting spinor variables which were used to construct the

superparticle action in the tensorial superspace and which entered the ‘preonic’ field equa-

tions (1.4) and (1.10). In this respect let us conclude with the following comment. As we

have already mentioned, most of the known approaches to the description of higher spin

theories use additional variables, like vector variables [5] or bosonic spinor variables (see

e.g. [27, 10, 1, 39] and refs. therein). The construction of non-linear higher spin equations

based on the unfolded formulations requires the doubling of the auxiliary variables of the

same kind [5] and (spontaneous) breaking of conformal symmetry.

When higher spin theories are formulated in a tensorial space or superspace, as dis-

cussed in this paper, in addition to the ordinary space-time coordinates xm one introduces

auxiliary tensorial variables (ymn = −ynm for D = 4). Higher spin field equations can

be regarded as those which describe the physical states of a first quantized particle. To

construct an appropriate classical mechanics of this particle one also needs bosonic spinor

variables λα. The quantization of this particle mechanics [17] produces the field equa-

tion (1.4) or (1.5). Then, in the free field theory case one can consistently eliminate the

dependence of the wave functions on either the tensorial variables ymn and recover the

unfolded formulation [21, 24, 25], or on the spinorial variables λα and get the higher spin

field equations (1.6) in tensorial spaces [21, 22]. Thus, in view of the above remark on

‘doubling’ one can assume that the formulation of the non-linear dynamics of higher spin
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fields in the framework of tensorial SYM or supergravity may require both the tensorial

and spinorial auxiliary variables. In this perspective the superfield generalization of the

‘preonic’ equations (2.8) and (2.16) may play a special role.

Acknowledgments

We would like to thank, Xavier Bekaert, Nathan Berkovits, Evgeny Ivanov, Mirian Tsu-

laia and Mikhail Vasiliev for useful discussions. This work was partially supported by the

research grants BFM2002-03681 from the Ministerio de Educación y Ciencia and from EU

FEDER funds, by the grant N 383 of the Ukrainian State Fund for Fundamental Research,

by the INTAS Research Project N 2000-254, by the European Community’s Human Po-

tential Programme under contract HPRN-CT-2000-00131 “Quantum Spacetime” and by

MIUR under contract 2003-023852.

A. Spinor superfield equations

One may ask whether it is possible instead of considering the scalar superfield equa-

tions (2.3) to incorporate component eqs. (1.6) and (1.7) into equations for a spinor super-

field whose leading component is the fermionic field fα(X)? The answer to this question is

positive, although one should require the spinor superfield to obey a set of two equations

D[αΨβ](X, θ) = 0 , (A.1)

∂α[βΨγ](X, θ) = 0 . (A.2)

Indeed, in virtue of eq. (A.1), one finds thatD[βDγ]Ψα = 2i∂α[βΨγ]. Then, because of (A.2),

D[αDβ]Ψα(X, θ) = 0 . (A.3)

Eq. (A.3) implies that the spinor superfield Ψα(X, θ) contains only two non-zero compo-

nents

Ψα(X, θ) = fα(X) + θβkβα(X) . (A.4)

Imposing eq. (A.1), one finds that the bosonic spin-tensor kβα is symmetric, kβα = kαβ ,

and the fermionic field fα(X) obeys the equations (1.7). The same equations follow from

eq. (A.2), which also implies that ∂α[βkγ]δ = 0. The latter can be decomposed into

∂α[βkγ]δ + ∂δ[βkγ]α = 0 , (A.5)

∂α[βkγ]δ − ∂δ[βkγ]α = 0 . (A.6)

Eqs. (A.5) are actually a kind of Bianchi identities which imply that the symmetric spin

tensor kαβ is the derivative of a scalar field

kαβ = ∂αβb(X) . (A.7)

Then eqs. (A.6) and (A.7) reduce to the equation (1.6) for the scalar field b(X).
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On the other hand, the form of the superfield (A.4) with kαβ = ∂αβb(X) implies that

Ψα is the derivative of a scalar superfield Φ obeying eqs. (2.3),

iΨα(X, θ) = DαΦ(X, θ) , D[αDβ]Φ(X, θ) = 0 . (A.8)

Eqs. (A.8) provide the general solution of eqs. (A.1) and (A.2). Thus both, the

scalar and spinor superfeild representation of the system of the free higher spin equa-

tions (1.6), (1.7) are completely equivalent.

B. A generic form of the scalar superfield equation in a supergravity back-

ground

Consider the equation

D[βDγ]Φ =
i

2
Xβγ , (B.1)

where Xβγ(Z) is an antisymmetric tensor superfield. In section 4 we dealt with Xβγ =

Rαβ Φ, and now we shall consider the case of a generic Xβγ(Z) = −Xγβ(Z).

Acting on (B.1) with Dα we arrive at a more general form of the equation (4.5)

Dα[βDγ]Φ =
1

3
Rβγ DαΦ−

1

3
Rα[β Dγ]Φ+

1

6
DαXβγ −

1

6
D[βXγ]α , (B.2)

Then acting on (B.2) with Dδ we get a generalization of the equation (4.6)

Dα[βDγ]δΦ =
1

2
Dα[βXγ]δ −

i

6
DδDαXβγ +

i

6
DδD[βXγ]α +

1

2
RαδXβγ +

+U[β γ]αDδΦ+
i

2
Fδ α[βDγ]Φ+

i

6
DδRβγ DαΦ−

i

6
DδRα[β Dγ]Φ+

+ iDαD[βΦRγ]δ −
i

3
Rβγ DδDαΦ+

i

3
DδD[βΦRβ]α . (B.3)

The integrability condition (4.7) of eq. (B.3) imposes the following restriction on the form

of Xαβ

3D(α[βXγ]δ) +DαδXβγ + iD(αD[βXγ]δ) + 4R(α[βXγ]δ) =

= iD(αRδ)[βDγ]Φ− iD[βRγ](αDδ)Φ+RβγDαδΦ+ 2R(α[βDγ]δ)Φ . (B.4)

One of the solutions of (B.4) considered in section 4 is Xαβ = RαβΦ.

As we discuss in appendix C, in the case of n = 2 which corresponds to N = 1,

D = 3 supergravity coupled to a scalar superfield the integrability condition (4.7) valid

for a generic R and U satisfying the off-shell SL(2) holonomy constraints allows to choose

Xαβ = εαβ f(Z), and in particular Xαβ = 0 or Xαβ = mεαβ, where m is a constant of the

dimension of mass.

In the case of a generic n > 2 the scalar field equation (B.1) with Xαβ = 0 is satisfied

if the right hand side of (B.4) vanishes. A particular solution of this constraint is when

Φ = f(W ) , D[αDβ]Φ = D[αDβ]f(W ) = 0 (B.5)
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and the superspace is superconformally flat (6.9)–(6.10) (or equivalently (6.1)–(6.8)) such

that, in virtue of (B.5),

Rαβ = i

(

1

2
+
f ′′

f ′

)

DαW DβW, f ′(W ) ≡
df(W )

dW
. (B.6)

In the basis of the flat covariant derivatives the scalar superfield equation takes the form

D[αDβ]W = −

(

1 +
f ′′

f ′

)

DαW DβW . (B.7)

Upon the following field redefinition Φ̃(W ) = c ·
∫

eWdf(W ), it reduces to the free scalar

superfield equation

D[αDβ] Φ̃ = 0 . (B.8)

A question is whether for n > 2 there exist a scalar superfield equation with Xαβ(Z) 6=

RαβΦ whose integrability conditions do not reduce the tensorial superspace to the (super-

conformally) flat or OSp(1|n) supermonifold and therefore do not trivialize it.

C. Peculiarities of N = 1, D = 3 supergravity

Since the N = 1, D = 3 supergravity is a particular example of our generic construction,

before concluding the paper let us briefly discuss this well known case from our perspective.

In this case the holonomy group is SL(2) ∼ Sp(2), and the antisymmetric tensors are

proportional to εαβ = −εβα (ε12 = 1), for instance Rαβ(Z) = εαβR(Z). As one can check

(see appendix B for details), in addition to eq. (4.1) such a simplification allows for other,

well known, forms of the scalar superfield equations coupled to the off-shell N = 1, D = 3

supergravity satisfying the constraints (3.52) and (3.53), namely, the massless superfield

equation

D[αDβ]Φ =
1

2
εαβ ε

γδ DγDδΦ = 0 ⇒ DαDαΦ = 0 , (C.1)

and the massive superfield equation

D[αDβ]Φ−
im

2
εαβ Φ = εαβ(D

γDγΦ− imΦ) = 0 ⇒ DαDαΦ = imΦ . (C.2)

Moreover, in the case of N = 1, D = 3 superspace the non-linear equation of the scalar

superfield has the following general form

DαDαΦ = if(Z)Φ . (C.3)

with f(Z) being an arbitrary superfield.

Since on the mass shell D = 3 supergravity is completely determined by its coupling

to the matter fields, we can assume R(Z) to be a function of Φ(Z), i.e. R = R(Φ(Z)).

Then (C.1)–(C.3) describe a non-linear self-interaction of the scalar superfield Φ(Z).
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The equations (C.1)–(C.3) are compatible both with Poincaré and AdS N = 1, D = 3

supergravity. However, this is not the case for tensorial supergravity with a generic n, in

which case, for example, the Sp(n) holonomy required by (C.1)–(C.3) reduces the tensorial

supergravity down to the supergroup manifold OSp(1|n), since DCαβ = 0.

Let us note that in the case of N = 1, D = 3 supergravity the equations (6.7)–

(6.10), (6.11) and (6.14) (with a generic function of W (or Φ) on the right hand side),

or equivalently eqs. (C.3), are Lagrangian in the sense that they can be derived from the

N = 1, D = 3 supergravity action [30] coupled to a scalar field

S =
1

2

∫

d3xd2θ sdetE A
B

[

R+ εαβDαΦDβΦ+ ς · X (Φ)
]

. (C.4)

In the generic case of n > 2 it is still an open problem to figure out whether the

equations (6.7)–(6.10), (6.11) and (6.14), as well as (2.3) and (2.11) can be obtained by

the variation of a corresponding action.
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