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Observatoire de Nice, Bv. de l’Observatoire, B.P. 4229, 06304 Nice cedex 4,
France.

Abstract. The Nekhoroshev theorem has become an important tool for
explaining the long–term stability of many quasi–integrable systems of interest
in physics. The action variables of systems that satisfy the hypotheses of
Nekhoroshev theorem remain close to their initial value up to very long times,
that grow exponentially as an inverse power of the perturbation’s norm. In this
paper we study some of the simplest systems that do not satisfy the hypotheses
of Nekhoroshev theorem. These systems can be represented by a perturbed
Hamiltonian whose integrable part is a quadratic non–convex function of the
action variables. We study numerically the possibility of action diffusion over
short times for these systems (continuous or maps) and we compare it with the
so–called Arnold diffusion. More precisely we find that, except for very special
non–convex functions, for which the effect of non convexity concerns low order
resonances, the diffusion coefficient decreases faster than a power law (and possibly
exponentially) of the perturbation’s norm. According to the theory, we find that
the diffusion coefficient as a function of the perturbation’s norm decreases slower
than in the convex case.

1. Introduction

Many physical systems can be represented adding a perturbation to integrable systems
whose motions are completely known, and specifically are quasi–periodic. The
celebrated KAM ([1], [2], [3], [4]) and Nekhoroshev theorems ([5]) are the milestones in
the understanding of the long–term stability of quasi–integrable systems. In particular,
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in recent years, the Nekhoroshev theorem has been largely used to investigate the long–
term stability of dynamical systems ([6], [7], [8], [9], [10], [11]). In the Hamiltonian
case, this theorem can be stated as follows. Let us consider hamiltonians of the form:

H(I, ϕ) = h(I) + εf(I, ϕ) , (1)

where I ∈ D (D ⊆ Rn open), ϕ ∈ Tn, h and f are analytic and h satisfies a suitable
geometric condition called ’steepness’. Then, there exist positive constants a, b, c, d, ε0

such that for any |ε| < ε0 the actions remain near their initial value:

|I(t) − I(0)| ≤ cεa (2)

up to the exponentially long–times:

|t| ≤ d exp
(ε0

ε

)b

. (3)

The values of the constants a and b depend on the steepness properties of h ([5], [12],
[13]). The constant b is particularly important to characterize stability times.

The simplest example of steep functions is provided by convex functions, i.e. by
functions h such that at any point I ∈ D satisfy:

(∂2h

∂I2
(I)u · u = 0 , u ∈ Rn

)

⇒ u = 0 ,

and by quasi–convex functions, which satisfy the weaker condition:

(∂2h

∂I2
(I)u · u = 0 , ∇h(I) · u = 0 , u ∈ Rn

)

⇒ u = 0 .

In the convex and quasi–convex case the value of the constant b is the bigger one
among all steep cases. Precisely, it is ([14], [15]):

b =
1

2n
. (4)

An exponential stability result have been proved also for quasi–integrable symplectic
maps ([16], [17], [18]), precisely for maps which can be written in the implicit form:

ϕj = ϕ′
j+

∂h

∂Ij

(I)+ε
∂f

∂Ij

(ϕ′, I) , I ′j = Ij+ε
∂f

∂ϕj

(ϕ′, I) , j = 1, ..., n(5)

with f analytic and h convex. Kuksin, Pöschel and Guzzo treat the convex case, but
their results extend also to the larger class of the so–called P-steep functions (whose
definition is given by Nekhoroshev in his 1977 article; quasi–convex functions are not
P-steep).

However, most interesting systems (for example, the system describing the motion
of an asteroid in the Main Belt of our solar system, see [6], [7]) do not satisfy the
hypotheses of the Nekhoroshev theorem, in its standard formulation, because they
are represented by a non steep hamiltonian h. For example, this happens when h
is properly degenerate (such as the hamiltonian of the Kepler problem and of the
Euler–Poinsot rigid body), i.e. it does not depend on some action variables. For
many of these systems the degeneracy can be, in some sense, removed by perturbation
techniques adapted to the system ([3], [6], [19], [20]). However there are non steep
functions even among the non–degenerate functions h. We find the quadratic non–
convex functions among the simplest non–degenerate functions which are not steep
(nor P–steep) in some points. This paper is dedicated to the numerical investigation
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of the real possibility of diffusion of the actions in times much smaller than (3) for
these quasi–integrable systems.

The paper is organized as follows. In section 2 we will give the mathematical
framework and explain the mechanism for fast diffusion. Section 3 provides the model
problem used for our numerical experiments. In section 4 we recall the method
for detecting the geography of resonances and we show examples of diffusion along
resonances in the non convex case. A measure of the variation of the diffusion
coefficient as a function of the perturbing parameter is provided in section 5. We
discuss in Section 6 the diffusion properties for different values of α. The conclusion
is provided in section 7. A review of the Fast Lyapunov Indicator method is given in
the Appendix.

2. Mathematical framework

In this section we list the fundamental hypotheses and terminology that we will use
through the paper.

i) We strictly refer to quasi–integrable systems, i.e. to Hamiltonian systems with
Hamilton functions of the form (1) or to symplectic maps of the form (5).

ii) The functions h, f are such that the Hamiltonian system (1) and the map (5)
satisfy the hypotheses of KAM theorem (for quasi–integrable maps see [16],[17],[18])
for suitably small ε. It is sufficient that h and f are analytic and h is non–degenerate
or (only for Hamiltonian systems) isoenergetically non–degenerate.

iii) We consider values of the perturbing parameter ε so small that KAM theorem
applies. This implies that the phase space is filled with a set K of large measure made
of invariant tori. Any motion with initial condition on K is perpetually stable, so that
instability can occur only on the complementary set of K, which we call the Arnold
web. The projection of the Arnold web on the action space D lies on a neighbourhood
of the manifolds: k · ∇h(I) = 0, with k ∈ Zn\0. Its complement is open and dense.
With an abuse of terminology, we will use the term ’resonance’ to indicate the manifold
k · ∇h(I) = 0, as well as its neighbourhood which is in the Arnold web.

iv) We say that a motion (I(t), ϕ(t)) is ’unstable’ if there exists a time t such that the
actions explore macroscopic regions of a given action domain B:

‖I(t) − I(0)‖ ≥ diamB

2
. (6)

Moreover, we say that the N motions (I (j)(t), ϕ(j)(t)), j = 1, ...N , diffuse in the action
space if the average evolution of the squared distance of the actions from their initial
value grows linearly with time; i.e. there exists a constant D > 0 such that:

∑N
j=1(I

(j)(t) − I(j)(0))2

N
∼ D t (7)

for all t.

v) If the system satisfies (i), (ii), (iii) and moreover h is steep (P–steep for maps)
then also the Nekhoroshev theorem applies and any eventual instability of the actions
occurs only on times that grow exponentially with a positive power of 1/ε. Any
motion diffusion for a system satisfying (i), (ii), (iii) and the steepness hypothesis will
be called Arnold diffusion. Though Arnold diffusion occurs on these very long times,
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the techniques that we introduced in [23],[25] allow its numerical detection. The first
detection of global Arnold diffusion in quasi–integrable systems has been described in
[26].

vi) This paper concerns the real possibility of diffusion for systems that satisfy (i), (ii)
and (iii), but whose h is not steep (P–steep for maps), so that in principle instability
is possible already on times of order 1/ε.

We first review the mechanism producing instability for quasi-integrable systems
with non–convex quadratic functions h(I), for both hamiltonian systems and maps.
We will then investigate numerically the real possibility of diffusion using quasi–
integrable maps, for which numerical experiments are simpler than the hamiltonian
case.

Nekhoroshev, in his 1977 article, provided as an example of fast diffusion in non
convex (and non steep) systems, the hamiltonian:

H =
I2
1

2
− I2

2

2
− ε sin(ϕ1 + ϕ2) , (8)

which has some special solutions with the actions moving at a speed of order ε:

I1(t) = εt , I2(t) = εt

ϕ1(t) =
1

2
εt2 , ϕ2(t) = −1

2
εt2 . (9)

To illustrate the mechanism producing this fast diffusion, it is instructive to

consider a generic perturbation of the non–convex function h =
I2

1

2 − I2

2

2 , such as:

H =
I2
1

2
− I2

2

2
+ εf(ϕ1, ϕ2) .

This system is quasi–integrable with non–degenerate integrable approximation h, and
therefore the KAM theorem applies to it. However, h is not isoenergetically non–
degenerate on the lines I1 = ±I2, and therefore action diffusion can occur only near
these lines (the systems has n = 2), that we call escape lines.

The escape lines correspond also to the resonances: ϕ̇1 ± ϕ̇2 = 0, and therefore,
near the line I1 = I2 (for simplicity we choose one escape line), by usual normal form
construction the hamiltonian is conjugate by means of a near–to–identity canonical
transformation to the resonant normal form:

H̃ = H0 + ε exp−
(ε0

ε

)b

r(I, ϕ)

with H0 of the form:

H0 =
I2
1

2
− I2

2

2
+ εu(I, ϕ1 + ϕ2) .

The dynamics of the normal form H0 is such that the actions can move only on the
line parallel to the vector: (1, 1), which is also parallel to the resonance related to the
harmonic ϕ1 + ϕ2. Therefore, with suitable perturbations (for example such that H0

has the form (8)), actions with initial conditions in the resonance I1 = I2 can move
indefinitely at a speed of order ε without leaving the resonance.

Such a diffusion mechanism is not possible in the convex case:

H =
I2
1

2
+

I2
2

2
− ε sin(ϕ1 + ϕ2) .
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In fact, the hamiltonian is isoenergetically non degenerate and KAM theorem prevents
the diffusion of the actions (if n > 2 diffusion can exist, but only on exponentially long
times). Analyzing more closely the dynamics, the resonant normal form for a generic
resonance: k1ϕ̇1 + k2ϕ̇2 is defined near the line of the action plane:

k1I1 + k2I2 = 0 , (10)

and has the form:

H̃ = H0 + ε exp−
(ε0

ε

)b

r(I, ϕ)

with:

H0 =
I2
1

2
+

I2
2

2
+ εu(I, k1ϕ1 + k2ϕ2) .

The dynamics of H0 can move the actions only on the line parallel to the vector:
(k1, k2), usually called line of fast drift, which is perpendicular to the resonant line (10).
Therefore, there cannot be a diffusion along the resonance with speed of order 1/ε,
and only the exponentially small remainder can force an exponentially slow diffusion
along it (if n > 2).

This is the mechanism underlying the exponential stability predicted by the
Nekhoroshev theorem, and it is explained in several papers ([5], [21], [7]).

We now consider more generic quadratic integrable hamiltonians with 2 degrees
of freedom, i.e. functions h of the form:

h =
1

2
AI · I , (11)

where A is a 2–dimensional symmetric square matrix. The previous argument should
provide that a condition which is sufficient to prevent the fast diffusion along a given
resonance (as in the example by Nekhoroshev) is that the line of fast drift is not
contained in the resonance. To be definite, for any k ∈ Z2\0, the resonance k · ϕ̇ = 0
is defined by the equation:

k · AI = 0 ,

while the line of fast drift, in the action plane, is parallel to the vector k. Therefore, a
fast diffusion should be possible only if this line is contained in the resonance, which
happens only if Ak · k = 0. In the rest of the paper we will call ’fast diffusion’ any
diffusion of orbits occurring for systems satisfying ((i), (ii) and (iii)) taking place on
resonances of the Arnold web characterized by the fact that a space of fast drift is
contained in the resonance.

Fast diffusion in the resonance k · AI = 0 is prevented if k satisfies§:

Ak · k 6= 0 .

Convex hamiltonians satisfy this condition for any vector u ∈ R2\0, and therefore also
for any integer vector k ∈ Z2\0.

Morbidelli and Guzzo ([7], see caption of figure 10) remarked that, also in the non–
convex quadratic case, fast diffusion can be prevented: for example, for the following
non–convex hamiltonian:

H =
I2
1

2
− I2

2 ,

§ More precisely in order to prove exponential stability one should require some algebraic condition
such as a diophantine–like condition: |k · Ak| ≥ γ/ |k|τ for any k ∈ Z

2\0.
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the equation:
u · Au = 0 ⇐⇒ u2

1 − 2u2
2 = 0

has the only non trivial solutions u1 = ±
√

2 u2 and therefore the direction (u1, u2) =
u2(

√
2, 1) cannot be a direction of fast drift (which necessary requires u1/u2 ∈ Q).
Following the idea of Morbidelli and Guzzo, all the quadratic hamiltonians:

h = 1
2AI · I with A non–convex, but satisfying:

(Ak · k = 0 and k ∈ Z2) ⇒ k = 0 (12)

are not compatible with fast diffusion‖. For example, the function:

h =
1

2
(I2

1 − αI2
2 ) , (13)

with α > 0, is non–convex (nor steep), but is compatible with fast diffusion only if√
α ∈ Q, i.e. for α of the form:

α =
n2

1

n2
2

(14)

with n1, n2 ∈ N.
We will call ’rationally convex’ a function h(I1, I2) such that its hessian matrix

satisfies condition (12) at any point of its domain. Function (13) is not convex if
α ≥ 0, but is rationally convex if

√
α ∈ R/Q,

For n > 2 the condition of rational convexity slightly complicates, because the
possibility of multiple resonance conditions forces us to take into consideration fast
drift planes of dimension ranging from 1 to n − 1. Precisely, we give the following:

Definition. We say that the n–dimensional square matrix A is rationally convex if
for any set of independent integer vectors k1, . . . , kd ∈ Zn, with d ∈ {1, . . . , n − 1},
denoting with K̃ the d × n matrix whose columns are the vectors ki, it is:

det(K̃T AK̃) 6= 0 . (15)

We say that the real function h : D → R, with D ⊆ R\ open set, is rationally convex
at I ∈ D if its hessian matrix h′′(I) is rationally convex.

We briefly explain (15) in the case n = 3. The resonances related to the lattices of
dimension 1 generated by k ∈ Z3\0 have equations: k · AI = 0. The space of fast
drift is a line parallel to k, therefore a line of fast drift is contained in the resonance
if and only if k · Ak = 0, as in the case n = 2, d = 1. Instead, if n = 3, d = 2 the
resonance related to the integer vectors k1, k2 is the line in the intersection of the
planes k1 · AI = 0 and k2 · AI = 0. The space of fast drift of this resonance has
dimension 2, and is generated by k1, k2. Therefore, the resonance is transverse to
the plane of fast drift if and only if equation (15) is satisfied. This argument can be
generalized to the higher dimensional cases.

Remark. Condition (15) for any d = 1, .., n− 1 is indeed necessary, as it can be seen
considering the example h = (1/2)(I2

1 − αI2
2 − βI2

3 ), with α = 2 +
√

2 and β =
√

2.
Denoting A = h′′, it is: k · Ak 6= 0 for any k ∈ Z3\0. In fact, for any integer vector k,
it is: k ·Ak = k2

1 − (2+
√

2)k2
2 −

√
2k2

3 = (k2
1 −2k2

2)−
√

2(k2
2 +k2

3) which vanishes if and
only if k2

2+k2
3 = 0 and k2

1−2k2
2 = 0, which in turn are solved only by k1 = k2 = k3 = 0.

However, h is not rationally convex because it fails condition (15) for the resonance

‖ Again, to prevent diffusion on exponentially long times one should require an algebraic condition,
such as: |k · Ak| ≥ γ/ |k|τ for any k ∈ Z

2\0.
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generated by k = (1, 0, 1) and k′ = (0, 1, 1). In fact, denoting by K̃ the matrix whose
columns are the vectors k, k′, it is :

K̃T AK̃ =

(

k · Ak k · Ak′

k′ · Ak k′ · k′

)

=

(

1 − β −β
−β −α − β

)

(16)

whose determinant is −(1 − β)(α + β) − β2 = 0.

In the rationally convex case, it should be possible to prove exponential stability
even if the proof is quite long because it reproduces the well known proof of the
Nekhoroshev theorem for the convex case (see [21]). More precisely in order to prevent
diffusion over times slower than exponentials of 1/ε one needs some algebraic condition,
such as:

∣

∣

∣
det(K̃T AK̃)

∣

∣

∣
≥ γ

∥

∥

∥
K̃

∥

∥

∥

τ (17)

for any integer matrix K̃ (
∥

∥

∥
K̃

∥

∥

∥
denotes a matrix–norm). In the case n = 2 this

condition is:

|Ak · k| ≥ γ

‖k‖τ ∀ k ∈ Z2\0 . (18)

Recently, Niederman reconsidered the Morbidelli and Guzzo idea and generalized it
to the generic steepness case [22].

3. The model problem

In this article, we study numerically the effective impact of the rational convexity on
diffusion, and we compare it with the Arnold diffusion. We will use as model problem
the quasi–integrable map:

ϕ′
1 = ϕ1 + I1 , ϕ′

2 = ϕ2 − αI2

I ′1 = I1 + ε
∂f

∂ϕ1
(ϕ′

1, ϕ
′
2) , I ′2 = I2 + ε

∂f

∂ϕ2
(ϕ′

1, ϕ
′
2) (19)

which is in the form (5), with n = 2, h equal to (13) and we use as perturbation the
function:

f =
1

cos(ϕ1) + cos(ϕ2) + 2 + c
, c > 0 .

This peculiar form of the perturbation is chosen because it has a full Fourier spectrum.
We study the diffusion properties of the system for (many) different values of the
parameter α, that determines if the integrable approximation is convex (α < 0) or
not (α > 0). In the non convex case we will consider separately the cases:

√
α ∈ R\Q

(rationally convex) and
√

α ∈ Q.
In order to adapt to symplectic maps the discussion done about the hamiltonian

case we recall that the geometry of resonances of a map of the form (5) is equivalent
to the geometry of resonances of the hamiltonian with n + 1 degrees of freedom (see
[16],[17],[18])

h(I1, ..., In) + 2πIn+1

which, in the specific case of the map (19), projects in the space of the actions I1, ..., In

on the web of lines:
k1I1 − αk2I2 + 2πk3 = 0
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with k1, k2, k3 ∈ Z. Then, when ε 6= 0, one can construct the normal form adapted to
a resonance, such that the action dynamics is flattened near the line of fast drift that
is parallel to the vector (k1, k2) (see [18]).

As a result, the map (19) has a generic geometry of resonances. In fact,
the resonances of the unperturbed system related to all integer vectors (k1, k2, k3)
constitute a dense web in action plane (I1, I2), while the Arnold web is a dense set
in phase space. Repeating the argument given for the hamiltonian case, and recalling
that the line of fast drift is parallel to (k1, k2), the map (19) can have fast diffusion
only if α satisfies condition (14). In this case, there exists a family of resonances that
potentially support fast diffusion, precisely all resonances related to integer vectors
(k1, k2, k3) with (k1, k2) satisfying:

k1

k2
= ±n1

n2
= ±

√
α ,

and therefore all resonant lines with equation:

αI2 = ±
√

αI1 + 2π
k3

k2
. (20)

This family of resonances constitutes a web, that we call “fast web”, and is a subset
of the Arnold web.

Because the fast web is dense in the action plane, the phenomenon of fast diffusion
can bring the orbits near any point of phase space. In fact, diffusing orbits can in
principle change several resonances in short times of order 1/ε. As a consequence, the
orbits can indeed diffuse in the fast web, rather than simply drifting along a line like
the simpler n = 2 hamiltonian case. This justifies the use of the name ’fast diffusion’
for this phenomenon.

Although the steepness hypothesis is no more valid, it still exists a part of the
Arnold web that can support action diffusion with a speed that is at most exponentially
slow, as in the usual Arnold diffusion. This part is the complement of the “fast web”.

The size of the harmonics related to a given resonance is another relevant factor
in determining the rate of diffusion. It is related to the order |k| = |k1| + |k2|. We
remark that the fast web contains resonances with minimum order n1 +n2, that gives
a lower bound to the speed of fast diffusion determined by n1, n2.

Therefore the diffusion on the resonances of the fast web of sufficiently high order
can be slower than the Arnold diffusion. The typical situation, in the non rational
convex case is therefore the presence of two competing mechanisms of diffusion, which
is analyzed in section 4.

In the rational convex case, fast diffusion cannot exist. Indeed we find numerically
that the diffusion coefficient decreases with ε faster than any power law (possibly
exponentially). Nevertheless, we find that the diffusion coefficient decreases slower
than the convex case. We expect such a behaviour: when matrix A satisfies a condition
like (18) (which is the case that we will consider) the constant b that characterizes
the stability times in (3) is smaller for large τ . The convex case corresponds to the
smallest possible value τ = −2, i.e. to the biggest constant b in (3).

¿From a technical point of view, we investigate the diffusion properties of the
map (19) with the techniques used in [23], [24], [25], [26], [27]. These techniques rely
essentially on the so–called Fast Lyapunov Indicator (FLI in the following, introduced
in [28] ), that allows a precise numerical detection of the Arnold web of a given system.
The theoretical motivations for the use of the FLI are reviewed in the Appendix.
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Figure 1. Detection of the Arnold web for a rationally convex case: α =
(
√

5 − 1)2/4 and for α = 4. The perturbation parameter is ε = 0.1 and the
integration time is t = 1000 iterations. The FLI values close to log t = 3
correspond to invariant tori, higher values show the presence of chaotic orbits
and lower values correspond to the regular part of resonances.

4. Geometry of resonances and diffusion

The numerical study of the diffusion properties of a quasi–integrable system is greatly
simplified by the computation of its geometry of resonances. In fact, different kinds
of diffusion can be detected in a quasi–integrable system, such as the widely observed
Chirikov diffusion ([29]), the Arnold diffusion (occurring on much longer times and
therefore only recently numerically detected [25], [26]) and the fast diffusion.

All these diffusion mechanisms are strictly related to the geometry of resonances:
the first one is characterized by resonance overlapping, while in the second and third
case resonances are arranged as a regular web (the so–called Arnold web) and the
phase space is filled by a large number of invariant tori.

A precise numerical detection of the Arnold web is possible with the Fast
Lyapunov Indicator (hereafter called FLI). This method, introduced by Froeschlé et
al. [28] is reviewed in the Appendix. Figure 1 shows the Arnold web for the mapping
(19) with ε = 0.1. The FLI has been computed on a set of 500× 500 initial conditions
regularly spaced in the intervals: 0 < I1 < π and 0 < αI2 < π for α = (

√
5 − 1)2/4

(Fig.1,left) and for α = 4 (Fig.1,right). The initial angles are chosen equal to zero and
the integration time is t = 1000 iterations.

In Fig.1 the white lines (yellow in the electronic version) correspond to the chaotic
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part of the resonances while the grey (red) background corresponds to the set of
invariant tori characterized by a FLI value of about log t = 3. Colors going from
grey (red) to black stay for regular resonant motions. The Arnold web, which is a
neighbourhood of all straight lines:

k1I1 − αk2I2 + 2πk3 = 0

with k1, k2, k3 ∈ Z, appears clearly. The set of all resonances is dense on the plane.
However, one can expect that resonant orbits surround each resonance line up to a
distance which decreases with the order |k| =

∑ |ki|. Both pictures represent a system
with no global overlapping of resonances, although for α = 4 larger chaotic regions
appear.

We recall that for α satisfying condition (14) there is a family of resonances
potentially supporting fast diffusion. More precisely there are the resonances related
to integer vectors (k1, k2, k3) with (k1, k2) satisfying:

k1

k2
= ±n1

n2
= ±

√
α ,

and therefore all resonant lines with equation:

αI2 = ±
√

αI1 + 2π
k3

k2
. (21)

This family of resonances constitutes the “fast web”. Some of these lines appear
clearly on Fig.1,right.

In order to have the chance to observe fast diffusion, it is useful to select chaotic
initial conditions on the fast web. This task is made easy by the FLI chart of
resonances. Following the same procedure used in [25] we integrate such chaotic orbits
and we represent them on the FLI chart considering only those points of the orbits
which intersect the section

S = {(I1, I2) ∈ R2, ϕi = 0, i = 1, 2} . (22)

We recall that the FLI charts are obtained for initial conditions that belong to the
section S. Since computed orbits are discrete, we represented points on the double
section |ϕ1| ≤ 0.05, |ϕ2| ≤ 0.05. A smaller tolerance (lower than 0.05) reduces only
the number of points on the section, but does not change their diffusion properties.
Fig.2 shows the successive intersections of a set of 100 orbits with section S up to a
time t = 5 108 for α = 4 and ε = 0.1. The initial conditions have been chosen along
I2 = I1/2 with 0 < I1 < π. We have checked, on a small integration time of t = 1000
iterations that such orbits are chaotic, i.e. they have FLI values 20% greater than the
reference value for the tori (which is ' log t). The initial angles are equal to zero.

Fig.2 shows a phenomenon of diffusion, involving a macroscopic region of the
phase space. Such global diffusion occurs mainly on the “fast web”. We remark that
the initial conditions were chosen on the fast web and a question may arise as to what
happens when choosing initial conditions along another resonance.

We recall that in [26] we performed a similar experiment with convex systems
(hamiltonian and maps) that satisfy the hypotheses of the Nekhoroshev theorem.
Indeed, by selecting chaotic initial conditions on low order resonances, we have
observed a phenomenon of global diffusion through all the resonances (at least of
low order) of the Arnold web on times longer than any power law, and compatible
with the exponential (3).
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Figure 2. Diffusion for ε = 0.1 of a set of 100 chaotic orbits for α = 4 The
points are the intersections of the orbits with the section S up to a time t < 5 108

iterations. It appears clearly that diffusion occurs mainly on the on the “fast”
web, i.e. the web formed by the set of lines: I2 = ± 1

√

α
I1 + 2πk

α
, with k ∈ Z.

The Arnold diffusion is present also in the non–convex case, and could also play
an important role. For the non convex case with α = 4, we have selected a set of
100 chaotic initial conditions on the resonance I2 = I1/α (that is not in the fast
web) and represented their orbits on the FLI chart. Let us remark that the order of
this resonance is |k| = 2, while the order of the resonances of the fast web satisfies
|k| ≥ n1 + n2 = 3.

We have observed that for ε = 0.1 the Arnold diffusion on a time of about 5 107

iterations moves some of the orbits through the Arnold web giving them the possibility
of reaching the “fast web” and then rapidly diffusing. Qualitatively we observe the
same pattern of Fig.2 up to t = 5 108 iterations.

In next sections we will study in more detail the interplay between Arnold
diffusion and fast diffusion. The strategy will consist of integrating orbits that have a
great probability of diffusing in both cases, i.e. chosen respectively on the low order
resonance I2 = I1/α and on the fast web.

For this purpose let us consider the rationally convex case of Fig.1,left
corresponding to αrc = (

√
5 − 1)2/4. In this non–convex case, the lines of fast drift

do not correspond to resonances. The diffusion along the resonances is of Arnold type
and needs very long times to be observed according to the value of ε and to the order
of the considered resonances. We have chosen a set of 100 initial condition on the
low order resonance I2 = I1/α in the interval 0.7 < I1 < 0.8. For comparison with
the convex case we have integrated 100 chaotic orbits, chosen on the same resonance,
but for αc = −αrc. Fig.3 shows the successive intersections of the set of orbits with
section S up to t = 106 (left panel) and t = 109 (right panel) for respectively αrc
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Figure 3. Diffusion along the resonant line αI2 = I1 for ε = 0.21 of a set
of 100 initial conditions with I1 in the interval 0.7 < I1 < 0.8 for respectively
αrc = ((

√
5 − 1)/2)2 (top) and and αc = −αrc (bottom). The black points are

the intersections of the orbits with the section S (defined in the text) up to time
t = 106 (left panels) and t = 109 (right panels).

(top) and αc (bottom) for ε = 0.21. In both cases, we observe a local phenomenon
of Arnold diffusion along the resonant line and qualitatively the only difference is the
speed of diffusion, which is lower in the convex case as we remarked in Section 3.
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5. Measure of the diffusion coefficient

Following the procedure of [25] we tried to measure a diffusion coefficient as if the
phenomenon was Brownian like. For a chosen fraction T of the integration time, for
any n ∈ N, denoting with I1,j(0) and I2,j(0), j = 1, ..., N the initial conditions of
a set of N orbits and with I1,j(t) and I2,j(t) the corresponding values at time t we
considered the quantity:

d(nT ) =
1

Mn

∑

j:(|ϕ1,j(t)|≤0.05,|ϕ2,j(t)|≤0.05

[(I1,j(t)−I1,j(0))2+(I2,j(t)−I2,j(0))2](23)

where Mn is the number of points on section S for t in the interval (n−1)T ≤ t ≤ nT .
In our numerical experiences we have observed a linear increase with time of d. The
slope of the regression line is the diffusion coefficient D.

We have studied the dependence of the diffusion coefficient on the parameter ε
for the rationally convex case with αrc = ((

√
5 − 1)/2)2 and, for comparison, for the

convex case with αc = −((
√

5 − 1)/2)2.
According to the experience shown in Fig.3 we have integrated, up to t = 109

iterations, a set of 100 chaotic orbits with initial conditions chosen on the low order
resonance I2 = I1/α and we have repeated the computation for different values of ε.

The estimates of D versus 1/ε are reported in Fig.4 in a logarithmic scale. Clearly,
data are not well fitted with a linear regression, which would correspond to a power
law D(ε) = C(1/ε)m. Indeed, if we define 3 different sets of data, and we perform
local regressions for each set, we find for αc, the three different slopes n1 = −1.9,
n2 = −5 and n3 = −15. This is sufficient to exclude a global power law and the
changes of slope are compatible with the expected exponential decrease of D. For
the non convex case with αrc, we have also found three different slopes m1 = −3,
m2 = −4.8 and m3 = −9. Such changes of slopes are in favor of an exponential
decrease of D although, in agreement with the theory, slower than in the convex case.

For the non–convex and non rational convex value αnc = 4 we have repeated
the experience considering two sets of initial conditions: set (A) on the resonance
I2 = 1√

α
I1 (that is in the fast web) and set (B) on the resonance I2 = 1

α
I1 (that is

not in the fast web). Results on diffusion are presented in Fig.5. For the three larger
values of ε we have observed Chirikov diffusion. Its speed is independent on the set
(A) or (B) of initial conditions. For lower values of ε, when we have no resonance
overlapping, we still observe a global diffusion but of different nature. Such a diffusion
occurs mainly along the resonances of the “fast web” as explained in the previous
Section (Fig.2).

We have observed the global diffusion on the “fast web” for all the values of ε
considered for set (A) and the diffusion coefficient is well fitted by a power law (with
slope m = −1.3).

For set (B) we observe the same kind of global fast diffusion only for 3 < 1/ε < 10.
We can fit the points corresponding to global diffusion (both Chirikov and fast ) with
a power law of slope m1 = −3.7 (Fig.5). For lower values of ε only local Arnold
diffusion along the resonance I2 = 1

α
I1 is observed up to t = 5 108 iterations. The

corresponding diffusion coefficient suddenly drops being fitted by a power law of slope
(m2 = −11). For values of ε lower than 0.03 we did not observe any more diffusion
up to t = 5 108. Let us remark that the change of slope of set (B) is not of the
same kind than the one presented in Fig.4. Here, it corresponds to the change from
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Figure 4. Measure of the diffusion coefficient as a function of 1/ε for respectively
the rationally convex case with αrc (square) and the convex case with αc = −αrc.
In both cases data are well fitted by 3 power laws with slopes mi, i = 1, ..3 for
αrc and ni, i = 1, ..3 for αc.

global (Chirikov and fast ) diffusion to the local Arnold diffusion while in the previous
experiment we had always the same phenomenon of local diffusion.

6. About the influence of α on the speed of diffusion.

In order to study the influence of 1/
√

α on the speed of diffusion in the non convex case
we have measured the diffusion coefficient D for 300 values of α with 0.5 < 1/

√
α < 1.

For each value of α a set of 100 chaotic initial conditions has been selected along the
resonance I2 = I1/

√
α with 0 < I1 < π and the orbits are computed on 108 iterations.

The perturbing parameter is ε = 0.1.
Fig.6 shows the variation of the logarithm of D as a function of 1/

√
α. We observe

a drop of 4 orders of magnitude in D when passing from 1/
√

α = 0.5 to 1/
√

α ' 0.55.
The same occurs when going from 1/

√
α = 1 to 1/

√
α ' 0.9. Surprisingly, we do not

remark the effect of the low order rational 1/
√

α = 2/3. The values of the diffusion
coefficient around 2/3 are quasi constant around the value D ' 10−10.

We have explored with more detail the case α = 9/4. We considered a set of 100
initial conditions along a resonance of fast diffusion I2 = 2/3I1 with 1 < I1 < 1.3 (data
set 1) and a set of 100 initial conditions along a resonance of low order: I2 = I1/α
with 1 < I1 < 1.3 (data set 2) for different values of ε (from ε = 0.22 to ε = 0.0001).
The initial angles are ϕ1 = 0 and ϕ2 = 0.

Fig.7,top shows the resulting diffusion for respectively data set 1 (left) and 2
(right) for ε = 0.18, and Fig.7,bottom for ε = 0.025. It appears clearly that, for
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1/ε

1e-18
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1e-06
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m = -1.3
m2=-11
m1=-3.7

Figure 5. Measure of the diffusion coefficient D as a function of 1/ε for orbits of
data set (A) (circle) and of data set (B) (square). For data set (A) the function
D(ε) is fitted by a power law D(ε) = (1/ε)m with m = −1.3. For data set (B)
the diffusion coefficient is fitted by a power law with m1 = −3.7 up to ε = 10
(global diffusion), then a change of slope is observed with m2 = −11 (local Arnold
diffusion).

ε = 0.18 we have a phenomenon of global diffusion for both data sets, and that the
speed of diffusion seems to be of the same order. More precisely, we observe that
the speed of Arnold diffusion on a low order resonance can be of the same order of
magnitude, or even greater than the speed of the diffusion along the fast drift line
when such a line coincides with an higher order resonance. Let’s recall that the order
of the fast drift resonance is |k| = 5 while the resonance I2 = I1/α has order |k| = 2.
Such a result is a little surprising since we are used to think to Arnold diffusion as
a very slow phenomenon. Actually, when ε approaches ε0 (3), as it is for ε = 0.18,
and when the fast drift line is of moderately high order (Fig.7,top), it turns out to be
competitive with the fast diffusion.

When decreasing ε the speed of Arnold diffusion on orbits of data set 2 decreases
faster than the speed of diffusion of orbits of data set 1. We remark that for ε = 0.025,
on a time t = 108 iterations, the main contribution to the diffusion for data set 2 is that
in the directions parallel to the fast drift lines. A measure of the diffusion coefficient
(Fig.8) as a function of ε for data set 1 and 2 allows to quantify the effect of fast and
of Arnold diffusion .

In particular, it appears clearly that for ε = 0.1 the speed of Arnold diffusion is of
the same order than the speed of fast diffusion. This is the reason why we didn’t found
any difference between the diffusion coefficient computed for 1/

√
α = 2/3 and for their

irrational neighbouring values. In order to observe the influence of the rational value
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Figure 6. Variation of log D as a function of 1/
√

α for 300 values of α with
0.5 < 1/

√
α < 1. For each value of α a set of 100 chaotic initial conditions taken

along the fast drift line I2 = I1/
√

α with 0 < I1 < π has been integrated up to
t = 108 iterations. The perturbing parameter is ε = 0.1

1/
√

α = 2/3 on diffusion it is necessary to decrease ε. We have therefore repeated
the computation of D as a function of 1/

√
α for 100 values in a neighbourhood of

1/
√

α = 2/3 for ε = 0.05. Fig.9 shows the emergence of the rational value of
1/

√
α = 2/3 characterized by a diffusion coefficient 2.5 order of magnitude higher

than for 1/
√

α ' 2/3± 0.03.

7. Conclusion

We have studied the phenomenon of diffusion in a non convex symplectic map for
different values of the parameter α and of the perturbation parameter ε. For α2 ∈ Q

we observed a rapid global diffusion along the resonances forming the “fast web” only
when the order of the fast drift line is low. Otherwise, even if α2 ∈ Q the diffusion
along the fast drift line may not be the most rapid phenomenon. The order of the
resonance associated to the fast drift line has to be taken into account. To be definite,
we found, for some values of the perturbation parameter, a similar diffusion coefficient
for orbits driven by the Arnold mechanism along a low order resonance and for orbits
moving along a fast drift line coinciding with an higher order resonance. However,
whatever the order of the fast drift resonance, when decreasing ε the speed of diffusion
decreases slower on the fast drift direction than on other lines.
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Figure 7. The four panels correspond to the FLI chart of the action plane (I1, I2)
for the map, with initial conditions on the section S as explained in the text,
with different magnifications. The white (yellow in the electronic version) region
corresponds to the chaotic part of the Arnold web. Panel a,b are for ε = 0.18
while c,d are for ε = 0.025. The black points are the intersection of the orbits
with section S for data set 1 (left) and 2 (right).
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Figure 8. α = 9/4. Variation of the diffusion coefficient as a function of 1/ε for
a set of 100 orbits initially chosen along the fast drift direction (square) and for
a set of 100 orbits with initial conditions chosen along the low order resonance
I2 = I1/α (circles).

Finally, when
√

α ∈ R/Q we recovered the diffusion properties of the convex case,
i.e. we measured a diffusion coefficient decreasing with 1/ε faster than a power law
and in agreement with the expected exponential decay.

Appendix: The FLI method and quasi–integrable dynamics

We review the FLI method showing why it allows the detection of the geometry
of resonances of a quasi–integrable system. For simplicity we refer to the hamiltonian
case:

Hε(I, ϕ) = h(I) + εf(I, ϕ) , (.1)

where I1, . . . , In ∈ R and ϕ1, . . . , ϕn ∈ S are action–angle variables and ε is a
small parameter. For any initial condition (I(0), ϕ(0)) and any initial tangent vector
(vI (0), vϕ(0)) the Fast Lyapunov Indicator at time t is the quantity:

log ‖(vI (t), vϕ(t))‖ ,

where (vI (t), vϕ(t)) is the solution of the variational equations of (.1):

dvIj

dt
= − ε

n
∑

i=1

∂2f

∂ϕj∂Ii

vIi
− ε

n
∑

i=1

∂2f

∂ϕi∂ϕj

vϕi
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Figure 9. Variation of log D as a function of 1/
√

α for 100 values of α with
0.63 < 1/

√
α < 0.7. For each value of α a set of 100 chaotic initial conditions

taken along the fast drift line I2 = I1/
√

α with 0 < I1 < π has been integrated
up to t = 108 iterations. The perturbing parameter is ε = 0.05

dvϕj

dt
=

n
∑

i=1

∂2h

∂Ii∂Ij

vIi
+ ε

n
∑

i=1

∂2f

∂Ii∂Ij

vIi
+ ε

n
∑

i=1

∂2f

∂Ij∂ϕi

vϕi
. (.2)

In the integrable case ε = 0 the above equations are immediately integrated and the
solution is

v0
I (t) = vI (0) , v0

ϕ(t) = vϕ(0) +
∂2h

∂2I
(I(0))vI (0)t .

Therefore, the norm of the tangent vector v0(t) grows at most linearly with time.
Instead, for any ε 6= 0 the system becomes non–integrable and one does not have an
explicit analytic expression for the solutions of both the Hamiltonian and variational
equations. However, if ε is small, one can use Hamiltonian perturbation theory to
estimate the evolution of the tangent vector. Assuming that Hamiltonian (.1) satisfies
the hypotheses of the KAM and Nekhoroshev theorems (in particular we assume that
h is convex and ε is suitably small) we proved that [24]:

(i) The initial condition is on a KAM torus; then the norm ||vε(t)|| of the tangent
vector vε(t) integrated for the Hamiltonian Hε satisfies:

||vε(t)|| =

∥

∥

∥

∥

∂2h

∂2I
(I(0))vI (0)

∥

∥

∥

∥

t + O(εαt) + O(1) , (.3)
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with some α > 0. The reason is that the dynamics on a KAM torus corresponds
to the dynamics given by an integrable Hamiltonian which is ε-close to the
Hamiltonian h.

(ii) The initial condition is on a regular resonant motion. We recall that a d-
dimensional lattice Λ ⊆ Zn defines a resonance through the relation: k · ∂h

∂I
= 0 for

any k ∈ Λ, or equivalently: ΠΛ
∂h
∂I

= 0 where ΠΛ denotes the Euclidean projection
of a vector onto the linear space spanned by Λ. As is usual in the Nekhoroshev
theorem, we only consider resonances related to integer lattices Λ ⊆ Zn which
are generated by d ≤ n − 1 independent integer vectors k(i), i ≤ d, with order
∣

∣k(i)
∣

∣ =
∑n

j=1

∣

∣

∣
k

(i)
j

∣

∣

∣
up to a threshold order K which grows as 1/ε

1

2n . According

to the definitions given in [15], the resonant domain associated to a lattice Λ is a
neighborhood of the resonance defined in the following way: first we require that
the action is suitably close to the resonance through the inequality:

∥

∥

∥

∥

ΠΛ
∂h

∂I
(I(0))

∥

∥

∥

∥

≤ a0

(a1K)n−d|Λ| (.4)

(a0, a1 are suitable constants, |Λ| is the Euclidean volume of the lattice Λ), second
we require that I(0) is suitably far from the other resonances; more precisely we
require:

∥

∥

∥

∥

ΠΛ′

∂h

∂I
(I(0))

∥

∥

∥

∥

>
a0

(a1K)n−d−1|Λ′| (.5)

for any lattice Λ′ generated by d + 1 independent integer vectors of order smaller
that K (we refer to the paper [15] for details). Among resonant motions it is
typical to find both regular and chaotic ones. In particular, the presence of
regular motions is typical in the resonances related to lattices Λ of dimension
d = 1, because the normal form in that case depends only on one angle, and in
resonances of higher multiplicity d > 1 they can be found near elliptic equilibrium
points, whose presence is also typical. It is also not very restrictive to assume
that in the neighborhood of these elliptic equilibrium points the system satisfies
the hypotheses of the KAM theorem, so that we can expect that the same
neighborhood is filled with a large volume of quasi–periodic motions.
For these motions, if I∗, ϕ∗ denotes the equilibrium point and one chooses an
initial condition (I, ϕ) in the resonance with |I − I∗| ≤

√
ε% and |ϕ − ϕ∗| ≤ %,

then for any initial vector vI (0), vϕ(0) it is [24]:

||vε(t)|| = ‖CΛΠΛortvI(0)‖ t+O(εβt)+tO(%2)+O(
√

εt)+O(
1√
ε
)(.6)

with some β > 0, Λort being the linear space orthogonal to Λ, and CΛ a linear
operator depending on the resonant lattice Λ and on the initial action I(0). It is:

CΛ =
∂2h

∂I2
(I(0))−∂2h

∂I2
(I(0))

(

ΠΛ
∂2h

∂I2
(I(0))ΠΛ

)∗
ΠΛ

∂2h

∂I2
(I(0)) ,(.7)

where
(

ΠΛ
∂2h
∂I2 (I(0))ΠΛ

)∗
denotes the inverse of the restriction of ∂2h

∂I2 to the

linear space spanned by Λ (which is well defined for the convexity of h).

As a consequence of (.3) and (.6), the resonance structure of the phase space can
be detected computing the FLI, with the same given v(0) and the same time interval
t on a set of regularly spaced orbits: Eq. (.3) says that it takes approximately the



21

value of the unperturbed case on all KAM tori; Eq. (.6) says that for suitably small
ε and % it is different at order O(1) from the unperturbed case on regular resonant
motions. In fact, the linear operator CΛΠΛort is different from the Hessian matrix of h

at order O(1), i.e. CΛΠΛort does not approach ∂2h
∂I2 as ε approaches to zero. For initial

conditions on chaotic resonant motions the FLI is higher than the value characterizing
KAM tori. In this way, we detect the presence of the resonances because the value of
the FLI is different from the uniform value assumed on the KAM tori.
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